PostGIS 3.0.6dev-r@@SVN_REVISION@@
Loading...
Searching...
No Matches
lwgeodetic.c
Go to the documentation of this file.
1/**********************************************************************
2 *
3 * PostGIS - Spatial Types for PostgreSQL
4 * http://postgis.net
5 *
6 * PostGIS is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * PostGIS is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with PostGIS. If not, see <http://www.gnu.org/licenses/>.
18 *
19 **********************************************************************
20 *
21 * Copyright 2009 Paul Ramsey <pramsey@cleverelephant.ca>
22 * Copyright 2009 David Skea <David.Skea@gov.bc.ca>
23 *
24 **********************************************************************/
25
26
27#include "liblwgeom_internal.h"
28#include "lwgeodetic.h"
29#include "lwgeom_log.h"
30
37
41static int
42point3d_equals(const POINT3D *p1, const POINT3D *p2)
43{
44 return FP_EQUALS(p1->x, p2->x) && FP_EQUALS(p1->y, p2->y) && FP_EQUALS(p1->z, p2->z);
45}
46
51{
52 if ( lon == -1.0 * M_PI )
53 return M_PI;
54 if ( lon == -2.0 * M_PI )
55 return 0.0;
56
57 if ( lon > 2.0 * M_PI )
58 lon = remainder(lon, 2.0 * M_PI);
59
60 if ( lon < -2.0 * M_PI )
61 lon = remainder(lon, -2.0 * M_PI);
62
63 if ( lon > M_PI )
64 lon = -2.0 * M_PI + lon;
65
66 if ( lon < -1.0 * M_PI )
67 lon = 2.0 * M_PI + lon;
68
69 if ( lon == -2.0 * M_PI )
70 lon *= -1.0;
71
72 return lon;
73}
74
79{
80
81 if ( lat > 2.0 * M_PI )
82 lat = remainder(lat, 2.0 * M_PI);
83
84 if ( lat < -2.0 * M_PI )
85 lat = remainder(lat, -2.0 * M_PI);
86
87 if ( lat > M_PI )
88 lat = M_PI - lat;
89
90 if ( lat < -1.0 * M_PI )
91 lat = -1.0 * M_PI - lat;
92
93 if ( lat > M_PI_2 )
94 lat = M_PI - lat;
95
96 if ( lat < -1.0 * M_PI_2 )
97 lat = -1.0 * M_PI - lat;
98
99 return lat;
100}
101
107{
108 if ( lon > 360.0 )
109 lon = remainder(lon, 360.0);
110
111 if ( lon < -360.0 )
112 lon = remainder(lon, -360.0);
113
114 if ( lon > 180.0 )
115 lon = -360.0 + lon;
116
117 if ( lon < -180.0 )
118 lon = 360 + lon;
119
120 if ( lon == -180.0 )
121 return 180.0;
122
123 if ( lon == -360.0 )
124 return 0.0;
125
126 return lon;
127}
128
134{
135
136 if ( lat > 360.0 )
137 lat = remainder(lat, 360.0);
138
139 if ( lat < -360.0 )
140 lat = remainder(lat, -360.0);
141
142 if ( lat > 180.0 )
143 lat = 180.0 - lat;
144
145 if ( lat < -180.0 )
146 lat = -180.0 - lat;
147
148 if ( lat > 90.0 )
149 lat = 180.0 - lat;
150
151 if ( lat < -90.0 )
152 lat = -180.0 - lat;
153
154 return lat;
155}
156
160void point_shift(GEOGRAPHIC_POINT *p, double shift)
161{
162 double lon = p->lon + shift;
163 if ( lon > M_PI )
164 p->lon = -1.0 * M_PI + (lon - M_PI);
165 else
166 p->lon = lon;
167 return;
168}
169
171{
172 return FP_EQUALS(g1->lat, g2->lat) && FP_EQUALS(g1->lon, g2->lon);
173}
174
180void geographic_point_init(double lon, double lat, GEOGRAPHIC_POINT *g)
181{
184}
185
187double
189{
190 double d[6];
191 int i;
192 double zmin = FLT_MAX;
193 double zmax = -1 * FLT_MAX;
194 POINT3D pt;
195
196 /* Take a copy of the box corners so we can treat them as a list */
197 /* Elements are xmin, xmax, ymin, ymax, zmin, zmax */
198 memcpy(d, &(gbox->xmin), 6*sizeof(double));
199
200 /* Generate all 8 corner vectors of the box */
201 for ( i = 0; i < 8; i++ )
202 {
203 pt.x = d[i / 4];
204 pt.y = d[2 + (i % 4) / 2];
205 pt.z = d[4 + (i % 2)];
206 normalize(&pt);
207 if ( pt.z < zmin ) zmin = pt.z;
208 if ( pt.z > zmax ) zmax = pt.z;
209 }
210 return asin(zmax) - asin(zmin);
211}
212
214double
216{
217 double d[6];
218 int i, j;
219 POINT3D pt[3];
220 double maxangle;
221 double magnitude;
222
223 /* Take a copy of the box corners so we can treat them as a list */
224 /* Elements are xmin, xmax, ymin, ymax, zmin, zmax */
225 memcpy(d, &(gbox->xmin), 6*sizeof(double));
226
227 /* Start with the bottom corner */
228 pt[0].x = gbox->xmin;
229 pt[0].y = gbox->ymin;
230 magnitude = sqrt(pt[0].x*pt[0].x + pt[0].y*pt[0].y);
231 pt[0].x /= magnitude;
232 pt[0].y /= magnitude;
233
234 /* Generate all 8 corner vectors of the box */
235 /* Find the vector furthest from our seed vector */
236 for ( j = 0; j < 2; j++ )
237 {
238 maxangle = -1 * FLT_MAX;
239 for ( i = 0; i < 4; i++ )
240 {
241 double angle, dotprod;
242 POINT3D pt_n;
243
244 pt_n.x = d[i / 2];
245 pt_n.y = d[2 + (i % 2)];
246 magnitude = sqrt(pt_n.x*pt_n.x + pt_n.y*pt_n.y);
247 pt_n.x /= magnitude;
248 pt_n.y /= magnitude;
249 pt_n.z = 0.0;
250
251 dotprod = pt_n.x*pt[j].x + pt_n.y*pt[j].y;
252 angle = acos(dotprod > 1.0 ? 1.0 : dotprod);
253 if ( angle > maxangle )
254 {
255 pt[j+1] = pt_n;
256 maxangle = angle;
257 }
258 }
259 }
260
261 /* Return the distance between the two furthest vectors */
262 return maxangle;
263}
264
266int
267gbox_centroid(const GBOX* gbox, POINT2D* out)
268{
269 double d[6];
271 POINT3D pt;
272 int i;
273
274 /* Take a copy of the box corners so we can treat them as a list */
275 /* Elements are xmin, xmax, ymin, ymax, zmin, zmax */
276 memcpy(d, &(gbox->xmin), 6*sizeof(double));
277
278 /* Zero out our return vector */
279 pt.x = pt.y = pt.z = 0.0;
280
281 for ( i = 0; i < 8; i++ )
282 {
283 POINT3D pt_n;
284
285 pt_n.x = d[i / 4];
286 pt_n.y = d[2 + ((i % 4) / 2)];
287 pt_n.z = d[4 + (i % 2)];
288 normalize(&pt_n);
289
290 pt.x += pt_n.x;
291 pt.y += pt_n.y;
292 pt.z += pt_n.z;
293 }
294
295 pt.x /= 8.0;
296 pt.y /= 8.0;
297 pt.z /= 8.0;
298 normalize(&pt);
299
300 cart2geog(&pt, &g);
303
304 return LW_SUCCESS;
305}
306
316static int gbox_check_poles(GBOX *gbox)
317{
318 int rv = LW_FALSE;
319#if POSTGIS_DEBUG_LEVEL >= 4
320 char *gbox_str = gbox_to_string(gbox);
321 LWDEBUG(4, "checking poles");
322 LWDEBUGF(4, "gbox %s", gbox_str);
323 lwfree(gbox_str);
324#endif
325 /* Z axis */
326 if (gbox->xmin < 0.0 && gbox->xmax > 0.0 &&
327 gbox->ymin < 0.0 && gbox->ymax > 0.0)
328 {
329 /* Extrema lean positive */
330 if ((gbox->zmin > 0.0) && (gbox->zmax > 0.0))
331 {
332 LWDEBUG(4, "enclosed positive z axis");
333 gbox->zmax = 1.0;
334 }
335 /* Extrema lean negative */
336 else if ((gbox->zmin < 0.0) && (gbox->zmax < 0.0))
337 {
338 LWDEBUG(4, "enclosed negative z axis");
339 gbox->zmin = -1.0;
340 }
341 /* Extrema both sides! */
342 else
343 {
344 LWDEBUG(4, "enclosed both z axes");
345 gbox->zmin = -1.0;
346 gbox->zmax = 1.0;
347 }
348 rv = LW_TRUE;
349 }
350
351 /* Y axis */
352 if (gbox->xmin < 0.0 && gbox->xmax > 0.0 &&
353 gbox->zmin < 0.0 && gbox->zmax > 0.0)
354 {
355 if ((gbox->ymin > 0.0) && (gbox->ymax > 0.0))
356 {
357 LWDEBUG(4, "enclosed positive y axis");
358 gbox->ymax = 1.0;
359 }
360 else if ((gbox->ymin < 0.0) && (gbox->ymax < 0.0))
361 {
362 LWDEBUG(4, "enclosed negative y axis");
363 gbox->ymin = -1.0;
364 }
365 else
366 {
367 LWDEBUG(4, "enclosed both y axes");
368 gbox->ymax = 1.0;
369 gbox->ymin = -1.0;
370 }
371 rv = LW_TRUE;
372 }
373
374 /* X axis */
375 if (gbox->ymin < 0.0 && gbox->ymax > 0.0 &&
376 gbox->zmin < 0.0 && gbox->zmax > 0.0)
377 {
378 if ((gbox->xmin > 0.0) && (gbox->xmax > 0.0))
379 {
380 LWDEBUG(4, "enclosed positive x axis");
381 gbox->xmax = 1.0;
382 }
383 else if ((gbox->xmin < 0.0) && (gbox->xmax < 0.0))
384 {
385 LWDEBUG(4, "enclosed negative x axis");
386 gbox->xmin = -1.0;
387 }
388 else
389 {
390 LWDEBUG(4, "enclosed both x axes");
391 gbox->xmax = 1.0;
392 gbox->xmin = -1.0;
393 }
394
395 rv = LW_TRUE;
396 }
397
398 return rv;
399}
400
405{
406 p->x = cos(g->lat) * cos(g->lon);
407 p->y = cos(g->lat) * sin(g->lon);
408 p->z = sin(g->lat);
409}
410
415{
416 g->lon = atan2(p->y, p->x);
417 g->lat = asin(p->z);
418}
419
423void ll2cart(const POINT2D *g, POINT3D *p)
424{
425 double x_rad = M_PI * g->x / 180.0;
426 double y_rad = M_PI * g->y / 180.0;
427 double cos_y_rad = cos(y_rad);
428 p->x = cos_y_rad * cos(x_rad);
429 p->y = cos_y_rad * sin(x_rad);
430 p->z = sin(y_rad);
431}
432
446static double dot_product(const POINT3D *p1, const POINT3D *p2)
447{
448 return (p1->x*p2->x) + (p1->y*p2->y) + (p1->z*p2->z);
449}
450
454static void cross_product(const POINT3D *a, const POINT3D *b, POINT3D *n)
455{
456 n->x = a->y * b->z - a->z * b->y;
457 n->y = a->z * b->x - a->x * b->z;
458 n->z = a->x * b->y - a->y * b->x;
459 return;
460}
461
465void vector_sum(const POINT3D *a, const POINT3D *b, POINT3D *n)
466{
467 n->x = a->x + b->x;
468 n->y = a->y + b->y;
469 n->z = a->z + b->z;
470 return;
471}
472
476static void vector_difference(const POINT3D *a, const POINT3D *b, POINT3D *n)
477{
478 n->x = a->x - b->x;
479 n->y = a->y - b->y;
480 n->z = a->z - b->z;
481 return;
482}
483
487void vector_scale(POINT3D *n, double scale)
488{
489 n->x *= scale;
490 n->y *= scale;
491 n->z *= scale;
492 return;
493}
494
495/*
496* static inline double vector_magnitude(const POINT3D* v)
497* {
498* return sqrt(v->x*v->x + v->y*v->y + v->z*v->z);
499* }
500*/
501
505double vector_angle(const POINT3D* v1, const POINT3D* v2)
506{
507 POINT3D v3, normal;
508 double angle, x, y;
509
510 cross_product(v1, v2, &normal);
511 normalize(&normal);
512 cross_product(&normal, v1, &v3);
513
514 x = dot_product(v1, v2);
515 y = dot_product(v2, &v3);
516
517 angle = atan2(y, x);
518 return angle;
519}
520
524static void normalize2d(POINT2D *p)
525{
526 double d = sqrt(p->x*p->x + p->y*p->y);
527 if (FP_IS_ZERO(d))
528 {
529 p->x = p->y = 0.0;
530 return;
531 }
532 p->x = p->x / d;
533 p->y = p->y / d;
534 return;
535}
536
541void unit_normal(const POINT3D *P1, const POINT3D *P2, POINT3D *normal)
542{
543 double p_dot = dot_product(P1, P2);
544 POINT3D P3;
545
546 /* If edge is really large, calculate a narrower equivalent angle A1/A3. */
547 if ( p_dot < 0 )
548 {
549 vector_sum(P1, P2, &P3);
550 normalize(&P3);
551 }
552 /* If edge is narrow, calculate a wider equivalent angle A1/A3. */
553 else if ( p_dot > 0.95 )
554 {
555 vector_difference(P2, P1, &P3);
556 normalize(&P3);
557 }
558 /* Just keep the current angle in A1/A3. */
559 else
560 {
561 P3 = *P2;
562 }
563
564 /* Normals to the A-plane and B-plane */
565 cross_product(P1, &P3, normal);
566 normalize(normal);
567}
568
573void vector_rotate(const POINT3D* v1, const POINT3D* v2, double angle, POINT3D* n)
574{
575 POINT3D u;
576 double cos_a = cos(angle);
577 double sin_a = sin(angle);
578 double uxuy, uyuz, uxuz;
579 double ux2, uy2, uz2;
580 double rxx, rxy, rxz, ryx, ryy, ryz, rzx, rzy, rzz;
581
582 /* Need a unit vector normal to rotate around */
583 unit_normal(v1, v2, &u);
584
585 uxuy = u.x * u.y;
586 uxuz = u.x * u.z;
587 uyuz = u.y * u.z;
588
589 ux2 = u.x * u.x;
590 uy2 = u.y * u.y;
591 uz2 = u.z * u.z;
592
593 rxx = cos_a + ux2 * (1 - cos_a);
594 rxy = uxuy * (1 - cos_a) - u.z * sin_a;
595 rxz = uxuz * (1 - cos_a) + u.y * sin_a;
596
597 ryx = uxuy * (1 - cos_a) + u.z * sin_a;
598 ryy = cos_a + uy2 * (1 - cos_a);
599 ryz = uyuz * (1 - cos_a) - u.x * sin_a;
600
601 rzx = uxuz * (1 - cos_a) - u.y * sin_a;
602 rzy = uyuz * (1 - cos_a) + u.x * sin_a;
603 rzz = cos_a + uz2 * (1 - cos_a);
604
605 n->x = rxx * v1->x + rxy * v1->y + rxz * v1->z;
606 n->y = ryx * v1->x + ryy * v1->y + ryz * v1->z;
607 n->z = rzx * v1->x + rzy * v1->y + rzz * v1->z;
608
609 normalize(n);
610}
611
616{
617 double d = sqrt(p->x*p->x + p->y*p->y + p->z*p->z);
618 if (FP_IS_ZERO(d))
619 {
620 p->x = p->y = p->z = 0.0;
621 return;
622 }
623 p->x = p->x / d;
624 p->y = p->y / d;
625 p->z = p->z / d;
626 return;
627}
628
629
635{
636 double lon_qpp = (q->lon + p->lon) / -2.0;
637 double lon_qmp = (q->lon - p->lon) / 2.0;
638 double sin_p_lat_minus_q_lat = sin(p->lat-q->lat);
639 double sin_p_lat_plus_q_lat = sin(p->lat+q->lat);
640 double sin_lon_qpp = sin(lon_qpp);
641 double sin_lon_qmp = sin(lon_qmp);
642 double cos_lon_qpp = cos(lon_qpp);
643 double cos_lon_qmp = cos(lon_qmp);
644 a->x = sin_p_lat_minus_q_lat * sin_lon_qpp * cos_lon_qmp -
645 sin_p_lat_plus_q_lat * cos_lon_qpp * sin_lon_qmp;
646 a->y = sin_p_lat_minus_q_lat * cos_lon_qpp * cos_lon_qmp +
647 sin_p_lat_plus_q_lat * sin_lon_qpp * sin_lon_qmp;
648 a->z = cos(p->lat) * cos(q->lat) * sin(q->lon-p->lon);
649}
650
652{
653 double tmp = p->z;
654 p->z = p->x;
655 p->x = tmp;
656}
657
659{
660 double tmp = p->z;
661 p->z = p->y;
662 p->y = tmp;
663}
664
665
667{
668 double sign_s = SIGNUM(s->lon);
669 double sign_e = SIGNUM(e->lon);
670 double ss = fabs(s->lon);
671 double ee = fabs(e->lon);
672 if ( sign_s == sign_e )
673 {
674 return LW_FALSE;
675 }
676 else
677 {
678 double dl = ss + ee;
679 if ( dl < M_PI )
680 return LW_FALSE;
681 else if ( FP_EQUALS(dl, M_PI) )
682 return LW_FALSE;
683 else
684 return LW_TRUE;
685 }
686}
687
693static int
695{
696 POINT3D normal, pt;
697 double w;
698 /* Normal to the plane defined by e */
699 robust_cross_product(&(e->start), &(e->end), &normal);
700 normalize(&normal);
701 geog2cart(p, &pt);
702 /* We expect the dot product of with normal with any vector in the plane to be zero */
703 w = dot_product(&normal, &pt);
704 LWDEBUGF(4,"dot product %.9g",w);
705 if ( FP_IS_ZERO(w) )
706 {
707 LWDEBUG(4, "point is on plane (dot product is zero)");
708 return 0;
709 }
710
711 if ( w < 0 )
712 return -1;
713 else
714 return 1;
715}
716
720static double
722{
723 POINT3D normal1, normal2;
724 robust_cross_product(b, a, &normal1);
725 robust_cross_product(b, c, &normal2);
726 normalize(&normal1);
727 normalize(&normal2);
728 return sphere_distance_cartesian(&normal1, &normal2);
729}
730
740static double
742{
743 double angle_a, angle_b, angle_c;
744 double area_radians = 0.0;
745 int side;
747
748 angle_a = sphere_angle(b,a,c);
749 angle_b = sphere_angle(a,b,c);
750 angle_c = sphere_angle(b,c,a);
751
752 area_radians = angle_a + angle_b + angle_c - M_PI;
753
754 /* What's the direction of the B/C edge? */
755 e.start = *a;
756 e.end = *b;
757 side = edge_point_side(&e, c);
758
759 /* Co-linear points implies no area */
760 if ( side == 0 )
761 return 0.0;
762
763 /* Add the sign to the area */
764 return side * area_radians;
765}
766
767
768
776{
777 int side = edge_point_side(e, p);
778 if ( side == 0 )
779 return LW_TRUE;
780
781 return LW_FALSE;
782}
783
789{
790 POINT3D vcp, vs, ve, vp;
791 double vs_dot_vcp, vp_dot_vcp;
792 geog2cart(&(e->start), &vs);
793 geog2cart(&(e->end), &ve);
794 /* Antipodal case, everything is inside. */
795 if ( vs.x == -1.0 * ve.x && vs.y == -1.0 * ve.y && vs.z == -1.0 * ve.z )
796 return LW_TRUE;
797 geog2cart(p, &vp);
798 /* The normalized sum bisects the angle between start and end. */
799 vector_sum(&vs, &ve, &vcp);
800 normalize(&vcp);
801 /* The projection of start onto the center defines the minimum similarity */
802 vs_dot_vcp = dot_product(&vs, &vcp);
803 LWDEBUGF(4,"vs_dot_vcp %.19g",vs_dot_vcp);
804 /* The projection of candidate p onto the center */
805 vp_dot_vcp = dot_product(&vp, &vcp);
806 LWDEBUGF(4,"vp_dot_vcp %.19g",vp_dot_vcp);
807 /* If p is more similar than start then p is inside the cone */
808 LWDEBUGF(4,"fabs(vp_dot_vcp - vs_dot_vcp) %.39g",fabs(vp_dot_vcp - vs_dot_vcp));
809
810 /*
811 ** We want to test that vp_dot_vcp is >= vs_dot_vcp but there are
812 ** numerical stability issues for values that are very very nearly
813 ** equal. Unfortunately there are also values of vp_dot_vcp that are legitimately
814 ** very close to but still less than vs_dot_vcp which we also need to catch.
815 ** The tolerance of 10-17 seems to do the trick on 32-bit and 64-bit architectures,
816 ** for the test cases here.
817 ** However, tuning the tolerance value feels like a dangerous hack.
818 ** Fundamentally, the problem is that this test is so sensitive.
819 */
820
821 /* 1.1102230246251565404236316680908203125e-16 */
822
823 if ( vp_dot_vcp > vs_dot_vcp || fabs(vp_dot_vcp - vs_dot_vcp) < 2e-16 )
824 {
825 LWDEBUG(4, "point is in cone");
826 return LW_TRUE;
827 }
828 LWDEBUG(4, "point is not in cone");
829 return LW_FALSE;
830}
831
836{
839 double slon = fabs((e->start).lon) + fabs((e->end).lon);
840 double dlon = fabs(fabs((e->start).lon) - fabs((e->end).lon));
841 double slat = (e->start).lat + (e->end).lat;
842
843 LWDEBUGF(4, "e.start == GPOINT(%.6g %.6g) ", (e->start).lat, (e->start).lon);
844 LWDEBUGF(4, "e.end == GPOINT(%.6g %.6g) ", (e->end).lat, (e->end).lon);
845 LWDEBUGF(4, "p == GPOINT(%.6g %.6g) ", p->lat, p->lon);
846
847 /* Copy values into working registers */
848 g = *e;
849 q = *p;
850
851 /* Vertical plane, we need to do this calculation in latitude */
852 if ( FP_EQUALS( g.start.lon, g.end.lon ) )
853 {
854 LWDEBUG(4, "vertical plane, we need to do this calculation in latitude");
855 /* Supposed to be co-planar... */
856 if ( ! FP_EQUALS( q.lon, g.start.lon ) )
857 return LW_FALSE;
858
859 if ( ( g.start.lat <= q.lat && q.lat <= g.end.lat ) ||
860 ( g.end.lat <= q.lat && q.lat <= g.start.lat ) )
861 {
862 return LW_TRUE;
863 }
864 else
865 {
866 return LW_FALSE;
867 }
868 }
869
870 /* Over the pole, we need normalize latitude and do this calculation in latitude */
871 if ( FP_EQUALS( slon, M_PI ) && ( SIGNUM(g.start.lon) != SIGNUM(g.end.lon) || FP_EQUALS(dlon, M_PI) ) )
872 {
873 LWDEBUG(4, "over the pole...");
874 /* Antipodal, everything (or nothing?) is inside */
875 if ( FP_EQUALS( slat, 0.0 ) )
876 return LW_TRUE;
877
878 /* Point *is* the north pole */
879 if ( slat > 0.0 && FP_EQUALS(q.lat, M_PI_2 ) )
880 return LW_TRUE;
881
882 /* Point *is* the south pole */
883 if ( slat < 0.0 && FP_EQUALS(q.lat, -1.0 * M_PI_2) )
884 return LW_TRUE;
885
886 LWDEBUG(4, "coplanar?...");
887
888 /* Supposed to be co-planar... */
889 if ( ! FP_EQUALS( q.lon, g.start.lon ) )
890 return LW_FALSE;
891
892 LWDEBUG(4, "north or south?...");
893
894 /* Over north pole, test based on south pole */
895 if ( slat > 0.0 )
896 {
897 LWDEBUG(4, "over the north pole...");
898 if ( q.lat > FP_MIN(g.start.lat, g.end.lat) )
899 return LW_TRUE;
900 else
901 return LW_FALSE;
902 }
903 else
904 /* Over south pole, test based on north pole */
905 {
906 LWDEBUG(4, "over the south pole...");
907 if ( q.lat < FP_MAX(g.start.lat, g.end.lat) )
908 return LW_TRUE;
909 else
910 return LW_FALSE;
911 }
912 }
913
914 /* Dateline crossing, flip everything to the opposite hemisphere */
915 else if ( slon > M_PI && ( SIGNUM(g.start.lon) != SIGNUM(g.end.lon) ) )
916 {
917 LWDEBUG(4, "crosses dateline, flip longitudes...");
918 if ( g.start.lon > 0.0 )
919 g.start.lon -= M_PI;
920 else
921 g.start.lon += M_PI;
922 if ( g.end.lon > 0.0 )
923 g.end.lon -= M_PI;
924 else
925 g.end.lon += M_PI;
926
927 if ( q.lon > 0.0 )
928 q.lon -= M_PI;
929 else
930 q.lon += M_PI;
931 }
932
933 if ( ( g.start.lon <= q.lon && q.lon <= g.end.lon ) ||
934 ( g.end.lon <= q.lon && q.lon <= g.start.lon ) )
935 {
936 LWDEBUG(4, "true, this edge contains point");
937 return LW_TRUE;
938 }
939
940 LWDEBUG(4, "false, this edge does not contain point");
941 return LW_FALSE;
942}
943
944
949{
950 double d_lon = e->lon - s->lon;
951 double cos_d_lon = cos(d_lon);
952 double cos_lat_e = cos(e->lat);
953 double sin_lat_e = sin(e->lat);
954 double cos_lat_s = cos(s->lat);
955 double sin_lat_s = sin(s->lat);
956
957 double a1 = POW2(cos_lat_e * sin(d_lon));
958 double a2 = POW2(cos_lat_s * sin_lat_e - sin_lat_s * cos_lat_e * cos_d_lon);
959 double a = sqrt(a1 + a2);
960 double b = sin_lat_s * sin_lat_e + cos_lat_s * cos_lat_e * cos_d_lon;
961 return atan2(a, b);
962}
963
968{
969 return acos(FP_MIN(1.0, dot_product(s, e)));
970}
971
975double sphere_direction(const GEOGRAPHIC_POINT *s, const GEOGRAPHIC_POINT *e, double d)
976{
977 double heading = 0.0;
978 double f;
979
980 /* Starting from the poles? Special case. */
981 if ( FP_IS_ZERO(cos(s->lat)) )
982 return (s->lat > 0.0) ? M_PI : 0.0;
983
984 f = (sin(e->lat) - sin(s->lat) * cos(d)) / (sin(d) * cos(s->lat));
985 if ( FP_EQUALS(f, 1.0) )
986 heading = 0.0;
987 else if ( FP_EQUALS(f, -1.0) )
988 heading = M_PI;
989 else if ( fabs(f) > 1.0 )
990 {
991 LWDEBUGF(4, "f = %g", f);
992 heading = acos(f);
993 }
994 else
995 heading = acos(f);
996
997 if ( sin(e->lon - s->lon) < 0.0 )
998 heading = -1 * heading;
999
1000 return heading;
1001}
1002
1003#if 0 /* unused */
1015static double sphere_excess(const GEOGRAPHIC_POINT *a, const GEOGRAPHIC_POINT *b, const GEOGRAPHIC_POINT *c)
1016{
1017 double a_dist = sphere_distance(b, c);
1018 double b_dist = sphere_distance(c, a);
1019 double c_dist = sphere_distance(a, b);
1020 double hca = sphere_direction(c, a, b_dist);
1021 double hcb = sphere_direction(c, b, a_dist);
1022 double sign = SIGNUM(hcb-hca);
1023 double ss = (a_dist + b_dist + c_dist) / 2.0;
1024 double E = tan(ss/2.0)*tan((ss-a_dist)/2.0)*tan((ss-b_dist)/2.0)*tan((ss-c_dist)/2.0);
1025 return 4.0 * atan(sqrt(fabs(E))) * sign;
1026}
1027#endif
1028
1029
1035{
1036 if ( edge_point_in_cone(e, p) && edge_point_on_plane(e, p) )
1037 /* if ( edge_contains_coplanar_point(e, p) && edge_point_on_plane(e, p) ) */
1038 {
1039 LWDEBUG(4, "point is on edge");
1040 return LW_TRUE;
1041 }
1042 LWDEBUG(4, "point is not on edge");
1043 return LW_FALSE;
1044}
1045
1049double z_to_latitude(double z, int top)
1050{
1051 double sign = SIGNUM(z);
1052 double tlat = acos(z);
1053 LWDEBUGF(4, "inputs: z(%.8g) sign(%.8g) tlat(%.8g)", z, sign, tlat);
1054 if (FP_IS_ZERO(z))
1055 {
1056 if (top) return M_PI_2;
1057 else return -1.0 * M_PI_2;
1058 }
1059 if (fabs(tlat) > M_PI_2 )
1060 {
1061 tlat = sign * (M_PI - fabs(tlat));
1062 }
1063 else
1064 {
1065 tlat = sign * tlat;
1066 }
1067 LWDEBUGF(4, "output: tlat(%.8g)", tlat);
1068 return tlat;
1069}
1070
1076int clairaut_cartesian(const POINT3D *start, const POINT3D *end, GEOGRAPHIC_POINT *g_top, GEOGRAPHIC_POINT *g_bottom)
1077{
1078 POINT3D t1, t2;
1079 GEOGRAPHIC_POINT vN1, vN2;
1080 LWDEBUG(4,"entering function");
1081 unit_normal(start, end, &t1);
1082 unit_normal(end, start, &t2);
1083 LWDEBUGF(4, "unit normal t1 == POINT(%.8g %.8g %.8g)", t1.x, t1.y, t1.z);
1084 LWDEBUGF(4, "unit normal t2 == POINT(%.8g %.8g %.8g)", t2.x, t2.y, t2.z);
1085 cart2geog(&t1, &vN1);
1086 cart2geog(&t2, &vN2);
1087 g_top->lat = z_to_latitude(t1.z,LW_TRUE);
1088 g_top->lon = vN2.lon;
1089 g_bottom->lat = z_to_latitude(t2.z,LW_FALSE);
1090 g_bottom->lon = vN1.lon;
1091 LWDEBUGF(4, "clairaut top == GPOINT(%.6g %.6g)", g_top->lat, g_top->lon);
1092 LWDEBUGF(4, "clairaut bottom == GPOINT(%.6g %.6g)", g_bottom->lat, g_bottom->lon);
1093 return LW_SUCCESS;
1094}
1095
1102{
1103 POINT3D t1, t2;
1104 GEOGRAPHIC_POINT vN1, vN2;
1105 LWDEBUG(4,"entering function");
1106 robust_cross_product(start, end, &t1);
1107 normalize(&t1);
1108 robust_cross_product(end, start, &t2);
1109 normalize(&t2);
1110 LWDEBUGF(4, "unit normal t1 == POINT(%.8g %.8g %.8g)", t1.x, t1.y, t1.z);
1111 LWDEBUGF(4, "unit normal t2 == POINT(%.8g %.8g %.8g)", t2.x, t2.y, t2.z);
1112 cart2geog(&t1, &vN1);
1113 cart2geog(&t2, &vN2);
1114 g_top->lat = z_to_latitude(t1.z,LW_TRUE);
1115 g_top->lon = vN2.lon;
1116 g_bottom->lat = z_to_latitude(t2.z,LW_FALSE);
1117 g_bottom->lon = vN1.lon;
1118 LWDEBUGF(4, "clairaut top == GPOINT(%.6g %.6g)", g_top->lat, g_top->lon);
1119 LWDEBUGF(4, "clairaut bottom == GPOINT(%.6g %.6g)", g_bottom->lat, g_bottom->lon);
1120 return LW_SUCCESS;
1121}
1122
1128{
1129 POINT3D ea, eb, v;
1130 LWDEBUGF(4, "e1 start(%.20g %.20g) end(%.20g %.20g)", e1->start.lat, e1->start.lon, e1->end.lat, e1->end.lon);
1131 LWDEBUGF(4, "e2 start(%.20g %.20g) end(%.20g %.20g)", e2->start.lat, e2->start.lon, e2->end.lat, e2->end.lon);
1132
1133 LWDEBUGF(4, "e1 start(%.20g %.20g) end(%.20g %.20g)", rad2deg(e1->start.lon), rad2deg(e1->start.lat), rad2deg(e1->end.lon), rad2deg(e1->end.lat));
1134 LWDEBUGF(4, "e2 start(%.20g %.20g) end(%.20g %.20g)", rad2deg(e2->start.lon), rad2deg(e2->start.lat), rad2deg(e2->end.lon), rad2deg(e2->end.lat));
1135
1136 if ( geographic_point_equals(&(e1->start), &(e2->start)) )
1137 {
1138 *g = e1->start;
1139 return LW_TRUE;
1140 }
1141 if ( geographic_point_equals(&(e1->end), &(e2->end)) )
1142 {
1143 *g = e1->end;
1144 return LW_TRUE;
1145 }
1146 if ( geographic_point_equals(&(e1->end), &(e2->start)) )
1147 {
1148 *g = e1->end;
1149 return LW_TRUE;
1150 }
1151 if ( geographic_point_equals(&(e1->start), &(e2->end)) )
1152 {
1153 *g = e1->start;
1154 return LW_TRUE;
1155 }
1156
1157 robust_cross_product(&(e1->start), &(e1->end), &ea);
1158 normalize(&ea);
1159 robust_cross_product(&(e2->start), &(e2->end), &eb);
1160 normalize(&eb);
1161 LWDEBUGF(4, "e1 cross product == POINT(%.12g %.12g %.12g)", ea.x, ea.y, ea.z);
1162 LWDEBUGF(4, "e2 cross product == POINT(%.12g %.12g %.12g)", eb.x, eb.y, eb.z);
1163 LWDEBUGF(4, "fabs(dot_product(ea, eb)) == %.14g", fabs(dot_product(&ea, &eb)));
1164 if ( FP_EQUALS(fabs(dot_product(&ea, &eb)), 1.0) )
1165 {
1166 LWDEBUGF(4, "parallel edges found! dot_product = %.12g", dot_product(&ea, &eb));
1167 /* Parallel (maybe equal) edges! */
1168 /* Hack alert, only returning ONE end of the edge right now, most do better later. */
1169 /* Hack alert #2, returning a value of 2 to indicate a co-linear crossing event. */
1170 if ( edge_contains_point(e1, &(e2->start)) )
1171 {
1172 *g = e2->start;
1173 return 2;
1174 }
1175 if ( edge_contains_point(e1, &(e2->end)) )
1176 {
1177 *g = e2->end;
1178 return 2;
1179 }
1180 if ( edge_contains_point(e2, &(e1->start)) )
1181 {
1182 *g = e1->start;
1183 return 2;
1184 }
1185 if ( edge_contains_point(e2, &(e1->end)) )
1186 {
1187 *g = e1->end;
1188 return 2;
1189 }
1190 }
1191 unit_normal(&ea, &eb, &v);
1192 LWDEBUGF(4, "v == POINT(%.12g %.12g %.12g)", v.x, v.y, v.z);
1193 g->lat = atan2(v.z, sqrt(v.x * v.x + v.y * v.y));
1194 g->lon = atan2(v.y, v.x);
1195 LWDEBUGF(4, "g == GPOINT(%.12g %.12g)", g->lat, g->lon);
1196 LWDEBUGF(4, "g == POINT(%.12g %.12g)", rad2deg(g->lon), rad2deg(g->lat));
1197 if ( edge_contains_point(e1, g) && edge_contains_point(e2, g) )
1198 {
1199 return LW_TRUE;
1200 }
1201 else
1202 {
1203 LWDEBUG(4, "flipping point to other side of sphere");
1204 g->lat = -1.0 * g->lat;
1205 g->lon = g->lon + M_PI;
1206 if ( g->lon > M_PI )
1207 {
1208 g->lon = -1.0 * (2.0 * M_PI - g->lon);
1209 }
1210 if ( edge_contains_point(e1, g) && edge_contains_point(e2, g) )
1211 {
1212 return LW_TRUE;
1213 }
1214 }
1215 return LW_FALSE;
1216}
1217
1219{
1220 double d1 = 1000000000.0, d2, d3, d_nearest;
1221 POINT3D n, p, k;
1222 GEOGRAPHIC_POINT gk, g_nearest;
1223
1224 /* Zero length edge, */
1225 if ( geographic_point_equals(&(e->start), &(e->end)) )
1226 {
1227 *closest = e->start;
1228 return sphere_distance(&(e->start), gp);
1229 }
1230
1231 robust_cross_product(&(e->start), &(e->end), &n);
1232 normalize(&n);
1233 geog2cart(gp, &p);
1234 vector_scale(&n, dot_product(&p, &n));
1235 vector_difference(&p, &n, &k);
1236 normalize(&k);
1237 cart2geog(&k, &gk);
1238 if ( edge_point_in_cone(e, &gk) )
1239 {
1240 d1 = sphere_distance(gp, &gk);
1241 }
1242 d2 = sphere_distance(gp, &(e->start));
1243 d3 = sphere_distance(gp, &(e->end));
1244
1245 d_nearest = d1;
1246 g_nearest = gk;
1247
1248 if ( d2 < d_nearest )
1249 {
1250 d_nearest = d2;
1251 g_nearest = e->start;
1252 }
1253 if ( d3 < d_nearest )
1254 {
1255 d_nearest = d3;
1256 g_nearest = e->end;
1257 }
1258 if (closest)
1259 *closest = g_nearest;
1260
1261 return d_nearest;
1262}
1263
1270{
1271 double d;
1272 GEOGRAPHIC_POINT gcp1s, gcp1e, gcp2s, gcp2e, c1, c2;
1273 double d1s = edge_distance_to_point(e1, &(e2->start), &gcp1s);
1274 double d1e = edge_distance_to_point(e1, &(e2->end), &gcp1e);
1275 double d2s = edge_distance_to_point(e2, &(e1->start), &gcp2s);
1276 double d2e = edge_distance_to_point(e2, &(e1->end), &gcp2e);
1277
1278 d = d1s;
1279 c1 = gcp1s;
1280 c2 = e2->start;
1281
1282 if ( d1e < d )
1283 {
1284 d = d1e;
1285 c1 = gcp1e;
1286 c2 = e2->end;
1287 }
1288
1289 if ( d2s < d )
1290 {
1291 d = d2s;
1292 c1 = e1->start;
1293 c2 = gcp2s;
1294 }
1295
1296 if ( d2e < d )
1297 {
1298 d = d2e;
1299 c1 = e1->end;
1300 c2 = gcp2e;
1301 }
1302
1303 if ( closest1 ) *closest1 = c1;
1304 if ( closest2 ) *closest2 = c2;
1305
1306 return d;
1307}
1308
1309
1314int sphere_project(const GEOGRAPHIC_POINT *r, double distance, double azimuth, GEOGRAPHIC_POINT *n)
1315{
1316 double d = distance;
1317 double lat1 = r->lat;
1318 double lon1 = r->lon;
1319 double lat2, lon2;
1320
1321 lat2 = asin(sin(lat1)*cos(d) + cos(lat1)*sin(d)*cos(azimuth));
1322
1323 /* If we're going straight up or straight down, we don't need to calculate the longitude */
1324 /* TODO: this isn't quite true, what if we're going over the pole? */
1325 if ( FP_EQUALS(azimuth, M_PI) || FP_EQUALS(azimuth, 0.0) )
1326 {
1327 lon2 = r->lon;
1328 }
1329 else
1330 {
1331 lon2 = lon1 + atan2(sin(azimuth)*sin(d)*cos(lat1), cos(d)-sin(lat1)*sin(lat2));
1332 }
1333
1334 if ( isnan(lat2) || isnan(lon2) )
1335 return LW_FAILURE;
1336
1337 n->lat = lat2;
1338 n->lon = lon2;
1339
1340 return LW_SUCCESS;
1341}
1342
1343
1345{
1346 int steps = 1000000;
1347 int i;
1348 double dx, dy, dz;
1349 double distance = sphere_distance(&(e->start), &(e->end));
1350 POINT3D pn, p, start, end;
1351
1352 /* Edge is zero length, just return the naive box */
1353 if ( FP_IS_ZERO(distance) )
1354 {
1355 LWDEBUG(4, "edge is zero length. returning");
1356 geog2cart(&(e->start), &start);
1357 geog2cart(&(e->end), &end);
1358 gbox_init_point3d(&start, gbox);
1359 gbox_merge_point3d(&end, gbox);
1360 return LW_SUCCESS;
1361 }
1362
1363 /* Edge is antipodal (one point on each side of the globe),
1364 set the box to contain the whole world and return */
1365 if ( FP_EQUALS(distance, M_PI) )
1366 {
1367 LWDEBUG(4, "edge is antipodal. setting to maximum size box, and returning");
1368 gbox->xmin = gbox->ymin = gbox->zmin = -1.0;
1369 gbox->xmax = gbox->ymax = gbox->zmax = 1.0;
1370 return LW_SUCCESS;
1371 }
1372
1373 /* Walk along the chord between start and end incrementally,
1374 normalizing at each step. */
1375 geog2cart(&(e->start), &start);
1376 geog2cart(&(e->end), &end);
1377 dx = (end.x - start.x)/steps;
1378 dy = (end.y - start.y)/steps;
1379 dz = (end.z - start.z)/steps;
1380 p = start;
1381 gbox->xmin = gbox->xmax = p.x;
1382 gbox->ymin = gbox->ymax = p.y;
1383 gbox->zmin = gbox->zmax = p.z;
1384 for ( i = 0; i < steps; i++ )
1385 {
1386 p.x += dx;
1387 p.y += dy;
1388 p.z += dz;
1389 pn = p;
1390 normalize(&pn);
1391 gbox_merge_point3d(&pn, gbox);
1392 }
1393 return LW_SUCCESS;
1394}
1395
1408int edge_calculate_gbox(const POINT3D *A1, const POINT3D *A2, GBOX *gbox)
1409{
1410 POINT2D R1, R2, RX, O;
1411 POINT3D AN, A3;
1412 POINT3D X[6];
1413 int i, o_side;
1414
1415 /* Initialize the box with the edge end points */
1416 gbox_init_point3d(A1, gbox);
1417 gbox_merge_point3d(A2, gbox);
1418
1419 /* Zero length edge, just return! */
1420 if ( p3d_same(A1, A2) )
1421 return LW_SUCCESS;
1422
1423 /* Error out on antipodal edge */
1424 if ( FP_EQUALS(A1->x, -1*A2->x) && FP_EQUALS(A1->y, -1*A2->y) && FP_EQUALS(A1->z, -1*A2->z) )
1425 {
1426 lwerror("Antipodal (180 degrees long) edge detected!");
1427 return LW_FAILURE;
1428 }
1429
1430 /* Create A3, a vector in the plane of A1/A2, orthogonal to A1 */
1431 unit_normal(A1, A2, &AN);
1432 unit_normal(&AN, A1, &A3);
1433
1434 /* Project A1 and A2 into the 2-space formed by the plane A1/A3 */
1435 R1.x = 1.0;
1436 R1.y = 0.0;
1437 R2.x = dot_product(A2, A1);
1438 R2.y = dot_product(A2, &A3);
1439
1440 /* Initialize our 3-space axis points (x+, x-, y+, y-, z+, z-) */
1441 memset(X, 0, sizeof(POINT3D) * 6);
1442 X[0].x = X[2].y = X[4].z = 1.0;
1443 X[1].x = X[3].y = X[5].z = -1.0;
1444
1445 /* Initialize a 2-space origin point. */
1446 O.x = O.y = 0.0;
1447 /* What side of the line joining R1/R2 is O? */
1448 o_side = lw_segment_side(&R1, &R2, &O);
1449
1450 /* Add any extrema! */
1451 for ( i = 0; i < 6; i++ )
1452 {
1453 /* Convert 3-space axis points to 2-space unit vectors */
1454 RX.x = dot_product(&(X[i]), A1);
1455 RX.y = dot_product(&(X[i]), &A3);
1456 normalize2d(&RX);
1457
1458 /* Any axis end on the side of R1/R2 opposite the origin */
1459 /* is an extreme point in the arc, so we add the 3-space */
1460 /* version of the point on R1/R2 to the gbox */
1461 if ( lw_segment_side(&R1, &R2, &RX) != o_side )
1462 {
1463 POINT3D Xn;
1464 Xn.x = RX.x * A1->x + RX.y * A3.x;
1465 Xn.y = RX.x * A1->y + RX.y * A3.y;
1466 Xn.z = RX.x * A1->z + RX.y * A3.z;
1467
1468 gbox_merge_point3d(&Xn, gbox);
1469 }
1470 }
1471
1472 return LW_SUCCESS;
1473}
1474
1475/*
1476* When we have a globe-covering gbox but we still want an outside
1477* point, we do this Very Bad Hack, which is look at the first two points
1478* in the ring and then nudge a point to the left of that arc.
1479* There is an assumption of convexity built in there, as well as that
1480* the shape doesn't have a sharp reversal in it. It's ugly, but
1481* it fixes some common cases (large selection polygons) that users
1482* are generating. At some point all of geodetic needs a clean-room
1483* rewrite.
1484* There is also an assumption of CCW exterior ring, which is how the
1485* GeoJSON spec defined geographic ring orientation.
1486*/
1487static int lwpoly_pt_outside_hack(const LWPOLY *poly, POINT2D *pt_outside)
1488{
1489 GEOGRAPHIC_POINT g1, g2, gSum;
1490 POINT4D p1, p2;
1491 POINT3D q1, q2, qMid, qCross, qSum;
1492 POINTARRAY *pa;
1493 if (lwgeom_is_empty((LWGEOM*)poly))
1494 return LW_FAILURE;
1495 if (poly->nrings < 1)
1496 return LW_FAILURE;
1497 pa = poly->rings[0];
1498 if (pa->npoints < 2)
1499 return LW_FAILURE;
1500
1501 /* First two points of ring */
1502 getPoint4d_p(pa, 0, &p1);
1503 getPoint4d_p(pa, 1, &p2);
1504 /* Convert to XYZ unit vectors */
1505 geographic_point_init(p1.x, p1.y, &g1);
1506 geographic_point_init(p2.x, p2.y, &g2);
1507 geog2cart(&g1, &q1);
1508 geog2cart(&g2, &q2);
1509 /* Mid-point of first two points */
1510 vector_sum(&q1, &q2, &qMid);
1511 normalize(&qMid);
1512 /* Cross product of first two points (perpendicular) */
1513 cross_product(&q1, &q2, &qCross);
1514 normalize(&qCross);
1515 /* Invert it to put it outside, and scale down */
1516 vector_scale(&qCross, -0.2);
1517 /* Project midpoint to the right */
1518 vector_sum(&qMid, &qCross, &qSum);
1519 normalize(&qSum);
1520 /* Convert back to lon/lat */
1521 cart2geog(&qSum, &gSum);
1522 pt_outside->x = rad2deg(gSum.lon);
1523 pt_outside->y = rad2deg(gSum.lat);
1524 return LW_SUCCESS;
1525}
1526
1527int lwpoly_pt_outside(const LWPOLY *poly, POINT2D *pt_outside)
1528{
1529 int rv;
1530 /* Make sure we have boxes */
1531 if ( poly->bbox )
1532 {
1533 rv = gbox_pt_outside(poly->bbox, pt_outside);
1534 }
1535 else
1536 {
1537 GBOX gbox;
1539 rv = gbox_pt_outside(&gbox, pt_outside);
1540 }
1541
1542 if (rv == LW_FALSE)
1543 return lwpoly_pt_outside_hack(poly, pt_outside);
1544
1545 return rv;
1546}
1547
1552int gbox_pt_outside(const GBOX *gbox, POINT2D *pt_outside)
1553{
1554 double grow = M_PI / 180.0 / 60.0; /* one arc-minute */
1555 int i;
1556 GBOX ge;
1557 POINT3D corners[8];
1558 POINT3D pt;
1560
1561 while ( grow < M_PI )
1562 {
1563 /* Assign our box and expand it slightly. */
1564 ge = *gbox;
1565 if ( ge.xmin > -1 ) ge.xmin -= grow;
1566 if ( ge.ymin > -1 ) ge.ymin -= grow;
1567 if ( ge.zmin > -1 ) ge.zmin -= grow;
1568 if ( ge.xmax < 1 ) ge.xmax += grow;
1569 if ( ge.ymax < 1 ) ge.ymax += grow;
1570 if ( ge.zmax < 1 ) ge.zmax += grow;
1571
1572 /* Build our eight corner points */
1573 corners[0].x = ge.xmin;
1574 corners[0].y = ge.ymin;
1575 corners[0].z = ge.zmin;
1576
1577 corners[1].x = ge.xmin;
1578 corners[1].y = ge.ymax;
1579 corners[1].z = ge.zmin;
1580
1581 corners[2].x = ge.xmin;
1582 corners[2].y = ge.ymin;
1583 corners[2].z = ge.zmax;
1584
1585 corners[3].x = ge.xmax;
1586 corners[3].y = ge.ymin;
1587 corners[3].z = ge.zmin;
1588
1589 corners[4].x = ge.xmax;
1590 corners[4].y = ge.ymax;
1591 corners[4].z = ge.zmin;
1592
1593 corners[5].x = ge.xmax;
1594 corners[5].y = ge.ymin;
1595 corners[5].z = ge.zmax;
1596
1597 corners[6].x = ge.xmin;
1598 corners[6].y = ge.ymax;
1599 corners[6].z = ge.zmax;
1600
1601 corners[7].x = ge.xmax;
1602 corners[7].y = ge.ymax;
1603 corners[7].z = ge.zmax;
1604
1605 LWDEBUG(4, "trying to use a box corner point...");
1606 for ( i = 0; i < 8; i++ )
1607 {
1608 normalize(&(corners[i]));
1609 LWDEBUGF(4, "testing corner %d: POINT(%.8g %.8g %.8g)", i, corners[i].x, corners[i].y, corners[i].z);
1610 if ( ! gbox_contains_point3d(gbox, &(corners[i])) )
1611 {
1612 LWDEBUGF(4, "corner %d is outside our gbox", i);
1613 pt = corners[i];
1614 normalize(&pt);
1615 cart2geog(&pt, &g);
1616 pt_outside->x = rad2deg(g.lon);
1617 pt_outside->y = rad2deg(g.lat);
1618 LWDEBUGF(4, "returning POINT(%.8g %.8g) as outside point", pt_outside->x, pt_outside->y);
1619 return LW_SUCCESS;
1620 }
1621 }
1622
1623 /* Try a wider growth to push the corners outside the original box. */
1624 grow *= 2.0;
1625 }
1626
1627 /* This should never happen! */
1628 // lwerror("BOOM! Could not generate outside point!");
1629 return LW_FAILURE;
1630}
1631
1632
1634 const POINT3D *p1, const POINT3D *p2, /* 3-space points we are interpolating between */
1635 const POINT4D *v1, const POINT4D *v2, /* real values and z/m values */
1636 double d, double max_seg_length, /* current segment length and segment limit */
1637 POINTARRAY *pa) /* write out results here */
1638{
1640 /* Reached the terminal leaf in recursion. Add */
1641 /* the left-most point to the pointarray here */
1642 /* We recurse down the left side first, so outputs should */
1643 /* end up added to the array in order this way */
1644 if (d <= max_seg_length)
1645 {
1646 POINT4D p;
1647 cart2geog(p1, &g);
1648 p.x = v1->x;
1649 p.y = v1->y;
1650 p.z = v1->z;
1651 p.m = v1->m;
1652 return ptarray_append_point(pa, &p, LW_FALSE);
1653 }
1654 /* Find the mid-point and recurse on the left and then the right */
1655 else
1656 {
1657 /* Calculate mid-point */
1658 POINT3D mid;
1659 mid.x = (p1->x + p2->x) / 2.0;
1660 mid.y = (p1->y + p2->y) / 2.0;
1661 mid.z = (p1->z + p2->z) / 2.0;
1662 normalize(&mid);
1663
1664 /* Calculate z/m mid-values */
1665 POINT4D midv;
1666 cart2geog(&mid, &g);
1667 midv.x = rad2deg(g.lon);
1668 midv.y = rad2deg(g.lat);
1669 midv.z = (v1->z + v2->z) / 2.0;
1670 midv.m = (v1->m + v2->m) / 2.0;
1671 /* Recurse on the left first */
1672 ptarray_segmentize_sphere_edge_recursive(p1, &mid, v1, &midv, d/2.0, max_seg_length, pa);
1673 ptarray_segmentize_sphere_edge_recursive(&mid, p2, &midv, v2, d/2.0, max_seg_length, pa);
1674 return LW_SUCCESS;
1675 }
1676}
1677
1683static POINTARRAY*
1684ptarray_segmentize_sphere(const POINTARRAY *pa_in, double max_seg_length)
1685{
1686 POINTARRAY *pa_out;
1687 int hasz = ptarray_has_z(pa_in);
1688 int hasm = ptarray_has_m(pa_in);
1689 POINT4D p1, p2;
1690 POINT3D q1, q2;
1691 GEOGRAPHIC_POINT g1, g2;
1692 uint32_t i;
1693
1694 /* Just crap out on crazy input */
1695 if ( ! pa_in )
1696 lwerror("%s: null input pointarray", __func__);
1697 if ( max_seg_length <= 0.0 )
1698 lwerror("%s: maximum segment length must be positive", __func__);
1699
1700 /* Empty starting array */
1701 pa_out = ptarray_construct_empty(hasz, hasm, pa_in->npoints);
1702
1703 /* Simple loop per edge */
1704 for (i = 1; i < pa_in->npoints; i++)
1705 {
1706 getPoint4d_p(pa_in, i-1, &p1);
1707 getPoint4d_p(pa_in, i, &p2);
1708 geographic_point_init(p1.x, p1.y, &g1);
1709 geographic_point_init(p2.x, p2.y, &g2);
1710
1711 /* Skip duplicate points (except in case of 2-point lines!) */
1712 if ((pa_in->npoints > 2) && p4d_same(&p1, &p2))
1713 continue;
1714
1715 /* How long is this edge? */
1716 double d = sphere_distance(&g1, &g2);
1717
1718 if (d > max_seg_length)
1719 {
1720 geog2cart(&g1, &q1);
1721 geog2cart(&g2, &q2);
1722 /* 3-d end points, XYZM end point, current edge size, min edge size */
1723 ptarray_segmentize_sphere_edge_recursive(&q1, &q2, &p1, &p2, d, max_seg_length, pa_out);
1724 }
1725 /* If we don't segmentize, we need to add first point manually */
1726 else
1727 {
1728 ptarray_append_point(pa_out, &p1, LW_TRUE);
1729 }
1730 }
1731 /* Always add the last point */
1732 ptarray_append_point(pa_out, &p2, LW_TRUE);
1733 return pa_out;
1734}
1735
1742LWGEOM*
1743lwgeom_segmentize_sphere(const LWGEOM *lwg_in, double max_seg_length)
1744{
1745 POINTARRAY *pa_out;
1746 LWLINE *lwline;
1747 LWPOLY *lwpoly_in, *lwpoly_out;
1748 LWCOLLECTION *lwcol_in, *lwcol_out;
1749 uint32_t i;
1750
1751 /* Reflect NULL */
1752 if ( ! lwg_in )
1753 return NULL;
1754
1755 /* Clone empty */
1756 if ( lwgeom_is_empty(lwg_in) )
1757 return lwgeom_clone(lwg_in);
1758
1759 switch (lwg_in->type)
1760 {
1761 case MULTIPOINTTYPE:
1762 case POINTTYPE:
1763 return lwgeom_clone_deep(lwg_in);
1764 break;
1765 case LINETYPE:
1766 lwline = lwgeom_as_lwline(lwg_in);
1767 pa_out = ptarray_segmentize_sphere(lwline->points, max_seg_length);
1768 return lwline_as_lwgeom(lwline_construct(lwg_in->srid, NULL, pa_out));
1769 break;
1770 case POLYGONTYPE:
1771 lwpoly_in = lwgeom_as_lwpoly(lwg_in);
1772 lwpoly_out = lwpoly_construct_empty(lwg_in->srid, lwgeom_has_z(lwg_in), lwgeom_has_m(lwg_in));
1773 for ( i = 0; i < lwpoly_in->nrings; i++ )
1774 {
1775 pa_out = ptarray_segmentize_sphere(lwpoly_in->rings[i], max_seg_length);
1776 lwpoly_add_ring(lwpoly_out, pa_out);
1777 }
1778 return lwpoly_as_lwgeom(lwpoly_out);
1779 break;
1780 case MULTILINETYPE:
1781 case MULTIPOLYGONTYPE:
1782 case COLLECTIONTYPE:
1783 lwcol_in = lwgeom_as_lwcollection(lwg_in);
1784 lwcol_out = lwcollection_construct_empty(lwg_in->type, lwg_in->srid, lwgeom_has_z(lwg_in), lwgeom_has_m(lwg_in));
1785 for ( i = 0; i < lwcol_in->ngeoms; i++ )
1786 {
1787 lwcollection_add_lwgeom(lwcol_out, lwgeom_segmentize_sphere(lwcol_in->geoms[i], max_seg_length));
1788 }
1789 return lwcollection_as_lwgeom(lwcol_out);
1790 break;
1791 default:
1792 lwerror("lwgeom_segmentize_sphere: unsupported input geometry type: %d - %s",
1793 lwg_in->type, lwtype_name(lwg_in->type));
1794 break;
1795 }
1796
1797 lwerror("lwgeom_segmentize_sphere got to the end of the function, should not happen");
1798 return NULL;
1799}
1800
1801
1806double
1808{
1809 uint32_t i;
1810 const POINT2D *p;
1811 GEOGRAPHIC_POINT a, b, c;
1812 double area = 0.0;
1813
1814 /* Return zero on nonsensical inputs */
1815 if ( ! pa || pa->npoints < 4 )
1816 return 0.0;
1817
1818 p = getPoint2d_cp(pa, 0);
1819 geographic_point_init(p->x, p->y, &a);
1820 p = getPoint2d_cp(pa, 1);
1821 geographic_point_init(p->x, p->y, &b);
1822
1823 for ( i = 2; i < pa->npoints-1; i++ )
1824 {
1825 p = getPoint2d_cp(pa, i);
1826 geographic_point_init(p->x, p->y, &c);
1827 area += sphere_signed_area(&a, &b, &c);
1828 b = c;
1829 }
1830
1831 return fabs(area);
1832}
1833
1834
1835static double ptarray_distance_spheroid(const POINTARRAY *pa1, const POINTARRAY *pa2, const SPHEROID *s, double tolerance, int check_intersection)
1836{
1837 GEOGRAPHIC_EDGE e1, e2;
1838 GEOGRAPHIC_POINT g1, g2;
1839 GEOGRAPHIC_POINT nearest1, nearest2;
1840 POINT3D A1, A2, B1, B2;
1841 const POINT2D *p;
1842 double distance;
1843 uint32_t i, j;
1844 int use_sphere = (s->a == s->b ? 1 : 0);
1845
1846 /* Make result really big, so that everything will be smaller than it */
1847 distance = FLT_MAX;
1848
1849 /* Empty point arrays? Return negative */
1850 if ( pa1->npoints == 0 || pa2->npoints == 0 )
1851 return -1.0;
1852
1853 /* Handle point/point case here */
1854 if ( pa1->npoints == 1 && pa2->npoints == 1 )
1855 {
1856 p = getPoint2d_cp(pa1, 0);
1857 geographic_point_init(p->x, p->y, &g1);
1858 p = getPoint2d_cp(pa2, 0);
1859 geographic_point_init(p->x, p->y, &g2);
1860 /* Sphere special case, axes equal */
1861 distance = s->radius * sphere_distance(&g1, &g2);
1862 if ( use_sphere )
1863 return distance;
1864 /* Below tolerance, actual distance isn't of interest */
1865 else if ( distance < 0.95 * tolerance )
1866 return distance;
1867 /* Close or greater than tolerance, get the real answer to be sure */
1868 else
1869 return spheroid_distance(&g1, &g2, s);
1870 }
1871
1872 /* Handle point/line case here */
1873 if ( pa1->npoints == 1 || pa2->npoints == 1 )
1874 {
1875 /* Handle one/many case here */
1876 uint32_t i;
1877 const POINTARRAY *pa_one;
1878 const POINTARRAY *pa_many;
1879
1880 if ( pa1->npoints == 1 )
1881 {
1882 pa_one = pa1;
1883 pa_many = pa2;
1884 }
1885 else
1886 {
1887 pa_one = pa2;
1888 pa_many = pa1;
1889 }
1890
1891 /* Initialize our point */
1892 p = getPoint2d_cp(pa_one, 0);
1893 geographic_point_init(p->x, p->y, &g1);
1894
1895 /* Initialize start of line */
1896 p = getPoint2d_cp(pa_many, 0);
1897 geographic_point_init(p->x, p->y, &(e1.start));
1898
1899 /* Iterate through the edges in our line */
1900 for ( i = 1; i < pa_many->npoints; i++ )
1901 {
1902 double d;
1903 p = getPoint2d_cp(pa_many, i);
1904 geographic_point_init(p->x, p->y, &(e1.end));
1905 /* Get the spherical distance between point and edge */
1906 d = s->radius * edge_distance_to_point(&e1, &g1, &g2);
1907 /* New shortest distance! Record this distance / location */
1908 if ( d < distance )
1909 {
1910 distance = d;
1911 nearest2 = g2;
1912 }
1913 /* We've gotten closer than the tolerance... */
1914 if ( d < tolerance )
1915 {
1916 /* Working on a sphere? The answer is correct, return */
1917 if ( use_sphere )
1918 {
1919 return d;
1920 }
1921 /* Far enough past the tolerance that the spheroid calculation won't change things */
1922 else if ( d < tolerance * 0.95 )
1923 {
1924 return d;
1925 }
1926 /* On a spheroid and near the tolerance? Confirm that we are *actually* closer than tolerance */
1927 else
1928 {
1929 d = spheroid_distance(&g1, &nearest2, s);
1930 /* Yes, closer than tolerance, return! */
1931 if ( d < tolerance )
1932 return d;
1933 }
1934 }
1935 e1.start = e1.end;
1936 }
1937
1938 /* On sphere, return answer */
1939 if ( use_sphere )
1940 return distance;
1941 /* On spheroid, calculate final answer based on closest approach */
1942 else
1943 return spheroid_distance(&g1, &nearest2, s);
1944
1945 }
1946
1947 /* Initialize start of line 1 */
1948 p = getPoint2d_cp(pa1, 0);
1949 geographic_point_init(p->x, p->y, &(e1.start));
1950 geog2cart(&(e1.start), &A1);
1951
1952
1953 /* Handle line/line case */
1954 for ( i = 1; i < pa1->npoints; i++ )
1955 {
1956 p = getPoint2d_cp(pa1, i);
1957 geographic_point_init(p->x, p->y, &(e1.end));
1958 geog2cart(&(e1.end), &A2);
1959
1960 /* Initialize start of line 2 */
1961 p = getPoint2d_cp(pa2, 0);
1962 geographic_point_init(p->x, p->y, &(e2.start));
1963 geog2cart(&(e2.start), &B1);
1964
1965 for ( j = 1; j < pa2->npoints; j++ )
1966 {
1967 double d;
1968
1969 p = getPoint2d_cp(pa2, j);
1970 geographic_point_init(p->x, p->y, &(e2.end));
1971 geog2cart(&(e2.end), &B2);
1972
1973 LWDEBUGF(4, "e1.start == GPOINT(%.6g %.6g) ", e1.start.lat, e1.start.lon);
1974 LWDEBUGF(4, "e1.end == GPOINT(%.6g %.6g) ", e1.end.lat, e1.end.lon);
1975 LWDEBUGF(4, "e2.start == GPOINT(%.6g %.6g) ", e2.start.lat, e2.start.lon);
1976 LWDEBUGF(4, "e2.end == GPOINT(%.6g %.6g) ", e2.end.lat, e2.end.lon);
1977
1978 if ( check_intersection && edge_intersects(&A1, &A2, &B1, &B2) )
1979 {
1980 LWDEBUG(4,"edge intersection! returning 0.0");
1981 return 0.0;
1982 }
1983 d = s->radius * edge_distance_to_edge(&e1, &e2, &g1, &g2);
1984 LWDEBUGF(4,"got edge_distance_to_edge %.8g", d);
1985
1986 if ( d < distance )
1987 {
1988 distance = d;
1989 nearest1 = g1;
1990 nearest2 = g2;
1991 }
1992 if ( d < tolerance )
1993 {
1994 if ( use_sphere )
1995 {
1996 return d;
1997 }
1998 else
1999 {
2000 d = spheroid_distance(&nearest1, &nearest2, s);
2001 if ( d < tolerance )
2002 return d;
2003 }
2004 }
2005
2006 /* Copy end to start to allow a new end value in next iteration */
2007 e2.start = e2.end;
2008 B1 = B2;
2009 }
2010
2011 /* Copy end to start to allow a new end value in next iteration */
2012 e1.start = e1.end;
2013 A1 = A2;
2014 LW_ON_INTERRUPT(return -1.0);
2015 }
2016 LWDEBUGF(4,"finished all loops, returning %.8g", distance);
2017
2018 if ( use_sphere )
2019 return distance;
2020 else
2021 return spheroid_distance(&nearest1, &nearest2, s);
2022}
2023
2024
2031double lwgeom_area_sphere(const LWGEOM *lwgeom, const SPHEROID *spheroid)
2032{
2033 int type;
2034 double radius2 = spheroid->radius * spheroid->radius;
2035
2036 assert(lwgeom);
2037
2038 /* No area in nothing */
2039 if ( lwgeom_is_empty(lwgeom) )
2040 return 0.0;
2041
2042 /* Read the geometry type number */
2043 type = lwgeom->type;
2044
2045 /* Anything but polygons and collections returns zero */
2046 if ( ! ( type == POLYGONTYPE || type == MULTIPOLYGONTYPE || type == COLLECTIONTYPE ) )
2047 return 0.0;
2048
2049 /* Actually calculate area */
2050 if ( type == POLYGONTYPE )
2051 {
2052 LWPOLY *poly = (LWPOLY*)lwgeom;
2053 uint32_t i;
2054 double area = 0.0;
2055
2056 /* Just in case there's no rings */
2057 if ( poly->nrings < 1 )
2058 return 0.0;
2059
2060 /* First, the area of the outer ring */
2061 area += radius2 * ptarray_area_sphere(poly->rings[0]);
2062
2063 /* Subtract areas of inner rings */
2064 for ( i = 1; i < poly->nrings; i++ )
2065 {
2066 area -= radius2 * ptarray_area_sphere(poly->rings[i]);
2067 }
2068 return area;
2069 }
2070
2071 /* Recurse into sub-geometries to get area */
2072 if ( type == MULTIPOLYGONTYPE || type == COLLECTIONTYPE )
2073 {
2074 LWCOLLECTION *col = (LWCOLLECTION*)lwgeom;
2075 uint32_t i;
2076 double area = 0.0;
2077
2078 for ( i = 0; i < col->ngeoms; i++ )
2079 {
2080 area += lwgeom_area_sphere(col->geoms[i], spheroid);
2081 }
2082 return area;
2083 }
2084
2085 /* Shouldn't get here. */
2086 return 0.0;
2087}
2088
2089
2099LWPOINT* lwgeom_project_spheroid(const LWPOINT *r, const SPHEROID *spheroid, double distance, double azimuth)
2100{
2101 GEOGRAPHIC_POINT geo_source, geo_dest;
2102 POINT4D pt_dest;
2103 double x, y;
2104 POINTARRAY *pa;
2105 LWPOINT *lwp;
2106
2107 /* Normalize distance to be positive*/
2108 if ( distance < 0.0 ) {
2109 distance = -distance;
2110 azimuth += M_PI;
2111 }
2112
2113 /* Normalize azimuth */
2114 azimuth -= 2.0 * M_PI * floor(azimuth / (2.0 * M_PI));
2115
2116 /* Check the distance validity */
2117 if ( distance > (M_PI * spheroid->radius) )
2118 {
2119 lwerror("Distance must not be greater than %g", M_PI * spheroid->radius);
2120 return NULL;
2121 }
2122
2123 /* Convert to ta geodetic point */
2124 x = lwpoint_get_x(r);
2125 y = lwpoint_get_y(r);
2126 geographic_point_init(x, y, &geo_source);
2127
2128 /* Try the projection */
2129 if( spheroid_project(&geo_source, spheroid, distance, azimuth, &geo_dest) == LW_FAILURE )
2130 {
2131 LWDEBUGF(3, "Unable to project from (%g %g) with azimuth %g and distance %g", x, y, azimuth, distance);
2132 lwerror("Unable to project from (%g %g) with azimuth %g and distance %g", x, y, azimuth, distance);
2133 return NULL;
2134 }
2135
2136 /* Build the output LWPOINT */
2137 pa = ptarray_construct(0, 0, 1);
2138 pt_dest.x = rad2deg(longitude_radians_normalize(geo_dest.lon));
2139 pt_dest.y = rad2deg(latitude_radians_normalize(geo_dest.lat));
2140 pt_dest.z = pt_dest.m = 0.0;
2141 ptarray_set_point4d(pa, 0, &pt_dest);
2142 lwp = lwpoint_construct(r->srid, NULL, pa);
2144 return lwp;
2145}
2146
2147
2156double lwgeom_azumith_spheroid(const LWPOINT *r, const LWPOINT *s, const SPHEROID *spheroid)
2157{
2158 GEOGRAPHIC_POINT g1, g2;
2159 double x1, y1, x2, y2;
2160
2161 /* Convert r to a geodetic point */
2162 x1 = lwpoint_get_x(r);
2163 y1 = lwpoint_get_y(r);
2164 geographic_point_init(x1, y1, &g1);
2165
2166 /* Convert s to a geodetic point */
2167 x2 = lwpoint_get_x(s);
2168 y2 = lwpoint_get_y(s);
2169 geographic_point_init(x2, y2, &g2);
2170
2171 /* Same point, return NaN */
2172 if ( FP_EQUALS(x1, x2) && FP_EQUALS(y1, y2) )
2173 {
2174 return NAN;
2175 }
2176
2177 /* Do the direction calculation */
2178 return spheroid_direction(&g1, &g2, spheroid);
2179}
2180
2187double lwgeom_distance_spheroid(const LWGEOM *lwgeom1, const LWGEOM *lwgeom2, const SPHEROID *spheroid, double tolerance)
2188{
2189 uint8_t type1, type2;
2190 int check_intersection = LW_FALSE;
2191 GBOX gbox1, gbox2;
2192
2193 gbox_init(&gbox1);
2194 gbox_init(&gbox2);
2195
2196 assert(lwgeom1);
2197 assert(lwgeom2);
2198
2199 LWDEBUGF(4, "entered function, tolerance %.8g", tolerance);
2200
2201 /* What's the distance to an empty geometry? We don't know.
2202 Return a negative number so the caller can catch this case. */
2203 if ( lwgeom_is_empty(lwgeom1) || lwgeom_is_empty(lwgeom2) )
2204 {
2205 return -1.0;
2206 }
2207
2208 type1 = lwgeom1->type;
2209 type2 = lwgeom2->type;
2210
2211 /* Make sure we have boxes */
2212 if ( lwgeom1->bbox )
2213 gbox1 = *(lwgeom1->bbox);
2214 else
2215 lwgeom_calculate_gbox_geodetic(lwgeom1, &gbox1);
2216
2217 /* Make sure we have boxes */
2218 if ( lwgeom2->bbox )
2219 gbox2 = *(lwgeom2->bbox);
2220 else
2221 lwgeom_calculate_gbox_geodetic(lwgeom2, &gbox2);
2222
2223 /* If the boxes aren't disjoint, we have to check for edge intersections */
2224 if ( gbox_overlaps(&gbox1, &gbox2) )
2225 check_intersection = LW_TRUE;
2226
2227 /* Point/line combinations can all be handled with simple point array iterations */
2228 if ( ( type1 == POINTTYPE || type1 == LINETYPE ) &&
2229 ( type2 == POINTTYPE || type2 == LINETYPE ) )
2230 {
2231 POINTARRAY *pa1, *pa2;
2232
2233 if ( type1 == POINTTYPE )
2234 pa1 = ((LWPOINT*)lwgeom1)->point;
2235 else
2236 pa1 = ((LWLINE*)lwgeom1)->points;
2237
2238 if ( type2 == POINTTYPE )
2239 pa2 = ((LWPOINT*)lwgeom2)->point;
2240 else
2241 pa2 = ((LWLINE*)lwgeom2)->points;
2242
2243 return ptarray_distance_spheroid(pa1, pa2, spheroid, tolerance, check_intersection);
2244 }
2245
2246 /* Point/Polygon cases, if point-in-poly, return zero, else return distance. */
2247 if ( ( type1 == POLYGONTYPE && type2 == POINTTYPE ) ||
2248 ( type2 == POLYGONTYPE && type1 == POINTTYPE ) )
2249 {
2250 const POINT2D *p;
2251 LWPOLY *lwpoly;
2252 LWPOINT *lwpt;
2253 double distance = FLT_MAX;
2254 uint32_t i;
2255
2256 if ( type1 == POINTTYPE )
2257 {
2258 lwpt = (LWPOINT*)lwgeom1;
2259 lwpoly = (LWPOLY*)lwgeom2;
2260 }
2261 else
2262 {
2263 lwpt = (LWPOINT*)lwgeom2;
2264 lwpoly = (LWPOLY*)lwgeom1;
2265 }
2266 p = getPoint2d_cp(lwpt->point, 0);
2267
2268 /* Point in polygon implies zero distance */
2269 if ( lwpoly_covers_point2d(lwpoly, p) )
2270 {
2271 return 0.0;
2272 }
2273
2274 /* Not inside, so what's the actual distance? */
2275 for ( i = 0; i < lwpoly->nrings; i++ )
2276 {
2277 double ring_distance = ptarray_distance_spheroid(lwpoly->rings[i], lwpt->point, spheroid, tolerance, check_intersection);
2278 if ( ring_distance < distance )
2279 distance = ring_distance;
2280 if ( distance < tolerance )
2281 return distance;
2282 }
2283 return distance;
2284 }
2285
2286 /* Line/polygon case, if start point-in-poly, return zero, else return distance. */
2287 if ( ( type1 == POLYGONTYPE && type2 == LINETYPE ) ||
2288 ( type2 == POLYGONTYPE && type1 == LINETYPE ) )
2289 {
2290 const POINT2D *p;
2291 LWPOLY *lwpoly;
2292 LWLINE *lwline;
2293 double distance = FLT_MAX;
2294 uint32_t i;
2295
2296 if ( type1 == LINETYPE )
2297 {
2298 lwline = (LWLINE*)lwgeom1;
2299 lwpoly = (LWPOLY*)lwgeom2;
2300 }
2301 else
2302 {
2303 lwline = (LWLINE*)lwgeom2;
2304 lwpoly = (LWPOLY*)lwgeom1;
2305 }
2306 p = getPoint2d_cp(lwline->points, 0);
2307
2308 LWDEBUG(4, "checking if a point of line is in polygon");
2309
2310 /* Point in polygon implies zero distance */
2311 if ( lwpoly_covers_point2d(lwpoly, p) )
2312 return 0.0;
2313
2314 LWDEBUG(4, "checking ring distances");
2315
2316 /* Not contained, so what's the actual distance? */
2317 for ( i = 0; i < lwpoly->nrings; i++ )
2318 {
2319 double ring_distance = ptarray_distance_spheroid(lwpoly->rings[i], lwline->points, spheroid, tolerance, check_intersection);
2320 LWDEBUGF(4, "ring[%d] ring_distance = %.8g", i, ring_distance);
2321 if ( ring_distance < distance )
2322 distance = ring_distance;
2323 if ( distance < tolerance )
2324 return distance;
2325 }
2326 LWDEBUGF(4, "all rings checked, returning distance = %.8g", distance);
2327 return distance;
2328
2329 }
2330
2331 /* Polygon/polygon case, if start point-in-poly, return zero, else
2332 * return distance. */
2333 if (type1 == POLYGONTYPE && type2 == POLYGONTYPE)
2334 {
2335 const POINT2D* p;
2336 LWPOLY* lwpoly1 = (LWPOLY*)lwgeom1;
2337 LWPOLY* lwpoly2 = (LWPOLY*)lwgeom2;
2338 double distance = FLT_MAX;
2339 uint32_t i, j;
2340
2341 /* Point of 2 in polygon 1 implies zero distance */
2342 p = getPoint2d_cp(lwpoly1->rings[0], 0);
2343 if (lwpoly_covers_point2d(lwpoly2, p)) return 0.0;
2344
2345 /* Point of 1 in polygon 2 implies zero distance */
2346 p = getPoint2d_cp(lwpoly2->rings[0], 0);
2347 if (lwpoly_covers_point2d(lwpoly1, p)) return 0.0;
2348
2349 /* Not contained, so what's the actual distance? */
2350 for (i = 0; i < lwpoly1->nrings; i++)
2351 {
2352 for (j = 0; j < lwpoly2->nrings; j++)
2353 {
2354 double ring_distance =
2356 lwpoly1->rings[i],
2357 lwpoly2->rings[j],
2358 spheroid,
2359 tolerance,
2360 check_intersection);
2361 if (ring_distance < distance)
2362 distance = ring_distance;
2363 if (distance < tolerance) return distance;
2364 }
2365 }
2366 return distance;
2367 }
2368
2369 /* Recurse into collections */
2370 if ( lwtype_is_collection(type1) )
2371 {
2372 uint32_t i;
2373 double distance = FLT_MAX;
2374 LWCOLLECTION *col = (LWCOLLECTION*)lwgeom1;
2375
2376 for ( i = 0; i < col->ngeoms; i++ )
2377 {
2378 double geom_distance = lwgeom_distance_spheroid(
2379 col->geoms[i], lwgeom2, spheroid, tolerance);
2380 if ( geom_distance < distance )
2381 distance = geom_distance;
2382 if ( distance < tolerance )
2383 return distance;
2384 }
2385 return distance;
2386 }
2387
2388 /* Recurse into collections */
2389 if ( lwtype_is_collection(type2) )
2390 {
2391 uint32_t i;
2392 double distance = FLT_MAX;
2393 LWCOLLECTION *col = (LWCOLLECTION*)lwgeom2;
2394
2395 for ( i = 0; i < col->ngeoms; i++ )
2396 {
2397 double geom_distance = lwgeom_distance_spheroid(lwgeom1, col->geoms[i], spheroid, tolerance);
2398 if ( geom_distance < distance )
2399 distance = geom_distance;
2400 if ( distance < tolerance )
2401 return distance;
2402 }
2403 return distance;
2404 }
2405
2406
2407 lwerror("arguments include unsupported geometry type (%s, %s)", lwtype_name(type1), lwtype_name(type1));
2408 return -1.0;
2409
2410}
2411
2412
2413int lwgeom_covers_lwgeom_sphere(const LWGEOM *lwgeom1, const LWGEOM *lwgeom2)
2414{
2415 int type1, type2;
2416 GBOX gbox1, gbox2;
2417 gbox1.flags = gbox2.flags = 0;
2418
2419 assert(lwgeom1);
2420 assert(lwgeom2);
2421
2422 type1 = lwgeom1->type;
2423 type2 = lwgeom2->type;
2424
2425 /* dim(geom2) > dim(geom1) always returns false (because geom2 is bigger) */
2426 if ( (type1 == POINTTYPE && type2 == LINETYPE)
2427 || (type1 == POINTTYPE && type2 == POLYGONTYPE)
2428 || (type1 == LINETYPE && type2 == POLYGONTYPE) )
2429 {
2430 LWDEBUG(4, "dimension of geom2 is bigger than geom1");
2431 return LW_FALSE;
2432 }
2433
2434 /* Make sure we have boxes */
2435 if ( lwgeom1->bbox )
2436 gbox1 = *(lwgeom1->bbox);
2437 else
2438 lwgeom_calculate_gbox_geodetic(lwgeom1, &gbox1);
2439
2440 /* Make sure we have boxes */
2441 if ( lwgeom2->bbox )
2442 gbox2 = *(lwgeom2->bbox);
2443 else
2444 lwgeom_calculate_gbox_geodetic(lwgeom2, &gbox2);
2445
2446
2447 /* Handle the polygon/point case */
2448 if ( type1 == POLYGONTYPE && type2 == POINTTYPE )
2449 {
2450 POINT2D pt_to_test;
2451 getPoint2d_p(((LWPOINT*)lwgeom2)->point, 0, &pt_to_test);
2452 return lwpoly_covers_point2d((LWPOLY*)lwgeom1, &pt_to_test);
2453 }
2454 else if ( type1 == POLYGONTYPE && type2 == LINETYPE)
2455 {
2456 return lwpoly_covers_lwline((LWPOLY*)lwgeom1, (LWLINE*)lwgeom2);
2457 }
2458 else if ( type1 == POLYGONTYPE && type2 == POLYGONTYPE)
2459 {
2460 return lwpoly_covers_lwpoly((LWPOLY*)lwgeom1, (LWPOLY*)lwgeom2);
2461 }
2462 else if ( type1 == LINETYPE && type2 == POINTTYPE)
2463 {
2464 return lwline_covers_lwpoint((LWLINE*)lwgeom1, (LWPOINT*)lwgeom2);
2465 }
2466 else if ( type1 == LINETYPE && type2 == LINETYPE)
2467 {
2468 return lwline_covers_lwline((LWLINE*)lwgeom1, (LWLINE*)lwgeom2);
2469 }
2470 else if ( type1 == POINTTYPE && type2 == POINTTYPE)
2471 {
2472 return lwpoint_same((LWPOINT*)lwgeom1, (LWPOINT*)lwgeom2);
2473 }
2474
2475 /* If any of the first argument parts covers the second argument, it's true */
2476 if ( lwtype_is_collection( type1 ) )
2477 {
2478 uint32_t i;
2479 LWCOLLECTION *col = (LWCOLLECTION*)lwgeom1;
2480
2481 for ( i = 0; i < col->ngeoms; i++ )
2482 {
2483 if ( lwgeom_covers_lwgeom_sphere(col->geoms[i], lwgeom2) )
2484 {
2485 return LW_TRUE;
2486 }
2487 }
2488 return LW_FALSE;
2489 }
2490
2491 /* Only if all of the second arguments are covered by the first argument is the condition true */
2492 if ( lwtype_is_collection( type2 ) )
2493 {
2494 uint32_t i;
2495 LWCOLLECTION *col = (LWCOLLECTION*)lwgeom2;
2496
2497 for ( i = 0; i < col->ngeoms; i++ )
2498 {
2499 if ( ! lwgeom_covers_lwgeom_sphere(lwgeom1, col->geoms[i]) )
2500 {
2501 return LW_FALSE;
2502 }
2503 }
2504 return LW_TRUE;
2505 }
2506
2507 /* Don't get here */
2508 lwerror("lwgeom_covers_lwgeom_sphere: reached end of function without resolution");
2509 return LW_FALSE;
2510
2511}
2512
2518int lwpoly_covers_point2d(const LWPOLY *poly, const POINT2D *pt_to_test)
2519{
2520 uint32_t i;
2521 int in_hole_count = 0;
2522 POINT3D p;
2523 GEOGRAPHIC_POINT gpt_to_test;
2524 POINT2D pt_outside;
2525 GBOX gbox;
2526#if POSTGIS_DEBUG_LEVEL >= 4
2527 char *geom_ewkt;
2528#endif
2529 gbox.flags = 0;
2530
2531 /* Nulls and empties don't contain anything! */
2532 if ( ! poly || lwgeom_is_empty((LWGEOM*)poly) )
2533 {
2534 LWDEBUG(4,"returning false, geometry is empty or null");
2535 return LW_FALSE;
2536 }
2537
2538 /* Make sure we have boxes */
2539 if ( poly->bbox )
2540 gbox = *(poly->bbox);
2541 else
2543
2544 /* Point not in box? Done! */
2545 geographic_point_init(pt_to_test->x, pt_to_test->y, &gpt_to_test);
2546 geog2cart(&gpt_to_test, &p);
2547 if ( ! gbox_contains_point3d(&gbox, &p) )
2548 {
2549 LWDEBUG(4, "the point is not in the box!");
2550 return LW_FALSE;
2551 }
2552
2553 /* Calculate our outside point from the gbox */
2554 lwpoly_pt_outside(poly, &pt_outside);
2555
2556 LWDEBUGF(4, "pt_outside POINT(%.18g %.18g)", pt_outside.x, pt_outside.y);
2557 LWDEBUGF(4, "pt_to_test POINT(%.18g %.18g)", pt_to_test->x, pt_to_test->y);
2558#if POSTGIS_DEBUG_LEVEL >= 4
2559 geom_ewkt = lwgeom_to_ewkt((LWGEOM*)poly);
2560 LWDEBUGF(4, "polygon %s", geom_ewkt);
2561 lwfree(geom_ewkt);
2562 geom_ewkt = gbox_to_string(&gbox);
2563 LWDEBUGF(4, "gbox %s", geom_ewkt);
2564 lwfree(geom_ewkt);
2565#endif
2566
2567 /* Not in outer ring? We're done! */
2568 if ( ! ptarray_contains_point_sphere(poly->rings[0], &pt_outside, pt_to_test) )
2569 {
2570 LWDEBUG(4,"returning false, point is outside ring");
2571 return LW_FALSE;
2572 }
2573
2574 LWDEBUGF(4, "testing %d rings", poly->nrings);
2575
2576 /* But maybe point is in a hole... */
2577 for ( i = 1; i < poly->nrings; i++ )
2578 {
2579 LWDEBUGF(4, "ring test loop %d", i);
2580 /* Count up hole containment. Odd => outside boundary. */
2581 if ( ptarray_contains_point_sphere(poly->rings[i], &pt_outside, pt_to_test) )
2582 in_hole_count++;
2583 }
2584
2585 LWDEBUGF(4, "in_hole_count == %d", in_hole_count);
2586
2587 if ( in_hole_count % 2 )
2588 {
2589 LWDEBUG(4,"returning false, inner ring containment count is odd");
2590 return LW_FALSE;
2591 }
2592
2593 LWDEBUG(4,"returning true, inner ring containment count is even");
2594 return LW_TRUE;
2595}
2596
2602int lwpoly_covers_lwpoly(const LWPOLY *poly1, const LWPOLY *poly2)
2603{
2604 uint32_t i;
2605
2606 /* Nulls and empties don't contain anything! */
2607 if ( ! poly1 || lwgeom_is_empty((LWGEOM*)poly1) )
2608 {
2609 LWDEBUG(4,"returning false, geometry1 is empty or null");
2610 return LW_FALSE;
2611 }
2612
2613 /* Nulls and empties don't contain anything! */
2614 if ( ! poly2 || lwgeom_is_empty((LWGEOM*)poly2) )
2615 {
2616 LWDEBUG(4,"returning false, geometry2 is empty or null");
2617 return LW_FALSE;
2618 }
2619
2620 /* check if all vertices of poly2 are inside poly1 */
2621 for (i = 0; i < poly2->nrings; i++)
2622 {
2623
2624 /* every other ring is a hole, check if point is inside the actual polygon */
2625 if ( i % 2 == 0)
2626 {
2627 if (LW_FALSE == lwpoly_covers_pointarray(poly1, poly2->rings[i]))
2628 {
2629 LWDEBUG(4,"returning false, geometry2 has point outside of geometry1");
2630 return LW_FALSE;
2631 }
2632 }
2633 else
2634 {
2635 if (LW_TRUE == lwpoly_covers_pointarray(poly1, poly2->rings[i]))
2636 {
2637 LWDEBUG(4,"returning false, geometry2 has point inside a hole of geometry1");
2638 return LW_FALSE;
2639 }
2640 }
2641 }
2642
2643 /* check for any edge intersections, so nothing is partially outside of poly1 */
2644 for (i = 0; i < poly2->nrings; i++)
2645 {
2646 if (LW_TRUE == lwpoly_intersects_line(poly1, poly2->rings[i]))
2647 {
2648 LWDEBUG(4,"returning false, geometry2 is partially outside of geometry1");
2649 return LW_FALSE;
2650 }
2651 }
2652
2653 /* no abort condition found, so the poly2 should be completly inside poly1 */
2654 return LW_TRUE;
2655}
2656
2660int lwpoly_covers_lwline(const LWPOLY *poly, const LWLINE *line)
2661{
2662 /* Nulls and empties don't contain anything! */
2663 if ( ! poly || lwgeom_is_empty((LWGEOM*)poly) )
2664 {
2665 LWDEBUG(4,"returning false, geometry1 is empty or null");
2666 return LW_FALSE;
2667 }
2668
2669 /* Nulls and empties don't contain anything! */
2670 if ( ! line || lwgeom_is_empty((LWGEOM*)line) )
2671 {
2672 LWDEBUG(4,"returning false, geometry2 is empty or null");
2673 return LW_FALSE;
2674 }
2675
2676 if (LW_FALSE == lwpoly_covers_pointarray(poly, line->points))
2677 {
2678 LWDEBUG(4,"returning false, geometry2 has point outside of geometry1");
2679 return LW_FALSE;
2680 }
2681
2682 /* check for any edge intersections, so nothing is partially outside of poly1 */
2683 if (LW_TRUE == lwpoly_intersects_line(poly, line->points))
2684 {
2685 LWDEBUG(4,"returning false, geometry2 is partially outside of geometry1");
2686 return LW_FALSE;
2687 }
2688
2689 /* no abort condition found, so the poly2 should be completely inside poly1 */
2690 return LW_TRUE;
2691}
2692
2696int lwpoly_covers_pointarray(const LWPOLY* lwpoly, const POINTARRAY* pta)
2697{
2698 uint32_t i;
2699 for (i = 0; i < pta->npoints; i++) {
2700 const POINT2D* pt_to_test = getPoint2d_cp(pta, i);
2701
2702 if ( LW_FALSE == lwpoly_covers_point2d(lwpoly, pt_to_test) ) {
2703 LWDEBUG(4,"returning false, geometry2 has point outside of geometry1");
2704 return LW_FALSE;
2705 }
2706 }
2707
2708 return LW_TRUE;
2709}
2710
2715int lwpoly_intersects_line(const LWPOLY* lwpoly, const POINTARRAY* line)
2716{
2717 uint32_t i, j, k;
2718 POINT3D pa1, pa2, pb1, pb2;
2719 for (i = 0; i < lwpoly->nrings; i++)
2720 {
2721 for (j = 0; j < lwpoly->rings[i]->npoints - 1; j++)
2722 {
2723 const POINT2D* a1 = getPoint2d_cp(lwpoly->rings[i], j);
2724 const POINT2D* a2 = getPoint2d_cp(lwpoly->rings[i], j+1);
2725
2726 /* Set up our stab line */
2727 ll2cart(a1, &pa1);
2728 ll2cart(a2, &pa2);
2729
2730 for (k = 0; k < line->npoints - 1; k++)
2731 {
2732 const POINT2D* b1 = getPoint2d_cp(line, k);
2733 const POINT2D* b2 = getPoint2d_cp(line, k+1);
2734
2735 /* Set up our stab line */
2736 ll2cart(b1, &pb1);
2737 ll2cart(b2, &pb2);
2738
2739 int inter = edge_intersects(&pa1, &pa2, &pb1, &pb2);
2740
2741 /* ignore same edges */
2742 if (inter & PIR_INTERSECTS
2743 && !(inter & PIR_B_TOUCH_RIGHT || inter & PIR_COLINEAR) )
2744 {
2745 return LW_TRUE;
2746 }
2747 }
2748 }
2749 }
2750
2751 return LW_FALSE;
2752}
2753
2757int lwline_covers_lwpoint(const LWLINE* lwline, const LWPOINT* lwpoint)
2758{
2759 uint32_t i;
2762
2763 for ( i = 0; i < lwline->points->npoints - 1; i++)
2764 {
2765 const POINT2D* a1 = getPoint2d_cp(lwline->points, i);
2766 const POINT2D* a2 = getPoint2d_cp(lwline->points, i+1);
2767
2768 geographic_point_init(a1->x, a1->y, &(e.start));
2769 geographic_point_init(a2->x, a2->y, &(e.end));
2770
2771 geographic_point_init(lwpoint_get_x(lwpoint), lwpoint_get_y(lwpoint), &p);
2772
2773 if ( edge_contains_point(&e, &p) ) {
2774 return LW_TRUE;
2775 }
2776 }
2777
2778 return LW_FALSE;
2779}
2780
2786int lwline_covers_lwline(const LWLINE* lwline1, const LWLINE* lwline2)
2787{
2788 uint32_t i, j;
2789 GEOGRAPHIC_EDGE e1, e2;
2790 GEOGRAPHIC_POINT p1, p2;
2791 int start = LW_FALSE;
2792 int changed = LW_FALSE;
2793
2794 /* first point on line */
2795 if ( ! lwline_covers_lwpoint(lwline1, lwline_get_lwpoint(lwline2, 0)))
2796 {
2797 LWDEBUG(4,"returning false, first point of line2 is not covered by line1");
2798 return LW_FALSE;
2799 }
2800
2801 /* last point on line */
2802 if ( ! lwline_covers_lwpoint(lwline1, lwline_get_lwpoint(lwline2, lwline2->points->npoints - 1)))
2803 {
2804 LWDEBUG(4,"returning false, last point of line2 is not covered by line1");
2805 return LW_FALSE;
2806 }
2807
2808 j = 0;
2809 i = 0;
2810 while (i < lwline1->points->npoints - 1 && j < lwline2->points->npoints - 1)
2811 {
2812 changed = LW_FALSE;
2813 const POINT2D* a1 = getPoint2d_cp(lwline1->points, i);
2814 const POINT2D* a2 = getPoint2d_cp(lwline1->points, i+1);
2815 const POINT2D* b1 = getPoint2d_cp(lwline2->points, j);
2816 const POINT2D* b2 = getPoint2d_cp(lwline2->points, j+1);
2817
2818 geographic_point_init(a1->x, a1->y, &(e1.start));
2819 geographic_point_init(a2->x, a2->y, &(e1.end));
2820 geographic_point_init(b1->x, b1->y, &p2);
2821
2822 /* we already know, that the last point is on line1, so we're done */
2823 if ( j == lwline2->points->npoints - 1)
2824 {
2825 return LW_TRUE;
2826 }
2827 else if (start == LW_TRUE)
2828 {
2829 /* point is on current line1 edge, check next point in line2 */
2830 if ( edge_contains_point(&e1, &p2)) {
2831 j++;
2832 changed = LW_TRUE;
2833 }
2834
2835 geographic_point_init(a1->x, a1->y, &(e2.start));
2836 geographic_point_init(a2->x, b2->y, &(e2.end));
2837 geographic_point_init(a1->x, a1->y, &p1);
2838
2839 /* point is on current line2 edge, check next point in line1 */
2840 if ( edge_contains_point(&e2, &p1)) {
2841 i++;
2842 changed = LW_TRUE;
2843 }
2844
2845 /* no edge progressed -> point left one line */
2846 if ( changed == LW_FALSE )
2847 {
2848 LWDEBUG(4,"returning false, found point not covered by both lines");
2849 return LW_FALSE;
2850 }
2851 else
2852 {
2853 continue;
2854 }
2855 }
2856
2857 /* find first edge to cover line2 */
2858 if (edge_contains_point(&e1, &p2))
2859 {
2860 start = LW_TRUE;
2861 }
2862
2863 /* next line1 edge */
2864 i++;
2865 }
2866
2867 /* no uncovered point found */
2868 return LW_TRUE;
2869}
2870
2875int getPoint2d_p_ro(const POINTARRAY *pa, uint32_t n, POINT2D **point)
2876{
2877 uint8_t *pa_ptr = NULL;
2878 assert(pa);
2879 assert(n < pa->npoints);
2880
2881 pa_ptr = getPoint_internal(pa, n);
2882 /* printf( "pa_ptr[0]: %g\n", *((double*)pa_ptr)); */
2883 *point = (POINT2D*)pa_ptr;
2884
2885 return LW_SUCCESS;
2886}
2887
2888
2890{
2891 uint32_t i;
2892 int first = LW_TRUE;
2893 const POINT2D *p;
2894 POINT3D A1, A2;
2895 GBOX edge_gbox;
2896
2897 assert(gbox);
2898 assert(pa);
2899
2900 gbox_init(&edge_gbox);
2901 edge_gbox.flags = gbox->flags;
2902
2903 if ( pa->npoints == 0 ) return LW_FAILURE;
2904
2905 if ( pa->npoints == 1 )
2906 {
2907 p = getPoint2d_cp(pa, 0);
2908 ll2cart(p, &A1);
2909 gbox->xmin = gbox->xmax = A1.x;
2910 gbox->ymin = gbox->ymax = A1.y;
2911 gbox->zmin = gbox->zmax = A1.z;
2912 return LW_SUCCESS;
2913 }
2914
2915 p = getPoint2d_cp(pa, 0);
2916 ll2cart(p, &A1);
2917
2918 for ( i = 1; i < pa->npoints; i++ )
2919 {
2920
2921 p = getPoint2d_cp(pa, i);
2922 ll2cart(p, &A2);
2923
2924 edge_calculate_gbox(&A1, &A2, &edge_gbox);
2925
2926 /* Initialize the box */
2927 if ( first )
2928 {
2929 gbox_duplicate(&edge_gbox, gbox);
2930 first = LW_FALSE;
2931 }
2932 /* Expand the box where necessary */
2933 else
2934 {
2935 gbox_merge(&edge_gbox, gbox);
2936 }
2937
2938 A1 = A2;
2939 }
2940
2941 return LW_SUCCESS;
2942}
2943
2944static int lwpoint_calculate_gbox_geodetic(const LWPOINT *point, GBOX *gbox)
2945{
2946 assert(point);
2947 return ptarray_calculate_gbox_geodetic(point->point, gbox);
2948}
2949
2950static int lwline_calculate_gbox_geodetic(const LWLINE *line, GBOX *gbox)
2951{
2952 assert(line);
2953 return ptarray_calculate_gbox_geodetic(line->points, gbox);
2954}
2955
2956static int lwpolygon_calculate_gbox_geodetic(const LWPOLY *poly, GBOX *gbox)
2957{
2958 GBOX ringbox;
2959 uint32_t i;
2960 int first = LW_TRUE;
2961 assert(poly);
2962 if ( poly->nrings == 0 )
2963 return LW_FAILURE;
2964 ringbox.flags = gbox->flags;
2965 for ( i = 0; i < poly->nrings; i++ )
2966 {
2967 if ( ptarray_calculate_gbox_geodetic(poly->rings[i], &ringbox) == LW_FAILURE )
2968 return LW_FAILURE;
2969 if ( first )
2970 {
2971 gbox_duplicate(&ringbox, gbox);
2972 first = LW_FALSE;
2973 }
2974 else
2975 {
2976 gbox_merge(&ringbox, gbox);
2977 }
2978 }
2979
2980 /* If the box wraps a poly, push that axis to the absolute min/max as appropriate */
2981 gbox_check_poles(gbox);
2982
2983 return LW_SUCCESS;
2984}
2985
2986static int lwtriangle_calculate_gbox_geodetic(const LWTRIANGLE *triangle, GBOX *gbox)
2987{
2988 assert(triangle);
2989 return ptarray_calculate_gbox_geodetic(triangle->points, gbox);
2990}
2991
2992
2994{
2995 GBOX subbox;
2996 uint32_t i;
2997 int result = LW_FAILURE;
2998 int first = LW_TRUE;
2999 assert(coll);
3000 if ( coll->ngeoms == 0 )
3001 return LW_FAILURE;
3002
3003 subbox.flags = gbox->flags;
3004
3005 for ( i = 0; i < coll->ngeoms; i++ )
3006 {
3007 if ( lwgeom_calculate_gbox_geodetic((LWGEOM*)(coll->geoms[i]), &subbox) == LW_SUCCESS )
3008 {
3009 /* Keep a copy of the sub-bounding box for later */
3010 if ( coll->geoms[i]->bbox )
3011 lwfree(coll->geoms[i]->bbox);
3012 coll->geoms[i]->bbox = gbox_copy(&subbox);
3013 if ( first )
3014 {
3015 gbox_duplicate(&subbox, gbox);
3016 first = LW_FALSE;
3017 }
3018 else
3019 {
3020 gbox_merge(&subbox, gbox);
3021 }
3022 result = LW_SUCCESS;
3023 }
3024 }
3025 return result;
3026}
3027
3029{
3030 int result = LW_FAILURE;
3031 LWDEBUGF(4, "got type %d", geom->type);
3032
3033 /* Add a geodetic flag to the incoming gbox */
3034 gbox->flags = lwflags(FLAGS_GET_Z(geom->flags),FLAGS_GET_M(geom->flags),1);
3035
3036 switch (geom->type)
3037 {
3038 case POINTTYPE:
3039 result = lwpoint_calculate_gbox_geodetic((LWPOINT*)geom, gbox);
3040 break;
3041 case LINETYPE:
3042 result = lwline_calculate_gbox_geodetic((LWLINE *)geom, gbox);
3043 break;
3044 case POLYGONTYPE:
3045 result = lwpolygon_calculate_gbox_geodetic((LWPOLY *)geom, gbox);
3046 break;
3047 case TRIANGLETYPE:
3048 result = lwtriangle_calculate_gbox_geodetic((LWTRIANGLE *)geom, gbox);
3049 break;
3050 case MULTIPOINTTYPE:
3051 case MULTILINETYPE:
3052 case MULTIPOLYGONTYPE:
3054 case TINTYPE:
3055 case COLLECTIONTYPE:
3056 result = lwcollection_calculate_gbox_geodetic((LWCOLLECTION *)geom, gbox);
3057 break;
3058 default:
3059 lwerror("lwgeom_calculate_gbox_geodetic: unsupported input geometry type: %d - %s",
3060 geom->type, lwtype_name(geom->type));
3061 break;
3062 }
3063 return result;
3064}
3065
3066
3067
3069{
3070 uint32_t t;
3071 POINT2D pt;
3072
3073 assert(pa);
3074
3075 for (t=0; t<pa->npoints; t++)
3076 {
3077 getPoint2d_p(pa, t, &pt);
3078 /* printf( "%d (%g, %g)\n", t, pt.x, pt.y); */
3079 if ( pt.x < -180.0 || pt.y < -90.0 || pt.x > 180.0 || pt.y > 90.0 )
3080 return LW_FALSE;
3081 }
3082
3083 return LW_TRUE;
3084}
3085
3086static int lwpoint_check_geodetic(const LWPOINT *point)
3087{
3088 assert(point);
3089 return ptarray_check_geodetic(point->point);
3090}
3091
3092static int lwline_check_geodetic(const LWLINE *line)
3093{
3094 assert(line);
3095 return ptarray_check_geodetic(line->points);
3096}
3097
3098static int lwpoly_check_geodetic(const LWPOLY *poly)
3099{
3100 uint32_t i = 0;
3101 assert(poly);
3102
3103 for ( i = 0; i < poly->nrings; i++ )
3104 {
3105 if ( ptarray_check_geodetic(poly->rings[i]) == LW_FALSE )
3106 return LW_FALSE;
3107 }
3108 return LW_TRUE;
3109}
3110
3111static int lwtriangle_check_geodetic(const LWTRIANGLE *triangle)
3112{
3113 assert(triangle);
3114 return ptarray_check_geodetic(triangle->points);
3115}
3116
3117
3119{
3120 uint32_t i = 0;
3121 assert(col);
3122
3123 for ( i = 0; i < col->ngeoms; i++ )
3124 {
3125 if ( lwgeom_check_geodetic(col->geoms[i]) == LW_FALSE )
3126 return LW_FALSE;
3127 }
3128 return LW_TRUE;
3129}
3130
3132{
3133 if ( lwgeom_is_empty(geom) )
3134 return LW_TRUE;
3135
3136 switch (geom->type)
3137 {
3138 case POINTTYPE:
3139 return lwpoint_check_geodetic((LWPOINT *)geom);
3140 case LINETYPE:
3141 return lwline_check_geodetic((LWLINE *)geom);
3142 case POLYGONTYPE:
3143 return lwpoly_check_geodetic((LWPOLY *)geom);
3144 case TRIANGLETYPE:
3145 return lwtriangle_check_geodetic((LWTRIANGLE *)geom);
3146 case MULTIPOINTTYPE:
3147 case MULTILINETYPE:
3148 case MULTIPOLYGONTYPE:
3150 case TINTYPE:
3151 case COLLECTIONTYPE:
3153 default:
3154 lwerror("lwgeom_check_geodetic: unsupported input geometry type: %d - %s",
3155 geom->type, lwtype_name(geom->type));
3156 }
3157 return LW_FALSE;
3158}
3159
3161{
3162 uint32_t t;
3163 int changed = LW_FALSE;
3164 POINT4D pt;
3165
3166 assert(pa);
3167
3168 for ( t=0; t < pa->npoints; t++ )
3169 {
3170 getPoint4d_p(pa, t, &pt);
3171 if ( pt.x < -180.0 || pt.x > 180.0 || pt.y < -90.0 || pt.y > 90.0 )
3172 {
3175 ptarray_set_point4d(pa, t, &pt);
3176 changed = LW_TRUE;
3177 }
3178 }
3179 return changed;
3180}
3181
3183{
3184 assert(point);
3185 return ptarray_force_geodetic(point->point);
3186}
3187
3189{
3190 assert(line);
3191 return ptarray_force_geodetic(line->points);
3192}
3193
3195{
3196 uint32_t i = 0;
3197 int changed = LW_FALSE;
3198 assert(poly);
3199
3200 for ( i = 0; i < poly->nrings; i++ )
3201 {
3202 if ( ptarray_force_geodetic(poly->rings[i]) == LW_TRUE )
3203 changed = LW_TRUE;
3204 }
3205 return changed;
3206}
3207
3209{
3210 uint32_t i = 0;
3211 int changed = LW_FALSE;
3212 assert(col);
3213
3214 for ( i = 0; i < col->ngeoms; i++ )
3215 {
3216 if ( lwgeom_force_geodetic(col->geoms[i]) == LW_TRUE )
3217 changed = LW_TRUE;
3218 }
3219 return changed;
3220}
3221
3223{
3224 switch ( lwgeom_get_type(geom) )
3225 {
3226 case POINTTYPE:
3227 return lwpoint_force_geodetic((LWPOINT *)geom);
3228 case LINETYPE:
3229 return lwline_force_geodetic((LWLINE *)geom);
3230 case POLYGONTYPE:
3231 return lwpoly_force_geodetic((LWPOLY *)geom);
3232 case MULTIPOINTTYPE:
3233 case MULTILINETYPE:
3234 case MULTIPOLYGONTYPE:
3235 case COLLECTIONTYPE:
3237 default:
3238 lwerror("unsupported input geometry type: %d", lwgeom_get_type(geom));
3239 }
3240 return LW_FALSE;
3241}
3242
3243
3245{
3246 GEOGRAPHIC_POINT a, b;
3247 double za = 0.0, zb = 0.0;
3248 POINT4D p;
3249 uint32_t i;
3250 int hasz = LW_FALSE;
3251 double length = 0.0;
3252 double seglength = 0.0;
3253
3254 /* Return zero on non-sensical inputs */
3255 if ( ! pa || pa->npoints < 2 )
3256 return 0.0;
3257
3258 /* See if we have a third dimension */
3259 hasz = FLAGS_GET_Z(pa->flags);
3260
3261 /* Initialize first point */
3262 getPoint4d_p(pa, 0, &p);
3263 geographic_point_init(p.x, p.y, &a);
3264 if ( hasz )
3265 za = p.z;
3266
3267 /* Loop and sum the length for each segment */
3268 for ( i = 1; i < pa->npoints; i++ )
3269 {
3270 seglength = 0.0;
3271 getPoint4d_p(pa, i, &p);
3272 geographic_point_init(p.x, p.y, &b);
3273 if ( hasz )
3274 zb = p.z;
3275
3276 /* Special sphere case */
3277 if ( s->a == s->b )
3278 seglength = s->radius * sphere_distance(&a, &b);
3279 /* Spheroid case */
3280 else
3281 seglength = spheroid_distance(&a, &b, s);
3282
3283 /* Add in the vertical displacement if we're in 3D */
3284 if ( hasz )
3285 seglength = sqrt( (zb-za)*(zb-za) + seglength*seglength );
3286
3287 /* Add this segment length to the total */
3288 length += seglength;
3289
3290 /* B gets incremented in the next loop, so we save the value here */
3291 a = b;
3292 za = zb;
3293 }
3294 return length;
3295}
3296
3297double lwgeom_length_spheroid(const LWGEOM *geom, const SPHEROID *s)
3298{
3299 int type;
3300 uint32_t i = 0;
3301 double length = 0.0;
3302
3303 assert(geom);
3304
3305 /* No area in nothing */
3306 if ( lwgeom_is_empty(geom) )
3307 return 0.0;
3308
3309 type = geom->type;
3310
3311 if ( type == POINTTYPE || type == MULTIPOINTTYPE )
3312 return 0.0;
3313
3314 if ( type == LINETYPE )
3315 return ptarray_length_spheroid(((LWLINE*)geom)->points, s);
3316
3317 if ( type == POLYGONTYPE )
3318 {
3319 LWPOLY *poly = (LWPOLY*)geom;
3320 for ( i = 0; i < poly->nrings; i++ )
3321 {
3322 length += ptarray_length_spheroid(poly->rings[i], s);
3323 }
3324 return length;
3325 }
3326
3327 if ( type == TRIANGLETYPE )
3328 return ptarray_length_spheroid(((LWTRIANGLE*)geom)->points, s);
3329
3330 if ( lwtype_is_collection( type ) )
3331 {
3332 LWCOLLECTION *col = (LWCOLLECTION*)geom;
3333
3334 for ( i = 0; i < col->ngeoms; i++ )
3335 {
3336 length += lwgeom_length_spheroid(col->geoms[i], s);
3337 }
3338 return length;
3339 }
3340
3341 lwerror("unsupported type passed to lwgeom_length_sphere");
3342 return 0.0;
3343}
3344
3351static int
3353{
3354
3355 uint32_t i;
3356 POINT4D p;
3357 int altered = LW_FALSE;
3358 int rv = LW_FALSE;
3359 static double tolerance = 1e-10;
3360
3361 if ( ! pa )
3362 lwerror("ptarray_nudge_geodetic called with null input");
3363
3364 for(i = 0; i < pa->npoints; i++ )
3365 {
3366 getPoint4d_p(pa, i, &p);
3367 if ( p.x < -180.0 && (-180.0 - p.x < tolerance) )
3368 {
3369 p.x = -180.0;
3370 altered = LW_TRUE;
3371 }
3372 if ( p.x > 180.0 && (p.x - 180.0 < tolerance) )
3373 {
3374 p.x = 180.0;
3375 altered = LW_TRUE;
3376 }
3377 if ( p.y < -90.0 && (-90.0 - p.y < tolerance) )
3378 {
3379 p.y = -90.0;
3380 altered = LW_TRUE;
3381 }
3382 if ( p.y > 90.0 && (p.y - 90.0 < tolerance) )
3383 {
3384 p.y = 90.0;
3385 altered = LW_TRUE;
3386 }
3387 if ( altered == LW_TRUE )
3388 {
3389 ptarray_set_point4d(pa, i, &p);
3390 altered = LW_FALSE;
3391 rv = LW_TRUE;
3392 }
3393 }
3394 return rv;
3395}
3396
3403int
3405{
3406 int type;
3407 uint32_t i = 0;
3408 int rv = LW_FALSE;
3409
3410 assert(geom);
3411
3412 /* No points in nothing */
3413 if ( lwgeom_is_empty(geom) )
3414 return LW_FALSE;
3415
3416 type = geom->type;
3417
3418 if ( type == POINTTYPE )
3419 return ptarray_nudge_geodetic(((LWPOINT*)geom)->point);
3420
3421 if ( type == LINETYPE )
3422 return ptarray_nudge_geodetic(((LWLINE*)geom)->points);
3423
3424 if ( type == POLYGONTYPE )
3425 {
3426 LWPOLY *poly = (LWPOLY*)geom;
3427 for ( i = 0; i < poly->nrings; i++ )
3428 {
3429 int n = ptarray_nudge_geodetic(poly->rings[i]);
3430 rv = (rv == LW_TRUE ? rv : n);
3431 }
3432 return rv;
3433 }
3434
3435 if ( type == TRIANGLETYPE )
3436 return ptarray_nudge_geodetic(((LWTRIANGLE*)geom)->points);
3437
3438 if ( lwtype_is_collection( type ) )
3439 {
3440 LWCOLLECTION *col = (LWCOLLECTION*)geom;
3441
3442 for ( i = 0; i < col->ngeoms; i++ )
3443 {
3444 int n = lwgeom_nudge_geodetic(col->geoms[i]);
3445 rv = (rv == LW_TRUE ? rv : n);
3446 }
3447 return rv;
3448 }
3449
3450 lwerror("unsupported type (%s) passed to lwgeom_nudge_geodetic", lwtype_name(type));
3451 return rv;
3452}
3453
3454
3458static int
3459point_in_cone(const POINT3D *A1, const POINT3D *A2, const POINT3D *P)
3460{
3461 POINT3D AC; /* Center point of A1/A2 */
3462 double min_similarity, similarity;
3463
3464 /* Boundary case */
3465 if (point3d_equals(A1, P) || point3d_equals(A2, P))
3466 return LW_TRUE;
3467
3468 /* The normalized sum bisects the angle between start and end. */
3469 vector_sum(A1, A2, &AC);
3470 normalize(&AC);
3471
3472 /* The projection of start onto the center defines the minimum similarity */
3473 min_similarity = dot_product(A1, &AC);
3474
3475 /* If the edge is sufficiently curved, use the dot product test */
3476 if (fabs(1.0 - min_similarity) > 1e-10)
3477 {
3478 /* The projection of candidate p onto the center */
3479 similarity = dot_product(P, &AC);
3480
3481 /* If the projection of the candidate is larger than */
3482 /* the projection of the start point, the candidate */
3483 /* must be closer to the center than the start, so */
3484 /* therefor inside the cone */
3485 if (similarity > min_similarity)
3486 {
3487 return LW_TRUE;
3488 }
3489 else
3490 {
3491 return LW_FALSE;
3492 }
3493 }
3494 else
3495 {
3496 /* Where the edge is very narrow, the dot product test */
3497 /* fails, but we can use the almost-planar nature of the */
3498 /* problem space then to test if the vector from the */
3499 /* candidate to the start point in a different direction */
3500 /* to the vector from candidate to end point */
3501 /* If so, then candidate is between start and end */
3502 POINT3D PA1, PA2;
3503 vector_difference(P, A1, &PA1);
3504 vector_difference(P, A2, &PA2);
3505 normalize(&PA1);
3506 normalize(&PA2);
3507 if (dot_product(&PA1, &PA2) < 0.0)
3508 {
3509 return LW_TRUE;
3510 }
3511 else
3512 {
3513 return LW_FALSE;
3514 }
3515 }
3516 return LW_FALSE;
3517}
3518
3519
3520
3525static int
3527{
3528 double dp = dot_product(p, q);
3529
3530 if ( FP_IS_ZERO(dp) )
3531 return 0;
3532
3533 return dp < 0.0 ? -1 : 1;
3534}
3535
3540uint32_t
3541edge_intersects(const POINT3D *A1, const POINT3D *A2, const POINT3D *B1, const POINT3D *B2)
3542{
3543 POINT3D AN, BN, VN; /* Normals to plane A and plane B */
3544 double ab_dot;
3545 int a1_side, a2_side, b1_side, b2_side;
3546 int rv = PIR_NO_INTERACT;
3547
3548 /* Normals to the A-plane and B-plane */
3549 unit_normal(A1, A2, &AN);
3550 unit_normal(B1, B2, &BN);
3551
3552 /* Are A-plane and B-plane basically the same? */
3553 ab_dot = dot_product(&AN, &BN);
3554
3555 if ( FP_EQUALS(fabs(ab_dot), 1.0) )
3556 {
3557 /* Co-linear case */
3558 if ( point_in_cone(A1, A2, B1) || point_in_cone(A1, A2, B2) ||
3559 point_in_cone(B1, B2, A1) || point_in_cone(B1, B2, A2) )
3560 {
3561 rv |= PIR_INTERSECTS;
3562 rv |= PIR_COLINEAR;
3563 }
3564 return rv;
3565 }
3566
3567 /* What side of plane-A and plane-B do the end points */
3568 /* of A and B fall? */
3569 a1_side = dot_product_side(&BN, A1);
3570 a2_side = dot_product_side(&BN, A2);
3571 b1_side = dot_product_side(&AN, B1);
3572 b2_side = dot_product_side(&AN, B2);
3573
3574 /* Both ends of A on the same side of plane B. */
3575 if ( a1_side == a2_side && a1_side != 0 )
3576 {
3577 /* No intersection. */
3578 return PIR_NO_INTERACT;
3579 }
3580
3581 /* Both ends of B on the same side of plane A. */
3582 if ( b1_side == b2_side && b1_side != 0 )
3583 {
3584 /* No intersection. */
3585 return PIR_NO_INTERACT;
3586 }
3587
3588 /* A straddles B and B straddles A, so... */
3589 if ( a1_side != a2_side && (a1_side + a2_side) == 0 &&
3590 b1_side != b2_side && (b1_side + b2_side) == 0 )
3591 {
3592 /* Have to check if intersection point is inside both arcs */
3593 unit_normal(&AN, &BN, &VN);
3594 if ( point_in_cone(A1, A2, &VN) && point_in_cone(B1, B2, &VN) )
3595 {
3596 return PIR_INTERSECTS;
3597 }
3598
3599 /* Have to check if intersection point is inside both arcs */
3600 vector_scale(&VN, -1);
3601 if ( point_in_cone(A1, A2, &VN) && point_in_cone(B1, B2, &VN) )
3602 {
3603 return PIR_INTERSECTS;
3604 }
3605
3606 return PIR_NO_INTERACT;
3607 }
3608
3609 /* The rest are all intersects variants... */
3610 rv |= PIR_INTERSECTS;
3611
3612 /* A touches B */
3613 if ( a1_side == 0 )
3614 {
3615 /* Touches at A1, A2 is on what side? */
3616 rv |= (a2_side < 0 ? PIR_A_TOUCH_RIGHT : PIR_A_TOUCH_LEFT);
3617 }
3618 else if ( a2_side == 0 )
3619 {
3620 /* Touches at A2, A1 is on what side? */
3621 rv |= (a1_side < 0 ? PIR_A_TOUCH_RIGHT : PIR_A_TOUCH_LEFT);
3622 }
3623
3624 /* B touches A */
3625 if ( b1_side == 0 )
3626 {
3627 /* Touches at B1, B2 is on what side? */
3628 rv |= (b2_side < 0 ? PIR_B_TOUCH_RIGHT : PIR_B_TOUCH_LEFT);
3629 }
3630 else if ( b2_side == 0 )
3631 {
3632 /* Touches at B2, B1 is on what side? */
3633 rv |= (b1_side < 0 ? PIR_B_TOUCH_RIGHT : PIR_B_TOUCH_LEFT);
3634 }
3635
3636 return rv;
3637}
3638
3647int ptarray_contains_point_sphere(const POINTARRAY *pa, const POINT2D *pt_outside, const POINT2D *pt_to_test)
3648{
3649 POINT3D S1, S2; /* Stab line end points */
3650 POINT3D E1, E2; /* Edge end points (3-space) */
3651 POINT2D p; /* Edge end points (lon/lat) */
3652 uint32_t count = 0, i, inter;
3653
3654 /* Null input, not enough points for a ring? You ain't closed! */
3655 if ( ! pa || pa->npoints < 4 )
3656 return LW_FALSE;
3657
3658 /* Set up our stab line */
3659 ll2cart(pt_to_test, &S1);
3660 ll2cart(pt_outside, &S2);
3661
3662 /* Initialize first point */
3663 getPoint2d_p(pa, 0, &p);
3664 ll2cart(&p, &E1);
3665
3666 /* Walk every edge and see if the stab line hits it */
3667 for ( i = 1; i < pa->npoints; i++ )
3668 {
3669 LWDEBUGF(4, "testing edge (%d)", i);
3670 LWDEBUGF(4, " start point == POINT(%.12g %.12g)", p.x, p.y);
3671
3672 /* Read next point. */
3673 getPoint2d_p(pa, i, &p);
3674 ll2cart(&p, &E2);
3675
3676 /* Skip over too-short edges. */
3677 if ( point3d_equals(&E1, &E2) )
3678 {
3679 continue;
3680 }
3681
3682 /* Our test point is on an edge end! Point is "in ring" by our definition */
3683 if ( point3d_equals(&S1, &E1) )
3684 {
3685 return LW_TRUE;
3686 }
3687
3688 /* Calculate relationship between stab line and edge */
3689 inter = edge_intersects(&S1, &S2, &E1, &E2);
3690
3691 /* We have some kind of interaction... */
3692 if ( inter & PIR_INTERSECTS )
3693 {
3694 /* If the stabline is touching the edge, that implies the test point */
3695 /* is on the edge, so we're done, the point is in (on) the ring. */
3696 if ( (inter & PIR_A_TOUCH_RIGHT) || (inter & PIR_A_TOUCH_LEFT) )
3697 {
3698 return LW_TRUE;
3699 }
3700
3701 /* It's a touching interaction, disregard all the left-side ones. */
3702 /* It's a co-linear intersection, ignore those. */
3703 if ( inter & PIR_B_TOUCH_RIGHT || inter & PIR_COLINEAR )
3704 {
3705 /* Do nothing, to avoid double counts. */
3706 LWDEBUGF(4," edge (%d) crossed, disregarding to avoid double count", i, count);
3707 }
3708 else
3709 {
3710 /* Increment crossingn count. */
3711 count++;
3712 LWDEBUGF(4," edge (%d) crossed, count == %d", i, count);
3713 }
3714 }
3715 else
3716 {
3717 LWDEBUGF(4," edge (%d) did not cross", i);
3718 }
3719
3720 /* Increment to next edge */
3721 E1 = E2;
3722 }
3723
3724 LWDEBUGF(4,"final count == %d", count);
3725
3726 /* An odd number of crossings implies containment! */
3727 if ( count % 2 )
3728 {
3729 return LW_TRUE;
3730 }
3731
3732 return LW_FALSE;
3733}
char * s
Definition cu_in_wkt.c:23
char * r
Definition cu_in_wkt.c:24
static char * w
Definition cu_out_twkb.c:25
int gbox_merge(const GBOX *new_box, GBOX *merge_box)
Update the merged GBOX to be large enough to include itself and the new box.
Definition gbox.c:257
void gbox_duplicate(const GBOX *original, GBOX *duplicate)
Copy the values of original GBOX into duplicate.
Definition gbox.c:433
int gbox_contains_point3d(const GBOX *gbox, const POINT3D *pt)
Return true if the point is inside the gbox.
Definition gbox.c:247
char * gbox_to_string(const GBOX *gbox)
Allocate a string representation of the GBOX, based on dimensionality of flags.
Definition gbox.c:392
int gbox_merge_point3d(const POINT3D *p, GBOX *gbox)
Update the GBOX to be large enough to include itself and the new point.
Definition gbox.c:228
int gbox_overlaps(const GBOX *g1, const GBOX *g2)
Return LW_TRUE if the GBOX overlaps, LW_FALSE otherwise.
Definition gbox.c:283
void gbox_init(GBOX *gbox)
Zero out all the entries in the GBOX.
Definition gbox.c:40
int gbox_init_point3d(const POINT3D *p, GBOX *gbox)
Initialize a GBOX using the values of the point.
Definition gbox.c:239
GBOX * gbox_copy(const GBOX *box)
Return a copy of the GBOX, based on dimensionality of flags.
Definition gbox.c:426
const char * lwtype_name(uint8_t type)
Return the type name string associated with a type number (e.g.
Definition lwutil.c:216
void lwgeom_set_geodetic(LWGEOM *geom, int value)
Set the FLAGS geodetic bit on geometry an all sub-geometries and pointlists.
Definition lwgeom.c:946
LWGEOM * lwpoint_as_lwgeom(const LWPOINT *obj)
Definition lwgeom.c:326
#define LW_FALSE
Definition liblwgeom.h:108
#define COLLECTIONTYPE
Definition liblwgeom.h:122
#define LW_FAILURE
Definition liblwgeom.h:110
LWPOINT * lwline_get_lwpoint(const LWLINE *line, uint32_t where)
Returns freshly allocated LWPOINT that corresponds to the index where.
Definition lwline.c:309
#define MULTILINETYPE
Definition liblwgeom.h:120
#define LINETYPE
Definition liblwgeom.h:117
LWCOLLECTION * lwgeom_as_lwcollection(const LWGEOM *lwgeom)
Definition lwgeom.c:215
#define LW_SUCCESS
Definition liblwgeom.h:111
LWPOINT * lwpoint_construct(int32_t srid, GBOX *bbox, POINTARRAY *point)
Definition lwpoint.c:129
#define MULTIPOINTTYPE
Definition liblwgeom.h:119
double lwpoint_get_x(const LWPOINT *point)
Definition lwpoint.c:63
int lwpoly_add_ring(LWPOLY *poly, POINTARRAY *pa)
Add a ring, allocating extra space if necessary.
Definition lwpoly.c:247
int getPoint2d_p(const POINTARRAY *pa, uint32_t n, POINT2D *point)
Definition lwgeom_api.c:349
POINTARRAY * ptarray_construct_empty(char hasz, char hasm, uint32_t maxpoints)
Create a new POINTARRAY with no points.
Definition ptarray.c:59
LWGEOM * lwgeom_clone(const LWGEOM *lwgeom)
Clone LWGEOM object.
Definition lwgeom.c:473
char * lwgeom_to_ewkt(const LWGEOM *lwgeom)
Return an alloced string.
Definition lwgeom.c:547
int lwgeom_has_z(const LWGEOM *geom)
Return LW_TRUE if geometry has Z ordinates.
Definition lwgeom.c:916
int lwtype_is_collection(uint8_t type)
Determine whether a type number is a collection or not.
Definition lwgeom.c:1087
#define POINTTYPE
LWTYPE numbers, used internally by PostGIS.
Definition liblwgeom.h:116
#define FLAGS_GET_Z(flags)
Definition liblwgeom.h:179
LWPOLY * lwgeom_as_lwpoly(const LWGEOM *lwgeom)
Definition lwgeom.c:197
#define TINTYPE
Definition liblwgeom.h:130
LWLINE * lwline_construct(int32_t srid, GBOX *bbox, POINTARRAY *points)
Definition lwline.c:42
#define MULTIPOLYGONTYPE
Definition liblwgeom.h:121
void lwfree(void *mem)
Definition lwutil.c:242
#define POLYGONTYPE
Definition liblwgeom.h:118
LWGEOM * lwline_as_lwgeom(const LWLINE *obj)
Definition lwgeom.c:321
#define POLYHEDRALSURFACETYPE
Definition liblwgeom.h:128
#define FLAGS_GET_M(flags)
Definition liblwgeom.h:180
int getPoint4d_p(const POINTARRAY *pa, uint32_t n, POINT4D *point)
Definition lwgeom_api.c:125
LWLINE * lwgeom_as_lwline(const LWGEOM *lwgeom)
Definition lwgeom.c:161
LWCOLLECTION * lwcollection_construct_empty(uint8_t type, int32_t srid, char hasz, char hasm)
int ptarray_append_point(POINTARRAY *pa, const POINT4D *pt, int allow_duplicates)
Append a point to the end of an existing POINTARRAY If allow_duplicate is LW_FALSE,...
Definition ptarray.c:147
#define TRIANGLETYPE
Definition liblwgeom.h:129
lwflags_t lwflags(int hasz, int hasm, int geodetic)
Construct a new flags bitmask.
Definition lwutil.c:471
#define LW_TRUE
Return types for functions with status returns.
Definition liblwgeom.h:107
LWCOLLECTION * lwcollection_add_lwgeom(LWCOLLECTION *col, const LWGEOM *geom)
Appends geom to the collection managed by col.
LWPOLY * lwpoly_construct_empty(int32_t srid, char hasz, char hasm)
Definition lwpoly.c:161
int lwgeom_has_m(const LWGEOM *geom)
Return LW_TRUE if geometry has M ordinates.
Definition lwgeom.c:923
void ptarray_set_point4d(POINTARRAY *pa, uint32_t n, const POINT4D *p4d)
Definition lwgeom_api.c:376
LWGEOM * lwpoly_as_lwgeom(const LWPOLY *obj)
Definition lwgeom.c:311
LWGEOM * lwcollection_as_lwgeom(const LWCOLLECTION *obj)
Definition lwgeom.c:291
double lwpoint_get_y(const LWPOINT *point)
Definition lwpoint.c:76
POINTARRAY * ptarray_construct(char hasz, char hasm, uint32_t npoints)
Construct an empty pointarray, allocating storage and setting the npoints, but not filling in any inf...
Definition ptarray.c:51
LWGEOM * lwgeom_clone_deep(const LWGEOM *lwgeom)
Deep clone an LWGEOM, everything is copied.
Definition lwgeom.c:511
int p4d_same(const POINT4D *p1, const POINT4D *p2)
Definition lwalgorithm.c:32
int p3d_same(const POINT3D *p1, const POINT3D *p2)
Definition lwalgorithm.c:41
#define LW_ON_INTERRUPT(x)
#define SIGNUM(n)
Macro that returns: -1 if n < 0, 1 if n > 0, 0 if n == 0.
#define FP_MAX(A, B)
#define FP_MIN(A, B)
#define FP_EQUALS(A, B)
int ptarray_has_z(const POINTARRAY *pa)
Definition ptarray.c:37
int lw_segment_side(const POINT2D *p1, const POINT2D *p2, const POINT2D *q)
lw_segment_side()
Definition lwalgorithm.c:65
int ptarray_has_m(const POINTARRAY *pa)
Definition ptarray.c:44
#define FP_IS_ZERO(A)
char lwpoint_same(const LWPOINT *p1, const LWPOINT *p2)
Definition lwpoint.c:264
int clairaut_geographic(const GEOGRAPHIC_POINT *start, const GEOGRAPHIC_POINT *end, GEOGRAPHIC_POINT *g_top, GEOGRAPHIC_POINT *g_bottom)
Computes the pole of the great circle disk which is the intersection of the great circle with the lin...
static int lwline_check_geodetic(const LWLINE *line)
static int lwcollection_check_geodetic(const LWCOLLECTION *col)
static POINTARRAY * ptarray_segmentize_sphere(const POINTARRAY *pa_in, double max_seg_length)
Create a new point array with no segment longer than the input segment length (expressed in radians!...
int lwpoly_covers_point2d(const LWPOLY *poly, const POINT2D *pt_to_test)
Given a polygon (lon/lat decimal degrees) and point (lon/lat decimal degrees) and a guaranteed outsid...
void normalize(POINT3D *p)
Normalize to a unit vector.
Definition lwgeodetic.c:615
static int lwpoly_check_geodetic(const LWPOLY *poly)
int lwline_covers_lwpoint(const LWLINE *lwline, const LWPOINT *lwpoint)
return LW_TRUE if any of the line segments covers the point
int lwpoly_intersects_line(const LWPOLY *lwpoly, const POINTARRAY *line)
Checks if any edges of lwpoly intersect with the line formed by the pointarray return LW_TRUE if any ...
double longitude_radians_normalize(double lon)
Convert a longitude to the range of -PI,PI.
Definition lwgeodetic.c:50
int clairaut_cartesian(const POINT3D *start, const POINT3D *end, GEOGRAPHIC_POINT *g_top, GEOGRAPHIC_POINT *g_bottom)
Computes the pole of the great circle disk which is the intersection of the great circle with the lin...
void point_shift(GEOGRAPHIC_POINT *p, double shift)
Shift a point around by a number of radians.
Definition lwgeodetic.c:160
static int lwpoly_force_geodetic(LWPOLY *poly)
double lwgeom_distance_spheroid(const LWGEOM *lwgeom1, const LWGEOM *lwgeom2, const SPHEROID *spheroid, double tolerance)
Calculate the distance between two LWGEOMs, using the coordinates are longitude and latitude.
static int lwcollection_force_geodetic(LWCOLLECTION *col)
static int lwtriangle_check_geodetic(const LWTRIANGLE *triangle)
int gbox_pt_outside(const GBOX *gbox, POINT2D *pt_outside)
Given a unit geocentric gbox, return a lon/lat (degrees) coordinate point point that is guaranteed to...
double sphere_distance_cartesian(const POINT3D *s, const POINT3D *e)
Given two unit vectors, calculate their distance apart in radians.
Definition lwgeodetic.c:967
static int ptarray_force_geodetic(POINTARRAY *pa)
void vector_rotate(const POINT3D *v1, const POINT3D *v2, double angle, POINT3D *n)
Rotates v1 through an angle (in radians) within the plane defined by v1/v2, returns the rotated vecto...
Definition lwgeodetic.c:573
static int lwline_force_geodetic(LWLINE *line)
static int lwcollection_calculate_gbox_geodetic(const LWCOLLECTION *coll, GBOX *gbox)
double ptarray_area_sphere(const POINTARRAY *pa)
Returns the area of the ring (ring must be closed) in square radians (surface of the sphere is 4*PI).
static int point_in_cone(const POINT3D *A1, const POINT3D *A2, const POINT3D *P)
Utility function for checking if P is within the cone defined by A1/A2.
int lwpoly_covers_lwpoly(const LWPOLY *poly1, const LWPOLY *poly2)
Given a polygon1 check if all points of polygon2 are inside polygon1 and no intersections of the poly...
static int gbox_check_poles(GBOX *gbox)
Check to see if this geocentric gbox is wrapped around a pole.
Definition lwgeodetic.c:316
int lwpoly_covers_pointarray(const LWPOLY *lwpoly, const POINTARRAY *pta)
return LW_TRUE if all points are inside the polygon
int ptarray_contains_point_sphere(const POINTARRAY *pa, const POINT2D *pt_outside, const POINT2D *pt_to_test)
This routine returns LW_TRUE if the stabline joining the pt_outside and pt_to_test crosses the ring a...
int lwgeom_calculate_gbox_geodetic(const LWGEOM *geom, GBOX *gbox)
Calculate the geodetic bounding box for an LWGEOM.
static int ptarray_check_geodetic(const POINTARRAY *pa)
static int lwpoint_check_geodetic(const LWPOINT *point)
int edge_point_on_plane(const GEOGRAPHIC_EDGE *e, const GEOGRAPHIC_POINT *p)
Returns true if the point p is on the great circle plane.
Definition lwgeodetic.c:775
static double ptarray_distance_spheroid(const POINTARRAY *pa1, const POINTARRAY *pa2, const SPHEROID *s, double tolerance, int check_intersection)
double latitude_radians_normalize(double lat)
Convert a latitude to the range of -PI/2,PI/2.
Definition lwgeodetic.c:78
void vector_scale(POINT3D *n, double scale)
Scale a vector out by a factor.
Definition lwgeodetic.c:487
int lwgeom_check_geodetic(const LWGEOM *geom)
Check that coordinates of LWGEOM are all within the geodetic range (-180, -90, 180,...
void cart2geog(const POINT3D *p, GEOGRAPHIC_POINT *g)
Convert cartesian coordinates on unit sphere to spherical coordinates.
Definition lwgeodetic.c:414
void y_to_z(POINT3D *p)
Definition lwgeodetic.c:658
double gbox_angular_height(const GBOX *gbox)
Returns the angular height (latitudinal span) of the box in radians.
Definition lwgeodetic.c:188
int lwpoly_covers_lwline(const LWPOLY *poly, const LWLINE *line)
int lwgeom_covers_lwgeom_sphere(const LWGEOM *lwgeom1, const LWGEOM *lwgeom2)
Calculate covers predicate for two lwgeoms on the sphere.
double gbox_angular_width(const GBOX *gbox)
Returns the angular width (longitudinal span) of the box in radians.
Definition lwgeodetic.c:215
static int lwpoint_force_geodetic(LWPOINT *point)
int lwpoly_pt_outside(const LWPOLY *poly, POINT2D *pt_outside)
int sphere_project(const GEOGRAPHIC_POINT *r, double distance, double azimuth, GEOGRAPHIC_POINT *n)
Given a starting location r, a distance and an azimuth to the new point, compute the location of the ...
void ll2cart(const POINT2D *g, POINT3D *p)
Convert lon/lat coordinates to cartesian coordinates on unit sphere.
Definition lwgeodetic.c:423
static int lwline_calculate_gbox_geodetic(const LWLINE *line, GBOX *gbox)
static void normalize2d(POINT2D *p)
Normalize to a unit vector.
Definition lwgeodetic.c:524
int gbox_geocentric_slow
For testing geodetic bounding box, we have a magic global variable.
Definition lwgeodetic.c:36
int edge_point_in_cone(const GEOGRAPHIC_EDGE *e, const GEOGRAPHIC_POINT *p)
Returns true if the point p is inside the cone defined by the two ends of the edge e.
Definition lwgeodetic.c:788
double longitude_degrees_normalize(double lon)
Convert a longitude to the range of -180,180.
Definition lwgeodetic.c:106
double z_to_latitude(double z, int top)
Used in great circle to compute the pole of the great circle.
void robust_cross_product(const GEOGRAPHIC_POINT *p, const GEOGRAPHIC_POINT *q, POINT3D *a)
Computes the cross product of two vectors using their lat, lng representations.
Definition lwgeodetic.c:634
static int lwpoly_pt_outside_hack(const LWPOLY *poly, POINT2D *pt_outside)
int ptarray_calculate_gbox_geodetic(const POINTARRAY *pa, GBOX *gbox)
Calculate geodetic (x/y/z) box and add values to gbox.
void geographic_point_init(double lon, double lat, GEOGRAPHIC_POINT *g)
Initialize a geographic point.
Definition lwgeodetic.c:180
static int dot_product_side(const POINT3D *p, const POINT3D *q)
Utility function for edge_intersects(), signum with a tolerance in determining if the value is zero.
double ptarray_length_spheroid(const POINTARRAY *pa, const SPHEROID *s)
void unit_normal(const POINT3D *P1, const POINT3D *P2, POINT3D *normal)
Calculates the unit normal to two vectors, trying to avoid problems with over-narrow or over-wide cas...
Definition lwgeodetic.c:541
int lwgeom_force_geodetic(LWGEOM *geom)
Force coordinates of LWGEOM into geodetic range (-180, -90, 180, 90)
static int ptarray_segmentize_sphere_edge_recursive(const POINT3D *p1, const POINT3D *p2, const POINT4D *v1, const POINT4D *v2, double d, double max_seg_length, POINTARRAY *pa)
static void vector_difference(const POINT3D *a, const POINT3D *b, POINT3D *n)
Calculate the difference of two vectors.
Definition lwgeodetic.c:476
int lwgeom_nudge_geodetic(LWGEOM *geom)
When features are snapped or sometimes they are just this way, they are very close to the geodetic bo...
static void cross_product(const POINT3D *a, const POINT3D *b, POINT3D *n)
Calculate the cross product of two vectors.
Definition lwgeodetic.c:454
static int edge_point_side(const GEOGRAPHIC_EDGE *e, const GEOGRAPHIC_POINT *p)
Returns -1 if the point is to the left of the plane formed by the edge, 1 if the point is to the righ...
Definition lwgeodetic.c:694
double sphere_distance(const GEOGRAPHIC_POINT *s, const GEOGRAPHIC_POINT *e)
Given two points on a unit sphere, calculate their distance apart in radians.
Definition lwgeodetic.c:948
static double dot_product(const POINT3D *p1, const POINT3D *p2)
Convert cartesian coordinates on unit sphere to lon/lat coordinates static void cart2ll(const POINT3D...
Definition lwgeodetic.c:446
double sphere_direction(const GEOGRAPHIC_POINT *s, const GEOGRAPHIC_POINT *e, double d)
Given two points on a unit sphere, calculate the direction from s to e.
Definition lwgeodetic.c:975
int edge_calculate_gbox_slow(const GEOGRAPHIC_EDGE *e, GBOX *gbox)
int edge_intersection(const GEOGRAPHIC_EDGE *e1, const GEOGRAPHIC_EDGE *e2, GEOGRAPHIC_POINT *g)
Returns true if an intersection can be calculated, and places it in *g.
void vector_sum(const POINT3D *a, const POINT3D *b, POINT3D *n)
Calculate the sum of two vectors.
Definition lwgeodetic.c:465
static int lwtriangle_calculate_gbox_geodetic(const LWTRIANGLE *triangle, GBOX *gbox)
uint32_t edge_intersects(const POINT3D *A1, const POINT3D *A2, const POINT3D *B1, const POINT3D *B2)
Returns non-zero if edges A and B interact.
double lwgeom_length_spheroid(const LWGEOM *geom, const SPHEROID *s)
Calculate the geodetic length of a lwgeom on the unit sphere.
int edge_calculate_gbox(const POINT3D *A1, const POINT3D *A2, GBOX *gbox)
The magic function, given an edge in spherical coordinates, calculate a 3D bounding box that fully co...
double edge_distance_to_point(const GEOGRAPHIC_EDGE *e, const GEOGRAPHIC_POINT *gp, GEOGRAPHIC_POINT *closest)
void geog2cart(const GEOGRAPHIC_POINT *g, POINT3D *p)
Convert spherical coordinates to cartesian coordinates on unit sphere.
Definition lwgeodetic.c:404
int gbox_centroid(const GBOX *gbox, POINT2D *out)
Computes the average(ish) center of the box and returns success.
Definition lwgeodetic.c:267
static double sphere_signed_area(const GEOGRAPHIC_POINT *a, const GEOGRAPHIC_POINT *b, const GEOGRAPHIC_POINT *c)
Computes the spherical area of a triangle.
Definition lwgeodetic.c:741
LWPOINT * lwgeom_project_spheroid(const LWPOINT *r, const SPHEROID *spheroid, double distance, double azimuth)
Calculate a projected point given a source point, a distance and a bearing.
static int point3d_equals(const POINT3D *p1, const POINT3D *p2)
Utility function for ptarray_contains_point_sphere()
Definition lwgeodetic.c:42
int lwline_covers_lwline(const LWLINE *lwline1, const LWLINE *lwline2)
Check if first and last point of line2 are covered by line1 and then each point in between has to be ...
int edge_contains_point(const GEOGRAPHIC_EDGE *e, const GEOGRAPHIC_POINT *p)
Returns true if the point p is on the minor edge defined by the end points of e.
static double sphere_angle(const GEOGRAPHIC_POINT *a, const GEOGRAPHIC_POINT *b, const GEOGRAPHIC_POINT *c)
Returns the angle in radians at point B of the triangle formed by A-B-C.
Definition lwgeodetic.c:721
void x_to_z(POINT3D *p)
Definition lwgeodetic.c:651
double edge_distance_to_edge(const GEOGRAPHIC_EDGE *e1, const GEOGRAPHIC_EDGE *e2, GEOGRAPHIC_POINT *closest1, GEOGRAPHIC_POINT *closest2)
Calculate the distance between two edges.
static int ptarray_nudge_geodetic(POINTARRAY *pa)
When features are snapped or sometimes they are just this way, they are very close to the geodetic bo...
int geographic_point_equals(const GEOGRAPHIC_POINT *g1, const GEOGRAPHIC_POINT *g2)
Definition lwgeodetic.c:170
double lwgeom_azumith_spheroid(const LWPOINT *r, const LWPOINT *s, const SPHEROID *spheroid)
Calculate a bearing (azimuth) given a source and destination point.
int crosses_dateline(const GEOGRAPHIC_POINT *s, const GEOGRAPHIC_POINT *e)
Definition lwgeodetic.c:666
static int lwpoint_calculate_gbox_geodetic(const LWPOINT *point, GBOX *gbox)
double latitude_degrees_normalize(double lat)
Convert a latitude to the range of -90,90.
Definition lwgeodetic.c:133
double vector_angle(const POINT3D *v1, const POINT3D *v2)
Angle between two unit vectors.
Definition lwgeodetic.c:505
LWGEOM * lwgeom_segmentize_sphere(const LWGEOM *lwg_in, double max_seg_length)
Create a new, densified geometry where no segment is longer than max_seg_length.
int edge_contains_coplanar_point(const GEOGRAPHIC_EDGE *e, const GEOGRAPHIC_POINT *p)
True if the longitude of p is within the range of the longitude of the ends of e.
Definition lwgeodetic.c:835
double lwgeom_area_sphere(const LWGEOM *lwgeom, const SPHEROID *spheroid)
Calculate the area of an LWGEOM.
static int lwpolygon_calculate_gbox_geodetic(const LWPOLY *poly, GBOX *gbox)
int getPoint2d_p_ro(const POINTARRAY *pa, uint32_t n, POINT2D **point)
This function can only be used on LWGEOM that is built on top of GSERIALIZED, otherwise alignment err...
#define rad2deg(r)
Definition lwgeodetic.h:81
#define POW2(x)
Definition lwgeodetic.h:48
#define PIR_A_TOUCH_LEFT
Definition lwgeodetic.h:91
double spheroid_distance(const GEOGRAPHIC_POINT *a, const GEOGRAPHIC_POINT *b, const SPHEROID *spheroid)
Computes the shortest distance along the surface of the spheroid between two points,...
Definition lwspheroid.c:79
#define PIR_COLINEAR
Definition lwgeodetic.h:89
#define NAN
Definition lwgeodetic.h:37
int spheroid_project(const GEOGRAPHIC_POINT *r, const SPHEROID *spheroid, double distance, double azimuth, GEOGRAPHIC_POINT *g)
Given a location, an azimuth and a distance, computes the location of the projected point.
Definition lwspheroid.c:128
#define PIR_INTERSECTS
Definition lwgeodetic.h:88
double spheroid_direction(const GEOGRAPHIC_POINT *r, const GEOGRAPHIC_POINT *s, const SPHEROID *spheroid)
Computes the forward azimuth of the geodesic joining two points on the spheroid, using the inverse ge...
Definition lwspheroid.c:105
#define deg2rad(d)
Conversion functions.
Definition lwgeodetic.h:80
#define PIR_A_TOUCH_RIGHT
Definition lwgeodetic.h:90
#define PIR_B_TOUCH_RIGHT
Definition lwgeodetic.h:92
#define PIR_B_TOUCH_LEFT
Definition lwgeodetic.h:93
#define PIR_NO_INTERACT
Bitmask elements for edge_intersects() return value.
Definition lwgeodetic.h:87
#define LWDEBUG(level, msg)
Definition lwgeom_log.h:83
#define LWDEBUGF(level, msg,...)
Definition lwgeom_log.h:88
void lwerror(const char *fmt,...)
Write a notice out to the error handler.
Definition lwutil.c:190
static uint8_t * getPoint_internal(const POINTARRAY *pa, uint32_t n)
Definition lwinline.h:67
static uint32_t lwgeom_get_type(const LWGEOM *geom)
Return LWTYPE number.
Definition lwinline.h:135
static int lwgeom_is_empty(const LWGEOM *geom)
Return true or false depending on whether a geometry is an "empty" geometry (no vertices members)
Definition lwinline.h:193
static const POINT2D * getPoint2d_cp(const POINTARRAY *pa, uint32_t n)
Returns a POINT2D pointer into the POINTARRAY serialized_ptlist, suitable for reading from.
Definition lwinline.h:91
static double distance(double x1, double y1, double x2, double y2)
Definition lwtree.c:1032
double ymax
Definition liblwgeom.h:343
double zmax
Definition liblwgeom.h:345
double xmax
Definition liblwgeom.h:341
double zmin
Definition liblwgeom.h:344
double ymin
Definition liblwgeom.h:342
double xmin
Definition liblwgeom.h:340
lwflags_t flags
Definition liblwgeom.h:339
GEOGRAPHIC_POINT start
Definition lwgeodetic.h:64
GEOGRAPHIC_POINT end
Definition lwgeodetic.h:65
Two-point great circle segment from a to b.
Definition lwgeodetic.h:63
Point in spherical coordinates on the world.
Definition lwgeodetic.h:54
uint32_t ngeoms
Definition liblwgeom.h:566
LWGEOM ** geoms
Definition liblwgeom.h:561
uint8_t type
Definition liblwgeom.h:448
GBOX * bbox
Definition liblwgeom.h:444
int32_t srid
Definition liblwgeom.h:446
lwflags_t flags
Definition liblwgeom.h:447
POINTARRAY * points
Definition liblwgeom.h:469
POINTARRAY * point
Definition liblwgeom.h:457
uint8_t type
Definition liblwgeom.h:460
POINTARRAY ** rings
Definition liblwgeom.h:505
uint32_t nrings
Definition liblwgeom.h:510
GBOX * bbox
Definition liblwgeom.h:504
POINTARRAY * points
Definition liblwgeom.h:481
double y
Definition liblwgeom.h:376
double x
Definition liblwgeom.h:376
double z
Definition liblwgeom.h:388
double x
Definition liblwgeom.h:388
double y
Definition liblwgeom.h:388
double m
Definition liblwgeom.h:400
double x
Definition liblwgeom.h:400
double z
Definition liblwgeom.h:400
double y
Definition liblwgeom.h:400
lwflags_t flags
Definition liblwgeom.h:417
uint32_t npoints
Definition liblwgeom.h:413
double radius
Definition liblwgeom.h:366