Chapter 9. Rasterdatenverwaltung, -abfrage und Anwendungen

Table of Contents
9.1. Laden und Erstellen von Rastertabellen
9.1.1. Verwendung von raster2pgsql zum Laden von Rastern
9.1.2. Erzeugung von Rastern mit den PostGIS Rasterfunktionen
9.1.3. Using "out db" cloud rasters
9.2. Raster Katalog
9.2.1. Rasterspalten Katalog
9.2.2. Raster Übersicht/Raster Overviews
9.3. Eigene Anwendungen mit PostGIS Raster erstellen
9.3.1. PHP Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen
9.3.2. ASP.NET C# Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen
9.3.3. Applikation für die Java-Konsole, welche eine Rasterabfrage als Bilddatei ausgibt
9.3.4. Verwenden Sie PLPython um Bilder via SQL herauszuschreiben
9.3.5. Faster mit PSQL ausgeben

9.1. Laden und Erstellen von Rastertabellen

In den häufigsten Anwendungsfällen werden Sie einen PostGIS-Raster durch das Laden einer bestehenden Rasterdatei, mit Hilfe des Rasterladers raster2pgsql, erstellen.

9.1.1. Verwendung von raster2pgsql zum Laden von Rastern

The raster2pgsql is a raster loader executable that loads GDAL supported raster formats into SQL suitable for loading into a PostGIS raster table. It is capable of loading folders of raster files as well as creating overviews of rasters.

Since the raster2pgsql is compiled as part of PostGIS most often (unless you compile your own GDAL library), the raster types supported by the executable will be the same as those compiled in the GDAL dependency library. To get a list of raster types your particular raster2pgsql supports use the -G switch.

[Note]

Bei einem bestimmten Faktor kann es vorkommen, dass die Raster in der Übersicht/Overview nicht bündig angeordnet sind, obwohl sie die Raster selbst dies sind. Siehe http://trac.osgeo.org/postgis/ticket/1764 für ein solches Beispiel.

9.1.1.1. Example Usage

Eine Beispielssitzung, wo mit dem Lader eine Eingabedatei erstellt und stückchenweise als 100x100 Kacheln hochgeladen wird, könnte so aussehen:

# -s use srid 4326
# -I create spatial index
# -C use standard raster constraints
# -M vacuum analyze after load
# *.tif load all these files
# -F include a filename column in the raster table
# -t tile the output 100x100
# public.demelevation load into this table
raster2pgsql -s 4326 -I -C -M -F -t 100x100 *.tif public.demelevation 
> elev.sql

# -d connect to this database
# -f read this file after connecting
psql -d gisdb -f elev.sql
[Note]

If you do not specify the schema as part of the target table name, the table will be created in the default schema of the database or user you are connecting with.

Durch die Verwendung von UNIX-Pipes kann die Konvertierung und der Upload in einem Schritt vollzogen werden:

raster2pgsql -s 4326 -I -C -M *.tif -F -t 100x100 public.demelevation | psql -d gisdb

Luftbildkacheln in "Massachusetts State Plane Meters" in das Schema aerial laden. Einen vollständigen View und Übersichtstabellen mit Faktor 2 und 4 erstellen. Verwendet den Modus "copy" für das Insert (keine dazwischengeschaltete Datei, sondern direkt in die Datenbank). Die Option -e bedingt, dass nicht alles innerhalb einer Transaktion abläuft (nützlich, wenn Sie sofort Daten sehen wollen, ohne zu warten). Die Raster werden in 128x128 Pixel große Kacheln zerlegt und Constraints auf die Raster gesetzt. Verwendet den Modus "copy" anstelle eines Tabellen-Inserts. (-F) Erzeugt das Attribut "filename", welches die Bezeichnung der Ausgangsdateien enthält, aus denen die Rasterkacheln ausgeschnitten wurden.

raster2pgsql -I -C -e -Y -F -s 26986 -t 128x128  -l 2,4 bostonaerials2008/*.jpg aerials.boston | psql -U postgres -d gisdb -h localhost -p 5432
--get a list of raster types supported:
raster2pgsql -G

Der -G Befehl gibt eine ähnliche Liste wie die Folgende aus

Available GDAL raster formats:
  Virtual Raster
  GeoTIFF
  National Imagery Transmission Format
  Raster Product Format TOC format
  ECRG TOC format
  Erdas Imagine Images (.img)
  CEOS SAR Image
  CEOS Image
  ...
  Arc/Info Export E00 GRID
  ZMap Plus Grid
  NOAA NGS Geoid Height Grids

9.1.1.2. raster2pgsql options

-?

Zeigt die Hilfe an, auch dann, wenn keine Argumente übergeben werden.

-G

Gibt die unterstützten Rasterformate aus.

(c|a|d|p) Dies sind sich gegenseitig ausschließende Optionen:

-c

Eine neue Tabelle anlegen und mit Raster(n) befüllen, this is the default mode

-a

Raster zu einer bestehende Tabelle hinzufügen.

-d

Tabelle löschen, eine Neu erzeugen und mit einem oder mehreren Raster befüllen

-p

Beim vorbereitenden Modus wird ledigliche eine Tabelle erstellt.

Raster-Verarbeitung: Anwendung von Constraint's zur ordnungsgemäßen Registrierung im Rasterkatalog

-C

Anwendung von Raster-Constraints, wie SRID, Zellgröße etc., um die ordnungsgemäße Registrierung des Rasters in der raster_columns View sicherzustellen.

-x

Unterbindet das Setzen der "Max-Extent" Bedingung. Wird nur angewandt, wenn auch die -C Flag gesetzt ist.

-r

Setzt die Constraints (räumlich eindeutig und die Coverage-Kachel) der regelmäßigen Blöcke. Wird nur angewandt, wenn auch die -C Flag gesetzt ist. 

Rasterdaten-Verarbeitung: Optionale Parameter zur Manipulation von Input Raster Datensätzen

-s <SRID>

Dem Output-Raster eine bestimmte SRID zuweisen. Wenn keine SRID oder Null angegeben wird, werden die Raster-Metadaten auf eine geignete SRID hin überprüft.

-b BAND

Die Kennung (1-basiert) des Bandes, das aus dem Raster entnommen werden soll. Um mehrere Bänder anzugeben, trennen Sie die Kennungen bitte durch ein Komma (,).

-t TILE_SIZE

Zerlegt den Raster in Kacheln, um eine Kachel pro Tabellenzeile einzufügen. TILE_SIZE wird entweder in BREITExHöhe ausgedrückt, oder auf den Wert "auto" gesetzt, wodurch der Raster-Lader eine passende Kachelgröße an Hand des ersten Raster's ermittelt und diese dann auf die anderen Raster anwendet.

-P

Die ganz rechts und ganz unten liegenden Kacheln aufstocken, damit für alle Kacheln gleiche Breite und Höhe sichergestellt ist.

-R, --register

Einen im Dateisystem vorliegenden Raster als (out-db) Raster registrieren.

Es werden nur die Metadaten und der Dateipfad des Rasters abgespeichert (nicht die Rasterzellen).

-l OVERVIEW_FACTOR

Erzeugt eine Übersicht/Overview des Rasters. Mehrere Faktoren sind durch einen Beistrich(,) zu trennen. Die Benennung der Übersichtstabelle erfolgt dem Muster o_overview_factor_table, wobei overview_factor ein Platzhalter für den numerischen Wert von "overview_factor" ist und table für den zugrundeliegenden Tabellennamen. Die erstellte Übersicht wird in der Datenbank gespeichert, auch wenn die Option -R gesetzt ist. Anmerkung: die erzeugte SQL-Datei enthält sowohl die Haupttabelle, als auch die Übersichtstabellen.

-N NODATA

Der NODATA-Wert, der für Bänder verwendet wird, die keinen NODATA-Wert definiert haben.

Optionale Parameter zur Manipulation von Datenbankobjekten

-f COLUMN

Gibt den Spaltennamen des Zielrasters an; standardmäßig wird er 'rast' benannt.

-F

Eine Spalte mit dem Dateinamen hinzufügen

-n COLUMN

Gibt die Bezeichnung für die Spalte mit dem Dateinamen an. Schließt -F" mit ein.

-q

Setzt die PostgreSQL-Identifikatoren unter Anführungszeichen.

-I

Einen GIST-Index auf die Rasterspalte anlegen.

-M

VACUUM ANALYZE auf die Rastertabelle.

-k

Keeps empty tiles and skips NODATA value checks for each raster band. Note you save time in checking, but could end up with far more junk rows in your database and those junk rows are not marked as empty tiles.

-T tablespace

Bestimmt den Tablespace für die neue Tabelle. Beachten Sie bitte, dass Indizes (einschließlich des Primärschlüssels) weiterhin den standardmäßigen Tablespace nutzen, solange nicht die -X Flag benutzt wird.

-X tablespace

Bestimmt den Tablespace für den neuen Index der Tabelle. Dieser gilt sowohl für den Primärschlüssel als auch für den räumlichen Index, falls die -I Flag gesetzt ist.

-Y max_rows_per_copy=50

Use copy statements instead of insert statements. Optionally specify max_rows_per_copy; default 50 when not specified.

-e

Keine Transaktion verwenden, sondern jede Anweisung einzeln ausführen.

-E ENDIAN

Legt die Byte-Reihenfolge des binär erstellten Rasters fest; geben Sie für XDR 0 und für NDR (Standardwert) 1 an; zurzeit wird nur die Ausgabe von NDR unterstützt.

-V version

Bestimmt die Version des Ausgabeformats. Voreingestellt ist 0. Zur Zeit wird auch nur 0 unterstützt.

9.1.2. Erzeugung von Rastern mit den PostGIS Rasterfunktionen

Oftmals werden Sie die Raster und die Rastertabellen direkt in der Datenbank erzeugen wollen. Dafür existieren eine Unmenge an Funktionen. Dies verlangt im Allgemeinen die folgende Schritte.

  1. Erstellung einer Tabelle mit einer Rasterspalte für die neuen Rasterdatensätze:

    CREATE TABLE myrasters(rid serial primary key, rast raster);
  2. Es existieren viele Funktionen die Ihnen helfen dieses Ziel zu erreichen. Wenn Sie einen Raster nicht von anderen Rastern ableiten, sondern selbst erzeugen, können Sie mit ST_MakeEmptyRaster beginnen, gefolgt von ST_AddBand

    Sie können Raster auch aus Geometrien erzeugen. Hierzu können Sie ST_AsRaster verwenden, möglicherweise in Verbindung mit anderen Funktionen, wie ST_Union, ST_MapAlgebraFct oder irgendeiner anderen Map Algebra Funktion.

    Es gibt sogar noch viele andere Möglichkeiten, um eine neue Rastertabelle aus bestehenden Tabellen zu erzeugen. Sie können zum Beispiel mit ST_Transform einen Raster in eine andere Projektion transformieren und so eine neue Rastertabelle erstellen.

  3. Wenn Sie mit der Erstbefüllung der Tabelle fertig sind, werden Sie einen räumlichen Index auf die Rasterspalte setzen wollen:

    CREATE INDEX myrasters_rast_st_convexhull_idx ON myrasters USING gist( ST_ConvexHull(rast) );

    Beachten Sie bitte die Verwendung von ST_ConvexHull; der Grund dafür ist, dass die meisten Rasteroperatoren auf der konvexen Hülle des Rasters beruhen.

    [Note]

    Vor der Version 2.0 von PostGIS, basierten die Raster auf der Einhüllenden, anstatt auf der konvexen Hülle. Damit die räumlichen Indizes korrekt funktionieren, müssen Sie diese löschen und mit einem auf der konvexen Hülle basierenden Index ersetzen.

  4. Mittels AddRasterConstraints Bedingungen auf den Raster legen.

9.1.3. Using "out db" cloud rasters

The raster2pgsql tool uses GDAL to access raster data, and can take advantage of a key GDAL feature: the ability to read from rasters that are stored remotely in cloud "object stores" (e.g. AWS S3, Google Cloud Storage).

Efficient use of cloud stored rasters requires the use of a "cloud optimized" format. The most well-known and widely used is the "cloud optimized GeoTIFF" format. Using a non-cloud format, like a JPEG, or an un-tiled TIFF will result in very poor performance, as the system will have to download the entire raster each time it needs to access a subset.

First, load your raster into the cloud storage of your choice. Once it is loaded, you will have a URI to access it with, either an "http" URI, or sometimes a URI specific to the service. (e.g., "s3://bucket/object"). To access non-public buckets, you will need to supply GDAL config options to authenticate your connection. Note that this command is reading from the cloud raster and writing to the database.

AWS_ACCESS_KEY_ID=xxxxxxxxxxxxxxxxxxxx \
AWS_SECRET_ACCESS_KEY=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx \
raster2pgsql \
  -s 990000 \
  -t 256x256 \
  -I \
  -R \
  /vsis3/your.bucket.com/your_file.tif \
  your_table \
  | psql your_db

Once the table is loaded, you need to give the database permission to read from remote rasters, by setting two permissions, postgis.enable_outdb_rasters and postgis.gdal_enabled_drivers.

SET postgis.enable_outdb_rasters = true;
SET postgis.gdal_enabled_drivers TO 'ENABLE_ALL';
    

To make the changes sticky, set them directly on your database. You will need to re-connect to experience the new settings.

ALTER DATABASE your_db SET postgis.enable_outdb_rasters = true;
ALTER DATABASE your_db SET postgis.gdal_enabled_drivers TO 'ENABLE_ALL';
    

For non-public rasters, you may have to provide access keys to read from the cloud rasters. The same keys you used to write the raster2pgsql call can be set for use inside the database, with the postgis.gdal_vsi_options configuration. Note that multiple options can be set by space-separating the key=value pairs.

SET postgis.gdal_vsi_options = 'AWS_ACCESS_KEY_ID=xxxxxxxxxxxxxxxxxxxx
AWS_SECRET_ACCESS_KEY=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx';

Once you have the data loaded and permissions set you can interact with the raster table like any other raster table, using the same functions. The database will handle all the mechanics of connecting to the cloud data when it needs to read pixel data.

9.2. Raster Katalog

Mit PostGIS kommen zwei Views des Rasterkatalogs. Beide Views nützen die Information, welche in den Bedingungen/Constraints der Rastertabellen festgelegt ist. Da die Bedingungen zwingend sind, sind die Views des Rasterkatalogs immer konsistent mit den Daten in den Rastertabellen.

  1. raster_columns diese View/gespeicherte Abfrage katalogisiert alle Rastertabellenspalten Ihrer Datenbank.

  2. raster_overviews Dieser View katalogisiert all jene Spalten einer Rastertabelle in Ihrer Datenbank, die als Übersicht für Rastertabellen mit höherer Auflösung dienen. Tabellen dieses Typs werden mit der -l Option beim Laden erstellt.

9.2.1. Rasterspalten Katalog

raster_columns ist ein Katalog mit allen Rasterspalten Ihrer Datenbanktabellen. Es handelt sich dabei um einen View, der die Constraints auf die Tabellen ausnutzt, um so immer konsistent mit dem aktuellen Stand der Datenbank zu bleiben; sogar dann, wenn Sie den Raster aus einem Backup oder einer anderen Datenbank wiederherstellen. Der raster_columns Katalog beinhaltet die folgenden Spalten.

Falls Sie Ihre Tabellen nicht mit dem Loader erstellt haben, oder vergessen haben, die -C Option während des Ladens anzugeben, können Sie die Constraints auch anschließend erzwingen, indem Sie AddRasterConstraints verwenden, wodurch der raster_columns Katalog die Information über Ihre Rasterkacheln, wie üblich abspeichert.

  • r_table_catalog Die Datenbank, in der sich die Tabelle befindet. Greift immer auf die aktuelle Datenbank zu.

  • r_table_schema Das Datenbankschema in dem sich die Rastertabelle befindet.

  • r_table_name Rastertabelle

  • r_raster_column Die Spalte, in der Tabelle r_table_name, die den Datentyp Raster aufweist. In PostGIS gibt es nichts, was Sie daran hindert, mehrere Rasterspalten in einer Tabelle zu haben. Somit ist es möglich auf unterschiedliche Raster(spalten) in einer einzigen Rastertabelle zuzugreifen.

  • srid Der Identifikator für das Koordinatensystem in dem der Raster vorliegt. Sollte in Section 4.5, “Spatial Reference Systems” eingetragen sein.

  • scale_x Der Skalierungsfaktor zwischen den Koordinaten der Vektoren und den Pixeln. Dieser steht nur dann zur Verfügung, wenn alle Kacheln der Rasterspalte denselben scale_x aufweisen und dieser Constraint auch gesetzt ist. Siehe ST_ScaleX für genauere Angaben.

  • scale_y Der Skalierungsfaktor zwischen den Koordinaten der Vektoren und den Pixeln. Dieser steht nur dann zur Verfügung, wenn alle Kacheln der Rasterspalte denselben scale_y aufweisen und der Constraint scale_y auch gesetzt ist. Siehe ST_ScaleY für genauere Angaben.

  • blocksize_x Die Breite (Anzahl der waagrechten Zellen) einer Rasterkachel. Siehe ST_Width für weitere Details.

  • blocksize_y Die Höhe (Anzahl der senkrechten Zellen) einer Rasterkachel. Siehe ST_Height für weitere Details.

  • same_alignment Eine boolesche Variable, die TRUE ist, wenn alle Rasterkacheln dieselbe Ausrichtung haben. Siehe ST_SameAlignment für genauere Angaben.

  • regular_blocking Wenn auf die Rasterspalte die Constraints für die räumliche Eindeutigkeit und für die Coveragekachel gesetzt sind, ist der Wert TRUE, ansonsten FALSE..

  • num_bands Die Anzahl der Bänder, die jede Kachel des Rasters aufweist. ST_NumBands gibt die gleiche Information aus. ST_NumBands

  • pixel_types Ein Feld das den Pixeltyp für die Bänder festlegt. Die Anzahl der Elemente in diesem Feld entspricht der Anzahl der Rasterbänder. Die "pixel_types" sind unter ST_BandPixelType definiert.

  • nodata_values Ein Feld mit Double Precision Zahlen, welche den nodata_value für jedes Band festlegen. Die Anzahl der Elemente in diesem Feld entspricht der Anzahl der Rasterbänder. Diese Zahlen legen den Pixelwert für jedes Rasterband fest, der bei den meisten Operationen ignoriert wir. Eine ähnliche Information erhalten Sie durch ST_BandNoDataValue.

  • out_db Ein Feld mit booleschen Flags, das anzeigt, ob die Rasterbanddaten außerhalb der Datenbank gehalten werden. Die Anzahl der Elemente in diesem Feld entspricht der Anzahl der Rasterbänder.

  • extent Die Ausdehnung aller Rasterspalten in Ihrem Rasterdatensatz. Falls Sie vor haben Daten zu laden, welche die Ausdehnung des Datensatzes ändern, sollten Sie die Funktion DropRasterConstraints ausführen, bevor Sie die Daten laden und nach dem Laden die Constraints mit der Funktion AddRasterConstraints erneut setzen.

  • spatial_index Eine Boolesche Variable, die TRUE anzeigt, wenn ein räumlicher Index auf das Rasterattribut gelegt ist.

9.2.2. Raster Übersicht/Raster Overviews

raster_overviews Katalogisiert Information über die Rastertabellenspalten die für die Übersichten/Overviews herangezogen wurden, sowie weitere zusätzliche Information bezüglich Overviews. Die Übersichtstabellen werden sowohl in raster_columns als auch in raster_overviews registriert, da sie sowohl eigene Raster darstellen, als auch, als niedriger aufgelöstes Zerrbild einer höher aufgelösten Tabelle, einem bestimmten Zweck dienen. Wenn Sie den -l Switch beim Laden des Rasters angeben, werden diese gemeinsam mit der Rasterhaupttabelle erstellt; sie können aber auch händisch über AddOverviewConstraints erstellt werden.

Übersichtstabellen enthalten dieselben Constraints wie andere Rastertabellen und zusätzliche informative Constraints, spezifisch für die Übersichten.

[Note]

Die Information in raster_overviews befindet sich nicht in raster_columns. Falls Sie die Information der Übersichtstabelle und der raster_columns zusammen benötigen, können Sie einen Join auf raster_overviews und raster_columns ausführen, um die gesamte Information zu erhalten.

Die zwei Hauptgründe für Übersichtsraster sind:

  1. Eine niedrig aufgelöste Darstellung der Basistabellen; wird im Allgemeinen zum schnellen Hinauszoomen verwendet.

  2. Die Berechnungen laufen grundsätzlich schneller ab, als bei den Stammdaten mit höherer Auflösung, da weniger Datensätze vorhanden sind und die Pixel eine größere Fläche abdecken. Obwohl diese Berechnungen nicht so exakt sind, wie jene auf die hochauflösenden Stammtabellen, sind sie doch für viele Überschlagsrechnunen ausreichend.

Der raster_overviews Katalog enthält folgende Attribute an Information.

  • o_table_catalog Die Datenbank, in der sich die Übersichtstabelle befindet. Liest immer die aktuelle Datenbank.

  • o_table_schema Das Datenbankschema dem die Rasterübersichtstabelle angehört.

  • o_table_name Der Tabellenname der Rasterübersicht

  • o_raster_column das Rasterattribut in der Übersichtstabelle.

  • r_table_catalog Die Datenbank, in der sich die Rastertabelle befindet, für die diese Übersicht gilt. Greift immer auf die aktuelle Datenbank zu.

  • r_table_schema Das Datenbankschema, in dem sich die Rastertabelle befindet, zu der der Übersichtsdienst gehört.

  • r_table_name Die Rastertabelle, welche von dieser Übersicht bedient wird.

  • r_raster_column Die Rasterspalte, die diese Overviewspalte bedient.

  • overview_factor - der Pyramidenlevel der Übersichtstabelle. Umso größer die Zahl ist, desto geringer ist die Auflösung. Wenn ein Ordner für die Bilder angegeben ist, rechnet raster2pgsql eine Übersicht für jede Bilddatei und ladet diese einzeln. Es wird Level 1 und die Ursprungsdatei angenommen. Beim Level 2 repräsentiert jede Kachel 4 Originalkacheln. Angenommen Sie haben einen Ordner mit Bilddateien in einer Auflösung von 5000x5000 Pixel, die Sie auf 125x125 große Kacheln zerlegen wollen. Für jede Bilddattei enthält die Basistabelle (5000*5000)/(125*125) Datensätze = 1600, Ihre (l=2) o_2 Tabelle hat dann eine Obergrenze von (1600/Power(2,2)) = 400 Zeilen, Ihre (l=3) o_3 (1600/Power(2,3) ) = 200 Zeilen. Wenn sich die Pixel nicht durch die Größe Ihrer Kacheln teilen lassen, erhalten Sie einige Ausschusskacheln (Kacheln die nicht zur Gänze gefüllt sind). Beachten Sie bitte, dass jede durch raster2pgsql erzeugte Übersichtskachel dieselbe Pixelanzahl hat wie die ursprüngliche Kachel, aber eine geringere Auflösung, wo ein Pixel (Power(2,overview_factor) Pixel der Ursprungsdatei) repräsentiert.

9.3. Eigene Anwendungen mit PostGIS Raster erstellen

The fact that PostGIS raster provides you with SQL functions to render rasters in known image formats gives you a lot of options for rendering them. For example you can use OpenOffice / LibreOffice for rendering as demonstrated in Rendering PostGIS Raster graphics with LibreOffice Base Reports. In addition you can use a wide variety of languages as demonstrated in this section.

9.3.1. PHP Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen

In diesem Abschnitt zeigen wir die Anwendung des PHP PostgreSQL Treibers und der Funktion ST_AsGDALRaster, um die Bänder 1,2,3 eines Rasters an einen PHP Request-Stream zu übergeben. Dieser kann dann in einen "img src" HTML Tag eingebunden werden.

Dieses Beispiel zeigt, wie Sie ein ganzes Bündel von Rasterfunktionen kombinieren können, um jene Kacheln zu erhalten, die ein bestimmtes WGS84 Umgebungsrechteck schneiden. Anschließend werden alle Bänder dieser Kacheln mit ST_Union vereinigt, mit ST_Transform in die vom Benutzer vorgegebene Projektion transformiert und das Ergebnis mit ST_AsPNG als PNG ausgegeben.

Sie können das unten angeführte Programm über

http://mywebserver/test_raster.php?srid=2249

aufrufen, um den Raster in "Massachusetts State Plane Feet" zu erhalten.

<?php
/** contents of test_raster.php **/
$conn_str ='dbname=mydb host=localhost port=5432 user=myuser password=mypwd';
$dbconn = pg_connect($conn_str);
header('Content-Type: image/png');
/**If a particular projection was requested use it otherwise use mass state plane meters **/
if (!empty( $_REQUEST['srid'] ) && is_numeric( $_REQUEST['srid']) ){
                $input_srid = intval($_REQUEST['srid']);
}
else { $input_srid = 26986; }
/** The set bytea_output may be needed for PostgreSQL 9.0+, but not for 8.4 **/
$sql = "set bytea_output='escape';
SELECT ST_AsPNG(ST_Transform(
                        ST_AddBand(ST_Union(rast,1), ARRAY[ST_Union(rast,2),ST_Union(rast,3)])
                                ,$input_srid) ) As new_rast
 FROM aerials.boston
        WHERE
         ST_Intersects(rast, ST_Transform(ST_MakeEnvelope(-71.1217, 42.227, -71.1210, 42.218,4326),26986) )";
$result = pg_query($sql);
$row = pg_fetch_row($result);
pg_free_result($result);
if ($row === false) return;
echo pg_unescape_bytea($row[0]);
?>

9.3.2. ASP.NET C# Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen

In diesem Abschnitt zeigen wir die Anwendung des Npgsql PostgreSQL .NET Treibers und der Funktion ST_AsGDALRaster, um die Bänder 1,2,3 eines Rasters an einen PHP Request-Stream zu übergeben. Dieser kann dann in einen "img src" HTML Tag eingebunden werden.

Für dieses Beispiel benötigen Sie den npgsql .NET PostgreSQL Treiber. Um loslegen zu können, reicht es aus, dass Sie die neueste Version von http://npgsql.projects.postgresql.org/ in Ihren ASP.NET Ordner laden.

Dieses Beispiel zeigt, wie Sie ein ganzes Bündel von Rasterfunktionen kombinieren können, um jene Kacheln zu erhalten, die ein bestimmtes WGS84 Umgebungsrechteck schneiden. Anschließend werden alle Bänder dieser Kacheln mit ST_Union vereinigt, mit ST_Transform in die vom Benutzer vorgegebene Projektion transformiert und das Ergebnis mit ST_AsPNG als PNG ausgegeben.

Dasselbe Beispiel wie Section 9.3.1, “PHP Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen” nur in C# implementiert.

Sie können das unten angeführte Programm über

http://mywebserver/TestRaster.ashx?srid=2249

aufrufen, um den Raster in "Massachusetts State Plane Feet" zu bekommen.

-- web.config connection string section --
<connectionStrings>
    <add name="DSN"
        connectionString="server=localhost;database=mydb;Port=5432;User Id=myuser;password=mypwd"/>
</connectionStrings
>
// Code for TestRaster.ashx
<%@ WebHandler Language="C#" Class="TestRaster" %>
using System;
using System.Data;
using System.Web;
using Npgsql;

public class TestRaster : IHttpHandler
{
        public void ProcessRequest(HttpContext context)
        {

                context.Response.ContentType = "image/png";
                context.Response.BinaryWrite(GetResults(context));

        }

        public bool IsReusable {
                get { return false; }
        }

        public byte[] GetResults(HttpContext context)
        {
                byte[] result = null;
                NpgsqlCommand command;
                string sql = null;
                int input_srid = 26986;
        try {
                    using (NpgsqlConnection conn = new NpgsqlConnection(System.Configuration.ConfigurationManager.ConnectionStrings["DSN"].ConnectionString)) {
                            conn.Open();

                if (context.Request["srid"] != null)
                {
                    input_srid = Convert.ToInt32(context.Request["srid"]);
                }
                sql = @"SELECT ST_AsPNG(
                            ST_Transform(
                                        ST_AddBand(
                                ST_Union(rast,1), ARRAY[ST_Union(rast,2),ST_Union(rast,3)])
                                                    ,:input_srid) ) As new_rast
                        FROM aerials.boston
                                WHERE
                                    ST_Intersects(rast,
                                    ST_Transform(ST_MakeEnvelope(-71.1217, 42.227, -71.1210, 42.218,4326),26986) )";
                            command = new NpgsqlCommand(sql, conn);
                command.Parameters.Add(new NpgsqlParameter("input_srid", input_srid));


                            result = (byte[]) command.ExecuteScalar();
                conn.Close();
                        }

                }
        catch (Exception ex)
        {
            result = null;
            context.Response.Write(ex.Message.Trim());
        }
                return result;
        }
}

9.3.3. Applikation für die Java-Konsole, welche eine Rasterabfrage als Bilddatei ausgibt

Eine einfache Java Applikation, die eine Abfrage entgegennimmt, ein Bild erzeugt und in eine bestimmte Datei ausgibt.

Sie können die neuesten PostgreSQL JDBC Treiber unter http://jdbc.postgresql.org/download.html herunterladen.

Sie können den unten angegebenen Code mit einem Befehl wie folgt kompilieren:

set env CLASSPATH .:..\postgresql-9.0-801.jdbc4.jar
javac SaveQueryImage.java
jar cfm SaveQueryImage.jar Manifest.txt *.class

Und ihn von der Befehlszeile wie folgt aufrufen:

java -jar SaveQueryImage.jar "SELECT ST_AsPNG(ST_AsRaster(ST_Buffer(ST_Point(1,5),10, 'quad_segs=2'),150, 150, '8BUI',100));" "test.png" 
-- Manifest.txt --
Class-Path: postgresql-9.0-801.jdbc4.jar
Main-Class: SaveQueryImage
// Code for SaveQueryImage.java
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.io.*;

public class SaveQueryImage {
  public static void main(String[] argv) {
      System.out.println("Checking if Driver is registered with DriverManager.");

      try {
        //java.sql.DriverManager.registerDriver (new org.postgresql.Driver());
        Class.forName("org.postgresql.Driver");
      }
      catch (ClassNotFoundException cnfe) {
        System.out.println("Couldn't find the driver!");
        cnfe.printStackTrace();
        System.exit(1);
      }

      Connection conn = null;

      try {
        conn = DriverManager.getConnection("jdbc:postgresql://localhost:5432/mydb","myuser", "mypwd");
        conn.setAutoCommit(false);

        PreparedStatement sGetImg = conn.prepareStatement(argv[0]);

        ResultSet rs = sGetImg.executeQuery();

                FileOutputStream fout;
                try
                {
                        rs.next();
                        /** Output to file name requested by user **/
                        fout = new FileOutputStream(new File(argv[1]) );
                        fout.write(rs.getBytes(1));
                        fout.close();
                }
                catch(Exception e)
                {
                        System.out.println("Can't create file");
                        e.printStackTrace();
                }

        rs.close();
                sGetImg.close();
        conn.close();
      }
      catch (SQLException se) {
        System.out.println("Couldn't connect: print out a stack trace and exit.");
        se.printStackTrace();
        System.exit(1);
      }
  }
}

9.3.4. Verwenden Sie PLPython um Bilder via SQL herauszuschreiben

Diese als plpython gespeicherte Prozedur erzeugt eine Datei pro Datensatz im Serververzeichnis. Benötigt die Installation von plpython. Funktioniert sowohl mit plpythonu als auch mit plpython3u.

CREATE OR REPLACE FUNCTION write_file (param_bytes bytea, param_filepath text)
RETURNS text
AS $$
f = open(param_filepath, 'wb+')
f.write(param_bytes)
return param_filepath
$$ LANGUAGE plpythonu;
--write out 5 images to the PostgreSQL server in varying sizes
-- note the postgresql daemon account needs to have write access to folder
-- this echos back the file names created;
 SELECT write_file(ST_AsPNG(
        ST_AsRaster(ST_Buffer(ST_Point(1,5),j*5, 'quad_segs=2'),150*j, 150*j, '8BUI',100)),
         'C:/temp/slices'|| j || '.png')
         FROM generate_series(1,5) As j;

     write_file
---------------------
 C:/temp/slices1.png
 C:/temp/slices2.png
 C:/temp/slices3.png
 C:/temp/slices4.png
 C:/temp/slices5.png

9.3.5. Faster mit PSQL ausgeben

Leider hat PSQL keine einfach zu benützende Funktion für die Ausgabe von Binärdateien eingebaut. Dieser Hack baut auf der etwas veralteten "Large Object" Unterstützung von PostgreSQL auf. Um ihn anzuwenden verbinden Sie sich bitte zuerst über die Befehlszeile "psql" mit Ihrer Datenbank.

Anders als beim Ansatz mit Python, wird die Datei bei diesem Ansatz auf Ihrem lokalen Rechner erzeugt.

SELECT oid, lowrite(lo_open(oid, 131072), png) As num_bytes
 FROM
 ( VALUES (lo_create(0),
   ST_AsPNG( (SELECT rast FROM aerials.boston WHERE rid=1) )
  ) ) As v(oid,png);
-- you'll get an output something like --
   oid   | num_bytes
---------+-----------
 2630819 |     74860

-- next note the oid and do this replacing the c:/test.png to file path location
-- on your local computer
 \lo_export 2630819 'C:/temp/aerial_samp.png'

-- this deletes the file from large object storage on db
SELECT lo_unlink(2630819);