PostGIS  3.0.6dev-r@@SVN_REVISION@@

◆ edge_calculate_gbox()

int edge_calculate_gbox ( const POINT3D A1,
const POINT3D A2,
GBOX gbox 
)

The magic function, given an edge in spherical coordinates, calculate a 3D bounding box that fully contains it, taking into account the curvature of the sphere on which it is inscribed.

Any arc on the sphere defines a plane that bisects the sphere. In this plane, the arc is a portion of a unit circle. Projecting the end points of the axes (1,0,0), (-1,0,0) etc, into the plane and normalizing yields potential extrema points. Those points on the side of the plane-dividing line formed by the end points that is opposite the origin of the plane are extrema and should be added to the bounding box.

Definition at line 1408 of file lwgeodetic.c.

1409 {
1410  POINT2D R1, R2, RX, O;
1411  POINT3D AN, A3;
1412  POINT3D X[6];
1413  int i, o_side;
1414 
1415  /* Initialize the box with the edge end points */
1416  gbox_init_point3d(A1, gbox);
1417  gbox_merge_point3d(A2, gbox);
1418 
1419  /* Zero length edge, just return! */
1420  if ( p3d_same(A1, A2) )
1421  return LW_SUCCESS;
1422 
1423  /* Error out on antipodal edge */
1424  if ( FP_EQUALS(A1->x, -1*A2->x) && FP_EQUALS(A1->y, -1*A2->y) && FP_EQUALS(A1->z, -1*A2->z) )
1425  {
1426  lwerror("Antipodal (180 degrees long) edge detected!");
1427  return LW_FAILURE;
1428  }
1429 
1430  /* Create A3, a vector in the plane of A1/A2, orthogonal to A1 */
1431  unit_normal(A1, A2, &AN);
1432  unit_normal(&AN, A1, &A3);
1433 
1434  /* Project A1 and A2 into the 2-space formed by the plane A1/A3 */
1435  R1.x = 1.0;
1436  R1.y = 0.0;
1437  R2.x = dot_product(A2, A1);
1438  R2.y = dot_product(A2, &A3);
1439 
1440  /* Initialize our 3-space axis points (x+, x-, y+, y-, z+, z-) */
1441  memset(X, 0, sizeof(POINT3D) * 6);
1442  X[0].x = X[2].y = X[4].z = 1.0;
1443  X[1].x = X[3].y = X[5].z = -1.0;
1444 
1445  /* Initialize a 2-space origin point. */
1446  O.x = O.y = 0.0;
1447  /* What side of the line joining R1/R2 is O? */
1448  o_side = lw_segment_side(&R1, &R2, &O);
1449 
1450  /* Add any extrema! */
1451  for ( i = 0; i < 6; i++ )
1452  {
1453  /* Convert 3-space axis points to 2-space unit vectors */
1454  RX.x = dot_product(&(X[i]), A1);
1455  RX.y = dot_product(&(X[i]), &A3);
1456  normalize2d(&RX);
1457 
1458  /* Any axis end on the side of R1/R2 opposite the origin */
1459  /* is an extreme point in the arc, so we add the 3-space */
1460  /* version of the point on R1/R2 to the gbox */
1461  if ( lw_segment_side(&R1, &R2, &RX) != o_side )
1462  {
1463  POINT3D Xn;
1464  Xn.x = RX.x * A1->x + RX.y * A3.x;
1465  Xn.y = RX.x * A1->y + RX.y * A3.y;
1466  Xn.z = RX.x * A1->z + RX.y * A3.z;
1467 
1468  gbox_merge_point3d(&Xn, gbox);
1469  }
1470  }
1471 
1472  return LW_SUCCESS;
1473 }
int gbox_merge_point3d(const POINT3D *p, GBOX *gbox)
Update the GBOX to be large enough to include itself and the new point.
Definition: gbox.c:228
int gbox_init_point3d(const POINT3D *p, GBOX *gbox)
Initialize a GBOX using the values of the point.
Definition: gbox.c:239
#define LW_FAILURE
Definition: liblwgeom.h:110
#define LW_SUCCESS
Definition: liblwgeom.h:111
int p3d_same(const POINT3D *p1, const POINT3D *p2)
Definition: lwalgorithm.c:41
#define FP_EQUALS(A, B)
int lw_segment_side(const POINT2D *p1, const POINT2D *p2, const POINT2D *q)
lw_segment_side()
Definition: lwalgorithm.c:65
static void normalize2d(POINT2D *p)
Normalize to a unit vector.
Definition: lwgeodetic.c:524
void unit_normal(const POINT3D *P1, const POINT3D *P2, POINT3D *normal)
Calculates the unit normal to two vectors, trying to avoid problems with over-narrow or over-wide cas...
Definition: lwgeodetic.c:541
static double dot_product(const POINT3D *p1, const POINT3D *p2)
Convert cartesian coordinates on unit sphere to lon/lat coordinates static void cart2ll(const POINT3D...
Definition: lwgeodetic.c:446
void lwerror(const char *fmt,...)
Write a notice out to the error handler.
Definition: lwutil.c:190
double y
Definition: liblwgeom.h:376
double x
Definition: liblwgeom.h:376
double z
Definition: liblwgeom.h:388
double x
Definition: liblwgeom.h:388
double y
Definition: liblwgeom.h:388

References dot_product(), FP_EQUALS, gbox_init_point3d(), gbox_merge_point3d(), LW_FAILURE, lw_segment_side(), LW_SUCCESS, lwerror(), normalize2d(), p3d_same(), unit_normal(), POINT2D::x, POINT3D::x, POINT2D::y, POINT3D::y, and POINT3D::z.

Referenced by ptarray_calculate_gbox_geodetic().

Here is the call graph for this function:
Here is the caller graph for this function: