PostGIS 3.2.0dev Handbuch

DEV (Wed 05 May 2021 07:07:04 PM UTC rev. 155a4e6 )

Die PostGIS Development Group

Abstract

PostGIS ist eine Erweiterung des objektrelationalen Datenbanksystems PostgreSQL. Es ermöglicht die Speicherung von Geoobjekten eines GIS (Geoinformationssystem) in der Datenbank. PostGIS unterstützt räumliche, GIST-basierte R-Tree Indizes, sowie Funktionen zur Analyse und Bearbeitung von Geoobjekten.

Dieses Handbuch beschreibt die Version 3.2.0dev

Diese Arbeit ist unter der Creative Commons Attribution-Share Alike 3.0 License lizensiert. Sie können den Inhalt ungeniert nutzen, aber wir ersuchen Sie das PostGIS Projekt namentlich aufzuführen und wenn möglich einen Verweis auf http://postgis.net zu setzen.


Table of Contents
1. Einführung
1.1. Projektleitung
1.2. Aktuelle Kernentwickler
1.3. Frühere Kernentwickler
1.4. Weitere Mitwirkende
2. PostGIS Installation
2.1. Kurzfassung
2.2. Kompilierung und Installation des Quellcodes: Detaillierte Beschreibung
2.2.1. Nutzung des Quellcodes
2.2.2. Systemvoraussetzungen
2.2.3. Konfiguration
2.2.4. Build-Prozess
2.2.5. Build-Prozess für die PostGIS Extensions und deren Bereitstellung
2.2.6. Softwaretest
2.2.7. Installation
2.3. Installation und Verwendung des Adressennormierers
2.3.1. Installation von Regex::Assemble
2.4. Installation, Aktualisierung des Tiger Geokodierers und Daten laden
2.4.1. Aktivierung des Tiger Geokodierer in Ihrer PostGIS Datenbank: Verwendung von Extension
2.4.2. Den Tiger Geokodierer in der PostGIS Datenbank aktivieren: ohne die Verwendung von Extensions
2.4.3. Die Adressennormierer-Extension zusammen mit dem Tiger Geokodierer verwenden
2.4.4. Tiger-Daten laden
2.4.5. Upgrade Ihrer Tiger Geokodierer Installation
2.5. Übliche Probleme bei der Installation
3. PostGIS Administration
3.1. Performance Tuning
3.1.1. Startup
3.1.2. Runtime
3.2. Configuring raster support
3.3. Creating spatial databases
3.3.1. Spatially enable database using EXTENSION
3.3.2. Spatially enable database without using EXTENSION (discouraged)
3.3.3. Create a spatially-enabled database from a template
3.4. Upgrading spatial databases
3.4.1. Soft upgrade
3.4.2. Hard upgrade
4. Data Management
4.1. Geometry Type
4.1.1. OGC WKB and WKT
4.1.2. PostGIS EWKB and EWKT
4.1.3. SQL/MM Part 3 - Curves
4.2. Geography Type
4.2.1. Grundsätzliches zum geographischen Datentyp
4.2.2. Wann sollte man den geographischen Datentyp dem geometrischen Datentyp vorziehen
4.2.3. Fortgeschrittene FAQ's zum geographischen Datentyp
4.3. Erstellung einer räumlichen Tabelle
4.3.1. Erstellung einer räumlichen Tabelle
4.3.2. Der View GEOMETRY_COLUMNS
4.3.3. Geometrische Spalten in "geometry_columns" händisch registrieren
4.4. Die SPATIAL_REF_SYS Tabelle und Koordinatenreferenzsysteme
4.4.1. SPATIAL_REF_SYS Table
4.4.2. Die SPATIAL_REF_SYS Tabelle und Koordinatenreferenzsysteme
4.5. Geometry Validation
4.6. GIS (Vektor) Daten laden
4.6.1. Daten mit SQL abrufen
4.6.2. shp2pgsql: Verwendung des ESRI-Shapefile Laders
4.7. Erstellung einer räumlichen Tabelle
4.7.1. Daten mit SQL abrufen
4.7.2. Verwendung des Dumper
4.8. Erstellung von Indizes
4.8.1. GiST-Indizes
4.8.2. BRIN Indizes
4.8.3. SP-GiST Indizes
4.8.4. Erstellung von Indizes
5. Spatial Queries
5.1. Determining Spatial Relationships
5.1.1. Dimensionally Extended 9-Intersection Model
5.1.2. Named Spatial Relationships
5.1.3. General Spatial Relationships
5.2. Using Spatial Indexes
5.3. Examples of Spatial SQL
6. Performance Tipps
6.1. Kleine Tabellen mit großen Geometrien
6.1.1. Problembeschreibung
6.1.2. Umgehungslösung
6.2. CLUSTER auf die geometrischen Indizes
6.3. Vermeidung von Dimensionsumrechnungen
7. Anwendung der PostGIS Geometrie: Applikationsentwicklung
7.1. Verwendung von MapServer
7.1.1. Grundlegende Handhabung
7.1.2. Häufig gestellte Fragen
7.1.3. Erweiterte Verwendung
7.1.4. Beispiele
7.2. Java Clients (JDBC)
7.3. C Clients (libpq)
7.3.1. Text Cursor
7.3.2. Binäre Cursor
8. Referenz PostGIS
8.1. PostgreSQL und PostGIS Datentypen - Geometry/Geography/Box
8.2. PostGIS Grand Unified Custom Variables (GUCs)
8.3. Geometrische Managementfunktionen
8.4. Geometrische Konstruktoren
8.5. Geometrische Zugriffsfunktionen
8.6. Geometrische Editoren
8.7. Ausgabe von Geometrie
8.7.1. Well-Known Text (WKT)
8.7.2. Well-Known Binary (WKB)
8.7.3. Other Formats
8.8. Operatoren
8.8.1. Bounding Box Operators
8.8.2. Operatoren
8.9. Measurement Functions
8.10. SFCGAL Funktionen
8.11. Geometrieverarbeitung
8.12. Kilometrierung
8.13. Unterstützung von lang andauernden Transaktionen/Long Transactions
9. Häufige Fragen zu PostGIS
10. Topologie
10.1. Topologische Datentypen
10.2. Topologische Domänen
10.3. Verwaltung von Topologie und TopoGeometry
10.4. Verwaltung von Topologie und TopoGeometry
10.5. Topologie Konstruktoren
10.6. Topologie Editoren
10.7. Zugriffsfunktionen zur Topologie
10.8. Topologie Verarbeitung
10.9. TopoGeometry Konstruktoren
10.10. TopoGeometry Editoren
10.11. TopoGeometry Accessors
10.12. TopoGeometry Ausgabe
10.13. Räumliche Beziehungen einer Topologie
11. Rasterdatenverwaltung, -abfrage und Anwendungen
11.1. Laden und Erstellen von Rastertabellen
11.1.1. Verwendung von raster2pgsql zum Laden von Rastern
11.1.2. Erzeugung von Rastern mit den PostGIS Rasterfunktionen
11.1.3. Using "out db" cloud rasters
11.2. Raster Katalog
11.2.1. Rasterspalten Katalog
11.2.2. Raster Übersicht/Raster Overviews
11.3. Eigene Anwendungen mit PostGIS Raster erstellen
11.3.1. PHP Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen
11.3.2. ASP.NET C# Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen
11.3.3. Applikation für die Java-Konsole, welche eine Rasterabfrage als Bilddatei ausgibt
11.3.4. Verwenden Sie PLPython um Bilder via SQL herauszuschreiben
11.3.5. Faster mit PSQL ausgeben
12. Referenz Raster
12.1. Datentypen zur Unterstützung von Rastern.
12.2. Rastermanagement
12.3. Raster Constructors
12.4. Zugriffsfunktionen auf Raster
12.5. Zugriffsfunktionen auf Rasterbänder
12.6. Zugriffsfunktionen und Änderungsmethoden für Rasterpixel
12.7. Raster Editoren
12.8. Editoren für Rasterbänder
12.9. Rasterband Statistik und Analytik
12.10. Rastereingabe
12.11. Ausgabe von Rastern
12.12. Rasterdatenverarbeitung
12.13. Integrierte Map Algebra Callback Funktionen
12.14. Rasterdatenverarbeitung
12.15. Raster nach Geometrie
12.16. Rasteroperatoren
12.17. Räumliche Beziehungen von Rastern und Rasterbändern
12.18. Raster Tipps
12.18.1. Out-DB Raster
13. Häufige Fragen zu PostGIS Raster
14. PostGIS Extras
14.1. Adressennormierer
14.1.1. Funktionsweise des Parsers
14.1.2. Adressennormierer Datentypen
14.1.3. Adressennormierer Tabellen
14.1.4. Adressennormierer Funktionen
14.2. Tiger Geokoder
15. PostGIS Special Functions Index
15.1. PostGIS Aggregate Functions
15.2. PostGIS Window Functions
15.3. PostGIS SQL-MM Compliant Functions
15.4. PostGIS Geography Support Functions
15.5. PostGIS Raster Support Functions
15.6. PostGIS Geometry / Geography / Raster Dump Functions
15.7. PostGIS Box Functions
15.8. PostGIS Functions that support 3D
15.9. PostGIS Curved Geometry Support Functions
15.10. PostGIS Polyhedral Surface Support Functions
15.11. PostGIS Function Support Matrix
15.12. New, Enhanced or changed PostGIS Functions
15.12.1. PostGIS Functions new or enhanced in 3.2
15.12.2. PostGIS Functions new or enhanced in 3.1
15.12.3. PostGIS Functions new or enhanced in 3.0
15.12.4. PostGIS Functions new or enhanced in 2.5
15.12.5. PostGIS Functions new or enhanced in 2.4
15.12.6. PostGIS Functions new or enhanced in 2.3
15.12.7. PostGIS Functions new or enhanced in 2.2
15.12.8. PostGIS functions breaking changes in 2.2
15.12.9. PostGIS Functions new or enhanced in 2.1
15.12.10. PostGIS Functions new, behavior changed, or enhanced in 2.0
15.12.11. PostGIS Functions changed behavior in 2.0
15.12.12. PostGIS Functions new, behavior changed, or enhanced in 1.5
15.12.13. PostGIS Functions new, behavior changed, or enhanced in 1.4
15.12.14. PostGIS Functions new in 1.3
16. Meldung von Problemen
16.1. Software Bugs melden
16.2. Probleme mit der Dokumentation melden
A. Anhang
A.1. Release 3.1.0beta1
A.2. Release 2.0.0
A.3. Release 2.0.0
A.4. Release 2.0.0
A.5. Release 3.0.0
A.6. Release 2.5.0rc1
A.7. Release 2.5.0rc1
A.8. Release 2.0.0
A.9. Release 2.0.0
A.10. Release 2.0.0
A.11. Release 2.0.0
A.12. Release 2.0.0
A.13. Release 2.4.0
A.14. Release 2.4.4
A.15. Release 2.4.4
A.16. Release 2.4.3
A.17. Release 2.4.2
A.18. Release 2.4.1
A.19. Release 2.4.0
A.20. Release 2.3.3
A.21. Release 2.3.2
A.22. Release 2.3.1
A.23. Release 2.3.0
A.24. Release 2.2.2
A.25. Release 2.2.1
A.26. Release 2.2.0
A.27. Release 2.1.8
A.28. Release 2.1.7
A.29. Release 2.1.6
A.30. Release 2.1.5
A.31. Release 2.1.4
A.32. Release 2.1.3
A.33. Release 2.1.2
A.34. Release 2.1.1
A.35. Release 2.1.0
A.36. Release 2.0.5
A.37. Release 2.0.4
A.38. Release 2.0.3
A.39. Release 2.0.2
A.40. Release 2.0.1
A.41. Release 2.0.0
A.42. Release 1.5.4
A.43. Release 1.5.3
A.44. Release 1.5.2
A.45. Release 1.5.1
A.46. Release 1.5.0
A.47. Release 1.4.0
A.48. Release 1.3.6
A.49. Release 1.3.5
A.50. Release 1.3.4
A.51. Release 1.3.3
A.52. Release 1.3.2
A.53. Release 1.3.1
A.54. Release 1.3.0
A.55. Release 1.2.1
A.56. Release 1.2.0
A.57. Release 1.1.6
A.58. Release 1.1.5
A.59. Release 1.1.4
A.60. Release 1.1.3
A.61. Release 1.1.2
A.62. Release 1.1.1
A.63. Release 1.1.0
A.64. Release 1.0.6
A.65. Release 1.0.5
A.66. Release 1.0.4
A.67. Release 1.0.3
A.68. Release 1.0.2
A.69. Release 1.0.1
A.70. Release 1.0.0
A.71. Release 1.0.0RC6
A.72. Release 1.0.0RC5
A.73. Release 1.0.0RC4
A.74. Release 1.0.0RC3
A.75. Release 1.0.0RC2
A.76. Release 1.0.0RC1

Chapter 1. Einführung

PostGIS erweitert das relationale Datenbanksystem PostgreSQL zu einer Geodatenbank. PostGIS wurde im Rahmen eines Technologieforschungsprojektes zu Geodatenbanken von Refractions Research Inc gegründet. Refractions ist ein Beratungsunternehmen für GIS und Datenbanken in Viktoria, British Columbia, Kanada, spezialisiert auf Datenintegration und Entwicklung von Individualsoftware.

PostGIS ist ein Projekt der OSGeo Foundation. PostGIS wird von vielen FOSS4G-Entwicklern und Unternehmen auf der ganzen Welt laufend verbessert und finanziert. Diese profitieren ihrerseits von der Funktionsvielfalt und Einsatzflexibilität von PostGIS.

The PostGIS project development group plans on supporting and enhancing PostGIS to better support a range of important GIS functionality in the areas of OGC and SQL/MM spatial standards, advanced topological constructs (coverages, surfaces, networks), data source for desktop user interface tools for viewing and editing GIS data, and web-based access tools.

1.1. Projektleitung

Das PostGIS Project Steering Committee (PSC) koordiniert die allgemeine Ausrichtung, den Releasezyklus, die Dokumentation und die Öffentlichkeitsarbeit des PostGIS Projektes. Zusätzlich bietet das PSC allgemeine Unterstützung für Anwender, übernimmt und prüft Patches aus der PostGIS Gemeinschaft und stimmt über sonstige Themen, wie Commit-Zugriff für Entwickler, neue PSC Mitglieder oder entscheidende Änderungen an der API, ab.

Raúl Marín Rodríguez

MVT support, Bug fixing, Performance and stability improvements, GitHub curation, alignment of PostGIS with PostgreSQL releases

Regina Obe

Buildbot Wartung, Kompilierung produktiver und experimenteller Softwarepakete für Windows, Abgleich von PostGIS mit den PostgreSQL Releases, allgemeine Unterstützung von Anwendern auf der PostGIS Newsgroup, Mitarbeit an X3D, Tiger Geokodierer, an Funktionen zur Verwaltung von Geometrien; Smoke testing neuer Funktionalität und wichtige Änderungen am Code.

Bborie Park

Entwicklung im Bereich Raster, Integration mit GDAL, Raster-Lader, Anwender-Support, allgemeine Fehlerbeseitigung, Softwaretests auf verschiedenen Betriebssystemen (Slackware, Mac, Windows und andere).

Darafei Praliaskouski

Index Optimierung, Bugfixes und Verbesserungen von Funktionen für den geometrischen/geographischer Datentyp, GitHub Verwalter und Wartung des Travis Bot.

Paul Ramsey (Vorsitzender)

Mitbegründer des PostGIS Projektes. Allgemeine Fehlerbehebung, geographische Unterstützung, Indizes zur Unterstützung von Geographie und Geometrie (2D, 3D, nD Index und jegliche räumliche Indizes), grundlegende interne geometrische Strukturen, PointCloud (in Entwicklung), Einbindung von GEOS Funktionalität und Abstimmung mit GEOS Releases, Abglech von PostGIS mit den PostgreSQL Releases, Loader/Dumper und die Shapefile Loader GUI.

Sandro Santilli

Bugfixes, Wartung, Git Mirrors Management und Integration neuer GEOS-Funktionalitäten, sowie Abstimmung mit den GEOS Versionen, Topologieunterstützung, Raster Grundstruktur und Funktionen der Low-Level-API.

1.2. Aktuelle Kernentwickler

Jorge Arévalo

Entwicklung von PostGIS Raster, GDAL-Treiberunterstützung, Lader/loader

Nicklas Avén

Verbesserung und Erweiterung von Distanzfunktionen (einschließlich 3D-Distanz und Funktionen zu räumlichen Beziehungen), Tiny WKB Ausgabeformat (TWKB) (in Entwicklung) und allgemeine Unterstützung von Anwendern.

Dan Baston

Beiträge zu den geometrischen Clusterfunktionen, Verbesserung anderer geometrischer Alorithmen, GEOS Erweiterungen und allgemeine Unterstützung von Anwendern.

Olivier Courtin

Ein- und Ausgabefunktionen für XML (KML,GML)/GeoJSON, 3D Unterstützng und Bugfixes.

Martin Davis

GEOS enhancements and documentation

Björn Harrtell

MapBox Vector Tile und GeoBuf Funktionen. Gogs Tests und GitLab Experimente.

Mateusz Loskot

CMake Unterstützung für PostGIS, Entwicklung des ursprünglichen Raster-Laders in Python und systemnahe Funktionen der Raster-API

Pierre Racine

Gesamtarchitektur für Raster, Prototyping, Unterstützung bei der Programmierung

1.3. Frühere Kernentwickler

Mark Cave-Ayland

Koordiniert die Wartung und Fehlerbehebung, die Selektivität und die Anbindung von räumlichen Indizes, den Loader/Dumper und die Shapfile Loader GUI, die Einbindung von neuen Funktionen sowie die Verbesserung von neuen Funktionen.

Chris Hodgson

Ehemaliges PSC Mitglied. Allgemeine Entwicklungsarbeit, Wartung von Buildbot und Homepage, OSGeo Inkubationsmanagement.

Kevin Neufeld

Ehemaliges PSC Mitglied. Dokumentation und Werkzeuge zur Dokumentationsunterstützung, Buildbot Wartung, fortgeschrittene Anwenderunterstützung auf der PostGIS Newsgroup, Verbesserungen an den Funktionen zur Verwaltung von Geometrien.

Dave Blasby

Der ursprüngliche Entwickler und Mitbegründer von PostGIS. Dave schrieb die serverseitigen Bereiche, wie das Binden von Indizes und viele der serverseitiger analytischer Funktionen.

Jeff Lounsbury

Ursprüngliche Entwicklung des Shapefile Loader/Dumper. Aktuell ist er Vertreter der PostGIS Projekt Inhaber.

Mark Leslie

Laufende Wartung und Entwicklung der Kernfunktionen. Erweiterte Unterstützung von Kurven. Shapefile Loader GUI.

David Zwarg

Entwickelt für Raster (in erster Linie analytische Funktionen in Map Algebra)

1.4. Weitere Mitwirkende

Die einzelnen Mitwirkenden

Alex BodnaruGerald FenoyMaxime Guillaud
Alex MayrhoferGino LucreziMaxime van Noppen
Andrea PeriGreg TroxelMichael Fuhr
Andreas Forø TollefsenGuillaume LelargeMike Toews
Andreas NeumannHaribabu KommiNathan Wagner
Anne GhislaHavard TveiteNathaniel Clay
Antoine BajoletIIDA TetsushiNikita Shulga
Artur ZakirovIngvild NystuenNorman Vine
Barbara PhillipotJackie LengPatricia Tozer
Ben JubbJames MarcaRafal Magda
Bernhard ReiterJason SmithRalph Mason
Björn EsserJeff AdamsRémi Cura
Brian HamlinJonne SavolainenRichard Greenwood
Bruce RindahlJose Carlos Martinez LlariRoger Crew
Bruno Wolff IIIJörg HabenichtRon Mayer
Bryce L. NordgrenJulien RouhaudSebastiaan Couwenberg
Carl AndersonKashif RasulSergey Fedoseev
Charlie SavageKlaus FoersterShinichi Sugiyama
Christoph BergKris JurkaShoaib Burq
Christoph Moench-TegederLaurenz AlbeSilvio Grosso
Dane SpringmeyerLars RoessigerSteffen Macke
Dave FuhryLeo HsuStepan Kuzmin
David ZwargLoic DacharyStephen Frost
David ZwargLuca S. PercichTalha Rizwan
David ZwargMaria Arias de ReynaTom Glancy
Dmitry VasilyevMarc DucobuTom van Tilburg
Eduin CarrilloMark SondheimVincent Mora
Eugene AntimirovMarkus SchaberVincent Picavet
Even RouaultMarkus WannerVolf Tomáš
Frank WarmerdamMatt Amos 
George SilvaMatthias Bay 

Gründungs-Sponsoren

Dabei handelt es sich um Unternehmen, die Entwicklungszeit, Hosting, oder direkte finanzielle Förderungen, in das PostGIS Projekt eingebracht haben

Crowd Funding-Kampagnen

Wir starten Crowdfunding Kampagnen, um dringend gewünschte und von vielen Anwendern benötigte Funktionalitäten zu finanzieren. Jede Kampagne konzentriert sich auf eine bestimmte Funktionalität oder eine Gruppe von Funktionen. Jeder Sponsor spendiert einen kleinen Teil des benötigten Geldes und wenn genug Menschen/Organisationen mitmachen, können wir die Arbeit bezahlen, von der dann viele etwas haben. Falls Sie eine Idee für eine Funktionalität haben, bei der Sie glauben, dass viele andere bereit sind diese mitzufinanzieren, dann schicken Sie bitte Ihre Überlegungen an die PostGIS newsgroup - gemeinsam wird es uns gelingen.

PostGIS 2.0.0 war die erste Version, mit der wir diese Strategie verfolgten. Wir benutzten PledgeBank und hatten zwei erfolgreiche Kampagnen.

postgistopology - mehr als 10 Sponsoren förderten mit jeweils $250 USD die Entwicklung von TopoGeometry Funktionen und das Aufmöbeln der Topologie-Unterstützung für 2.0.0.

postgis64windows - 20 Sponsoren förderten die Arbeit an den Problemen mit der 64-bit Version von PostGIS für Windows mit jeweils $100 USD. Es ist tatsächlich geschehen und nun steht eine 64-bit Version von PostGIS 2.0.1 als PostgreSQL Stack-Builder zur Verfügung.

Wichtige Support-Bibliotheken

The GEOS geometry operations library

Die GDAL Geospatial Data Abstraction Library von Frank Warmerdam und anderen ist die Grundlage für einen großen Teil der Rasterfunktionalität, die mit PostGIS 2.0.0 eingeführt wurde. Im Prinzip werden die zur Unterstützung von PostGIS nötigen Neuerungen in GDAL, an das GDAL-Projekt zurückgegeben.

The PROJ cartographic projection library

Zu guter Letzt das PostgreSQL DBMS, der Gigant auf dessen Schultern PostGIS steht. Die Geschwindigkeit und Flexibilität von PostGIS wäre ohne die Erweiterbarkeit, den großartigen Anfrageplaner, den GIST Index, und der Unmenge an SQL Funktionen, die von PostgreSQL bereitgestellt werden, nicht möglich.

Chapter 2. PostGIS Installation

Dieses Kapitel erläutert die notwendigen Schritte zur Installation von PostGIS.

2.1. Kurzfassung

Zum Kompilieren müssen die Abhängigkeiten im Suchpfad eingetragen sein:

tar xvfz postgis-3.2.0dev.tar.gz
cd postgis-3.2.0dev
./configure
make
make install

Nachdem PostGIS installiert ist, muss es in jeder Datenbank-Instanz, in der es verwendet werden soll, aktiviert werden.

2.2. Kompilierung und Installation des Quellcodes: Detaillierte Beschreibung

[Note]

Viele Betriebssysteme stellen heute bereits vorkompilierte Pakete für PostgreSQL/PostGIS zur Verfügung. Somit ist eine Kompilation nur notwendig, wenn man die aktuellsten Versionen benötigt oder für die Paketverwaltung zustänig ist.

Dieser Abschnitt enthält die allgemeinen Installationsanweisungen. Für das Kompilieren unter Windows oder unter einem anderen Betriebssystem findet sich zusätzliche, detailliertere Hilfe unter PostGIS User contributed compile guides und PostGIS Dev Wiki.

Vorkompilierte Pakete für unterschiedliche Betriebssysteme sind unter PostGIS Pre-built Packages aufgelistet.

Wenn Sie ein Windowsbenutzer sind, können Sie stabile Kompilationen mittels Stackbuilder oder die PostGIS Windows download site erhalten. Es gibt auch very bleeding-edge windows experimental builds, die ein oder zweimal pro Woche, bzw. anlassweise kompiliert werden. Damit können Sie mit im Aufbau befindlichen PostGIS Releases experimentieren.

PostGIS ist eine Erweiterung des PostgreSQL Servers. Daher benötigt PostGIS 3.2.0dev vollen Zugriff auf die PostgreSQL server headers für die Kompilation. PostGIS kann in Abhängigkeit von PostgreSQL Versionen 9.6 oder höher kompiliert werden. Niedrigere Versionen von PostgreSQL werden nicht unterstützt.

Beziehen Sie sich auf die PostgreSQL Installationshilfe, falls Sie PostgreSQL noch nicht installiert haben. http://www.postgresql.org .

[Note]

Um die GEOS Funktionen nutzen zu können, muss bei der Installation von PostgreSQL explizit gegen die Standard C++ Bibliothek gelinkt werden:

LDFLAGS=-lstdc++ ./configure [IHRE OPTIONEN]

Dies dient als Abhilfe für C++ Fehler bei der Interaktion mit älteren Entwicklungswerkzeugen. Falls eigenartige Probleme auftreten (die Verbindung zum Backend bricht unerwartet ab oder ähnliches) versuchen Sie bitte diesen Trick. Dies verlangt natürlich die Kompilation von PostgreSQL von Grund auf.

Die folgenden Schritte bescheiben die Konfiguration und Kompilation des PostGIS Quellcodes. Sie gelten für Linux Anwender und funktionieren nicht für Windows oder Mac.

2.2.1. Nutzung des Quellcodes

Das PostGIS Quellarchiv kann von der Download Webseite http://postgis.net/stuff/postgis-3.2.0dev.tar.gz bezogen werden.

wget http://postgis.net/stuff/postgis-3.2.0dev.tar.gz
tar -xvzf postgis-3.2.0dev.tar.gz

Dadurch wird das Verzeichnis postgis-3.2.0dev im aktuellen Arbeitsverzeichnis erzeugt.

Alternativ kann der Quellcode auch von svn repository http://svn.osgeo.org/postgis/trunk/ bezogen werden.

git clone https://git.osgeo.org/gitea/postgis/postgis.git postgis

Um die Installation fortzusetzen ist in das neu erstellte Verzeichnis postgis-3.2.0dev zu wechseln.

2.2.2. Systemvoraussetzungen

Zur Kompilation und Anwendung stellt PostGIS die folgenden Systemanforderungen:

Notwendige Systemvoraussetzungen

  • PostgreSQL 9.6 oder höher. Es wird eine vollständige PostgreSQL Installation (inklusive Server headers) benötigt. PostgreSQL steht unter http://www.postgresql.org zur Verfügung.

    Welche PostgreSQL Version von welcher PostGIS Version unterstützt wird und welche PostGIS Version von welcher GEOS Version unterstützt wird findet sich unter http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS

  • GNU C Compiler (gcc). Es können auch andere ANSI C Compiler zur PostGIS Kompilation verwendet werden, aber die Kompilation mit gcc macht die geringsten Probleme.

  • GNU Make (gmake oder make). Für viele Systeme ist GNU make die Standardversion von make. Überprüfe die Version durch make -v. Andere Versionen von make können das PostGIS Makefile nicht richtig ausführen.

  • Proj4 Projektionsbibliothek, Version 4.9.0 oder höher. Die Proj4 4.9 oder höher wird benötigt um Koordinatentransformationen in PostGIS zu ermöglichen. Proj4 kann von http://trac.osgeo.org/proj/ heruntergeladen werden.

  • Proj4 Projektionsbibliothek, Version 4.9.0 oder höher. Die Proj4 4.9 oder höher wird benötigt um Koordinatentransformationen in PostGIS zu ermöglichen. Proj4 kann von http://trac.osgeo.org/proj/ heruntergeladen werden.

  • LibXML2, Version 2.5.x oder höher. LibXML2 wird derzeit für einige Import Funktionen genutzt (ST_GeomFromGML und ST_GeomFromKML). LibXML2 steht unter http://xmlsoft.org/downloads.html zur Verfügung.

  • JSON-C, Version 0.9 oder höher. JSON-C wird zurzeit benutzt um GeoJSON über die Funktion ST_GeomFromGeoJson zu importieren. JSON-C kann unter https://github.com/json-c/json-c/releases/ bezogen werden.

  • GDAL, Version 1.8 oder höher (Version 1.9 oder höher wird dringend empfohlen, da niedrigere Versionen in manchen Bereichen nicht gut funktionieren oder zu unvorhergesehenen Verhalten führen können). Es ist für die Rasterunterstützung erforderlich. http://trac.osgeo.org/gdal/wiki/DownloadSource.

  • Wenn mit PostgreSQL+JIT kompiliert wird, ist die LLVM-Version >=6 erforderlich https://trac.osgeo.org/postgis/ticket/4125 .

Optionale Systemanforderungen

  • GDAL (pseudo optional) nur wenn Sie kein Rasterunterstützung möchten, können Sie es weglassen. Sorgen Sie außerdem dafür das Treiber, die Sie brauchen wie in Section 3.2, “Configuring raster support” beschrieben, aktiviert sind.

  • GTK (benötigt GTK+2.0, 2.8+) um den "shp2pgsql-gui shape file loader" zu kompilieren. http://www.gtk.org/ .

  • SFCGAL, version 1.3.1 (or higher) could be used to provide additional 2D and 3D advanced analysis functions to PostGIS cf Section 8.10, “SFCGAL Funktionen”. And also allow to use SFCGAL rather than GEOS for some 2D functions provided by both backends (like ST_Intersection or ST_Area, for instance). A PostgreSQL configuration variable postgis.backend allow end user to control which backend he want to use if SFCGAL is installed (GEOS by default). Nota: SFCGAL 1.2 require at least CGAL 4.3 and Boost 1.54 (cf: https://oslandia.gitlab.io/SFCGAL/dev.html) https://gitlab.com/Oslandia/SFCGAL/.

  • Um den Section 14.1, “Adressennormierer” zu kompilieren wird http://www.pcre.org benötigt (ist normalerweise auf Unix-Systemen bereits vorinstalliert). Regex::Assemble perl CPAN package ist nur für eine Neukodierung der Daten in parseaddress-stcities.h erforderlich. Section 14.1, “Adressennormierer” wird selbsttätig erzeugt, wenn eine PCRE Bibliothek gefunden wird, oder ein gültiger --with-pcre-dir=/path/to/pcre im Konfigurationsschritt angegeben wird.

  • Um ST_AsMVT verwenden zu können, wird die protobuf-c Bibliothek (für die Anwendung) und der protoc-c Kompiler (für die Kompilation) benötigt. Weiters ist pgk-config erforderlich um die korrekte Minimumversion von protobuf-c zu bestimmen. Siehe protobuf-c.

  • CUnit (CUnit). Wird für Regressionstest benötigt. http://cunit.sourceforge.net/

  • DocBook (xsltproc) ist für die Kompilation der Dokumentation notwendig. Docbook steht unter http://www.docbook.org/ zur Verfügung.

  • DBLatex (dblatex) ist zur Kompilation der Dokumentation im PDF-Format nötig. DBLatex liegt unter http://dblatex.sourceforge.net/ vor.

  • ImageMagick (convert) wird zur Erzeugung von Bildern für die Dokumentation benötigt. ImageMagick kann von http://www.imagemagick.org/ bezogen werden.

2.2.3. Konfiguration

Wie bei den meisten Installationen auf Linux besteht der erste Schritt in der Erstellung eines Makefiles, welches dann zur Kompilation des Quellcodes verwendet wird. Dies wird durch einen Aufruf des Shell Scripts erreicht.

./configure

Ohne zusätzliche Parameter legt dieser Befehl die Komponenten und Bibliotheken fest, welche für die Kompilation des PostGIS Quellcodes auf Ihrem System benötigt werden. Obwohl dies der häufigste Anwendungsfall von ./configure ist, akzeptiert das Skript eine Reihe von Parametern, falls sich die benötigten Bibliotheken und Programme nicht in den Standardverzeichnissen befinden.

Die folgende Liste weist nur die am häufigsten verwendeten Parameter auf. Für eine vollständige Liste benutzen Sie bitte --help oder --help=short .

--with-library-minor-version

Starting with PostGIS 3.0, the library files generated by default will no longer have the minor version as part of the file name. This means all PostGIS 3 libs will end in postgis-3. This was done to make pg_upgrade easier, with downside that you can only install one version PostGIS 3 series in your server. To get the old behavior of file including the minor version: e.g. postgis-3.0 add this switch to your configure statement.

--prefix=PREFIX

Das Verzeichnis, in dem die PostGIS Bibliotheken und SQL-Skripts installiert werden. Standardmäßig ist dies das Verzeichnis in dem auch PostgreSQL installatiert wurde.

[Caution]

Dieser Parameter ist zur Zeit defekt; somit kann PostGIS nur in das PostgreSQL Installationsverzeichnis installiert werden. Dieser Bug kann auf http://trac.osgeo.org/postgis/ticket/635 verfolgt werden.

--with-pgconfig=FILE

PostgreSQL stellt das Dienstprogramm pg_config zur Verfügung um Extensions wie PostGIS die Auffindung des PostgreSQL Installationsverzeichnisses zu ermöglichen. Benutzen Sie bitte diesen Parameter (--with-pgconfig=/path/to/pg_config) um eine bestmmte PostgreSQL Installation zu definieren, gegen die PostGIS kompiliert werden soll.

--with-gdalconfig=FILE

GDAL, eine erforderliche Bibliothek, welche die Funktionalität zur Rasterunterstützung liefert. gdal-config um Software Installationen die Auffindung des GDAL Installationsverzeichnis zu ermöglichen. Benutzen Sie bitte diesen Parameter (--with-gdalconfig=/path/to/gdal-config) um eine bestimmte GDAL Installation zu definieren, gegen die PostGIS kompiliert werden soll.

--with-geosconfig=FILE

GEOS, eine erforderliche Geometriebibliothek, stellt geos-config zur Verfügung, um Software Installationen das Auffinden des GEOS Installationsverzeichnisses zu ermöglichen. Benutzen Sie bitte diesen Parameter (--with-geosconfig=/path/to/geos-config) um eine bestimmte GEOS Installation zu definieren, gegen die PostGIS kompiliert werden soll.

--with-xml2config=FILE

LibXML ist die Bibliothek, welche für die Prozesse GeomFromKML/GML benötigt wird. Falls Sie libxml installiert haben, wird sie üblicherweise gefunden. Falls nicht oder wenn Sie eine bestimmte Version verwenden wollen, müssen Sie PostGIS auf eine bestimmte Konfigurationsdatei xml2-config verweisen, damit Softwareinstallationen das Installationsverzeichnis von LibXML finden können. Verwenden Sie bitte diesen Parameter ( >--with-xml2config=/path/to/xml2-config) um eine bestimmte LibXML Installation anzugeben, gegen die PostGIS kompiliert werden soll.

--with-projdir=DIR

Proj4 ist eine Bibliothek, die von PostGIS zur Koordinatentransformation benötigt wird. Benutzen Sie bitte diesen Parameter (--with-projdir=/path/to/projdir) um ein bestimmtes Proj4 Installationsverzeichnis anzugeben, für das PostGIS kompiliert werden soll.

--with-libiconv=DIR

Das Verzeichnis in dem iconv installiert ist.

--with-jsondir=DIR

JSON-C ist eine MIT-lizensierte JSON Bibliothek, die von PostGIS für ST_GeomFromJSON benötigt wird. Benutzen Sie bitte diesen Parameter (--with-jsondir=/path/to/jsondir), um ein bestimmtes JSON-C Installationsverzeichnis anzugeben, für das PostGIS kompiliert werden soll.

--with-pcredir=DIR

PCRE ist eine BSD-lizensierte Perl compatible Bibliothek für reguläre Ausdrücke, die von der Erweiterung "address_standardizer" benötigt wird. Verwenden Sie diesen Parameter (--with-pcredir=/path/to/pcredir), um ein bestimmtes Installationsverzeichnis von PCRE anzugeben, gegen das PostGIS kompiliert werden soll.

--with-gui

Kompilieren Sie die Datenimport-GUI (benötigt GTK+2.0). Dies erzeugt die graphische Schnittstelle "shp2pgsql-gui" für shp2pgsql.

--without-raster

Ohne Rasterunterstützung kompilieren.

--without-topology

Ausschalten der Topologie Unterstützung. Es existiert keine entsprechende Bibliothek, da sich die gesamte benötigte Logik in der postgis-3.2.0dev Bibliothek befindet.

--with-gettext=no

Standardmäßig versucht PostGIS gettext zu detektieren und kompiliert mit gettext Unterstützung. Wenn es allerdings zu Inkompatibilitätsproblemen kommt, die zu einem Zusammenbrechen des Loader führen, so können Sie das mit diesem Befehl zur Gänze deaktivieren. Siehe Ticket http://trac.osgeo.org/postgis/ticket/748 für ein Beispiel wie dieses Problem gelöst werden kann. Sie verpassen nicht viel, wenn Sie dies deaktivieren, da es für die internationale Hilfe zum GUI Loader/Label verwendet wird, welcher nicht dokumentiert und immer noch experimentell ist.

--with-sfcgal=PATH

Ohne diesen Switch wird PostGIS ohne sfcgal Unterstützung installiert. PATH ist ein optionaler Parameter, welcher einen alternativen Pfad zu sfcgal-config angibt.

--without-phony-revision

Disable updating postgis_revision.h to match current HEAD of the git repository.

[Note]

Wenn Sie PostGIS vom Code Repository bezogen haben, müssen Sie zu allererst das Skript ausführen

./autogen.sh

Dieses Skript erzeugt das configure Skript, welches seinerseits zur Anpassung der Installation von PostGIS eingesetzt wird.

Falls Sie stattdessen PostGIS als Tarball vorliegen haben, dann ist es nicht notwendig ./autogen.sh auszuführen, da configure bereits erzeugt wurde.

2.2.4. Build-Prozess

Sobald das Makefile erzeugt wurde, ist der Build-Prozess für PostGIS so einfach wie

make

Die letzte Zeile der Ausgabe sollte "PostGIS was built successfully. Ready to install." enthalten

Seit PostGIS v1.4.0 haben alle Funktionen Kommentare, welche aus der Dokumentation erstellt werden. Wenn Sie diese Kommentare später in die räumliche Datenbank importieren wollen, können Sie den Befehl ausführen der "docbook" benötigt. Die Dateien "postgis_comments.sql", "raster_comments.sql" und "topology_comments.sql" sind im Ordner "doc" der "tar.gz"-Distribution mit paketiert, weshalb Sie bei einer Installation vom "tar ball" her, die Kommentare nicht selbst erstellen müssen. Die Kommentare werden auch als Teil der Installation "CREATE EXTENSION" angelegt.

make comments

Eingeführt in PostGIS 2.0. Erzeugt HTML-Spickzettel, die als schnelle Referenz oder als Handzettel für Studenten geeignet sind. Dies benötigt xsltproc zur Kompilation und erzeugt 4 Dateien in dem Ordner "doc": topology_cheatsheet.html,tiger_geocoder_cheatsheet.html, raster_cheatsheet.html, postgis_cheatsheet.html

Einige bereits Vorgefertigte können von PostGIS / PostgreSQL Study Guides als HTML oder PDF heruntergeladen werden

make cheatsheets

2.2.5. Build-Prozess für die PostGIS Extensions und deren Bereitstellung

Die PostGIS Erweiterungen/Extensions werden ab PostgreSQL 9.1+ automatisch kompiliert und installiert.

Wenn Sie aus dem Quell-Repository kompilieren, müssen Sie zuerst die Beschreibung der Funktionen kompilieren. Diese lassen sich kompilieren, wenn Sie docbook installiert haben. Sie können sie aber auch händisch mit folgender Anweisung kompilieren:

make comments

Sie müssen die Kommentare nicht kompilieren, wenn sie von einem Format "tar" weg kompilieren, da diese in der tar-Datei bereits vorkompilierten sind.

Wenn Sie gegen PostgreSQL 9.1 kompilieren, sollten die Erweiterungen automatisch als Teil des Prozesses "make install" kompilieren. Falls notwendig, können Sie auch vom Ordner mit den Erweiterungen aus kompilieren, oder die Dateien auf einen anderen Server kopieren.

cd extensions
cd postgis
make clean
make
export PGUSER=postgres #overwrite psql variables
make check #to test before install
make install
# to test extensions
make check RUNTESTFLAGS=--extension
[Note]

make check uses psql to run tests and as such can use psql environment variables. Common ones useful to override are PGUSER,PGPORT, and PGHOST. Refer to psql environment variables

Die Erweiterungsdateien sind für dieselbe Version von PostGIS immer ident, unabhängig vom Betriebssystem. Somit ist es in Ordnung, die Erweiterungsdateien von einem Betriebssystem auf ein anderes zu kopieren, solange die Binärdateien von PostGIS bereits installiert sind.

Falls Sie die Erweiterungen händisch auf einen anderen Server installieren wollen, müssen sie folgende Dateien aus dem Erweiterungsordner in den Ordner PostgreSQL / share / extension Ihrer PostgreSQL Installation kopieren. Ebenso die benötigten Binärdateien für das reguläre PostGIS, falls sich PostGIS noch nicht auf dem Server befindet.

  • Dies sind die Kontrolldateien, welche Information wie die Version der zu installierenden Erweiterung anzeigen, wenn diese nicht angegben ist. postgis.control, postgis_topology.control.

  • Alle Dateien in dem Ordner "/sql" der jeweiligen Erweiterung. Diese müssen in das Verzeichnis "share/extension" von PostgreSQL extensions/postgis/sql/*.sql, extensions/postgis_topology/sql/*.sql kopiert werden

Sobald Sie dies ausgeführt haben, sollten Sie postgis, postgis_topology als verfügbare Erweiterungen in PgAdmin -> extensions sehen.

Falls Sie psql verwenden, können Sie die installierten Erweiterungen folgendermaßen abfragen:

SELECT name, default_version,installed_version
FROM pg_available_extensions WHERE name LIKE 'postgis%' or name LIKE 'address%';

             name             | default_version | installed_version
------------------------------+-----------------+-------------------
 address_standardizer         | 3.2.0dev         | 3.2.0dev
 address_standardizer_data_us | 3.2.0dev         | 3.2.0dev
 postgis                      | 3.2.0dev         | 3.2.0dev
 postgis_sfcgal               | 3.2.0dev         |
 postgis_tiger_geocoder       | 3.2.0dev         | 3.2.0dev
 postgis_topology             | 3.2.0dev         |
(6 rows)

Wenn Sie in der Datenbank, die Sie abfragen, eine Erweiterung installiert haben, dann sehen Sie einen Hinweis in der Spalte installed_version. Wenn Sie keine Datensätze zurückbekommen bedeutet dies, dass Sie überhaupt keine PostGIS Erweiterung auf dem Server installiert haben. PgAdmin III 1.14+ bietet diese Information ebenfalls in der Sparte extensions im Navigationsbaum der Datenbankinstanz an und ermöglicht sogar ein Upgrade oder eine Deinstallation über einen Rechtsklick.

Wenn die Erweiterungen vorhanden sind, können Sie die PostGIS-Extension sowohl mit der erweiterten pgAdmin Oberfläche als auch mittels folgender SQL-Befehle in einer beliebigen Datenbank installieren:

CREATE EXTENSION postgis;
CREATE EXTENSION postgis_sfcgal;
CREATE EXTENSION fuzzystrmatch; --needed for postgis_tiger_geocoder
--optional used by postgis_tiger_geocoder, or can be used standalone
CREATE EXTENSION address_standardizer;
CREATE EXTENSION address_standardizer_data_us;
CREATE EXTENSION postgis_tiger_geocoder;
CREATE EXTENSION postgis_topology;

Sie können psql verwenden, um sich die installierten Versionen und die Datenbankschemen in denen sie installiert sind, anzeigen zu lassen.

\connect mygisdb
\x
\dx postgis*
List of installed extensions
-[ RECORD 1 ]-------------------------------------------------
Name        | postgis
Version     | 3.2.0dev
Schema      | public
Description | PostGIS geometry, geography, and raster spat..
-[ RECORD 2 ]-------------------------------------------------
Name        | postgis_raster
Version     | 3.0.0dev
Schema      | public
Description | PostGIS raster types and functions
-[ RECORD 3 ]-------------------------------------------------
Name        | postgis_tiger_geocoder
Version     | 3.2.0dev
Schema      | tiger
Description | PostGIS tiger geocoder and reverse geocoder
-[ RECORD 4 ]-------------------------------------------------
Name        | postgis_topology
Version     | 3.2.0dev
Schema      | topology
Description | PostGIS topology spatial types and functions
[Warning]

Die Erweiterungstabellen spatial_ref_sys. layer und topology können nicht explizit gesichert werden. Sie können nur mit der entsprechenden postgis oder postgis_topology Erweiterung gesichert werden, was nur geschieht, wenn Sie die ganze Datenbank sichern. Ab PostGIS 2.0.2 werden nur diejenigen Datensätze von SRID beim Backup der Datenbank gesichert, die nicht mit PostGIS paketiert sind. Sie sollten daher keine paketierte SRID ändern und Sie können erwarten, dass Ihre Änderungen gesichert werden. Wenn Sie irgendein Problem finden, reichen Sie bitte ein Ticket ein. Die Struktur der Erweiterungstabellen wird niemals gesichert, da diese mit CREATE EXTENSION erstellt wurde und angenommen wird, dass sie für eine bestimmten Version einer Erweiterung gleich ist. Dieses Verhalten ist in dem aktuellen PostgreSQL Extension Model eingebaut, weshalb wir daran nichts ändern können.

Wenn Sie 3.2.0dev ohne unser wunderbares Extension System installiert haben, können Sie auf erweiterungsbasiert wechseln, indem Sie folgende Befehle ausführen, welche die Funktionen in ihre entsprechenden Erweiterungen paketieren.

CREATE EXTENSION postgis FROM unpackaged;
CREATE EXTENSION postgis_raster FROM unpackaged;
CREATE EXTENSION postgis_topology FROM unpackaged;
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.2.6. Softwaretest

Wenn Sie die Kompilation von PostGIS überprüfen wollen:

make check

Obiger Befehl durchläuft mehere Überprüfungen und Regressionstests, indem er die angelegte Bibliothek in einer aktuellen PostgreSQL Datenbank ausführt.

[Note]

Falls Sie PostGIS so konfiguriert haben, dass nicht die Standardverzeichnisse für PostgreSQL, GEOS oder Proj4 verwendet werden, kann es sein, dass Sie die Speicherstellen dieser Bibliotheken in der Umgebungsvariablen "LD_LIBRARY_PATH" eintragen müssen.

[Caution]

Zurzeit beruht make check auf die Umgebungsvariablen PATH undPGPORT beim Ausführen der Überprüfungen - es wird nicht die Version von PostgreSQL verwendet, die mit dem Konfigurationsparameter --with-pgconfig angegeben wurde. Daher stellen Sie sicher, dass die Variable PATH mit der während der Konfiguration dedektierten Installation von PostgreSQL übereinstimmt, oder seien Sie auf drohende Kopfschmerzen vorbereitet.

Wenn der Test erfolgreich war, sollte die Ausgabe etwa so aussehen:

CUnit - A unit testing framework for C - Version 2.1-2
     http://cunit.sourceforge.net/


Suite: computational_geometry
  Test: test_lw_segment_side ...passed
  Test: test_lw_segment_intersects ...passed
  Test: test_lwline_crossing_short_lines ...passed
  Test: test_lwline_crossing_long_lines ...passed
  Test: test_lwline_crossing_bugs ...passed
  Test: test_lwpoint_set_ordinate ...passed
  Test: test_lwpoint_get_ordinate ...passed
  Test: test_point_interpolate ...passed
  Test: test_lwline_clip ...passed
  Test: test_lwline_clip_big ...passed
  Test: test_lwmline_clip ...passed
  Test: test_geohash_point ...passed
  Test: test_geohash_precision ...passed
  Test: test_geohash ...passed
  Test: test_geohash_point_as_int ...passed
  Test: test_isclosed ...passed
  Test: test_lwgeom_simplify ...passed
Suite: buildarea
  Test: buildarea1 ...passed
  Test: buildarea2 ...passed
  Test: buildarea3 ...passed
  Test: buildarea4 ...passed
  Test: buildarea4b ...passed
  Test: buildarea5 ...passed
  Test: buildarea6 ...passed
  Test: buildarea7 ...passed
Suite: geometry_clean
  Test: test_lwgeom_make_valid ...passed
Suite: clip_by_rectangle
  Test: test_lwgeom_clip_by_rect ...passed
Suite: force_sfs
  Test: test_sfs_11 ...passed
  Test: test_sfs_12 ...passed
  Test: test_sqlmm ...passed
Suite: geodetic
  Test: test_sphere_direction ...passed
  Test: test_sphere_project ...passed
  Test: test_lwgeom_area_sphere ...passed
  Test: test_signum ...passed
  Test: test_gbox_from_spherical_coordinates ...passed
  Test: test_gserialized_get_gbox_geocentric ...passed
  Test: test_clairaut ...passed
  Test: test_edge_intersection ...passed
  Test: test_edge_intersects ...passed
  Test: test_edge_distance_to_point ...passed
  Test: test_edge_distance_to_edge ...passed
  Test: test_lwgeom_distance_sphere ...passed
  Test: test_lwgeom_check_geodetic ...passed
  Test: test_gserialized_from_lwgeom ...passed
  Test: test_spheroid_distance ...passed
  Test: test_spheroid_area ...passed
  Test: test_lwpoly_covers_point2d ...passed
  Test: test_gbox_utils ...passed
  Test: test_vector_angle ...passed
  Test: test_vector_rotate ...passed
  Test: test_lwgeom_segmentize_sphere ...passed
  Test: test_ptarray_contains_point_sphere ...passed
  Test: test_ptarray_contains_point_sphere_iowa ...passed
Suite: GEOS
  Test: test_geos_noop ...passed
  Test: test_geos_subdivide ...passed
  Test: test_geos_linemerge ...passed
Suite: Clustering
  Test: basic_test ...passed
  Test: nonsequential_test ...passed
  Test: basic_distance_test ...passed
  Test: single_input_test ...passed
  Test: empty_inputs_test ...passed
Suite: Clustering Union-Find
  Test: test_unionfind_create ...passed
  Test: test_unionfind_union ...passed
  Test: test_unionfind_ordered_by_cluster ...passed
Suite: homogenize
  Test: test_coll_point ...passed
  Test: test_coll_line ...passed
  Test: test_coll_poly ...passed
  Test: test_coll_coll ...passed
  Test: test_geom ...passed
  Test: test_coll_curve ...passed
Suite: encoded_polyline_input
  Test: in_encoded_polyline_test_geoms ...passed
  Test: in_encoded_polyline_test_precision ...passed
Suite: geojson_input
  Test: in_geojson_test_srid ...passed
  Test: in_geojson_test_bbox ...passed
  Test: in_geojson_test_geoms ...passed
Suite: twkb_input
  Test: test_twkb_in_point ...passed
  Test: test_twkb_in_linestring ...passed
  Test: test_twkb_in_polygon ...passed
  Test: test_twkb_in_multipoint ...passed
  Test: test_twkb_in_multilinestring ...passed
  Test: test_twkb_in_multipolygon ...passed
  Test: test_twkb_in_collection ...passed
  Test: test_twkb_in_precision ...passed
Suite: serialization/deserialization
  Test: test_typmod_macros ...passed
  Test: test_flags_macros ...passed
  Test: test_serialized_srid ...passed
  Test: test_gserialized_from_lwgeom_size ...passed
  Test: test_gbox_serialized_size ...passed
  Test: test_lwgeom_from_gserialized ...passed
  Test: test_lwgeom_count_vertices ...passed
  Test: test_on_gser_lwgeom_count_vertices ...passed
  Test: test_geometry_type_from_string ...passed
  Test: test_lwcollection_extract ...passed
  Test: test_lwgeom_free ...passed
  Test: test_lwgeom_flip_coordinates ...passed
  Test: test_f2d ...passed
  Test: test_lwgeom_clone ...passed
  Test: test_lwgeom_force_clockwise ...passed
  Test: test_lwgeom_calculate_gbox ...passed
  Test: test_lwgeom_is_empty ...passed
  Test: test_lwgeom_same ...passed
  Test: test_lwline_from_lwmpoint ...passed
  Test: test_lwgeom_as_curve ...passed
  Test: test_lwgeom_scale ...passed
  Test: test_gserialized_is_empty ...passed
  Test: test_gbox_same_2d ...passed
Suite: measures
  Test: test_mindistance2d_tolerance ...passed
  Test: test_rect_tree_contains_point ...passed
  Test: test_rect_tree_intersects_tree ...passed
  Test: test_lwgeom_segmentize2d ...passed
  Test: test_lwgeom_locate_along ...passed
  Test: test_lw_dist2d_pt_arc ...passed
  Test: test_lw_dist2d_seg_arc ...passed
  Test: test_lw_dist2d_arc_arc ...passed
  Test: test_lw_arc_length ...passed
  Test: test_lw_dist2d_pt_ptarrayarc ...passed
  Test: test_lw_dist2d_ptarray_ptarrayarc ...passed
  Test: test_lwgeom_tcpa ...passed
  Test: test_lwgeom_is_trajectory ...passed
Suite: effectivearea
  Test: do_test_lwgeom_effectivearea_lines ...passed
  Test: do_test_lwgeom_effectivearea_polys ...passed
Suite: miscellaneous
  Test: test_misc_force_2d ...passed
  Test: test_misc_simplify ...passed
  Test: test_misc_count_vertices ...passed
  Test: test_misc_area ...passed
  Test: test_misc_wkb ...passed
  Test: test_grid ...passed
Suite: noding
  Test: test_lwgeom_node ...passed
Suite: encoded_polyline_output
  Test: out_encoded_polyline_test_geoms ...passed
  Test: out_encoded_polyline_test_srid ...passed
  Test: out_encoded_polyline_test_precision ...passed
Suite: geojson_output
  Test: out_geojson_test_precision ...passed
  Test: out_geojson_test_dims ...passed
  Test: out_geojson_test_srid ...passed
  Test: out_geojson_test_bbox ...passed
  Test: out_geojson_test_geoms ...passed
Suite: gml_output
  Test: out_gml_test_precision ...passed
  Test: out_gml_test_srid ...passed
  Test: out_gml_test_dims ...passed
  Test: out_gml_test_geodetic ...passed
  Test: out_gml_test_geoms ...passed
  Test: out_gml_test_geoms_prefix ...passed
  Test: out_gml_test_geoms_nodims ...passed
  Test: out_gml2_extent ...passed
  Test: out_gml3_extent ...passed
Suite: kml_output
  Test: out_kml_test_precision ...passed
  Test: out_kml_test_dims ...passed
  Test: out_kml_test_geoms ...passed
  Test: out_kml_test_prefix ...passed
Suite: svg_output
  Test: out_svg_test_precision ...passed
  Test: out_svg_test_dims ...passed
  Test: out_svg_test_relative ...passed
  Test: out_svg_test_geoms ...passed
  Test: out_svg_test_srid ...passed
Suite: x3d_output
  Test: out_x3d3_test_precision ...passed
  Test: out_x3d3_test_geoms ...passed
  Test: out_x3d3_test_option ...passed
Suite: ptarray
  Test: test_ptarray_append_point ...passed
  Test: test_ptarray_append_ptarray ...passed
  Test: test_ptarray_locate_point ...passed
  Test: test_ptarray_isccw ...passed
  Test: test_ptarray_signed_area ...passed
  Test: test_ptarray_unstroke ...passed
  Test: test_ptarray_insert_point ...passed
  Test: test_ptarray_contains_point ...passed
  Test: test_ptarrayarc_contains_point ...passed
  Test: test_ptarray_scale ...passed
Suite: printing
  Test: test_lwprint_default_format ...passed
  Test: test_lwprint_format_orders ...passed
  Test: test_lwprint_optional_format ...passed
  Test: test_lwprint_oddball_formats ...passed
  Test: test_lwprint_bad_formats ...passed
Suite: SFCGAL
  Test: test_sfcgal_noop ...passed
Suite: split
  Test: test_lwline_split_by_point_to ...passed
  Test: test_lwgeom_split ...passed
Suite: stringbuffer
  Test: test_stringbuffer_append ...passed
  Test: test_stringbuffer_aprintf ...passed
Suite: surface
  Test: triangle_parse ...passed
  Test: tin_parse ...passed
  Test: polyhedralsurface_parse ...passed
  Test: surface_dimension ...passed
Suite: Internal Spatial Trees
  Test: test_tree_circ_create ...passed
  Test: test_tree_circ_pip ...passed
  Test: test_tree_circ_pip2 ...passed
  Test: test_tree_circ_distance ...passed
  Test: test_tree_circ_distance_threshold ...passed
Suite: triangulate
  Test: test_lwgeom_delaunay_triangulation ...passed
Suite: twkb_output
  Test: test_twkb_out_point ...passed
  Test: test_twkb_out_linestring ...passed
  Test: test_twkb_out_polygon ...passed
  Test: test_twkb_out_multipoint ...passed
  Test: test_twkb_out_multilinestring ...passed
  Test: test_twkb_out_multipolygon ...passed
  Test: test_twkb_out_collection ...passed
  Test: test_twkb_out_idlist ...passed
Suite: varint
  Test: test_zigzag ...passed
  Test: test_varint ...passed
  Test: test_varint_roundtrip ...passed
Suite: wkb_input
  Test: test_wkb_in_point ...passed
  Test: test_wkb_in_linestring ...passed
  Test: test_wkb_in_polygon ...passed
  Test: test_wkb_in_multipoint ...passed
  Test: test_wkb_in_multilinestring ...passed
  Test: test_wkb_in_multipolygon ...passed
  Test: test_wkb_in_collection ...passed
  Test: test_wkb_in_circularstring ...passed
  Test: test_wkb_in_compoundcurve ...passed
  Test: test_wkb_in_curvpolygon ...passed
  Test: test_wkb_in_multicurve ...passed
  Test: test_wkb_in_multisurface ...passed
  Test: test_wkb_in_malformed ...passed
Suite: wkb_output
  Test: test_wkb_out_point ...passed
  Test: test_wkb_out_linestring ...passed
  Test: test_wkb_out_polygon ...passed
  Test: test_wkb_out_multipoint ...passed
  Test: test_wkb_out_multilinestring ...passed
  Test: test_wkb_out_multipolygon ...passed
  Test: test_wkb_out_collection ...passed
  Test: test_wkb_out_circularstring ...passed
  Test: test_wkb_out_compoundcurve ...passed
  Test: test_wkb_out_curvpolygon ...passed
  Test: test_wkb_out_multicurve ...passed
  Test: test_wkb_out_multisurface ...passed
  Test: test_wkb_out_polyhedralsurface ...passed
Suite: wkt_input
  Test: test_wkt_in_point ...passed
  Test: test_wkt_in_linestring ...passed
  Test: test_wkt_in_polygon ...passed
  Test: test_wkt_in_multipoint ...passed
  Test: test_wkt_in_multilinestring ...passed
  Test: test_wkt_in_multipolygon ...passed
  Test: test_wkt_in_collection ...passed
  Test: test_wkt_in_circularstring ...passed
  Test: test_wkt_in_compoundcurve ...passed
  Test: test_wkt_in_curvpolygon ...passed
  Test: test_wkt_in_multicurve ...passed
  Test: test_wkt_in_multisurface ...passed
  Test: test_wkt_in_tin ...passed
  Test: test_wkt_in_polyhedralsurface ...passed
  Test: test_wkt_in_errlocation ...passed
Suite: wkt_output
  Test: test_wkt_out_point ...passed
  Test: test_wkt_out_linestring ...passed
  Test: test_wkt_out_polygon ...passed
  Test: test_wkt_out_multipoint ...passed
  Test: test_wkt_out_multilinestring ...passed
  Test: test_wkt_out_multipolygon ...passed
  Test: test_wkt_out_collection ...passed
  Test: test_wkt_out_circularstring ...passed
  Test: test_wkt_out_compoundcurve ...passed
  Test: test_wkt_out_curvpolygon ...passed
  Test: test_wkt_out_multicurve ...passed
  Test: test_wkt_out_multisurface ...passed

Run Summary:    Type  Total    Ran Passed Failed Inactive
              suites     38     38    n/a      0        0
               tests    251    251    251      0        0
             asserts   2468   2468   2468      0      n/a

Elapsed time =    0.298 seconds

Creating database 'postgis_reg'
Loading PostGIS into 'postgis_reg'
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/postgis.sql
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/postgis_comments.sql
Loading SFCGAL into 'postgis_reg'
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/sfcgal.sql
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/sfcgal_comments.sql
PostgreSQL 9.4.4, compiled by Visual C++ build 1800, 32-bit
  Postgis 2.2.0dev - r13980 - 2015-08-23 06:13:07
  scripts 2.2.0dev r13980
  GEOS: 3.5.0-CAPI-1.9.0 r4088
  PROJ: Rel. 4.9.1, 04 March 2015
  SFCGAL: 1.1.0

Running tests

 loader/Point .............. ok
 loader/PointM .............. ok
 loader/PointZ .............. ok
 loader/MultiPoint .............. ok
 loader/MultiPointM .............. ok
 loader/MultiPointZ .............. ok
 loader/Arc .............. ok
 loader/ArcM .............. ok
 loader/ArcZ .............. ok
 loader/Polygon .............. ok
 loader/PolygonM .............. ok
 loader/PolygonZ .............. ok
 loader/TSTPolygon ......... ok
 loader/TSIPolygon ......... ok
 loader/TSTIPolygon ......... ok
 loader/PointWithSchema ..... ok
 loader/NoTransPoint ......... ok
 loader/NotReallyMultiPoint ......... ok
 loader/MultiToSinglePoint ......... ok
 loader/ReprojectPts ........ ok
 loader/ReprojectPtsGeog ........ ok
 loader/Latin1 .... ok
 loader/Latin1-implicit .... ok
 loader/mfile .... ok
 dumper/literalsrid ....... ok
 dumper/realtable ....... ok
 affine .. ok
 bestsrid .. ok
 binary .. ok
 boundary .. ok
 cluster .. ok
 concave_hull .. ok
 ctors .. ok
 dump .. ok
 dumppoints .. ok
 empty .. ok
 forcecurve .. ok
 geography .. ok
 in_geohash .. ok
 in_gml .. ok
 in_kml .. ok
 in_encodedpolyline .. ok
 iscollection .. ok
 legacy .. ok
 long_xact .. ok
 lwgeom_regress .. ok
 measures .. ok
 operators .. ok
 out_geometry .. ok
 out_geography .. ok
 polygonize .. ok
 polyhedralsurface .. ok
 postgis_type_name .. ok
 regress .. ok
 regress_bdpoly .. ok
 regress_index .. ok
 regress_index_nulls .. ok
 regress_management .. ok
 regress_selectivity .. ok
 regress_lrs .. ok
 regress_ogc .. ok
 regress_ogc_cover .. ok
 regress_ogc_prep .. ok
 regress_proj .. ok
 relate .. ok
 remove_repeated_points .. ok
 removepoint .. ok
 setpoint .. ok
 simplify .. ok
 simplifyvw .. ok
 size .. ok
 snaptogrid .. ok
 split .. ok
 sql-mm-serialize .. ok
 sql-mm-circularstring .. ok
 sql-mm-compoundcurve .. ok
 sql-mm-curvepoly .. ok
 sql-mm-general .. ok
 sql-mm-multicurve .. ok
 sql-mm-multisurface .. ok
 swapordinates .. ok
 summary .. ok
 temporal .. ok
 tickets .. ok
 twkb .. ok
 typmod .. ok
 wkb .. ok
 wkt .. ok
 wmsservers .. ok
 knn .. ok
 hausdorff .. ok
 regress_buffer_params .. ok
 offsetcurve .. ok
 relatematch .. ok
 isvaliddetail .. ok
 sharedpaths .. ok
 snap .. ok
 node .. ok
 unaryunion .. ok
 clean .. ok
 relate_bnr .. ok
 delaunaytriangles .. ok
 clipbybox2d .. ok
 subdivide .. ok
 in_geojson .. ok
 regress_sfcgal .. ok
 sfcgal/empty .. ok
 sfcgal/geography .. ok
 sfcgal/legacy .. ok
 sfcgal/measures .. ok
 sfcgal/regress_ogc_prep .. ok
 sfcgal/regress_ogc .. ok
 sfcgal/regress .. ok
 sfcgal/tickets .. ok
 sfcgal/concave_hull .. ok
 sfcgal/wmsservers .. ok
 sfcgal/approximatemedialaxis .. ok
 uninstall .  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/uninstall_sfcgal.sql
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/uninstall_postgis.sql
. ok (4336)

Run tests: 118
Failed: 0

-- if you built --with-gui, you should see this too

     CUnit - A unit testing framework for C - Version 2.1-2
     http://cunit.sourceforge.net/


Suite: Shapefile Loader File shp2pgsql Test
  Test: test_ShpLoaderCreate() ...passed
  Test: test_ShpLoaderDestroy() ...passed
Suite: Shapefile Loader File pgsql2shp Test
  Test: test_ShpDumperCreate() ...passed
  Test: test_ShpDumperDestroy() ...passed

Run Summary:    Type  Total    Ran Passed Failed Inactive
              suites      2      2    n/a      0        0
               tests      4      4      4      0        0
             asserts      4      4      4      0      n/a

Die Erweiterungen postgis_tiger_geocoder und address_standardizer unterstützen zurzeit nur die standardmäßige Installationsüberprüfung von PostgreSQL. Um diese zu überprüfen siehe unterhalb. Anmerkung: "make install" ist nicht notwendig, wenn Sie bereits ein "make install" im Root des Ordners mit dem PostGIS Quellcode durchgeführt haben.

Für den address_standardizer:

cd extensions/address_standardizer
make install
make installcheck
          

Die Ausgabe sollte folgendermaßen aussehen:

============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== running regression test queries        ==============
test test-init-extensions     ... ok
test test-parseaddress        ... ok
test test-standardize_address_1 ... ok
test test-standardize_address_2 ... ok

=====================
 All 4 tests passed.
=====================

Für den Tiger Geokodierer müssen Sie die Erweiterungen "postgis" und "fuzzystrmatch" in Ihrer PostgreSQL Instanz haben. Die Überprüfungen des "address_standardizer" laufen ebenfalls an, wenn Sie postgis mit "address_standardizer" Unterstützung kompiliert haben:

cd extensions/postgis_tiger_geocoder
make install
make installcheck
          

Die Ausgabe sollte folgendermaßen aussehen:

============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing fuzzystrmatch               ==============
CREATE EXTENSION
============== installing postgis                     ==============
CREATE EXTENSION
============== installing postgis_tiger_geocoder      ==============
CREATE EXTENSION
============== installing address_standardizer        ==============
CREATE EXTENSION
============== running regression test queries        ==============
test test-normalize_address   ... ok
test test-pagc_normalize_address ... ok

=====================
All 2 tests passed.
=====================

2.2.7. Installation

Um PostGIS zu installieren geben Sie bitte folgendes ein

make install

Dies kopiert die Installationsdateien von PostGIS in das entsprechende Unterverzeichnis, welches durch den Konfigurationsparameter --prefix bestimmt wird. Insbesondere:

  • Die Binärdateien vom Loader und Dumper sind unter [prefix]/bin installiert.

  • Die SQL-Dateien, wie postgis.sql sind unter [prefix]/share/contrib installiert.

  • Die PostGIS Bibliotheken sind unter [prefix]/lib installiert.

Falls Sie zuvor den Befehl make comments ausgeführt haben, um die Dateien postgis_comments.sql und raster_comments.sql anzulegen, können Sie die SQL-Dateien folgendermaßen installieren:

make comments-install

[Note]

postgis_comments.sql, raster_comments.sql und topology_comments.sql wurden vom klassischen Build- und Installationsprozess getrennt, da diese mit xsltproc eine zusätzliche Abhängigkeit haben.

2.3. Installation und Verwendung des Adressennormierers

Die Erweiterung address_standardizer musste als getrenntes Paket heruntergeladen werden. Ab PostGIS 2.2 ist es mitgebündelt. Für weitere Informationen zu dem address_standardizer, was er kann und wie man ihn für spezielle Bedürfnisse konfigurieren kann, siehe Section 14.1, “Adressennormierer”.

Dieser Adressennormierer kann in Verbindung mit der in PostGIS paketierten Erweiterung "tiger gecoder" als Ersatz für Normalize_Address verwendet werden. Um diesen als Ersatz zu nutzen, siehe Section 2.4.3, “Die Adressennormierer-Extension zusammen mit dem Tiger Geokodierer verwenden”. Sie können diesen auch als Baustein für Ihren eigenen Geokodierer verwenden oder für die Normierung von Adressen um diese leichter vergleichbar zu machen.

Der Adressennormierer benötigt PCRE, welches üblicherweise auf Nix-Systemen bereits installiert ist. Sie können die letzte Version aber auch von http://www.pcre.org herunterladen. Wenn PCRE während der Section 2.2.3, “Konfiguration” gefunden wird, dann wird die Erweiterung "address standardizer" automatisch kompiliert. Wenn Sie stattdessen eine benutzerdefinierte Installation von PCRE verwenden wollen, können Sie --with-pcredir=/path/to/pcre an "configure" übergeben, wobei /path/to/pcre der Root-Ordner Ihrer Verzeichnisse "include" und "lib" von PCRE ist.

Für Windows Benutzer ist ab PostGIS 2.1+ die Erweiterung "address_standardizer" bereits mitpaketiert. Somit besteht keine Notwendigkeit zu Kompilieren und es kann sofort der Schritt CREATE EXTENSION ausgeführt werden.

Sobald die Installation beendet ist, können Sie sich mit Ihrer Datenbank verbinden und folgenden SQL-Befehl ausführen:

CREATE EXTENSION address_standardizer;

Der folgende Test benötigt keine rules-, gaz- oder lex-Tabellen

SELECT num, street, city, state, zip
 FROM parse_address('1 Devonshire Place PH301, Boston, MA 02109');

Die Ausgabe sollte wie folgt sein:

num |         street         |  city  | state |  zip
-----+------------------------+--------+-------+-------
 1   | Devonshire Place PH301 | Boston | MA    | 02109

2.3.1. Installation von Regex::Assemble

Perl Regex:Assemble wird nicht länger für die Kompiation der Erweiterung "address_standardizer" benötigt, da die generierten Dateien jetzt Teil des Quellcodes sind. Wenn Sie allerdings usps-st-city-orig.txt oder usps-st-city-orig.txt usps-st-city-adds.tx editieren müssen, dann müssen Sie parseaddress-stcities.h neu kompilieren, wozu Regex:Assemble benötigt wird.

cpan Regexp::Assemble

oder wenn Sie auf einer Ubuntu / Debian Distribution arbeiten, müssen Sie möglicherweise folgendes ausführen:

sudo perl -MCPAN -e "install Regexp::Assemble"

2.4. Installation, Aktualisierung des Tiger Geokodierers und Daten laden

Extras wie den Tiger Geokodierer befinden sich möglicherweise nicht in Ihrer PostGIS Distribution. Wenn Sie die Erweiterung "Tiger Geokodierer" vermissen, oder eine neuere Version installieren wollen, dann können Sie die Dateien share/extension/postgis_tiger_geocoder.* aus den Paketen des Abschnitts Windows Unreleased Versions für Ihre Version von PostgreSQL verwenden. Obwohl diese Pakete für Windows sind, funktionieren die Dateien der Erweiterung "postgis_tiger_geocoder" mit jedem Betriebssystem, da die Erweiterung eine reine SQL/plpgsql Anwendung ist.

2.4.1. Aktivierung des Tiger Geokodierer in Ihrer PostGIS Datenbank: Verwendung von Extension

Falls Sie PostgreSQL 9.1+ und PostGIS 2.1+ verwenden, können Sie Vorteil aus dem Extension-Modell ziehen, um den Tiger Geokodierer zu installieren. Um dies zu tun:

  1. Besorgen Sie sich zuerst die Binärdateien für PostGIS 2.1+ oder kompilieren und installieren Sie diese wie üblich. Dies sollte alle notwendigen Extension-Dateien auch für den Tiger Geokodierer installieren.

  2. Verbinden Sie sich zu Ihrer Datenbank über psql, pgAdmin oder ein anderes Werkzeug und führen Sie die folgenden SQL Befehle aus. Wenn Sie in eine Datenbank installieren, die bereits PostGIS beinhaltet, dann müssen Sie den ersten Schritt nicht ausführen. Wenn Sie auch die Erweiterung fuzzystrmatch bereits installiert haben, so müssen Sie auch den zweiten Schritt nicht ausführen.

    CREATE EXTENSION postgis;
    CREATE EXTENSION fuzzystrmatch;
    CREATE EXTENSION postgis_tiger_geocoder;
    --Optional wenn Sir den regelbasierten Adressennormierer verwenden (pagc_normalize_address)
    CREATE EXTENSION address_standardizer;

    Wenn Sie bereits die postgis-tiger-geocoder Extension installiert haben und nur auf den letzten Stand updaten wollen:

    ALTER EXTENSION postgis UPDATE;
    ALTER EXTENSION postgis_tiger_geocoder UPDATE;

    Wenn benutzerdefinierte Einträge oder Änderungen an tiger.loader_platform oder tiger.loader_variables gemacht wurden, müssen diese aktualisiert werden.

  3. Um die Richtigkeit der Installation festzustellen, führen Sie bitte folgenden SQL-Befehl in Ihrer Datenbank aus:

    SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
            FROM normalize_address('1 Devonshire Place, Boston, MA 02109') AS na;

    Dies sollte folgendes ausgeben:

    address | streetname | streettypeabbrev |  zip
    ---------+------------+------------------+-------
               1 | Devonshire | Pl               | 02109
  4. Erstellen Sie einen neuen Datensatz in der Tabelle tiger.loader_platform, welcher die Pfade zu Ihren ausführbaren Dateien und zum Server beinhaltet.

    Um zum Beispiel ein Profil mit dem Namen "debbie" anzulegen. welches der sh Konvention folgt, können Sie folgendes tun:

    INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psql, path_sep,
                       loader, environ_set_command, county_process_command)
    SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psql, path_sep,
               loader, environ_set_command, county_process_command
      FROM tiger.loader_platform
      WHERE os = 'sh';

    Anschließend ändern Sie die Pfade in der Spalte declare_sect, so dass diese mit den Speicherpfaden von Debbie's "pg", "nzip", "shp2pgsql", "psql", etc. übereinstimmen.

    Wenn Sie die Tabelle loader_platform nicht editieren, so beinhaltet diese lediglich die üblichen Ortsangaben und Sie müssen das erzeugte Skript editieren, nachdem es erzeugt wurde.

  5. Ab PostGIS 2.4.1 wurde der Ladevorgang der "Zip code-5 digit tabulation area" zcta5 überarbeitet, um aktuelle zcta5 Daten zu laden und ist nun ein Teil von Loader_Generate_Nation_Script, falls aktiviert. Standardmäßig ausgeschaltet, da der Ladevorgang ziemlich viel Zeit benötigt (20 bis 60 Minuten), ziemlich viel Festplattenspeicher beansprucht wird und es nur selten verwendet wird.

    Folgendermaßen können Sie deise aktivieren:

    UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zcta510';

    Falls vorhanden kann die Funktion Geocode diese verwenden, wenn die zips durch einen Boundary Filter begrenzt sind. Die Funktion Reverse_Geocode verwendet dies wenn eine zurückgegebene Adresse keinen zip-Code enthält, was oft bei der inversen Geokodierung von Highways auftritt.

  6. Erstellen Sie einen Ordner mit der Bezeichnung gisdata im Root des Servers oder auf Ihrem lokalen PC, wenn Sie eine schnelle Netzwerkverbindung zu dem Server haben. In diesen Ordner werden die Dateien von Tiger heruntergeladen und aufbereitet. Wenn Sie den Ordner nicht im Root des Servers haben wollen, oder für die Staging-Umgebung in eine anderen Ordner wechseln wollen, dann können Sie das Attribut staging_fold in der Tabelle tiger.loader_variables editieren.

  7. Erstellen Sie einen Ordner "temp" in dem Ordner gisdata oder wo immer Sie staging_fold haben wollen. Dies wird der Ordner, in dem der Loader die heruntergeladenen Tigerdaten extrahiert.

  8. Anschließend führen Sie die SQL Funktion Loader_Generate_Nation_Script aus, um sicherzustellen dass die Bezeichnung Ihres benutzerdefinierten Profils verwendet wird und kopieren das Skript in eine .sh oder .bat Datei. Um zum Beispiel das Skript zum Laden einer Nation zu erzeugen:

    psql -c "SELECT Loader_Generate_Nation_Script('debbie')" -d geocoder -tA 
    > /gisdata/nation_script_load.sh
  9. Führen Sie die erzeugten Skripts zum Laden der Nation auf der Befehlszeile aus.

    cd /gisdata
    sh nation_script_load.sh
  10. Nachdem Sie das "Nation" Skript ausgeführt haben, sollten sich drei Tabellen in dem Schema tiger_data befinden und mit Daten befüllt sein. Führen Sie die folgenden Abfragen in "psql" oder "pgAdmin" aus, um dies sicher zu stellen

    SELECT count(*) FROM tiger_data.county_all;
    count
    -------
      3233
    (1 row)
    SELECT count(*) FROM tiger_data.state_all;
    count
    -------
        56
    (1 row)
    
  11. Standardmäßig werden die Tabellen, welche bg, tract und tabblock entsprechen, nicht geladen. Diese Tabellen werden vom Geokodierer nicht verwendet, können aber für Bevölkerungsstatistiken genutzt werden. Wenn diese als Teil der Nation geladen werden sollen, können Sie die folgenden Anweisungen ausführen.

    UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN('tract', 'bg', 'tabblock');

    Alternativ können Sie diese Tabellen nach dem Laden der Länderdaten importieren, indem Sie das Loader_Generate_Census_Script verwenden

  12. Für jeden Staat, für den Sie Daten laden wollen, müssen Sie ein Skript Loader_Generate_Script erstellen.

    [Warning]

    Erstellen Sie das Skript für die Bundesstaaten NICHT bevor die Daten zur Nation geladen wurden, da das Skript die Liste "county" verwendet, welche durch das "nation"-Skript geladen wird.

  13. psql -c "SELECT Loader_Generate_Script(ARRAY['MA'], 'debbie')" -d geocoder -tA 
    > /gisdata/ma_load.sh
  14. Die vorher erzeugten, befehlszeilenorientierten Skripts ausführen.

    cd /gisdata
    sh ma_load.sh
  15. Nachdem Sie mit dem Laden der Daten fertig sind, ist es eine gute Idee ein ANALYZE auf die Tigertabellen auszuführen, um die Datenbankstatistik (inklusive vererbter Statistik) zu aktualisieren

    SELECT install_missing_indexes();
    vacuum analyze verbose tiger.addr;
    vacuum analyze verbose tiger.edges;
    vacuum analyze verbose tiger.faces;
    vacuum analyze verbose tiger.featnames;
    vacuum analyze verbose tiger.place;
    vacuum analyze verbose tiger.cousub;
    vacuum analyze verbose tiger.county;
    vacuum analyze verbose tiger.state;
    vacuum analyze verbose tiger.zip_lookup_base;
    vacuum analyze verbose tiger.zip_state;
    vacuum analyze verbose tiger.zip_state_loc;

2.4.1.1. Umwandlung einer normalen Installation des Tiger-Geokodierers in das Extension Modell

Falls Sie den Tiger Geokodierer ohne Extension Modell installiert haben, können Sie wie folgt auf das Extension-Modell wechseln:

  1. Für ein Upgrade ohne Extension-Modell, folgen Sie bitte den Anweisungen unter Section 2.4.5, “Upgrade Ihrer Tiger Geokodierer Installation”.

  2. Verbinden Sie sich über "psql" mit Ihrer Datenbank und führen Sie folgenden Befehl aus:

    CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.4.2. Den Tiger Geokodierer in der PostGIS Datenbank aktivieren: ohne die Verwendung von Extensions

Zuerst installieren Sie PostGIS entsprechend den vorherigen Anweisungen.

Wenn Sie keinen Ordner "extras" haben, können Sie http://postgis.net/stuff/postgis-3.2.0dev.tar.gz herunterladen

tar xvfz postgis-3.2.0dev.tar.gz

cd postgis-3.2.0dev/extras/tiger_geocoder

Editieren Sie die Datei tiger_loader_2015.sql (oder die aktuellste Loader Datei die Sie finden, außer Sie wollen ein anderes Jahr laden) um die Pfade zu den ausführbaren Dateien, dem Server etc. richtigzustellen. Alternativ können Sie auch die Tabelle loader_platform nach der Installation editieren. Wenn Sie diese Datei oder die Tabelle loader_platform nicht editieren, dann enthält diese nur die üblichen Ortsangaben und Sie müssen das erzeugte Skript nachträglich bearbeiten, wenn Sie die SQL Funktionen Loader_Generate_Nation_Script und Loader_Generate_Script ausgeführt haben.

Wenn Sie den Tiger Geokodierer zum ersten Mal installieren, dann editierren Sie entweder das Skript create_geocode.bat auf Windows oder create_geocode.sh auf Linux/Unix/Mac OSX entsprechend Ihren spezifischen Einstellungen von PostgreSQL und führen das entsprechende Skript auf der Befehlszeile aus.

Überprüfen sie, ob Sie ein Schema tiger in Ihrer Datenbank haben und sich das Schema in dem "search_path" Ihrer Datenbank befindet. Falls nicht, können Sie das Schema mit folgendem Befehl hinzufügen:

ALTER DATABASE geocoder SET search_path=public, tiger;

Die Funktionalität zur Standardisierung von Adressen funktioniert mehr oder weniger auch ohne Daten, mit Ausnahme von komplizierten Adressen. Führen Sie diese Tests durch und überprüfen Sie, ob das Ergebnis ähnlich wie dieses aussieht:

SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) As pretty_address;
pretty_address
---------------------------------------
202 E Fremont St, Las Vegas, NV 89101
                        

2.4.3. Die Adressennormierer-Extension zusammen mit dem Tiger Geokodierer verwenden

Eine von vielen Beschwerden betrifft die Funktion Normalize_Address des Adressennormierers, die eine Adresse vor der Geokodierung vorbereitend standardisiert. Der Normierer ist bei weitem nicht perfekt und der Versuch seine Unvollkommenheit auszubessern nimmt viele Ressourcen in Anspruch. Daher haben wir ein anderes Projekt integriert, welches eine wesentlich bessere Funktionseinheit für den Adressennormierer besitzt. Um diesen neuen Adressennormierer zu nutzen, können Sie die Erweiterung so wie unter Section 2.3, “Installation und Verwendung des Adressennormierers” beschrieben kompilieren und als Extension in Ihrer Datenbank installieren.

Sobald Sie diese Extension in der gleichen Datenbank installieren, in der Sie auch postgis_tiger_geocoder installiert haben, dann können Sie Pagc_Normalize_Address anstatt Normalize_Address verwenden. Diese Erweiterung ist nicht auf Tiger beschränkt, wodurch sie auch mit anderen Datenquellen, wie internationalen Adressen, genutzt werden kann. Die Tiger Geokodierer Extension enthält eine eigenen Versionen von rules Tabelle (tiger.pagc_rules), gaz Tabelle (tiger.pagc_gaz) und lex Tabelle (tiger.pagc_lex). Diese können Sie hinzufügen und aktualisieren, um die Normierung an die eigenen Bedürfnisse anzupassen.

2.4.4. Tiger-Daten laden

Die Anweisungen zum Laden von Daten sind unter extras/tiger_geocoder/tiger_2011/README detailliert beschrieben. Hier sind nur die allgemeinen Schritte berücksichtigt.

Der Ladeprozess lädt Daten von der Census Webseite für die jeweiligen Nationsdateien und die angeforderten Bundesstaaten herunter, extrahiert die Dateien und lädt anschließlich jeden Bundesstaat in einen eigenen Satz von Bundesstaattabellen. Jede Bundesstaattabelle erbt von den Tabellen im Schema tiger, wodurch es ausreicht nur diese Tabellen abzufragen um auf alle Daten zugreifen zu können. Sie können auch jederzeit Bundesstaattabellen mit Drop_State_Tables_Generate_Script löschen, wenn Sie einen Bundesstaat neu laden müssen oder den Bundesstaat nicht mehr benötigen.

Um Daten laden zu können benötigen Sie folgende Werkzeuge:

  • Ein Werkzeug, um die Zip-Dateien der Census Webseite zu entpacken.

    Auf UNIX-ähnlichen Systemen: Das Programm unzip, das üblicherweise auf den meisten UNIX-ähnlichen Systemen bereits vorinstalliert ist.

    Auf Windows 7-zip, ein freies Werkzeug zum komprimieren/entkomprimieren, das Sie von http://www.7-zip.org/ herunterladen können.

  • Das shp2pgsql Kommandozeilenprogramm, welches standardmäßig mit PostGIS mitinstalliert wird.

  • wget, ein Download-Manager, der üblicherweise auf den meisten UNIX/Linux Systemen vorinstalliert ist.

    Für Windows können Sie vorkompilierte Binärdateien von http://gnuwin32.sourceforge.net/packages/wget.htm herunterladen

Wenn Sie von tiger_2010 her upgraden, müssen Sie zuerst das Skript Drop_Nation_Tables_Generate_Script generieren und ausführen. Bevor Sie irgendwelche Bundesstaatdaten laden, müssen Sie die nationsweiten Daten mit Loader_Generate_Nation_Script laden. Dies erstellt ein Skript zum Laden. Loader_Generate_Nation_Script ist ein einmaliger Schritt, der vor dem Upgrade (von 2010) und vor neuen Installationen aufsgeführt werden sollte.

Wie ein Skript zum Laden der Daten für Ihre Plattform und für die gewünschten Bundesstaaten generiert werden kann siehe Loader_Generate_Script. Sie können diese stückchenweise installieren. Sie müssen nicht alle benötigten Staaten auf einmal laden. Sie können sie laden wenn Sie diese benötigen.

Nachdem die gewünschten Bundesstaaten geladen wurden, führen Sie so wie unter Install_Missing_Indexes beschrieben

SELECT install_missing_indexes();

aus.

Um zu überprüfen, dass alles funktioniert wie es sollte, können Sie eine Geokodierung über eine Adresse Ihres Staates laufen lassen, indem Sie Geocode verwenden

2.4.5. Upgrade Ihrer Tiger Geokodierer Installation

Wenn Sie den Tiger Geokodierer der mit 2.0+ paketiert ist bereits installiert haben, können Sie die Funktionen jederzeit sogar mit einem vorläufigen Tarball aktualisieren, wenn Bugs fixiert wurden oder Sie es unbedingt benötigen. Dies funktioniert nur für einen Tiger Geokodierer, der nicht als Extension installiert wurde.

Wenn Sie keinen Ordner "extras" haben, können Sie http://postgis.net/stuff/postgis-3.2.0dev.tar.gz herunterladen

tar xvfz postgis-3.2.0dev.tar.gz

cd postgis-3.2.0dev/extras/tiger_geocoder/tiger_2011

Finden Sie das Skript upgrade_geocoder.bat auf Windows, oder upgrade_geocoder.sh unter Linux/Unix/Mac OSX. Editieren Sie die Datei um die Berechtigungsnachweise für Ihre PostGIS Datenbank zu erhalten.

Wenn Sie von 2010 oder 2011 her upgraden, sollten Sie die Loader-Skriptzeile auskommentieren, um das neueste Skript zum Laden der Daten von 2012 zu erhalten.

Dann führen Sie das dazugehörige Skript von der Befehlszeile aus.

Anschließend löschen Sie alle "nation"-Tabellen und laden die Neuen. Erstellen Sie ein "drop"-Skript mit den unter Drop_Nation_Tables_Generate_Script beschriebenen SQL-Anweisungen

SELECT drop_nation_tables_generate_script();

Führen Sie die erstellten SQL "drop"-Anweisungen aus.

Die untere SELECT Anweisung erstellt ein Skript zum Laden eines Staates. Details dazu finden Sie unter Loader_Generate_Nation_Script.

Auf Windows:

SELECT loader_generate_nation_script('windows'); 

Auf Unix/Linux:

SELECT loader_generate_nation_script('sh');

Siehe Section 2.4.4, “Tiger-Daten laden” für Anleitungen wie das "generate"-Skript auszuführen ist. Dies muss nur einmal ausgeführt werden.

[Note]

Sie können eine Mischung aus Bundesstaattabellen von 2010/2011 haben und jeden Bundesstaat getrennt aktualisieren. Bevor Sie einen Bundesstaat auf 2011 aktualisieren, müssen Sie zuerst die Tabellen von 2010 für diesen Bundesstaat mit Drop_State_Tables_Generate_Script entfernen.

2.5. Übliche Probleme bei der Installation

Falls Ihre Installation/Upgrade nicht so verläuft wie erwartet, gibt es eine ganze Reihe von Dingen zu überprüfen.

  1. Überprüfen Sie, ob Sie PostgreSQL 9.6 oder neuer installiert haben und dass die Version des PostgreSQL Quellcodes, gegen den Sie kompilieren, mit der Version der laufenden PostgreSQL Datenbank übereinstimmt. Ein Wirrwarr kann dann entstehen, wenn die Linux Distribution bereits PostgreSQL installiert hat, oder wenn Sie PostgreSQL in einem anderen Zusammenhang installiert und darauf vergessen haben. PostGIS funktioniert nur mit PostgreSQL 9.6 oder jünger und es kommt zu merkwürdigen, unerwarteten Fehlermeldungen, wenn Sie eine ältere Version verwenden. Um die Version Ihrer laufenden PostgreSQL Datenbank zu überprüfen, können Sie sich mittels psql zur Datenbank verbinden und folgende Anfrage ausführen:

    SELECT version();

    Falls Sie eine RPM-basierte Distribution am Laufen haben, können Sie nach vorinstallierten Paketen mit dem Befehl rpm suchen: rpm -qa | grep postgresql

  2. Wenn das Upgrade schief geht, stellen Sie bitte sicher, dass PostGIS, in der Datenbank die Sie wiederherstellen wollen, installiert ist.

    SELECT postgis_full_version();

Überprüfen Sie bitte auch, ob "configure" den korrekten Speicherort und die korrekte Version von PostgreSQL, sowie der Bibliotheken Proj4 und GEOS gefunden hat.

  1. Die Ausgabe von configure wird verwendet, um die Datei postgis_config.h zu erstellen. Überprüfen Sie bitte, ob die Variablen POSTGIS_PGSQL_VERSION, POSTGIS_PROJ_VERSION und POSTGIS_GEOS_VERSION korrekt gesetzt sind.

Chapter 3. PostGIS Administration

3.1. Performance Tuning

Tuning for PostGIS performance is much like tuning for any PostgreSQL workload. The only additional consideration is that geometries and rasters are usually large, so memory-related optimizations generally have more of an impact on PostGIS than other types of PostgreSQL queries.

For general details about optimizing PostgreSQL, refer to Tuning your PostgreSQL Server.

For PostgreSQL 9.4+ configuration can be set at the server level without touching postgresql.conf or postgresql.auto.conf by using the ALTER SYSTEM command.

ALTER SYSTEM SET work_mem = '256MB';
-- this forces non-startup configs to take effect for new connections
SELECT pg_reload_conf();
-- show current setting value
-- use SHOW ALL to see all settings
SHOW work_mem;

In addition to the Postgres settings, PostGIS has some custom settings which are listed in Section 8.2, “PostGIS Grand Unified Custom Variables (GUCs)”.

3.1.1. Startup

These settings are configured in postgresql.conf:

constraint_exclusion

  • Default: partition

  • This is generally used for table partitioning. The default for this is set to "partition" which is ideal for PostgreSQL 8.4 and above since it will force the planner to only analyze tables for constraint consideration if they are in an inherited hierarchy and not pay the planner penalty otherwise.

shared_buffers

  • Default: ~128MB in PostgreSQL 9.6

  • Set to about 25% to 40% of available RAM. On windows you may not be able to set as high.

max_worker_processes This setting is only available for PostgreSQL 9.4+. For PostgreSQL 9.6+ this setting has additional importance in that it controls the max number of processes you can have for parallel queries.

  • Default: 8

  • Sets the maximum number of background processes that the system can support. This parameter can only be set at server start.

3.1.2. Runtime

work_mem - sets the size of memory used for sort operations and complex queries

  • Default: 1-4MB

  • Adjust up for large dbs, complex queries, lots of RAM

  • Adjust down for many concurrent users or low RAM.

  • If you have lots of RAM and few developers:

    SET work_mem TO '256MB';

maintenance_work_mem - the memory size used for VACUUM, CREATE INDEX, etc.

  • Default: 16-64MB

  • Generally too low - ties up I/O, locks objects while swapping memory

  • Recommend 32MB to 1GB on production servers w/lots of RAM, but depends on the # of concurrent users. If you have lots of RAM and few developers:

    SET maintenance_work_mem TO '1GB';

max_parallel_workers_per_gather

This setting is only available for PostgreSQL 9.6+ and will only affect PostGIS 2.3+, since only PostGIS 2.3+ supports parallel queries. If set to higher than 0, then some queries such as those involving relation functions like ST_Intersects can use multiple processes and can run more than twice as fast when doing so. If you have a lot of processors to spare, you should change the value of this to as many processors as you have. Also make sure to bump up max_worker_processes to at least as high as this number.

  • Default: 0

  • Sets the maximum number of workers that can be started by a single Gather node. Parallel workers are taken from the pool of processes established by max_worker_processes. Note that the requested number of workers may not actually be available at run time. If this occurs, the plan will run with fewer workers than expected, which may be inefficient. Setting this value to 0, which is the default, disables parallel query execution.

3.2. Configuring raster support

If you enabled raster support you may want to read below how to properly configure it.

As of PostGIS 2.1.3, out-of-db rasters and all raster drivers are disabled by default. In order to re-enable these, you need to set the following environment variables POSTGIS_GDAL_ENABLED_DRIVERS and POSTGIS_ENABLE_OUTDB_RASTERS in the server environment. For PostGIS 2.2, you can use the more cross-platform approach of setting the corresponding Section 8.2, “PostGIS Grand Unified Custom Variables (GUCs)”.

If you want to enable offline raster:

POSTGIS_ENABLE_OUTDB_RASTERS=1

Any other setting or no setting at all will disable out of db rasters.

In order to enable all GDAL drivers available in your GDAL install, set this environment variable as follows

POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL

If you want to only enable specific drivers, set your environment variable as follows:

POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"
[Note]

If you are on windows, do not quote the driver list

Setting environment variables varies depending on OS. For PostgreSQL installed on Ubuntu or Debian via apt-postgresql, the preferred way is to edit /etc/postgresql/10/main/environment where 10 refers to version of PostgreSQL and main refers to the cluster.

On windows, if you are running as a service, you can set via System variables which for Windows 7 you can get to by right-clicking on Computer->Properties Advanced System Settings or in explorer navigating to Control Panel\All Control Panel Items\System. Then clicking Advanced System Settings ->Advanced->Environment Variables and adding new system variables.

After you set the environment variables, you'll need to restart your PostgreSQL service for the changes to take effect.

3.3. Creating spatial databases

3.3.1. Spatially enable database using EXTENSION

If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/postgis modules, you can turn a database into a spatial one using the EXTENSION mechanism.

Core postgis extension includes geometry, geography, spatial_ref_sys and all the functions and comments. Raster and topology are packaged as a separate extension.

Run the following SQL snippet in the database you want to enable spatially:

CREATE EXTENSION IF NOT EXISTS plpgsql;
      CREATE EXTENSION postgis;
      CREATE EXTENSION postgis_raster; -- OPTIONAL
      CREATE EXTENSION postgis_topology; -- OPTIONAL

3.3.2. Spatially enable database without using EXTENSION (discouraged)

[Note]

This is generally only needed if you cannot or don't want to get PostGIS installed in the PostgreSQL extension directory (for example during testing, development or in a restricted environment).

Adding PostGIS objects and function definitions into your database is done by loading the various sql files located in [prefix]/share/contrib as specified during the build phase.

The core PostGIS objects (geometry and geography types, and their support functions) are in the postgis.sql script. Raster objects are in the rtpostgis.sql script. Topology objects are in the topology.sql script.

For a complete set of EPSG coordinate system definition identifiers, you can also load the spatial_ref_sys.sql definitions file and populate the spatial_ref_sys table. This will permit you to perform ST_Transform() operations on geometries.

If you wish to add comments to the PostGIS functions, you can find them in the postgis_comments.sql script. Comments can be viewed by simply typing \dd [function_name] from a psql terminal window.

Run the following Shell commands in your terminal:

DB=[yourdatabase]
    SCRIPTSDIR=`pg_config --sharedir`/contrib/postgis-3.1/

    # Core objects
    psql -d ${DB} -f ${SCRIPTSDIR}/postgis.sql
    psql -d ${DB} -f ${SCRIPTSDIR}/spatial_ref_sys.sql
    psql -d ${DB} -f ${SCRIPTSDIR}/postgis_comments.sql # OPTIONAL

    # Raster support (OPTIONAL)
    psql -d ${DB} -f ${SCRIPTSDIR}/rtpostgis.sql
    psql -d ${DB} -f ${SCRIPTSDIR}/raster_comments.sql # OPTIONAL

    # Topology support (OPTIONAL)
    psql -d ${DB} -f ${SCRIPTSDIR}/topology.sql
    psql -d ${DB} -f ${SCRIPTSDIR}/topology_comments.sql # OPTIONAL

3.3.3. Create a spatially-enabled database from a template

Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >= 1.1.5) load the PostGIS functions into a template database called template_postgis. If the template_postgis database exists in your PostgreSQL installation then it is possible for users and/or applications to create spatially-enabled databases using a single command. Note that in both cases, the database user must have been granted the privilege to create new databases.

From the shell:

# createdb -T template_postgis my_spatial_db

From SQL:

postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis

3.4. Upgrading spatial databases

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions.

Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and a HARD UPGRADE procedure for major releases.

Before attempting to upgrade PostGIS, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will always be able to restore the dump with a HARD UPGRADE.

3.4.1. Soft upgrade

If you installed your database using extensions, you'll need to upgrade using the extension model as well. If you installed using the old sql script way, then you should upgrade using the sql script way. Please refer to the appropriate.

3.4.1.1. Soft Upgrade Pre 9.1+ or without extensions

This section applies only to those who installed PostGIS not using extensions. If you have extensions and try to upgrade with this approach you'll get messages like:

can't drop ... because postgis extension depends on it

NOTE: if you are moving from PostGIS 1.* to PostGIS 2.* or from PostGIS 2.* prior to r7409, you cannot use this procedure but would rather need to do a HARD UPGRADE.

After compiling and installing (make install) you should find a set of *_upgrade.sql files in the installation folders. You can list them all with:

ls `pg_config --sharedir`/contrib/postgis-3.2.0dev/*_upgrade.sql

Load them all in turn, starting from postgis_upgrade.sql.

psql -f postgis_upgrade.sql -d your_spatial_database

The same procedure applies to raster, topology and sfcgal extensions, with upgrade files named rtpostgis_upgrade.sql, topology_upgrade.sql and sfcgal_upgrade.sql respectively. If you need them:

psql -f rtpostgis_upgrade.sql -d your_spatial_database
psql -f topology_upgrade.sql -d your_spatial_database
psql -f sfcgal_upgrade.sql -d your_spatial_database
[Note]

If you can't find the postgis_upgrade.sql specific for upgrading your version you are using a version too early for a soft upgrade and need to do a HARD UPGRADE.

The ??? function should inform you about the need to run this kind of upgrade using a "procs need upgrade" message.

3.4.1.2. Soft Upgrade 9.1+ using extensions

If you originally installed PostGIS with extensions, then you need to upgrade using extensions as well. Doing a minor upgrade with extensions, is fairly painless.

ALTER EXTENSION postgis UPDATE TO "3.2.0dev";
ALTER EXTENSION postgis_topology UPDATE TO "3.2.0dev";

If you get an error notice something like:

No migration path defined for ... to 3.2.0dev

Then you'll need to backup your database, create a fresh one as described in Section 3.3.1, “Spatially enable database using EXTENSION” and then restore your backup ontop of this new database.

If you get a notice message like:

Version "3.2.0dev" of extension "postgis" is already installed

Then everything is already up to date and you can safely ignore it. UNLESS you're attempting to upgrade from an development version to the next (which doesn't get a new version number); in that case you can append "next" to the version string, and next time you'll need to drop the "next" suffix again:

ALTER EXTENSION postgis UPDATE TO "3.2.0devnext";
ALTER EXTENSION postgis_topology UPDATE TO "3.2.0devnext";
[Note]

If you installed PostGIS originally without a version specified, you can often skip the reinstallation of postgis extension before restoring since the backup just has CREATE EXTENSION postgis and thus picks up the newest latest version during restore.

[Note]

If you are upgrading PostGIS extension from a version prior to 3.0.0 you'll end up with an unpackaged PostGIS Raster support. You can repackage the raster support using:

    CREATE EXTENSION postgis_raster FROM unpackaged;
    

And then, if you don't need it, drop it with:

DROP EXTENSION postgis_raster;
    

3.4.2. Hard upgrade

By HARD UPGRADE we mean full dump/reload of postgis-enabled databases. You need a HARD UPGRADE when PostGIS objects' internal storage changes or when SOFT UPGRADE is not possible. The Release Notes appendix reports for each version whether you need a dump/reload (HARD UPGRADE) to upgrade.

The dump/reload process is assisted by the postgis_restore.pl script which takes care of skipping from the dump all definitions which belong to PostGIS (including old ones), allowing you to restore your schemas and data into a database with PostGIS installed without getting duplicate symbol errors or bringing forward deprecated objects.

Supplementary instructions for windows users are available at Windows Hard upgrade.

The Procedure is as follows:

  1. Create a "custom-format" dump of the database you want to upgrade (let's call it olddb) include binary blobs (-b) and verbose (-v) output. The user can be the owner of the db, need not be postgres super account.

    pg_dump -h localhost -p 5432 -U postgres -Fc -b -v -f "/somepath/olddb.backup" olddb
  2. Do a fresh install of PostGIS in a new database -- we'll refer to this database as newdb. Please refer to Section 3.3.2, “Spatially enable database without using EXTENSION (discouraged)” and Section 3.3.1, “Spatially enable database using EXTENSION” for instructions on how to do this.

    The spatial_ref_sys entries found in your dump will be restored, but they will not override existing ones in spatial_ref_sys. This is to ensure that fixes in the official set will be properly propagated to restored databases. If for any reason you really want your own overrides of standard entries just don't load the spatial_ref_sys.sql file when creating the new db.

    If your database is really old or you know you've been using long deprecated functions in your views and functions, you might need to load legacy.sql for all your functions and views etc. to properly come back. Only do this if _really_ needed. Consider upgrading your views and functions before dumping instead, if possible. The deprecated functions can be later removed by loading uninstall_legacy.sql.

  3. Restore your backup into your fresh newdb database using postgis_restore.pl. Unexpected errors, if any, will be printed to the standard error stream by psql. Keep a log of those.

    perl utils/postgis_restore.pl "/somepath/olddb.backup" | psql -h localhost -p 5432 -U postgres newdb 2> errors.txt

Errors may arise in the following cases:

  1. Some of your views or functions make use of deprecated PostGIS objects. In order to fix this you may try loading legacy.sql script prior to restore or you'll have to restore to a version of PostGIS which still contains those objects and try a migration again after porting your code. If the legacy.sql way works for you, don't forget to fix your code to stop using deprecated functions and drop them loading uninstall_legacy.sql.

  2. Some custom records of spatial_ref_sys in dump file have an invalid SRID value. Valid SRID values are bigger than 0 and smaller than 999000. Values in the 999000.999999 range are reserved for internal use while values > 999999 can't be used at all. All your custom records with invalid SRIDs will be retained, with those > 999999 moved into the reserved range, but the spatial_ref_sys table would lose a check constraint guarding for that invariant to hold and possibly also its primary key ( when multiple invalid SRIDS get converted to the same reserved SRID value ).

    In order to fix this you should copy your custom SRS to a SRID with a valid value (maybe in the 910000..910999 range), convert all your tables to the new srid (see UpdateGeometrySRID), delete the invalid entry from spatial_ref_sys and re-construct the check(s) with:

    ALTER TABLE spatial_ref_sys ADD CONSTRAINT spatial_ref_sys_srid_check check (srid > 0 AND srid < 999000 );

    ALTER TABLE spatial_ref_sys ADD PRIMARY KEY(srid));

    If you are upgrading an old database containing french IGN cartography, you will have probably SRIDs out of range and you will see, when importing your database, issues like this :

     WARNING: SRID 310642222 converted to 999175 (in reserved zone)

    In this case, you can try following steps : first throw out completely the IGN from the sql which is resulting from postgis_restore.pl. So, after having run :

    perl utils/postgis_restore.pl "/somepath/olddb.backup" > olddb.sql

    run this command :

    grep -v IGNF olddb.sql > olddb-without-IGN.sql

    Create then your newdb, activate the required Postgis extensions, and insert properly the french system IGN with : this script After these operations, import your data :

    psql -h localhost -p 5432 -U postgres -d newdb -f olddb-without-IGN.sql  2> errors.txt

Chapter 4. Data Management

4.1. Geometry Type

The Open Geospatial Consortium (OGC) developed the Simple Features Access standard (SFA) to provide a model for geospatial data. It defines the fundamental spatial data type of Geometry, with a set of subtypes that represent various kinds and dimensions of geometric shapes.

The core Geometry subtypes model shapes on the 2-dimensional Cartesian coordinate plane constructed from points and line segments:

  • Point - a 0-dimensional geometry that represents a single location in coordinate space

  • LineString - a 1-dimensional line formed by a contigous sequence of line segments

  • LinearRing - a LineString which is closed and simple (non-intersecting)

  • Polygon - a 2-dimensional planar region, delimited by an exterior boundary and zero or more interior boundaries (holes). The boundaries are formed by LinearRings

  • MultiPoint - a collection of Points

  • MultiLineString - a collection of LineStrings

  • MultiPolygon - a collection of non-overlapping polygons

  • GeometryCollection - a heterogenous (mixed) collection of geometries

The subsequent SFA standard Simple Features Access - Part 1: Common architecture v1.2.1 added the following subtypes:

  • PolyhedralSurface - a 3-dimensional surface consisting of a set of planar Polygons defined in 3D space

  • Triangle - a triangle defined by 3 distinct non-collinear coordinates

  • TIN - a collection of non-overlapping Triangles representing a triangulated irregular network

The ISO SQL/MM standard introduced Geometry subtypes to model geospatial data containing circular arcs (see also Section 4.1.3, “SQL/MM Part 3 - Curves”):

  • CircularString - a 1-dimensional curve formed by a contiguous sequence of circular arcs

  • CompoundCurve - a 1-dimensional curve formed by a contiguous sequence of LineStrings or CircularStrings

  • CurvePolygon - a 2-dimensional planar region delimited by a CompoundCurve outer boundary and zero or more CompoundCurve interior boundaries (holes)

  • MultiCurve - a collection of LineStrings or CompoundCurves

  • MultiSurface - a collection of Polygons and CurvePolygons

PostGIS implements the OGC Simple Features model by defining a PostgreSQL datatype called geometry. It represents all of the OGC subtypes by using an internal type code (see GeometryType).

The geometry type is opaque, which means that all access is done via invoking functions on geometry data objects. The functions allow creating geometry objects, accessing or updating all internal fields, and compute new geometry values. PostGIS supports all the functions specified in the OGC Simple feature access - Part 2: SQL option (SFS) specification, as well many others. See Chapter 8, Referenz PostGIS for the full list.

[Note]

PostGIS follows the SFA standard by prefixing spatial functions with "ST_". This was intended to stand for "Spatial and Temporal", but the temporal part of the standard was never developed. Instead it can be interpreted as "Spatial Type".

The SFA standard specifies that spatial objects include a Spatial Reference System identifier (SRID). The SRID is required when creating spatial objects for insertion into the database (it may be defaulted to 0). See ??? and Section 4.4, “Die SPATIAL_REF_SYS Tabelle und Koordinatenreferenzsysteme”

To make querying geometry efficient PostGIS defines various kinds of spatial indexes. See Section 4.8, “Erstellung von Indizes” for details.

4.1.1. OGC WKB and WKT

The OGC SFA specification defines two standard formats for representing geometry values for external use: Well-Known Text (WKT) and Well-Known Binary (WKB). Both WKT and WKB include information about the type of the object and the coordinates which define it.

Well-Known Text (WKT) provides a standard textual representation of spatial data. Examples of WKT representations of spatial objects are:

  • POINT(0 0)

  • POINT(0 0)

  • POINT(0 0)

  • LINESTRING(0 0,1 1,1 2)

  • POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

  • MULTIPOINT((0 0),(1 2))

  • MULTIPOINT((0 0),(1 2))

  • MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

  • MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

  • GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

Input and output of WKT is provided by the functions ST_AsText and ???:

text WKT = ST_AsText(geometry);
geometry = ST_GeomFromText(text WKT, SRID);

For example, a statement to create and insert a spatial object from WKT and a SRID is:

INSERT INTO geotable ( geom, name )
  VALUES ( ST_GeomFromText('POINT(-126.4 45.32)', 312), 'A Place');

Well-Known Binary (WKB) provides a portable, faithful representation of spatial data as binary data (arrays of bytes). Examples of the WKB representations of spatial objects are:

  • WKT: POINT(1 1)

    WKB: 0101000000000000000000F03F000000000000F03

  • WKT: LINESTRING (2 2, 9 9)

    WKB: 0102000000020000000000000000000040000000000000004000000000000022400000000000002240

Input and output of WKB is provided by the functions ST_AsBinary and ???:

bytea WKB = ST_AsBinary(geometry);
geometry = ST_GeomFromWKB(bytea WKB, SRID);

For example, a statement to create and insert a spatial object from WKB is:

INSERT INTO geotable ( geom, name )
  VALUES ( ST_GeomFromWKB('\x0101000000000000000000f03f000000000000f03f', 312), 'A Place');

4.1.2. PostGIS EWKB and EWKT

OGC SFA specifications initially supported only 2D geometries, and the geometry SRID is not included in the input/output representations. The OGC SFA specification 1.2.1 (which aligns with the ISO 19125 standard) adds support for 3D (ZYZ and XYM) and 4D (XYZM) coordinates, but still does not include the SRID value.

Because of these limitations PostGIS defined extended EWKB and EWKT formats. They provide 3D (XYZ and XYM) and 4D (XYZM) coordinate support and include SRID information. Including all geometry information allows PostGIS to use EWKB as the format of record (e.g. in DUMP files).

EWKB and EWKT are used for the "canonical forms" of PostGIS data objects. For input, the canonical form for binary data is EWKB, and for text data either EWKB or EWKT is accepted. This allows geometry values to be created by casting a text value in either HEXEWKB or EWKT to a geometry value using ::geometry. For output, the canonical form for binary is EWKB, and for text it is HEXEWKB (hex-encoded EWKB).

For example this statement creates a geometry by casting from an EWKT text value, and outputs it using the canonical form of HEXEWKB:

SELECT 'SRID=4;POINT(0 0)'::geometry;
  geometry
  ----------------------------------------------------
  01010000200400000000000000000000000000000000000000

PostGIS EWKT output has a few differences to OGC WKT:

  • For 3DZ geometries the Z qualifier is omitted:

    OGC: POINT Z (1 2 3)

    EWKT: POINT(1 2 3)

  • For 3DM geometries the M qualifier is included:

    OGC: POINT M (1 2 3)

    EWKT: POINTM(1 2 3)

  • For 4D geometries the ZM qualifier is omitted:

    OGC: POINT ZM (1 2 3 4)

    EWKT: POINT(1 2 3 4)

EWKT avoids over-specifying dimensionality and the inconsistencies that can occur with the OGC/ISO format, such as:

  • POINT(0 0)

  • POINT(0 0)

  • POINT(0 0)

[Caution]

PostGIS extended formats are currently a superset of the OGC ones, so that every valid OGC WKB/WKT is also valid EWKB/EWKT. However, this might vary in the future, if the OGC extends a format in a way that conflicts with the PosGIS definition. Thus you SHOULD NOT rely on this compatibility!

Examples of the EWKT text representation of spatial objects are:

  • POINT(0 0 0) -- XYZ

  • SRID=32632;POINT(0 0) -- XY mit SRID

  • POINTM(0 0 0) -- XYM

  • POINT(0 0 0 0) -- XYZM

  • SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM mit SRID

  • MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4 1))

  • POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))

  • MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))

  • GEOMETRYCOLLECTIONM( POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5) )

  • MULTICURVE( (0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4) )

  • POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )

  • TRIANGLE ((0 0, 0 9, 9 0, 0 0))

  • TIN( ((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 0 0 0)) )

Input and output using these formats is available using the following functions:

bytea EWKB = ST_AsEWKB(geometry);
text EWKT = ST_AsEWKT(geometry);
geometry = ST_GeomFromEWKB(bytea EWKB);
geometry = ST_GeomFromEWKT(text EWKT);

For example, a statement to create and insert a PostGIS spatial object using EWKT is:

INSERT INTO geotable ( geom, name )
  VALUES ( ST_GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)'), 'A Place' )

4.1.3. SQL/MM Part 3 - Curves

The ISO/IEC 13249-3 SQL Multimedia - Spatial standard (SQL/MM) extends the OGC SFA to define Geometry subtypes containing curves with circular arcs. The SQL/MM definitions include 3DM, 3DZ and 4D coordinates, but do not allow the embedding of SRID information.

Examples of curved geometries are shown below:

  • CIRCULARSTRING(0 0, 1 1, 1 0)

    CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)

    CIRCULARSTRING ist der grundlegende Kurventyp, ähnlich wie LINESTRING in der linearen Welt. Ein einziges Segment benötigt drei Punkte, den Anfangs- und den Endpunkt (erster und dritter) und irgendeinen weiterer Punkt auf dem Kreisbogen. Eine Ausnahme ist der geschlossene Kreis, wo Anfangs- und Endpunkt ident sind. In diesem Fall muss der zweite Punkt dem Kreismittelpunkt entsprechen. Um Kreisbögen aneinanderzuketten, wird der Endpunkt des vorangehenden Bogens zum Anfangspunkt des nächstfolgenden Bogens, genauso wie beim LINESTRING. D.h., dass ein Kreisbogen eine ungerade Anzahl an Punkten grösser als 1 aufweisen muss.

  • COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))

    Eine zusammengesetzte Kurve ist eine einzelne, durchgängige Kurve, die sowohl gekrümmte (kreisförmige) als auch gerade Segmente aufweist. Dies bedeutet, daß die Komponenten nicht nur wohlgeformt sein müssen, sondern auch der Endpunkt einer jeden Komponente (außer der letzten) mit dem Anfangspunkt der nachfolgenden Komponente zusammenfallen muss.

  • CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1, 1 1))

    Beispiel einer zusammengesetzten Kurve in einem Kurvenpolygon: CURVEPOLYGON(COMPOUNDCURVE(CIRCULARSTRING(0 0,2 0, 2 1, 2 3, 4 3),(4 3, 4 5, 1 4, 0 0)), CIRCULARSTRING(1.7 1, 1.4 0.4, 1.6 0.4, 1.6 0.5, 1.7 1) )

    Ein CurvePolygon hat, genau wie ein Polygon, einen äußeren Ring und keinen oder mehrere innere Ringe. Der Unterschied liegt darin, dass ein Ring aus Kreisbögen, Geraden oder zusammengesetzten Strecken bestehen kann.

    Ab PostGIS 1.4 werden zusammengesetzte Kurven/CompoundCurve in einem Kurvenpolygon/CurvePolygon unterstützt.

  • MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))

    Eine MultiCurve ist eine Sammelgeometrie von Kurven, welche aus Geraden, Kreisabschnitte oder zusammengesetzten Abschnitten bestehen kann.

  • MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1, 1 1)),((10 10, 14 12, 11 10, 10 10),(11 11, 11.5 11, 11 11.5, 11 11)))

    Dies ist eine Sammelgeometrie von Oberflächen, welche (lineare) Polygone oder Kurvenpolygone sein können.

[Note]

Alle Gleitpunkt Vergleiche der SQL-MM Implementierung werden mit einer bestimmten Toleranz ausgeführt, zurzeit 1E-8.

4.2. Geography Type

The PostGIS geography type provides native support for spatial features represented on "geographic" coordinates (sometimes called "geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in angular units (degrees).

Der geometrische Datentyp von PostGIS beruht auf der Ebene. Die kürzeste Entfernung zwischen zwei Punkten einer Ebene entspricht einer Gerade. Das bedeutet, dass geometrische Berechnungen (wie Flächen, Distanzen, Längen, Schnittpunkte, etc.) im kartesischen Koordinatensystem mit geradlinigen Vektoren ausgeführt werden können.

Der geographische Datentyp von PostGIS beruht auf einer Kugel. Die kürzeste Verbindung zwischen zwei Punkten auf einer Kugeloberfläche ist ein Bogenteil eines Großkreises. D.h., dass Berechnungen auf geographische Datentypen (wie Flächen, Distanzen, Längen, Schnittpunkte, etc.) auf der Kugeloberfläche mit einer komplexeren Mathematik durchgeführt werden müssen. Für genauere Messungen müssen die Berechnungen das Rotationsellipsoid der Erde in Betracht ziehen.

Da die zugrunde liegende Mathematik wesentlich schwieriger ist, gibt es weniger Funktionen für den geographischen Datentyp, als für den geometrischen Datentyp. Mit der Zeit werden neue Algorithmen hinugefügt und die Möglichkeiten des geographischen Datentyps erweitert werden.

Es verwendet den Datentyp geography, der allerdings von den Funktionen der Bibliothek GEOS in keiner Weise unterstützt wird. Als provisorische Lösung kann man zwischen dem geometrischen und dem geographischen Datentypen hin- und herkonvertieren.

Vor PostGIS 2.2 hat der geographische Datentyp nur WGS 84 Länge und Breite (SRID:4326) unterstützt. Ab PostGIS 2.2 kann dieser jedes Koordinatenreferenzsystem verwenden, das auf Länge und Breite basiert und in der Tabelle spatial_ref_sysaufgeführt ist. Sie können sogar Ihr eigenes Polarkoordinatenreferenzsystem hinzufügen, wie unter geography type is not limited to earth beschrieben.

Unabhängig vom verwendeten Koordinatenreferenzsystem sind die Einheiten der ausgegebenen Messungen (ST_Distance, ST_Length, ST_Perimeter, ST_Area) und der Eingabe für ??? in Meter.

Der geographische Datentyp verwendet die Typmod-Formatangabe von PostgreSQL, sodass eine Tabelle mit einem geographischen Attribut in einem einzigen Schritt erstellt werden kann. Es werden alle Formate des OGC-Standards unterstützt, mit Ausnahme von Kurven.

4.2.1. Grundsätzliches zum geographischen Datentyp

Der geographische Datentyp unterstützt Geometrien, ausgenommen sind jedoch Kuven, TINS und POLYHEDRALSURFACEs. Daten vom geometrischen Datentyp, welche eine SRID von 4326 aufweisen, werden implizit in den geographischen Datentyp umgewandelt. Sie können Daten auch entsprechend der EWKT- und EWKB-Konvention einfügen.

  • POINT: Erstellung einer 2D-Punkttabelle mit dem geographischen Datentyp. Wenn die SRID nicht festgelegt ist, wird 4326 WGS 84 Länge und Breite angenommen:

    CREATE TABLE ptgeogwgs(gid serial PRIMARY KEY, geog geography(POINT) );

    POINT: Erstellung einer Tabelle mit 2D-Punkten als geographischen Datentyp in NAD83 Länge und Breite:

    CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography(POINT,4269) );

    Erstellung einer Punkttabelle mit Z-Koordinaten und explizit angegebener SRID

    CREATE TABLE ptzgeogwgs84(gid serial PRIMARY KEY, geog geography(POINTZ,4326) );
  • LINESTRING

    CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography(LINESTRING) );
  • POLYGON

    -- Polygon in NAD 1927 Länge und Breite
    CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography(POLYGON,4267) );
  • MULTIPOINT

  • MULTILINESTRING

  • MULTIPOLYGON

  • GEOMETRYCOLLECTION

Die Attribute des geographischen Datentyps werden in dem System View geography_columns registriert.

Nun überprüfen Sie bitte ob Ihre Tabelle in der gespeicherten Abfrage "geography_columns" aufscheint.

Sie können eine neue Tabelle mit einer geographischen Datentypspalte mit der Syntax von CREATE TABLE erstellen.

CREATE TABLE global_points (
    id SERIAL PRIMARY KEY,
    name VARCHAR(64),
    location GEOGRAPHY(POINT,4326)
  );

Beachten Sie bitte, dass die Spalte "location" den geographischen Datentyp verwendet und dieser zwei optionale Modifikatoren unterstützt: Einen Typmodifikator, der die geometrische Form und die Dimension der Geometriespalte festlegt; ein Modifikator für SRID, der den Identifikator für das Koordinatenreferenzsystem auf eine bestimmte Zahl einschränkt.

Für den Typmodifikator sind folgende Werte erlaubt: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON. Der Modifikator unterstützt auch Einschränkungen der Dimensionalität durch Nachsilben: Z, M und ZM. So erlaubt zum Beispiel ein Modifikator mit dem Wert 'LINESTRINGM' nur die Eingabe von Linienzügen mit drei Dimensionen, wobei die dritte Dimension als Kilometrierung/measure behandelt wird. Ebenso verlangt 'POINTZM' die Eingabe von vierdimensionalen Daten.

Wenn Sie keine SRID angeben, dann wird standardmäßig die SRID 4326 WGS84 Länge/Breite verwendet und alle Berechnungen in WGS84 ausgeführt.

Sobald Sie Ihre Tabelle erstellt haben, können Sie diese in der Tabelle "geography_columns" sehen:

-- Metadaten abfragen
SELECT * FROM geography_columns;

Sie können Daten auf dieselbe Art und Weise in die Tabelle einfügen wie Sie dies bei einer Geometriespalte tun würden:

-- Ein paar Daten in die Testtabelle einfügen
INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)');
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)');
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT(0 49)');

Die Erstellung eines Index funktioniert gleich wie beim Datentyp GEOMETRY. PostGIS erkennt, dass es sich um den Datentyp GEOGRAPHY handelt und erzeugt einen entsprechenden, auf einer Kugeloberfläche basierenden Index anstelle des üblichen planaren Index, der für den Datentyp GEOMETRY verwendet wird.

-- Einen sphärischen Index auf die Testtabelle legen
  CREATE INDEX global_points_gix ON global_points USING GIST ( location );

Anfrage und Messfunktionen verwenden die Einheit Meter. Daher sollten Entfernungsparameter in Metern ausgedrückt werden und die Rückgabewerte sollten ebenfalls in Meter (oder Quadratmeter für Flächen) erwartet werden.

-- Eine Distanzabfrage; Beachten Sie bitte, dass London ausserhalb der 1000km Toleranz liegt
  SELECT name FROM global_points WHERE ST_DWithin(location, 'SRID=4326;POINT(-110 29)'::geography, 1000000);

Sie können die Mächtigkeit von GEOGRAPHY erfahren, indem Sie berechnen, wie nahe ein Flugzeug, das von Seattle nach London (LINESTRING(-122.33 47.606, 0.0 51.5)) fliegt, an Reykjavik (POINT(-21.96 64.15)) vorbeikommt.

-- Die Entfernung mittels GEOGRAPHY ausrechnen (122.2km)
  SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15)':: geography);

-- Die Entfernung mittels GEOMETRIE ausrechnen (13.3 "degrees")
  SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geometry, 'POINT(-21.96 64.15)':: geometry);

Ausprobieren von verschiedenen Projektionen in Länge/Breie. Es ist jedes Koordinatenreferenzsystem in Länge und Breite zulässig, das in der Tabelle spatial_ref_sys aufgeführt ist.

-- NAD 83 in Länge und Breite
SELECT 'SRID=4269;POINT(-123 34)'::geography;
                    geography
----------------------------------------------------
 0101000020AD1000000000000000C05EC00000000000004140
(1 row)

-- NAD27  in Länge und Breite
SELECT 'SRID=4267;POINT(-123 34)'::geography;

                    geography
----------------------------------------------------
 0101000020AB1000000000000000C05EC00000000000004140
(1 row)

-- NAD83 UTM Zone in Meter, resultiert in einem Fehler, da metrische Projektion
SELECT 'SRID=26910;POINT(-123 34)'::geography;

ERROR:  Nur Koordinatensysteme in Länge und Breite werden vom geographischen Datentyp unterstützt.
LINE 1: SELECT 'SRID=26910;POINT(-123 34)'::geography;

Mit dem Datentyp GEOGRAPHY wird die wahre, kürzeste Entfernung auf der Kugeloberfläche zwischen Reykjavik und der Flugstrecke entlang des Großkreises von Seattle nach London errechnet.

Great Circle mapper Beim geometrischen Datentyp wird die Entfernung sinnloserweise in einem kartesischen Koordinatensystem zwischen Reykjavik und einer Geraden von Seattle nach London errechnet und auf einer ebenen Weltkarte angezeigt. Dem Namen nach mag das Ergebnis in der Einheit "Grad" angegeben sein, da es aber in keiner Weise irgendeinem wahren Winkel zwischen den Punkten entspricht, ist sogar die Verwendung der Bezeichnung "Grad" falsch.

4.2.2. Wann sollte man den geographischen Datentyp dem geometrischen Datentyp vorziehen

Der geographische Datentyp speichert die Koordinaten in Form von Länge und Breite. Er hat allerdings den Nachteil, dass für den Datentyp GEOGRAPHY weniger Funktionen zur Verfügung stehen, als für den Datentyp GEOMETRY und diese auch mehr CPU-Zeit beanspruchen.

Welchen Datentyp Sie wählen, sollte aufgrund der zu erwartenden Flächenausdehnung ihrer Anwendung festgelegt werden. Erstrecken sich Ihre Daten über den gesamten Globus oder über eine große kontinentale Fläche, oder sind sie auf einen Staat, ein Land oder eine Gemeinde beschränkt.

  • Wenn sich Ihre Daten in einem kleinen Bereich befinden, werden Sie vermutlich eine passende Projektion wählen und den geometrischen Datentyp verwenden, da dies in Bezug auf die Rechenleistung und die verfügbare Funktionalität die bessere Lösung ist.

  • Wenn Ihre Daten global sind oder einen ganzen Kontinent bedecken, ermöglicht der geographische Datentyp ein System aufzubauen, bei dem Sie sich nicht um Projektionsdetails kümmern müssen. Sie speichern die Daten als Länge und Breite und verwenden dann jene Funktionen, die für den geographischen Datentyp definiert sind.

  • Wenn Sie keine Ahnung von Projektionen haben, sich nicht näher damit beschäftigen wollen und die Einschränkungen der verfügbaren Funktionalität für den geographischen Datentyp in Kauf nehmen können, ist es vermutlich einfacher für Sie, den geographischen anstatt des geometrischen Datentyps zu verwenden.

Für einen Vergleich, welche Funktionalität von Geography vs. Geometry unterstützt wird, siehe Section 15.11, “PostGIS Function Support Matrix”. Für eine kurze Liste mit der Beschreibung der geographischen Funktionen, siehe Section 15.4, “PostGIS Geography Support Functions”

4.2.3. Fortgeschrittene FAQ's zum geographischen Datentyp

4.2.3.1. Werden die Berechnungen auf einer Kugel oder auf einem Rotationsellipsoid durchgeführt?
4.2.3.2. Wie schaut das mit der Datumsgrenze und den Polen aus?
4.2.3.3. Wie lang kann ein Bogen sein, damit er noch verarbeitet werden kann?
4.2.3.4. Warum dauert es so lange, die Fläche von Europa / Russland / irgendeiner anderen großen geographischen Region zu berechnen?

4.2.3.1.

Werden die Berechnungen auf einer Kugel oder auf einem Rotationsellipsoid durchgeführt?

Standardmäßig werden alle Entfernungs- und Flächenberechnungen auf dem Referenzellipsoid ausgeführt. Das Ergebnis der Berechnung sollte in lokalen Gebieten gut mit dem planaren Ergebnis zusammenpassen - eine gut gewählte lokale Projektion vorausgesetzt. Bei größeren Gebieten ist die Berechnung über das Referenzellipsoid genauer als eine Berechnung die auf der projizierten Ebene ausgeführt wird.

Alle geographischen Funktionen verfügen über eine Option um die Berechnung auf einer Kugel durchzuführen. Dies erreicht man, indem der letzte boolesche Eingabewert auf 'FALSE' gesetzt wird. Dies beschleunigt die Berechnung einigermaßen, insbesondere wenn die Geometrie sehr einfach gestaltet ist.

4.2.3.2.

Wie schaut das mit der Datumsgrenze und den Polen aus?

Alle diese Berechnungen wissen weder über Datumsgrenzen noch über Pole Bescheid. Da es sich um sphärische Koordinaten handelt (Länge und Breite), unterscheidet sich eine Geometrie, die eine Datumsgrenze überschreitet vom Gesichtspunkt der Berechnung her nicht von irgendeiner anderen Geometrie.

4.2.3.3.

Wie lang kann ein Bogen sein, damit er noch verarbeitet werden kann?

Wir verwenden Großkreisbögen als "Interpolationslinie" zwischen zwei Punkten. Das bedeutet, dass es für den Join zwischen zwei Punkten zwei Möglichkeiten gibt, je nachdem, aus welcher Richtung man den Großkreis überquert. Unser gesamter Code setzt voraus, dass die Punkte von der "kürzeren" der beiden Strecken her durch den Großkreis verbunden werden. Als Konsequenz wird eine Geometrie, welche Bögen von mehr als 180 Grad aufweist nicht korrekt modelliert.

4.2.3.4.

Warum dauert es so lange, die Fläche von Europa / Russland / irgendeiner anderen großen geographischen Region zu berechnen?

Weil das Polygon so verdammt groß ist! Große Flächen sind aus zwei Gründen schlecht: ihre Begrenzung ist riesig, wodurch der Index dazu tendiert, das Geoobjekt herauszuholen, egal wie Sie die Anfrage ausführen; die Anzahl der Knoten ist riesig, und Tests (wie ST_Distance, ST_Contains) müssen alle Knoten zumindest einmal, manchmal sogar n-mal durchlaufen (wobei N die Anzahl der Knoten im beteiligten Geoobjekt bezeichnet).

Wenn es sich um sehr große Polygone handelt, die Abfragen aber nur in kleinen Gebieten stattfinden, empfehlen wir wie beim geometrischen Datentyp, dass Sie die Geometrie in kleinere Stücke "denormalisieren". Dadurch kann der Index effiziente Unterabfragen auf Teile des Geoobjekts ausführen, da eine Abfrage nicht jedesmal das gesamte Geoobjekt herausholen muss. Konsultieren Sie dazu bitte die Dokumentation der Funktion???. Nur weil Sie ganz Europa in einem Polygon speichern *können* heißt das nicht, dass Sie dies auch tun *sollten*.

4.3. Erstellung einer räumlichen Tabelle

4.3.1. Erstellung einer räumlichen Tabelle

Die Erzeugung einer Tabelle mit räumlichen Daten kann in einem Schritt ausgeführt werden. Dies wird im folgenden Beispiel demonstriert, welches eine Straßentabelle mit einer geometrischen Spalte für 2D Linienzüge in WGS84 Länge/Breite erzeugt

CREATE TABLE ROADS (ID serial, ROAD_NAME text, geom geometry(LINESTRING,4326) );

Wir können zusätzliche Spalten hinzufügen, indem wir den normalen ALTER TABLE Befehl verwenden. Wir zeigen dies im nächsten Beispiel, wo wir einen 3D-Linienzug hinzufügen.

ALTER TABLE roads ADD COLUMN geom2 geometry(LINESTRINGZ,4326);

4.3.2. Der View GEOMETRY_COLUMNS

Die OpenGIS "Simple Features Specification for SQL" standardisert die Datentypen von Geoobjekten, die Funktionen die benötigt werden um diese zu verarbeiten, sowie die Metadatentabellen. Um sicherzustellen, dass die Metadaten konsistent bleiben, werden Vorgänge wie das Erstellen oder das Löschen einer Geometriespalte, durch dafür eigens von OpenGIS festgelegten Prozeduren ausgeführt.

GEOMETRY_COLUMNS ist ein View der den Systemkatalog der Datenbank ausliest. Er hat folgende Struktur:

\d geometry_columns
View "public.geometry_columns"
      Column       |          Type          | Modifiers
-------------------+------------------------+-----------
 f_table_catalog   | character varying(256) |
 f_table_schema    | character varying(256) |
 f_table_name      | character varying(256) |
 f_geometry_column | character varying(256) |
 coord_dimension   | integer                |
 srid              | integer                |
 type              | character varying(30)  |

Die Spalten bedeuten:

f_table_catalog, f_table_schema, f_table_name

Der vollständige Name der Tabelle, welche die Geometriespalte enthält. Die Bezeichnungen "catalog" und "schema" kommen von Oracle. Es gibt keine Entsprechung in PostgreSQL für "catalog", weshalb diese Spalte leer bleibt - für "schema" wird der Name des Schemas in PostgreSQL verwendet (standardmäßig public).

\d geometry_columns

Der Name der Geometriespalte in der Feature-Tabelle.

coord_dimension

Die räumliche Dimension (2-, 3- oder 4-dimensional) der Geometriespalte.

srid

Der Identifikator des Koordinatenreferenzsystems, welches für die Geometrie in dieser Tabelle verwendet wird. Dieser ist ein Fremdschlüssel, der sich auf die Tabelle SPATIAL_REF_SYS bezieht.

type

Der Datentyp des Geoobjekts. Um die räumliche Spalte auf einen einzelnen Datentyp zu beschränken, benutzen Sie bitte: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION oder die entsprechenden XYM Versionen POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM und GEOMETRYCOLLECTIONM. Für uneinheitliche Kollektionen (gemischete Datentypen) können Sie den Datentyp "GEOMETRY" verwenden.

[Note]

Dieses Attribut gehört (wahrscheinlich) nicht zur OpenGIS Spezifikation, wird aber benötigt um homogene Datentypen zu gewährleisten.

4.3.3. Geometrische Spalten in "geometry_columns" händisch registrieren

Zwei Fälle bei denen Sie dies benötigen könnten sind SQL-Views und Masseninserts. Beim Fall von Masseninserts können Sie die Registrierung in der Tabelle "geometry_columns" korrigieren, indem Sie auf die Spalte einen CONSTRAINT setzen oder ein "ALTER TABLE" durchführen. Falls Ihre Spalte Typmod basiert ist, geschieht die Registrierung beim Erstellungsprozess auf korrekte Weise, so dass Sie hier nichts tun müssen. Auch Views, bei denen keine räumliche Funktion auf die Geometrie angewendet wird, werden auf gleiche Weise wie die Geometrie der zugrunde liegenden Tabelle registriert.

-- Angenommen Sie erstellen folgenden View
CREATE VIEW  public.vwmytablemercator AS
        SELECT gid, ST_Transform(geom,3395) As geom, f_name
        FROM public.mytable;

-- Für eine korrekte Registrierung
-- wird eine Typumwandlung der Geometrie benötigt
--
DROP VIEW public.vwmytablemercator;
CREATE VIEW  public.vwmytablemercator AS
        SELECT gid, ST_Transform(geom,3395)::geometry(Geometry, 3395) As geom, f_name
        FROM public.mytable;

-- Wenn Sie sicher sind, das es sich bei der Geometrie um ein 2D-Polygon handelt, können Sie folgendes tun
DROP VIEW public.vwmytablemercator;
CREATE VIEW  public.vwmytablemercator AS
        SELECT gid, ST_Transform(geom,3395)::geometry(Polygon, 3395) As geom, f_name
        FROM public.mytable;
-- Angenommen Sie haben eine abgeleitete Tabelle über ein Masseninsert erzeugt
SELECT poi.gid, poi.geom, citybounds.city_name
INTO myschema.my_special_pois
FROM poi INNER JOIN citybounds ON ST_Intersects(citybounds.geom, poi.geom);

-- Einen 2D Index auf die neue Tabelle legen
CREATE INDEX idx_myschema_myspecialpois_geom_gist
  ON myschema.my_special_pois USING gist(geom);

-- Falls Ihre Punkte 3D-Punkte oder 3M-Punkte sind,
-- können Sie einen ND-Index anstatt eines 2D-Indexes erstellen
CREATE INDEX my_special_pois_geom_gist_nd
        ON my_special_pois USING gist(geom gist_geometry_ops_nd);

-- Um die Geometriespalte der neuen Tabelle in geometry_columns händisch zu registrieren.
-- Beachten Sie bitte, dass dies auch die zugrundeliegende Struktur der Tabelle ändert,
-- um die Spalte Typmod basiert zu machen.
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass);

-- Wenn Sie PostGIS 2.0 verwenden und aus welchem Grund auch immer
-- das alte Verhalten mit auf CONSTRAINTs basierender Definition benötigen
-- (wie im Fall von vererbten Tabellen bei denen nicht alle Kindtabellen denselben Datentyp und dieselbe SRID aufweisen),
-- setzen Sie das optionale Argument "use_typmod" auf FALSE
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass, false); 

Obwohl die alte auf CONSTRAINTs basierte Methode immer noch unterstützt wird, wird eine auf Constraints basierende Geometriespalte, die direkt in einem View verwendet wird, nicht korrekt in geometry_columns registriert. Eine Typmod basierte wird korrekt registriert. Im folgenden Beispiel definieren wir eine Spalte mit Typmod und eine andere mit Constraints.

CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry(POINT,4326));
SELECT AddGeometryColumn('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);

In psql:

\d pois_ny;

Wir sehen, das diese Spalten unterschiedlich definiert sind -- eine mittels Typmodifizierer, eine nutzt einen Constraint

Table "public.pois_ny"
  Column   |         Type          |                       Modifiers

-----------+-----------------------+------------------------------------------------------
 gid       | integer               | not null default nextval('pois_ny_gid_seq'::regclass)
 poi_name  | text                  |
 cat       | character varying(20) |
 geom      | geometry(Point,4326)  |
 geom_2160 | geometry              |
Indexes:
    "pois_ny_pkey" PRIMARY KEY, btree (gid)
Check constraints:
    "enforce_dims_geom_2160" CHECK (st_ndims(geom_2160) = 2)
    "enforce_geotype_geom_2160" CHECK (geometrytype(geom_2160) = 'POINT'::text
        OR geom_2160 IS NULL)
    "enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)

Beide registrieren sich korrekt in "geometry_columns"

SELECT f_table_name, f_geometry_column, srid, type
        FROM geometry_columns
        WHERE f_table_name = 'pois_ny';
f_table_name | f_geometry_column | srid | type
-------------+-------------------+------+-------
pois_ny      | geom              | 4326 | POINT
pois_ny      | geom_2160         | 2160 | POINT

Jedoch -- wenn wir einen View auf die folgende Weise erstellen

CREATE VIEW vw_pois_ny_parks AS
SELECT *
  FROM pois_ny
  WHERE cat='park';

SELECT f_table_name, f_geometry_column, srid, type
        FROM geometry_columns
        WHERE f_table_name = 'vw_pois_ny_parks';

Die Typmod basierte geometrische Spalte eines View registriert sich korrekt, die auf Constraint basierende nicht.

f_table_name   | f_geometry_column | srid |   type
------------------+-------------------+------+----------
 vw_pois_ny_parks | geom              | 4326 | POINT
 vw_pois_ny_parks | geom_2160         |    0 | GEOMETRY

Dies kann sich bei zukünftigen Versionen von PostGIS ändern, vorerst müssen Sie aber folgendes ausführen, um die auf Constraint basierende Spalte eines View korrekt zu registrieren:

DROP VIEW vw_pois_ny_parks;
CREATE VIEW vw_pois_ny_parks AS
SELECT gid, poi_name, cat,
  geom,
  geom_2160::geometry(POINT,2160) As geom_2160
  FROM pois_ny
  WHERE cat = 'park';
SELECT f_table_name, f_geometry_column, srid, type
        FROM geometry_columns
        WHERE f_table_name = 'vw_pois_ny_parks';
f_table_name   | f_geometry_column | srid | type
------------------+-------------------+------+-------
 vw_pois_ny_parks | geom              | 4326 | POINT
 vw_pois_ny_parks | geom_2160         | 2160 | POINT

4.4. Die SPATIAL_REF_SYS Tabelle und Koordinatenreferenzsysteme

Spatial Reference Systems (SRS) define how geometry is referenced to locations on the Earth's surface.

4.4.1. SPATIAL_REF_SYS Table

The SPATIAL_REF_SYS table used by PostGIS is an OGC-compliant database table that defines the available spatial reference systems. It holds the numeric IDs and textual descriptions of the coordinate systems. The main use is to support transformation (reprojection) between them using ???.

Die SPATIAL_REF_SYS Tabelle ist folgendermaßen definiert:

CREATE TABLE spatial_ref_sys (
  srid       INTEGER NOT NULL PRIMARY KEY,
  auth_name  VARCHAR(256),
  auth_srid  INTEGER,
  srtext     VARCHAR(2048),
  proj4text  VARCHAR(2048)
)

Die Spalten bedeuten:

srid

Ein ganzzahliger Wert, der das Koordinatenreferenzsystem (SRS) innerhalb der Datenbank eindeutig ausweist.

auth_name

Der Name des Standards oder der Normungsorganisation, unter dem dieses Koordinatenreferenzsystem zitiert wird. Zum Beispiel ist "EPSG" ein gültiger AUTH_NAME.

auth_srid

Die von der in AUTH_NAME zitierten Quelle festgelegte ID des Koordinatenreferenzsystems. Im Falle von EPSG ist dies der EPSG Projektionscode.

srtext

Die Well-Known-Text Darstellung des Koordinatenreferenzsystems. Ein Beispiel dazu:

PROJCS["NAD83 / UTM Zone 10N",
  GEOGCS["NAD83",
        DATUM["North_American_Datum_1983",
          SPHEROID["GRS 1980",6378137,298.257222101]
        ],
        PRIMEM["Greenwich",0],
        UNIT["degree",0.0174532925199433]
  ],
  PROJECTION["Transverse_Mercator"],
  PARAMETER["latitude_of_origin",0],
  PARAMETER["central_meridian",-123],
  PARAMETER["scale_factor",0.9996],
  PARAMETER["false_easting",500000],
  PARAMETER["false_northing",0],
  UNIT["metre",1]
]

Für eine Auflistung der EPSG Projektionscodes und deren entsprechende WKT Darstellung siehe http://www.opengeospatial.org/. Eine allgemeine Erläuterung zu WKT finden Sie in der OpenGIS "Coordinate Transformation Services Implementation Specification" unter http://www.opengeospatial.org/standards. Information zur European Petroleum Survey Group (EPSG) und deren Datenbank über Koordinatenreferenzsysteme finden Sie unter http://www.epsg.org.

proj4text

PostGIS verwendet die Bibliothek "Proj4" zur Koordinatentransformation. Die Spalte PROJ4TEXT enthält eine Proj4 Zeichenfolge mit der Definition des Koordinatensystems für eine bestimmte SRID. Zum Beispiel:

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

Weiterführende Information finden Sie auf der Proj4 Webseite unter http://trac.osgeo.org/proj/. Die Datei spatial_ref_sys.sql enthält sowohl SRTEXT als auch PROJ4TEXT Definitionen aller EPSG Projektionen.

When retrieving spatial reference system definitions for use in transformations, PostGIS uses fhe following strategy:

  • If auth_name and auth_srid are present (non-NULL) use the PROJ SRS based on those entries (if one exists).

  • If srtext is present create a SRS using it, if possible.

  • If proj4text is present create a SRS using it, if possible.

4.4.2. Die SPATIAL_REF_SYS Tabelle und Koordinatenreferenzsysteme

Obwohl in der PostGIS Tabelle "spatial_ref_sys" über 3000 der gebräuchlichsten Koordinatenreferenzsysteme definiert sind, die mit der Bibliothek "Proj4" gehandhabt werden können, enthält sie nicht alle bekannten Projektionen. Sie können auch ihre eigenen Projektionen in der Tabelle definieren, falls Sie mit den Konstrukten von "Proj4" vertraut sind. Sie sollten nicht außer Acht lassen, dass die meisten Koordinatenreferenzsysteme regional sind und außerhalb des vorgesehenen Bereichs keinen Sinn haben.

Eine hervorragende Quelle zum Auffinden von Koordinatenreferenzsystemen, welche nicht in der Grundmenge enthalten sind, ist http://spatialreference.org/

Einige der häufiger eingesetzten Koordinatenreferenzsysteme sind: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 - WGS 84 World Mercator, 2163 - US National Atlas Equal Area, Koordinatenreferenzsysteme für jede NAD 83, WGS 84 und UTM Zone - UTM Zonen sind ideal für Messungen, decken aber nur 6 Grad breite, vertikale Zonen ab.

Verschiedenste Koordinatenreferenzsysteme "US State Plane" (auf Meter und Fuß basierend) - üblicherweise 2 pro US Staat. Die meisten auf Meter basierten befinden sich in der Grundmenge, aber viele der auf Fuß basierten, oder von ESRI erzeugten müssen von spatialreference.org heruntergeladen werden.

Sogar wenn Sie eine Mars Expedition planen, um die menschliche Rasse nach einem nuklearen Holocaust zu transportieren und Sie den Planeten Mars für die Besiedelung kartieren wollen, können Sie ein Koordinatenreferenzsystem wie Mars 2000 erstellen und dieses in die Tabelle spatial_ref_sys einfügen. Obwohl dieses Koordinatensystem für den Mars nicht planar ist (es ist in Grad des Referenzellipsoids), können Sie den geographischen Datentyp nutzen, um Längen- und Abstandsmessungen in Meter anstatt in Grad anzuzeigen.

Here is an example of loading a custom coordinate system using an unassigned SRID and the PROJ definition for a US-centric Lambert Conformal projection:

INSERT INTO spatial_ref_sys (srid, proj4text)
VALUES ( 990000,
  '+proj=lcc  +lon_0=-95 +lat_0=25 +lat_1=25 +lat_2=25 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs'
);

4.5. Geometry Validation

PostGIS ist mit den Open Geospatial Consortium (OGC) OpenGIS Spezifikationen konform. Daher setzen viele PostGIS Methoden voraus, dass die Geometrien mit denen sie rechnen sowohl "Simple" als auch "Valid" sind . Zum Beispiel hat es keinen Sinn, die Fläche eines Polygons zu berechnen, das eine Insel aufweist, die ausserhalb des Polygons festgelegt ist, oder ein Polygon aus einer Begrenzungslinie zu konstruieren, welche nicht "simple" ist.

Entsprechend der OGC Spezifikationen ist eine simple Geometrie eine solche, die sich nicht selbst überschneidet oder berührt und bezieht sich in erster Linie auf 0- und 1-dimensionale Geometrien (insbesondere [MULTI]POINT, [MULTI]LINESTRING). Andererseits bezieht sich die Validität einer Geometrie hauptsächlich auf 2-dimensionale Geometrien (insbesondere [MULTI]POLYGON) und definiert die Menge an Aussagen, welche ein valides/gültiges Polygon auszeichnen. Die Beschreibung einer jeden geometrischen Klasse schließt bestimmte Bedingungen mit ein, welche die Simplizität und Validität von Geometrien näher beschreiben.

Da ein POINT ein 0-dimensionales geometrisches Objekt ist, ist er von vornherein simple.

MULTIPOINTs sind simple, wenn sich keine zwei Koordinaten (POINTs) decken (keine identischen Koordinatenpaare aufweisen).

Ein LINESTRING ist simple, wenn er nicht zweimal durch denselben POINT geht (ausgenommen bei Endpunkten, wo dieser als linearer Ring benannt wird und zusätzlich als geschlossen angesehen wird).

(a)

(b)

(c)

(d)

(a) und (c) sind simple LINESTRINGs, (b) und (d) nicht.

Ein MULTILINESTRING ist nur dann simple, wenn alle seine Elemente "simple" sind und die einzigen Überschneidungen zwischen zwei Elementen nur an jenen POINTs auftreten, die an den Begrenzungen der beiden Elemente liegen.

(e)

(f)

(g)

(e) und (f) sind simple MULTILINESTRINGs, (g) nicht.

Definitionsgemäß ist ein POLYGON immer simple. Es ist valid, wenn sich keine zwei Ringe an der Begrenzung (bestehend aus einem äußeren Ring und inneren Ringen) kreuzen. Die Begrenzung eines POLYGONs darf an einem POINT schneiden, allerdings nur als Tangente (insbesondere nicht an einer Linie). Ein POLYGON darf keine Schnittlinien oder "Spikes" aufweisen und die inneren Ringe müssen zur Gänze im äußeren Ring enthalten sein.

(h)

(i)

(j)

(k)

(l)

(m)

(h) und (i) sind valide POLYGONe, (j-m) können nicht als einzelne POLYGONe dargestellt werden, aber (j) und (m) können als ein valides MULTIPOLYGON dargestellt werden.

Ein MULTIPOLYGON ist dann und nur dann valide, wenn alle seine Elemente valide sind und sich das Innere zweier Elemente nicht überschneidet. Die Begrenzungen zweier Elemente können sich berühren, allerdings nur an einer endlichen Anzahl von POINTs.

(n)

(o)

(p)

(n) und (o) sind keine validen MULTIPOLYGONs. Hingegen ist (p) valid.

Die meisten von der GEOS Bibliothek implementierten Funktionen beruhen auf der Annahme, dass die verwendete Geometrie - entsprechend der OpenGIS Simple Feature Spezifikation - valide ist. Um die Simplizität und Validität einer Geometrie festzustellen, können Sie ST_IsSimple() und ST_IsValid() verwenden.

-- Üblicherweise hat es keinen Sinn lineare Geometrien
-- auf Validität zu überprüfen, da immer TRUE zurückgegeben wird.
-- Aber in diesem Beispiel erweitert PostGIS die OGC Definition von IsValid
-- indem es FALSE zurückgibt, wenn ein LineString weniger als 2 *eindeutige* Stützpunkte aufweist.
gisdb=# SELECT
   ST_IsValid('LINESTRING(0 0, 1 1)'),
   ST_IsValid('LINESTRING(0 0, 0 0, 0 0)');

 st_isvalid | st_isvalid
------------+-----------
      t     |     f

Standardmäßig überprüft PostGIS eine Geometrieeingabe nicht auf Validität, da Validitätstests von komplexen Geometrien, insbesondere Polygonen, viel CPU Zeit beanspruchen. Fall Sie Ihren Datenquellen nicht trauen, können Sie eine Überprüfung Ihrer Tabellen durch eine "Check Constraint"/Prüfbeschränkung erzwingen:

ALTER TABLE mytable
  ADD CONSTRAINT geometry_valid_check
        CHECK (ST_IsValid(the_geom));

Falls Sie irgendwelche seltsamen Fehlermeldungen, wie "GEOS Intersection() threw an error!" erhalten, obwohl sie eine PostGIS Funktion mit validen Eingabegeometrien aufgerufen haben, ist es wahrscheinlich dass Sie einen Fehler in PostGIS oder einer von PostGIS verwendeten Bibliothek gefunden haben. In diesem Fall sollten Sie das PostGIS Entwicklerteam kontaktieren. Dasselbe gilt, wenn eine PostGIS Funktion auf eine valide Eingabegeometrie eine invalide Geometrie zurückgibt.

[Note]

Eine streng konforme OGC-Geometrie hat keine Z- oder M-Werte. Die Funktion ST_IsValid() betrachtet höhere geometrische Dimensionen nicht als invalide! Aufrufe von AddGeometryColumn() fügen einen Check-Constraint für die geometrische Dimension hinzu, weshalb es hier ausreicht 2 anzugeben.

4.6. GIS (Vektor) Daten laden

Sobald Sie eine räumliche Tabelle erstellt haben, können Sie GIS Daten in die Datenbank laden. Zurzeit gibt es zwei Möglichkeiten, Daten in die PostGIS/PostgreSQL Datenbank zu importieren: die Verwendung von formatierten SQL-Anweisungen oder der Shapefile Loader/Dumper.

4.6.1. Daten mit SQL abrufen

Wenn Sie Ihre Daten in eine Textdarstellung konvertieren können, dann ist möglicherweise die Verwendung von formatiertem SQL der leichteste Weg um die Daten in PostGIS zu importieren. Wie bei Oracle und anderen Datenbanken, können die Daten über Masseninserts geladen werden, indem eine große Textdatei, in der sich zahlreiche SQL "INSERT" Anweisungen befinden, an die SQL-Konsole weitergeleitet wird.

Eine Importdatei (z.B. roads.sql) könnte folgendermaßen aussehen:

BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (1,'LINESTRING(191232 243118,191108 243242)','Jeff Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (2,'LINESTRING(189141 244158,189265 244817)','Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (3,'LINESTRING(192783 228138,192612 229814)','Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (4,'LINESTRING(189412 252431,189631 259122)','Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (5,'LINESTRING(190131 224148,190871 228134)','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (6,'LINESTRING(198231 263418,198213 268322)','Dave Cres');
COMMIT;

Diese Datei kann dann über die "psql" SQL-Konsole sehr leicht nach PostgreSQL weitergeleitet werden:

psql -d [database] -f roads.sql

4.6.2. shp2pgsql: Verwendung des ESRI-Shapefile Laders

Der shp2pgsql Datenlader wandelt ESRI Shapefiles in eine SQL-Datei um, die für das Einfügen in eine PostGIS/PostgreSQL Datenbank mit der "psql"-Konsole, sowohl im Geometrie- als auch im Geographie-Format, geeignet ist. Der Loader besitzt eine Reihe von Betriebsmodi, die durch Flags auf der Befehlszeile ausgewählt werden:

Zusätzlich zu dem befehlszeilenorientierten Lader "shp2pgsql" gibt es auch die graphische Schnittstelle shp2pgssql-gui, welche fast ebensoviele Optionen wie der befehlszeilenorientierte Lader zur Verfügung stellt. Für viele Anwender, die mit der Befehlszeile nicht versiert sind, oder mit PostGIS erst beginnen, ist die GUI möglicherweise einfacher zu bedienen. Sie kann auch in PgAdminIII als Plugin konfiguriert werden.

(c|a|d|p) Dies sind sich gegenseitig ausschließende Optionen:

-c

Erstellt eine neue Tabelle und füllt sie von einem Shapefile her. Dies ist der Standardmodus.

-a

Fügt Daten aus dem Shapefile zu der Datenbanktabelle hinzu. Beachten Sie bitte, falls Sie diese Option verwenden um mehrere Dateien zu laden, dass die Attribute und Datentypen in den Dateien übereinstimmen müssen.

-d

Löscht die Datenbanktabelle, bevor eine neue Tabelle mit den Daten vom Shapefile befüllt wird.

-p

Erzeugt nur den SQL-Code zur Erstellung der Tabelle, ohne irgendwelche Daten hinzuzufügen. Kann verwendet werden, um die Erstellung und das Laden einer Tabelle vollständig zu trennen.

-?

Zeigt die Hilfe an.

-D

Verwendung des PostgreSQL "dump" Formats für die Datenausgabe. Kann mit -a, -c und -d kombiniert werden. Ist wesentlich schneller als das standardmäßige SQL "insert" Format. Verwenden Sie diese Option wenn Sie sehr große Datensätze haben.

-s [<FROM_SRID%gt;:]<SRID>

Erzeugt und befüllt die Geometrietabelle in einer bestimmten SRID. Optional kann FROM_SRID für die Shapedatei angegeben werden, wodurch die Geometrie von FROM_SRID in die Ziel-SRID projiziert wird. FROM_SRID und -D können nicht gleichzeitig angegeben werden.

-k

Erhält die Groß- und Kleinschreibung (Spalte, Schema und Attribute). Beachten Sie bitte, dass die Attributnamen in Shapedateien immer Großbuchstaben haben.

-i

Wandeln Sie alle Ganzzahlen in standard 32-bit Integer um, erzeugen Sie keine 64-bit BigInteger, auch nicht dann wenn der DBF-Header dies unterstellt.

-I

Einen GIST Index auf die Geometriespalte anlegen.

-m

-m a_file_name bestimmt eine Datei, in welcher die Abbildungen der (langen) Spaltennamen in die 10 Zeichen langen DBF Spaltennamen festgelegt sind. Der Inhalt der Datei besteht aus einer oder mehreren Zeilen die jeweils zwei, durch Leerzeichen getrennte Namen enthalten, aber weder vorne noch hinten mit Leerzeichen versehen werden dürfen. Zum Beispiel:

COLUMNNAME DBFFIELD1
AVERYLONGCOLUMNNAME DBFFIELD2

-S

Erzeugt eine Einzel- anstatt einer Mehrfachgeometrie. Ist nur erfolgversprechend, wenn die Geometrie auch tatsächlich eine Einzelgeometrie ist (insbesondere gilt das für ein Mehrfachpolygon/MULTIPOLYGON, dass nur aus einer einzelnen Begrenzung besteht, oder für einen Mehrfachpunkt/MULTIPOINT, der nur einen einzigen Knoten aufweist).

-t <dimensionality>

Zwingt die Ausgabegeometrie eine bestimmte Dimension anzunehmen. Sie können die folgenden Zeichenfolgen verwenden, um die Dimensionalität anzugeben: 2D, 3DZ, 3DM, 4D.

Wenn die Eingabe weniger Dimensionen aufweist als angegeben, dann werden diese Dimensionen bei der Ausgabe mit Nullen gefüllt. Wenn die Eingabe mehr Dimensionen als angegeben aufweist werden diese abgestreift.

-w

Ausgabe im Format WKT anstatt WKB. Beachten Sie bitte, dass es hierbei zu Koordinatenverschiebungen infolge von Genauigkeitsverlusten kommen kann.

-e

Jede Anweisung einzeln und nicht in einer Transaktion ausführen. Dies erlaubt den Großteil auch dann zu laden, also die guten Daten, wenn eine Geometrie dabei ist die Fehler verursacht. Beachten Sie bitte das dies nicht gemeinsam mit der -D Flag angegeben werden kann, da das "dump" Format immer eine Transaktion verwendet.

-W <encoding>

Gibt die Codierung der Eingabedaten (dbf-Datei) an. Wird die Option verwendet, so werden alle Attribute der dbf-Datei von der angegebenen Codierung nach UTF8 konvertiert. Die resultierende SQL-Ausgabe enthält dann den Befehl SET CLIENT_ENCODING to UTF8, damit das Back-end wiederum die Möglichkeit hat, von UTF8 in die, für die interne Nutzung konfigurierte Datenbankcodierung zu decodieren.

-N <policy>

Umgang mit NULL-Geometrien (insert*, skip, abort)

-n

-n Es wird nur die *.dbf-Datei importiert. Wenn das Shapefile nicht Ihren Daten entspricht, wird automatisch auf diesen Modus geschaltet und nur die *.dbf-Datei geladen. Daher müssen Sie diese Flag nur dann setzen, wenn sie einen vollständigen Shapefile-Satz haben und lediglich die Attributdaten, und nicht die Geometrie, laden wollen.

-G

Verwendung des geographischen Datentyps in WGS84 (SRID=4326), anstelle des geometrischen Datentyps (benötigt Längen- und Breitenangaben).

-T <tablespace>

Den Tablespace für die neue Tabelle festlegen. Solange der -X Parameter nicht angegeben wird, benutzen die Indizes weiterhin den standardmäßig festgelegten Tablespace. Die PostgreSQL Dokumentation beinhaltet eine gute Beschreibung, wann es sinnvoll ist, eigene Tablespaces zu verwenden.

-X <tablespace>

Den Tablespace bestimmen, in dem die neuen Tabellenindizes angelegt werden sollen. Gilt für den Primärschlüsselindex und wenn "-l" verwendet wird, auch für den räumlichen GIST-Index.

-Z

When used, this flag will prevent the generation of ANALYZE statements. Without the -Z flag (default behaviour), the ANALYZE statements will be generated.

Eine beispielhafte Sitzung, in welcher der Loader verwendet wird, um eine Eingabedatei zu erzeugen und anschließend hochzuladen, könnte folgendermaßen aussehen:

# shp2pgsql -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sql
# psql -d roadsdb -f roads.sql

Konvertierung und Import können über UNIX-Pipes in einem Schritt erfolgen:

# shp2pgsql shaperoads.shp myschema.roadstable | psql -d roadsdb

4.7. Erstellung einer räumlichen Tabelle

Daten können entweder über SQL oder mit dem Shapefile Loader/Dumper aus der Datenbank entnommen werden. Im Abschnitt über SQL werden einige Operatoren besprochen, die für Vergleiche und Abfragen von Geotabellen zur Verfügung stehen.

4.7.1. Daten mit SQL abrufen

Die direkteste Methode, um Daten aus der Datenbank abzurufen, ist eine SQL Select-Anfrage. Dadurch kann die Anzahl der resultierenden Datensätze und Attribute reduziert und in eine lesbare Textdatei überspielt werden:

db=# SELECT road_id, ST_AsText(road_geom) AS geom, road_name FROM roads;

road_id | geom                                    | road_name
--------+-----------------------------------------+-----------
          1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
          2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
          3 | LINESTRING(192783 228138,192612 229814) | Paul St
          4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
          5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
          6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
          7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)

Wie auch immer, manchmal wird eine Einschränkung notwendig sein, um die Anzahl der zurückgegebenen Werte zu reduzieren. Falls es sich um eine Beschränkung auf ein Attribut handelt, können Sie dieselbe SQL-Syntax verwenden wie bei jeder anderen Nicht-Geometrietabelle. Für räumliche Beschränkungen sind folgende Operatoren verfügbar/nützlich:

ST_Intersects

Diese Funktion bestimmt ob sich zwei geometrische Objekte einen gemeinsamen Raum teilen

=

Überprüft, ob zwei Geoobjekte geometrisch ident sind. Zum Beispiel, ob 'POLYGON((0 0,1 1,1 0,0 0))' ident mit 'POLYGON((0 0,1 1,1 0,0 0))' ist (ist es).

Außerdem können Sie diese Operatoren in Anfragen verwenden. Beachten Sie bitte, wenn Sie eine Geometrie oder eine Box auf der SQL-Befehlszeile eingeben, dass Sie die Zeichensatzdarstellung explizit in eine Geometrie umwandeln müssen. 312 ist ein fiktives Koordinatenreferenzsystem das zu unseren Daten passt. Also, zum Beispiel:

SELECT road_id, road_name
  FROM roads
  WHERE roads_geom='SRID=312;LINESTRING(191232 243118,191108 243242)'::geometry;

Die obere Abfrage würde einen einzelnen Datensatz aus der Tabelle "ROADS_GEOM" zurückgeben, in dem die Geometrie gleich dem angegebenen Wert ist.

Überprüfung ob einige der Strassen in die Polygonfläche hineinreichen:

SELECT road_id, road_name
FROM roads
WHERE ST_Intersects(roads_geom, 'SRID=312;POLYGON((...))');

Die häufigsten räumlichen Abfragen werden vermutlich in einem bestimmten Ausschnitt ausgeführt. Insbesondere von Client-Software, wie Datenbrowsern und Kartendiensten, die auf diese Weise die Daten für die Darstellung eines "Kartenausschnitts" erfassen.

Der Operator "&&" kann entweder mit einer BOX3D oder mit einer Geometrie verwendet werden. Allerdings wird auch bei einer Geometrie nur das Umgebungsrechteck für den Vergleich herangezogen.

Die Abfrage zur Verwendung des "BOX3D" Objekts für einen solchen Ausschnitt sieht folgendermaßen aus:

SELECT ST_AsText(roads_geom) AS geom
FROM roads
WHERE
  roads_geom && ST_MakeEnvelope(191232, 243117,191232, 243119,312);

Achten Sie auf die Verwendung von SRID=312, welche die Projektion Einhüllenden/Enveloppe bestimmt.

4.7.2. Verwendung des Dumper

Der Tabellendumper pgsql2shp verbindet sich direkt mit der Datenbank und konvertiert eine Tabelle (evtl. durch eine Abfrage festgelegt) in eine Shapedatei. Die grundlegende Syntax lautet:

pgsql2shp [<options>] <database> [<schema>.]<table>
pgsql2shp [<options>] <database> <query>

Optionen auf der Befehlszeile:

-f <filename>

Ausgabe in eine bestimmte Datei.

-h <host>

Der Datenbankserver, mit dem eine Verbindung aufgebaut werden soll.

-p <port>

Der Port über den der Verbindungsaufbau mit dem Datenbank Server hergestellt werden soll.

-P <password>

Das Passwort, das zum Verbindungsaufbau mit der Datenbank verwendet werden soll.

-u <user>

Das Benutzername, der zum Verbindungsaufbau mit der Datenbank verwendet werden soll.

-g <geometry column>

Bei Tabellen mit mehreren Geometriespalten jene Geometriespalte, die ins Shapefile geschrieben werden soll.

-b

Die Verwendung eines binären Cursors macht die Berechnung schneller; funktioniert aber nur, wenn alle nicht-geometrischen Attribute in den Datentyp "text" umgewandelt werden können.

-r

RAW-Modus. Das Attribut gid wird nicht verworfen und Spaltennamen werden nicht maskiert.

-m filename

Bildet die Identifikatoren in Namen mit 10 Zeichen ab. Der Inhalt der Datei besteht aus Zeilen von jeweils zwei durch Leerzeichen getrennten Symbolen, jedoch ohne vor- oder nachgestellte Leerzeichen: VERYLONGSYMBOL SHORTONE ANOTHERVERYLONGSYMBOL SHORTER etc.

4.8. Erstellung von Indizes

Indizes ermöglichen das Arbeiten mit großen Datensätzen in einer Geodatenbank. Ohne Indizierung würde jede Featureanfrage einen "Full Table Scan" in der Datenbank benötigen. Die Indizierung beschleunigt die Suche, indem die Daten in einem Suchbaum strukturiert werden, der dann schnell durchlaufen werden kann um einen bestimmten Datensatz zu finden. PostgreSQL unterstützt standardmäßig drei Arten von Indizes: B-Baum, SP-GIST und GIST.

The B-tree index method commonly used for attribute data is not very useful for spatial data, since it only supports storing and querying data in a single dimension. Data such as geometry which has 2 or more dimensions) requires an index method that supports range query across all the data dimensions. (That said, it is possible to effectively index so-called XY data using a B-tree and explict range searches.) One of the main advantages of PostgreSQL for spatial data handling is that it offers several kinds of indexes which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.

  • GiST (Generalized Search Tree) Indizes unterteilen die Daten in "Dinge auf einer Seite", "Dinge die sich überlagern", "Dinge die innerhalb liegen". Sie können auf eine Vielzahl von Datentypen, inklusive Geodaten angewendet werden. Um Geodaten zu indizieren verwendet PostGIS einen R-Baum der auf dem GIST Index aufsetzt.

  • BRIN (Block Range Index) indexes operate by summarizing the spatial extent of ranges of table records. Search is done via a scan of the ranges. BRIN is only appropriate for use for some kinds of data (spatially sorted, with infrequent or no update). But it provides much faster index create time, and much smaller index size.

  • SP-GiST (Space-Partitioned Generalized Search Tree) is a generic index method that supports partitioned search trees such as quad-trees, k-d trees, and radix trees (tries).

For more information see the PostGIS Workshop, and the PostgreSQL documentation.

4.8.1. GiST-Indizes

GIST (Generalized Search Tree) ist eine generische Datenstruktur. Zusätzlich zur Indizierung von Geodaten wird GIST auch zur Beschleunigung von Abfragen auf unregelmäßige Datenstrukturen (Ganzzahl-Felder, Spektraldaten, etc.) verwendet, welche über gewöhnlicher B-Baum Indizierung nicht zugänglich sind.

Sobald eine Geodatentabelle einige tausend Zeilen überschreitet, werden Sie einen Index erzeugen wollen, um die räumlichen Abfragen auf die Daten zu beschleunigen (außer Ihre Suche basiert lediglich auf Attributen, in diesem Fall werden Sie einen gewöhnlichen Index auf die Attribute setzen).

Die Syntax, mit der ein GIST-Index auf eine Geometriespalte gelegt wird, lautet:

CREATE INDEX [indexname] ON [tablename] USING GIST ( [geometryfield] ); 

Die obere Syntax erzeugt immer einen 2D-Index. Um einen n-dimensionalen Index für den geometrischen Datentyp zu erhalten, können Sie die folgende Syntax verwenden:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);

Die Erstellung eines räumlichen Indizes ist eine rechenintensive Aufgabe. Während der Erstellung wird auch der Schreibzugriff auf die Tabelle blockiert. Bei produktiven Systemen empfiehlt sich daher die langsamere Option CONCURRENTLY:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ( [geometryfield] ); 

Nachdem ein Index aufgebaut wurde sollte PostgreSQL gezwungen werden die Tabellenstatistik zu sammeln, da diese zur Optmierung der Auswertungspläne verwendet wird:

VACUUM ANALYZE [table_name] [(column_name)];

4.8.2. BRIN Indizes

Die Bezeichnung BRIN steht für "Block Range Index", eine generische Form des Indizierens und wurde mit PostgreSQL 9.5 eingeführt. BRIN ist ein verlustbehafteter Index, dessen Hauptzweck ist, einen Kompromiss sowohl bei der Lese- als auch bei der Schreibgeschwindigkeit anzubieten. Der Hauptverwendungszweck liegt bei sehr großen Tabellen, in denen einige Spalten einen natürlichen Bezug zu dem physischen Speicherplatz innerhalb der Tabelle haben. Zusätzlich zur Indizierung von GIS-Daten, werden BRIN-Indizes zur Beschleunigung von Suchabfragen auf unterschiedliche regelmäßige und unregelmäßige Datenstrukturen (Ganzzahlen, Felder etc.) verwendet.

Sobald eine Geodatentabelle ein paar tausend Zeilen überschreitet, werden Sie einen Index erzeugen wollen, um die räumlichen Abfragen auf die Daten zu beschleunigen (außer Ihre Suche basiert lediglich auf Attributen, in diesem Fall werden Sie einen gewöhnlichen Index auf die Attribute setzen). GIST Indizes sind sehr performant, solange ihre Dateigröße den verfügbaren Arbeitsspeicher der Datenbank nicht überschreitet, genügend Festplattenspeicher vorhanden ist und die Systembelastung durch Schreibvorgänge akzeptiert werden kann. Andernfalls bietet der BRIN Index eine Alternative.

Die Idee hinter einem BRIN-Index ist, dass nur das Umgebungsrechteck abgespeichert wird, dass die gesamte Geometrie eines oder mehrerer Tabellenblöcke umschließt; dies wird als "Range" bezeichnet. Es ist klar, dass diese Indizierungsmethode nur dann effizient sein kann, wenn die Daten physikalisch so angeordnet sind, dass sich die resultierenden Umgebungsrechtecke der "Block Ranges" gegenseitig ausschließen. Der resultierende Index ist zwar sehr klein, in vielen Fällen allerdings weniger effizient als ein GIST Index.

Die Erstellung eines BRIN-Index benötigt wesentlich weniger Zeit, als die Erstellung eines GIST-Index. Es ist durchaus üblich, dass die Erstellung des BRIN Index mehr als zehnmal so schnell ist, als die eines GIST Index. Da ein BRIN Index nur ein Umgebungsrechteck für einen oder mehrere Tabellenblöcke speichert, benötigt dieser oft bis zu tausendmal weniger Festplattenspeicher.

Sie können die Anzahl der Blöcke festlegen, die zu einen "Range" aufsummiert werden sollen. Wenn Sie die Anzahl verringern, wird der Index zwar größer, höchstwahrscheinlich aber zu einer besseren Performanz verhelfen.

For BRIN to be effective, the table data should be stored in a physical order which minimizes the amount of block extent overlap. It may be that the data is already sorted appropriately (for instance, if it is loaded from another dataset that is already sorted in spatial order). Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key. One way to do this is to create a new table sorted by the geometry values (which in recent PostGIS versions uses an efficient Hilbert curve ordering):

CREATE TABLE table_sorted AS
   SELECT * FROM table  ORDER BY geom;

Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index, and clustering on that index:

CREATE INDEX idx_temp_geohash ON table
    USING btree (ST_GeoHash( ST_Transform( geom, 4326 ), 20));
CLUSTER table USING idx_temp_geohash;

Der Syntax zur Erstellung eines BRIN-Indizes auf eine geometrische Spalte lautet wie folgt:

CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geometryfield] ); 

Die obere Syntax erzeugt einen 2D-Index. Um einen 3-dimensionalen Index zu erhalten, können Sie die folgende Syntax verwenden:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geometryfield] brin_geometry_inclusion_ops_3d);

Sie können auch einen 4-dimensionalen Index über die 4D-Operatorklasse erstellen

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geometryfield] brin_geometry_inclusion_ops_4d);

Die oberen Syntaxen verwenden die Standardeinstellung für die Anzahl der Blöcke in einem "Range", nämlich 128. Wenn Sie die Anzahl der Blöcke, die in einem Range zusammengefasst werden sollen, selbst festlegen wollen, verwenden Sie bitte die folgende Syntax

CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geometryfield] ) WITH (pages_per_range = [number]); 

Beachten Sie bitte auch, dass ein BRIN Index nur einen Indexwert für eine große Anzahl von Zeilen speichert. Wenn Ihre Tabelle eine Geometrie mit unterschiedlichen Dimensionen speichert, dann ist es wahrscheinlich dass der Index eine schlechte Performanz aufweist. Sie können diesen Performanzrückgang vermeiden, indem Sie die Operatorklasse mit der niedrigsten Dimension der gespeicherten Geometrie wählen.

Der BRIN-Index wird auch vom geographischen Datentyp unterstützt. Die Syntax zur Erstellung eines BRIN-Index auf eine "geographische" Spalte lautet wie folgt:

CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geographyfield] ); 

Die obere Syntax erzeugt den 2D-Index für Geoobjekte auf dem Referenzellipsoid.

Aktuell wird hierbei nur die "Inklusionsunterstützung" betrachtet; d.h. dass nur die Operatoren &&, ~ und @ für 2D (sowohl für den "geometrischen", als auch für den "geographischen" Datentyp) und nur der Operator &&& für 3D-Geometrie verwendet werden kann. Die kNN-Suche wird zur Zeit nicht unterstützt.

An important difference between BRIN and other index types is that the database does not maintain the index dynamically. Changes to spatial data in the table are simply appended to the end of the index. This will cause index search performance to degrade over time. The index can be updated by performing a VACUUM, or by using a special function brin_summarize_new_values(regclass). For this reason BRIN may be most appropriate for use with data that is read-only, or only rarely changing. For more information refer to the manual.

To summarize using BRIN for spatial data:

  • Index build time is very fast, and index size is very small.

  • Index query time is slower than GiST, but can still be very acceptable.

  • Requires table data to be sorted in a spatial ordering.

  • Requires manual index maintenance.

  • Most appropriate for very large tables, with low or no overlap (e.g. points), and which are static or change infrequently.

4.8.3. SP-GiST Indizes

SP-GiST steht als Abkürzung für "Space-Partitioned Generalized Search Tree", ein generischer Indextyp der partitionierte Baumstrukturen, wie Quadtree, k-d Baum und Radix-Trie unterstützt. Diese Datenstrukturen haben die gemeinsame Eigenschaft, dass sie den Suchraum in mehrere Partitionen unterteilen, die unterschiedlich groß sein können. Zusätzlich zur Indizierung von Geodaten wird der SP-GIST Index zur Beschleunigung der Suche von vielen Datentypen verwendet, wie bei Telefon Routing, IP Routing, String-Matching-Algorithmen, etc.

So wie der GiST Index, ist auch der SP-GiST Index insofern nicht verlustfrei, da nur die umschreibenden Rechtecke der Geoobjekte gespeichert werden. Der SP-GiST Index kann als Alternative zum GiST Index gesehen werden. Die Performanztests zeigten, dass der SP-GiST Index insbesondere bei vielen überlappenden Objekten Vorteile haben, wie dies bei sogenannten "Spaghettidaten" der Fall ist.

Sobald eine Geodatentabelle einige tausend Zeilen überschreitet, kann es sinnvoll sein einen SP-GIST Index zu erzeugen, um die räumlichen Abfragen auf die Daten zu beschleunigen. Die Syntax zur Erstellung eines SP-GIST Index auf eine "Geometriespalte" lautet:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ( [geometryfield] ); 

Die obere Syntax erzeugt einen 2D-Index. Ein 3-dimensionaler Index für den geometrischen Datentyp können Sie mit der 3D Operatorklasse erstellen:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] spgist_geometry_ops_3d);

Die Erstellung eines räumlichen Indizes ist eine rechenintensive Aufgabe. Während der Erstellung wird auch der Schreibzugriff auf die Tabelle blockiert. Bei produktiven Systemen empfiehlt sich daher die langsamere Option CONCURRENTLY:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ( [geometryfield] ); 

Nachdem ein Index aufgebaut wurde sollte PostgreSQL gezwungen werden die Tabellenstatistik zu sammeln, da diese zur Optmierung der Auswertungspläne verwendet wird:

VACUUM ANALYZE [table_name] [(column_name)];

Ein SP-GiST Index kann Abfragen mit folgenden Operatoren beschleunigen:

  • <<, &<, &>, >>, <<|, &<|, |&>, |>>, &&, @>, <@, and ~=, für 2-dimensionale Iindices,

  • &/&, ~==, @>>, and <<@, für 3-dimensionale Indices.

kNN Suche wird zurzeit nicht unterstützt.

4.8.4. Erstellung von Indizes

Üblicherweise beschleunigen Indizes den Datenzugriff: Sobald der Index aufgebaut ist, entscheidet der Anfrageoptimierer, ob der Index den Auswertungsplan bescheunigt. Unglücklicherweise optimiert der Anfrageoptimierer von PostgreSQL die Verwendung von GIST Indizes nicht sehr gut, so dass manchmal eine Suche, welche die Verwendung eines räumlichen Index bedingen sollte, über einen Full Table Scan ausgeführt wird.

Wenn Sie bemerken, dass Ihre räumlichen Indizes (oder Ihre Attributindizes) nicht verwendet werden, gibt es mehrere Möglichkeiten:

  • Zunächst sollten Sie sich den Auswertungsplan ansehen und überprüfen ob Ihre Abfrage tatsächlich das berechnet was Sie benötigen. Eine unkontrollierte Join-Bedingung, entweder vergessen oder auf eine falsche Tabelle gesetzt, kann alle Datensätze Ihrer Tabelle mehrmals hinzuziehen. Fügen Sie das Schlüsselwort EXPLAIN an den Anfang Ihrer bAbfrage, um den Auswertungsplan zu erhalten.

  • Als nächstes sollten Sie sicherstellen, dass eine Statistik über die Anzahl und die Verteilung der Tabellenwerte erfasst wurde, damit dem Anfrageoptimierer bessere Informationen zur Entscheidungsfindung bezüglich zu verwendender Indizes zur Verfügung steht. VACUUM ANALYZE errechnet beide.

    Sie sollten ohnehin regelmäßig ein Vacuum Ihrer Datenbanken durchführen - viele PostgreSQL DBAs führen ein regelmäßigesVACUUM außerhalb der Spitzenzeiten mittels Cronjob aus.

  • Wenn VACUUM nicht hilft, können Sie den Anfrageoptimierer vorübergehend dazu zwingen den Index zu verwenden, indem Sie den Befehl set enable_seqscan to off; ausführen. Auf diese Weise können Sie feststellen, ob es dem Anfrageoptimierer überhaupt möglich ist, einen indexbeschleunigten Auswertungsplan für Ihre Abfrage zu erstellen. Sie sollten diesen Befehl nur zu Testzwecken: d.h. der Anfrageoptimierer weiß am besten Bescheid wann welcher Index verwendet werden soll. Sobald Sie Ihre Abfrage ausgeführt haben, sollten Sie daher ENABLE_SEQSCAN wieder auf ON stellen, damit weitere Abfragen den Anfrageoptimierer wie üblich nutzen können.

  • Wenn set enable_seqscan to off; bei Ihrer Abfrage hilft, dann ist Ihr Postgres vermutlich nicht mit Ihrer Hardware abgestimmt. Wenn Sie herausfinden, daß sich der Anfrageoptimierer bezüglich der Kosten des Full Table Scan im Verhältnis zum Index Scan irrt, können Sie versuchen den Wert von randam_page_cost in "postgresql.conf" zu reduzieren, oder set random_page_cost to 1.1; ausführen. Der Standardwert des Parameters ist 4, versuchen Sie ihn auf 1 (auf einer SSD) oder auf 2 (auf einem schnellen magnetischen Festplattenlaufwerk) zu setzen. Eine Verringerung des Wertes führt dazu, dass der Anfrageoptimierer eher den Index Scan verwendet.

  • If SET ENABLE_SEQSCAN TO OFF; does not help your query, the query may be using a SQL construct that the Postgres planner is not yet able to optimize. It may be possible to rewrite the query in a way that the planner is able to handle. For example, a subquery with an inline SELECT may not produce an efficient plan, but could possibly be rewritten using a LATERAL JOIN.

For more information see the Postgres manual section on Query Planning.

Chapter 5. Spatial Queries

The raison d'etre of spatial databases is to perform queries inside the database which would ordinarily require desktop GIS functionality. Using PostGIS effectively requires knowing what spatial functions are available, how to use them in queries, and ensuring that appropriate indexes are in place to provide good performance.

5.1. Determining Spatial Relationships

Spatial relationships indicate how two geometries interact with one another. They are a fundamental capability for querying geometry.

5.1.1. Dimensionally Extended 9-Intersection Model

According to the OpenGIS Simple Features Implementation Specification for SQL, "the basic approach to comparing two geometries is to make pair-wise tests of the intersections between the Interiors, Boundaries and Exteriors of the two geometries and to classify the relationship between the two geometries based on the entries in the resulting 'intersection' matrix."

In the theory of point-set topology, the points in a geometry embedded in 2-dimensional space are categorized into three sets:

Boundary

The boundary of a geometry is the set of geometries of the next lower dimension. For POINTs, which have a dimension of 0, the boundary is the empty set. The boundary of a LINESTRING is the two endpoints. For POLYGONs, the boundary is the linework of the exterior and interior rings.

Interior

The interior of a geometry are those points of a geometry that are not in the boundary. For POINTs, the interior is the point itself. The interior of a LINESTRING is the set of points between the endpoints. For POLYGONs, the interior is the areal surface inside the polygon.

Exterior

The exterior of a geometry is the rest of the space in which the geometry is embedded; in other words, all points not in the interior or on the boundary of the geometry. It is a 2-dimensional non-closed surface.

The Dimensionally Extended 9-Intersection Model (DE-9IM) describes the spatial relationship between two geometries by specifying the dimensions of the 9 intersections between the above sets for each geometry. The intersection dimensions can be formally represented in a 3x3 intersection matrix.

For a geometry g the Interior, Boundary, and Exterior are denoted using the notation I(g), B(g), and E(g). Also, dim(s) denotes the dimension of a set s with the domain of {0,1,2,F}:

  • 0 => point

  • 1 => line

  • 2 => area

  • F => empty set

Using this notation, the intersection matrix for two geometries a and b is:

 InteriorBoundaryExterior
Interiordim( I(a) ∩ I(b) )dim( I(a) ∩ B(b) )dim( I(a) ∩ E(b) )
Boundarydim( B(a) ∩ I(b) )dim( B(a) ∩ B(b) )dim( B(a) ∩ E(b) )
Exteriordim( E(a) ∩ I(b) )dim( E(a) ∩ B(b) )dim( E(a) ∩ E(b) )

Visually, for two overlapping polygonal geometries, this looks like:

 

 InteriorBoundaryExterior
Interior

dim( I(a) ∩ I(b) ) = 2

dim( I(a) ∩ B(b) = 1

dim( I(a) ∩ E(b) ) = 2

Boundary

dim( B(a) ∩ I(b) ) = 1

dim( B(a) ∩ B(b) ) = 0

dim( B(a) ∩ E(b) ) = 1

Exterior

dim( E(a) ∩ I(b) ) = 2

dim( E(a) ∩ B(b) ) = 1

dim( E(a) ∩ E(b) = 2

Reading from left to right and top to bottom, the intersection matrix is represented as the text string '212101212'.

For more information, refer to:

5.1.2. Named Spatial Relationships

To make it easy to determine common spatial relationships, the OGC SFS defines a set of named spatial relationship predicates. PostGIS provides these as the functions ???, ???, ???, ???, ???, ???, ???, ???. It also defines the non-standard relationship predicates ???, ???, and ???.

Spatial predicates are usually used as conditions in SQL WHERE or JOIN clauses. The named spatial predicates automatically use a spatial index if one is available, so there is no need to use the bounding box operator && as well. For example:

SELECT city.name, state.name, city.geom
FROM city JOIN state ON ST_Intersects(city.geom, state.geom);

For more details and illustrations, see the PostGIS Workshop.

5.1.3. General Spatial Relationships

In some cases the named spatial relationships are insufficient to provide a desired spatial filter condition.

For example, consider a linear dataset representing a road network. It may be required to identify all road segments that cross each other, not at a point, but in a line (perhaps to validate some business rule). In this case ??? does not provide the necessary spatial filter, since for linear features it returns true only where they cross at a point.

A two-step solution would be to first compute the actual intersection (???) of pairs of road lines that spatially intersect (???), and then check if the intersection's ST_GeometryType is 'LINESTRING' (properly dealing with cases that return GEOMETRYCOLLECTIONs of [MULTI]POINTs, [MULTI]LINESTRINGs, etc.).

Clearly, a simpler and faster solution is desirable.

A second example is locating wharves that intersect a lake's boundary on a line and where one end of the wharf is up on shore. In other words, where a wharf is within but not completely contained by a lake, intersects the boundary of a lake on a line, and where exactly one of the wharf's endpoints is within or on the boundary of the lake. It is possible to use a combination of spatial predicates to find the required features:

These requirements can be met by computing the full DE-9IM intersection matrix. PostGIS provides the ??? function to do this:

SELECT ST_Relate( 'LINESTRING (1 1, 5 5)',
                  'POLYGON ((3 3, 3 7, 7 7, 7 3, 3 3))' );
st_relate
-----------
1010F0212

To test a particular spatial relationship, an intersection matrix pattern is used. This is the matrix representation augmented with the additional symbols {T,*}:

  • T => intersection dimension is non-empty; i.e. is in {0,1,2}

  • * => don't care

Using intersection matrix patterns, specific spatial relationships can be evaluated in a more succinct way. The ??? and the ??? functions can be used to test intersection matrix patterns. For the first example above, the intersection matrix pattern specifying two lines intersecting in a line is '1*1***1**':

-- Find road segments that intersect in a line
SELECT a.id
FROM roads a, roads b
WHERE a.id != b.id
      AND a.geom && b.geom
      AND ST_Relate(a.geom, b.geom, '1*1***1**');

For the second example, the intersection matrix pattern specifying a line partly inside and partly outside a polygon is '102101FF2':

-- Find wharves partly on a lake's shoreline
SELECT a.lake_id, b.wharf_id
FROM lakes a, wharfs b
WHERE a.geom && b.geom
      AND ST_Relate(a.geom, b.geom, '102101FF2');

5.2. Using Spatial Indexes

When constructing queries using spatial conditions, for best performance it is important to ensure that a spatial index is used, if one exists (see Section 4.8, “Erstellung von Indizes”). To do this, a spatial operator or index-aware function must be used in a WHERE or ON clause of the query.

Spatial operators include the bounding box operators (of which the most commonly used is &&; see Section 8.8.1, “Bounding Box Operators” for the full list) and the distance operators used in nearest-neighbour queries (the most common being <->; see Section 8.8.2, “Operatoren” for the full list.)

Index-aware functions automatically add a bounding box operator to the spatial condition. Index-aware functions include the named spatial relationship predicates ???, ???, ???, ???, ???, ???, ???, ???, ???, ???, and ???, and the distance predicates ???, ???, ???, and ??? .)

Functions such as ST_Distance do not use indexes to optimize their operation. For example, the following query would be quite slow on a large table:

SELECT geom
FROM geom_table
WHERE ST_Distance( geom, 'SRID=312;POINT(100000 200000)' ) < 100

This query selects all the geometries in geom_table which are within 100 units of the point (100000, 200000). It will be slow because it is calculating the distance between each point in the table and the specified point, ie. one ST_Distance() calculation is computed for every row in the table.

The number of rows processed can be reduced substantially by using the index-aware function ???:

SELECT geom
FROM geom_table
WHERE ST_DWithin( geom, 'SRID=312;POINT(100000 200000)', 100 )

This query selects the same geometries, but it does it in a more efficient way. This is enabled by ST_DWithin() using the && operator internally on an expanded bounding box of the query geometry. If there is a spatial index on the_geom, the query planner will recognize that it can use the index to reduce the number of rows scanned before calculating the distance. The spatial index allows retrieving only records with geometries whose bounding boxes overlap the expanded extent and hence which might be within the required distance. The actual distance is then computed to confirm whether to include the record in the result set.

5.3. Examples of Spatial SQL

The examples in this section will make use of two tables, a table of linear roads, and a table of polygonal municipality boundaries. The table definitions for the bc_roads table is:

Column      | Type              | Description
------------+-------------------+-------------------
gid         | integer           | Unique ID
name        | character varying | Road Name
the_geom    | geometry          | Location Geometry (Linestring)

The table definition for the bc_municipality table is:

Column     | Type              | Description
-----------+-------------------+-------------------
gid        | integer           | Unique ID
code       | integer           | Unique ID
name       | character varying | City / Town Name
the_geom   | geometry          | Location Geometry (Polygon)
5.3.1. What is the total length of all roads, expressed in kilometers?
5.3.2. How large is the city of Prince George, in hectares?
5.3.3. What is the largest municipality in the province, by area?
5.3.4. What is the length of roads fully contained within each municipality?
5.3.5. Create a new table with all the roads within the city of Prince George.
5.3.6. What is the length in kilometers of "Douglas St" in Victoria?
5.3.7. What is the largest municipality polygon that has a hole?

5.3.1.

What is the total length of all roads, expressed in kilometers?

You can answer this question with a very simple piece of SQL:

SELECT sum(ST_Length(the_geom))/1000 AS km_roads FROM bc_roads;

km_roads
------------------
70842.1243039643
(1 row)

5.3.2.

How large is the city of Prince George, in hectares?

This query combines an attribute condition (on the municipality name) with a spatial calculation (of the area):

SELECT
  ST_Area(the_geom)/10000 AS hectares
FROM bc_municipality
WHERE name = 'PRINCE GEORGE';

hectares
------------------
32657.9103824927
(1 row)

5.3.3.

What is the largest municipality in the province, by area?

This query brings a spatial measurement into the query condition. There are several ways of approaching this problem, but the most efficient is below:

SELECT
  name,
  ST_Area(the_geom)/10000 AS hectares
FROM
  bc_municipality
ORDER BY hectares DESC
LIMIT 1;

name           | hectares
---------------+-----------------
TUMBLER RIDGE  | 155020.02556131
(1 row)

Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a lot it would make sense to add an area column to the table that we could separately index for performance. By ordering the results in a descending direction, and them using the PostgreSQL "LIMIT" command we can easily pick off the largest value without using an aggregate function like max().

5.3.4.

What is the length of roads fully contained within each municipality?

This is an example of a "spatial join", because we are bringing together data from two tables (doing a join) but using a spatial interaction condition ("contained") as the join condition rather than the usual relational approach of joining on a common key:

SELECT
  m.name,
  sum(ST_Length(r.the_geom))/1000 as roads_km
FROM
  bc_roads AS r,
  bc_municipality AS m
WHERE
  ST_Contains(m.the_geom, r.the_geom)
GROUP BY m.name
ORDER BY roads_km;

name                        | roads_km
----------------------------+------------------
SURREY                      | 1539.47553551242
VANCOUVER                   | 1450.33093486576
LANGLEY DISTRICT            | 833.793392535662
BURNABY                     | 773.769091404338
PRINCE GEORGE               | 694.37554369147
...

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for our particular example table). For smaller overlays (several thousand records on several hundred) the response can be very fast.

5.3.5.

Create a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of spatially clipped or cut resultants. Unlike the "spatial join" demonstrated above, this query actually creates new geometries. An overlay is like a turbo-charged spatial join, and is useful for more exact analysis work:

CREATE TABLE pg_roads as
SELECT
  ST_Intersection(r.the_geom, m.the_geom) AS intersection_geom,
  ST_Length(r.the_geom) AS rd_orig_length,
  r.*
FROM
  bc_roads AS r,
  bc_municipality AS m
WHERE
  m.name = 'PRINCE GEORGE'
        AND ST_Intersects(r.the_geom, m.the_geom);

5.3.6.

What is the length in kilometers of "Douglas St" in Victoria?

SELECT
  sum(ST_Length(r.the_geom))/1000 AS kilometers
FROM
  bc_roads r,
  bc_municipality m
WHERE
        r.name = 'Douglas St'
        AND m.name = 'VICTORIA'
        AND ST_Intersects(m.the_geom, r.the_geom);

kilometers
------------------
4.89151904172838
(1 row)

5.3.7.

What is the largest municipality polygon that has a hole?

SELECT gid, name, ST_Area(the_geom) AS area
FROM bc_municipality
WHERE ST_NRings(the_geom) > 1
ORDER BY area DESC LIMIT 1;

gid  | name         | area
-----+--------------+------------------
12   | SPALLUMCHEEN | 257374619.430216
(1 row)

Chapter 6. Performance Tipps

6.1. Kleine Tabellen mit großen Geometrien

6.1.1. Problembeschreibung

Aktuelle PostgreSQL Versionen (inklusive 9.6) haben eine Schwäche des Optimizers in Bezug auf TOAST Tabellen. TOAST Tabellen bieten eine Art "Erweiterungsraum", der benutzt wird um große Werte (im Sinne der Datengröße), welche nicht in die üblichen Datenspeicherseiten passen (wie lange Texte, Bilder oder eine komplexe Geometrie mit vielen Stützpunkten) auszulagern, siehe the PostgreSQL Documentation for TOAST für mehr Information).

Das Problem tritt bei Tabellen mit relativ großen Geometrien, aber wenigen Zeilen auf (z.B. eine Tabelle welche die europäischen Ländergrenzen in hoher Auflösung beinhaltet). Dann ist die Tabelle selbst klein, aber sie benützt eine Menge an TOAST Speicherplatz. In unserem Beispiel hat die Tabelle um die 80 Zeilen und nutzt dafür nur 3 Speicherseiten, während die TOAST Tabelle 8225 Speicherseiten benützt.

Stellen Sie sich nun eine Abfrage vor, die den geometrischen Operator && verwendet, um ein Umgebungsrechteck mit nur wenigen Zeilen zu ermitteln. Der Abfrageoptimierer stellt fest, dass die Tabelle nur 3 Speicherseiten und 80 Zeilen aufweist. Er nimmt an, das ein sequentieller Scan bei einer derart kleinen Tabelle wesentlich schneller abläuft als die Verwendung eines Indizes. Und so entscheidet er den GIST Index zu ignorieren. Normalerweise stimmt diese Annahme. Aber in unserem Fall, muss der && Operator die gesamte Geometrie von der Festplatte lesen um den BoundingBox-Vergleich durchführen zu können, wodurch auch alle TOAST-Speicherseiten gelesen werden.

Um zu sehen, ob dieses Problem auftritt, können Sie den "EXPLAIN ANALYZE" Befehl von PostgreSQL anwenden. Mehr Information und die technischen Feinheiten entnehmen Sie bitte dem Thread auf der Postgres Performance Mailing List: http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php

und einem neueren Thread über PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

6.1.2. Umgehungslösung

Die PostgreSQL Entwickler versuchen das Problem zu lösen, indem sie die Abschätzung der Abfragen TOAST-gewahr machen. Zur Überbrückung zwei Workarounds:

Der erste Workaround besteht darin den Query Planer zu zwingen, den Index zu nutzen. Setzen Sie "SET enable_seqscan TO off;" am Server bevor Sie die Abfrage ausführen. Dies zwingt den Query Planer grundsätzlich dazu sequentielle Scans, wann immer möglich, zu vermeiden. Womit der GIST Index wie üblich verwendet wird. Aber dieser Parameter muss bei jeder Verbindung neu gesetzt werden, und er verursacht das der Query Planer Fehleinschätzungen in anderen Fällen macht. Daher sollte "SET enable_seqscan TO on;" nach der Abfrage ausgeführt werden.

Der zweite Workaround besteht darin, den sequentiellen Scan so schnell zu machen wie der Query Planer annimmt. Dies kann durch eine zusätzliche Spalte, welche die BBOX "zwischenspeichert" und über die abgefragt wird, erreicht werden. In Unserem Beispiel sehen die Befehle dazu folgendermaßen aus:

SELECT AddGeometryColumn('myschema','mytable','bbox','4326','GEOMETRY','2');
UPDATE mytable SET bbox = ST_Envelope(ST_Force2D(the_geom));

Nun ändern Sie bitte Ihre Abfrage so, das der && Operator gegen die bbox anstelle der geom_column benutzt wird:

SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);

Selbstverständlich muss man die BBOX synchron halten. Die transparenteste Möglichkeit dies zu erreichen wäre über Trigger. Sie können Ihre Anwendung derart abändern, das die BBOX Spalte aktuell bleibt oder ein UPDATE nach jeder Änderung durchführen.

6.2. CLUSTER auf die geometrischen Indizes

Für Tabelle die hauptsächlich read-only sind und bei denen ein einzelner Index für die Mehrheit der Abfragen verwendet wird, bietet PostgreSQL den CLUSTER Befehl. Dieser Befehl ordnet alle Datenzeilen in derselben Reihenfolge an wie die Kriterien bei der Indexerstellung, was zu zwei Performance Vorteilen führt: Erstens wird für die Index Range Scans die Anzahl der Suchabfragen über die Datentabelle stark reduziert. Zweitens, wenn sich der Arbeitsbereich auf einige kleine Intervale des Index beschränkt ist das Caching effektiver, da die Datenzeilen über weniger data pages verteilt sind. (Sie dürfen sich nun eingeladen fühlen, die Dokumentation über den CLUSTER Befehl in der PostgreSQL Hilfe nachzulesen.)

Die aktuelle PostgreSQL Version erlaubt allerdings kein clustern an Hand von PostGIS GIST Indizes, da GIST Indizes NULL Werte einfach ignorieren. Sie erhalten eine Fehlermeldung wie:

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "the_geom" NOT NULL.

Wie die HINT Meldung mitteilt, kann man diesen Mangel umgehen indem man eine "NOT NULL" Bedingung auf die Tabelle setzt:

lwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null;
ALTER TABLE

Dies funktioniert natürlich nicht, wenn Sie tatsächlich NULL Werte in Ihrer Geometriespalte benötigen. Außerdem müssen Sie die obere Methode zum Hinzufügen der Bedingung verwenden. Die Verwendung einer CHECK Bedingung wie "ALTER TABLE blubb ADD CHECK (geometry is not null);" wird nicht klappen.

6.3. Vermeidung von Dimensionsumrechnungen

Manchmal kann es vorkommen, das Sie 3D- oder 4D-Daten in Ihrer Tabelle haben, aber immer mit den OpenGIS compliant ST_AsText() oder ST_AsBinary() Funktionen, die lediglich 2D Geometrien ausgeben, zugreifen. Dies geschieht indem intern die ST_Force2D() Funktion aufgerufen wird, welche einen wesentlichen Overhead für große Geometrien aufweist. Um diesen Overhead zu vermeiden kann es praktikabel sein diese zusätzlichen Dimensionen ein für alle mal im Voraus zu löschen:

UPDATE mytable SET the_geom = ST_Force2D(the_geom);
VACUUM FULL ANALYZE mytable;

Beachten Sie bitte, falls Sie die Geometriespalte über AddGeometryColumn() hinzugefügt haben, das dadurch eine Bedingung auf die Dimension der Geometrie gesetzt ist. Um dies zu Überbrücken löschen Sie die Bedingung. Vergessen Sie bitte nicht den Eintrag in die geometry_columns Tabelle zu erneuern und die Bedingung anschließend erneut zu erzeugen.

Bei großen Tabellen kann es vernünftig sein, diese UPDATE in mehrere kleinere Portionen aufzuteilen, indem man das UPDATE mittels WHERE Klausel und eines Primärschlüssels, oder eines anderen passenden Kriteriums, beschränkt und ein einfaches "VACUUM;" zwischen den UPDATEs aufruft. Dies verringert den Bedarf an temporären Festplattenspeicher drastisch. Außerdem, falls die Datenbank gemischte Dimensionen der Geometrie aufweist, kann eine Einschränkung des UPDATES mittels "WHERE dimension(the_geom)>2" das wiederholte Schreiben von Geometrien, welche bereits in 2D sind, vermeiden.

Chapter 7. Anwendung der PostGIS Geometrie: Applikationsentwicklung

7.1. Verwendung von MapServer

Der Minnesota MapServer ist ein Kartendienstserver für das Internet, der die "OpenGIS Web Map Service (WMS) Implementation Specification" erfüllt.

7.1.1. Grundlegende Handhabung

Um PostGIS mit MapServer zu verwenden müssen Sie wissen, wie Sie MapServer konfigurieren, da dies den Rahmens dieser Dokumentation sprengen würde. Dieser Abschnitt deckt PostGIS-spezifische Themen und Konfigurationsdetails ab.

Um PostGIS mit MapServer zu verwenden, benötigen Sie:

  • Die PostGIS Version 0.6, oder höher.

  • Die MapServer Version 3.5, oder höher.

MapServer greift auf die PostGIS/PostgreSQL-Daten, so wie jeder andere PostgreSQL-Client, über die libpq Schnittstelle zu. Dies bedeutet, dass MapServer auf jedem Server, der Netzwerkzugriff auf den PostgreSQL Server hat, installiert werden kann und PostGIS als Datenquelle nutzen kann. Je schneller die Verbindung zwischen den beiden Systemen, desto besser.

  1. Es spielt keine Rolle, mit welchen Optionen Sie MapServer kompilieren, solange sie bei der Konfiguration die "--with-postgis"-Option angeben.

  2. Fügen Sie einen PostGIS Layer zu der MapServer *.map Datei hinzu. Zum Beispiel:

    LAYER
      CONNECTIONTYPE postgis
      NAME "widehighways"
      # Verbindung zu einer remote Geodatenbank
      CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
      PROCESSING "CLOSE_CONNECTION=DEFER"
      # Um die Zeilen der 'geom'-Spalte aus der 'roads'-Tabelle zu erhalten
      DATA "geom from roads using srid=4326 using unique gid"
      STATUS ON
      TYPE LINE
      # Von den im Ausschnitt vorhandenen Linien nur die breiten Hauptstraßen/Highways
      FILTER "type = 'highway' and numlanes >= 4"
      CLASS
        # Autobahnen heller und 2Pixel stark machen
        EXPRESSION ([numlanes] >= 6)
        STYLE
          COLOR 255 22 22
          WIDTH 2
        END
      END
      CLASS
        # Der ganze Rest ist dunkler und nur 1 Pixel stark
        EXPRESSION ([numlanes] < 6)
        STYLE
          COLOR 205 92 82
        END
      END
    END

    Im oberen Beispiel werden folgende PostGIS-spezifische Anweisungen verwendet:

    CONNECTIONTYPE

    Für PostGIS Layer ist dies immer "postgis".

    CONNECTION

    Die Datenbankverbindung wird durch einen "Connection String" bestimmt, welcher aus einer standardisierten Menge von Schlüsseln und Werten zusammengesetzt ist (Standardwerte zwischen <>):

    user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>

    Ein leerer "Connection String" ist ebenfalls gültig, sodass jedes Key/Value Paar weggelassen werden kann. Üblicherweise wird man zumindest den Datenbanknamen und den Benutzernamen, mit dem man sich verbinden will, angeben.

    DATA

    Dieser Parameter hat die Form "<geocolumn> from <tablename> using srid=<srid> using unique <primary key>", wobei "geocolumn" dem räumlichen Attribut entspricht, mit dem die Bildsynthese/rendern durchgeführt werden soll. "srid" entspricht der SRID des räumlichen Attributs und "primary key" ist der Primärschlüssel der Tabelle (oder ein anderes eindeutiges Attribut mit einem Index).

    Sie können sowohl "using srid" als auch "using unique" weglassen. Wenn möglich, bestimmt MapServer die korrekten Werte dann automatisch, allerdings zu den Kosten einiger zusätzlichen serverseitigen Abfragen, die bei jedem Kartenaufruf ausgeführt werden.

    PROCESSING

    Wenn Sie mehrere Layer darstellen wollen, fügen Sie CLOSE_CONNECTION=DEFER ein, dadurch wird eine bestehende Verbindung wiederverwendet anstatt geschlossen. Dies erhöht die Geschwindigkeit. Unter MapServer PostGIS Performance Tips findet sich eine detailierte Erklärung.

    FILTER

    Der Filter muss ein gültiger SQL-Text sein, welcher der Logik, die normalerweise dem "WHERE" Schlüsselwort in der SQL-Abfrage folgt, entspricht. Z.B.: um nur die Straßen mit 6 oder mehr Spuren zu rendern, können Sie den Filter "num_lanes >= 6" verwenden.

  3. Stellen Sie bitte sicher, das für alle zu zeichnenden Layer, ein räumlicher Index (GIST) in der Geodatenbank angelegt ist.

    CREATE INDEX [indexname] ON [tabellenname] USING GIST ( [geometry_spalte] );
  4. Wenn Sie Ihre Layer über MapServer abfragen wollen, benötigen Sie auch die "using unique" Klausel in Ihrer "DATA" Anweisung.

    MapServer benötigt für jeden räumlichen Datensatz, der abgefragt werden soll, eindeutige Identifikatoren. Das PostGIS Modul von MapServer benützt den von Ihnen festgelegten, eindeutigen Wert, um diese eindeutige Identifikatoren zur Verfügung zu stellen. Den Primärschlüssel zu verwenden gilt als Erfolgsrezept.

7.1.2. Häufig gestellte Fragen

7.1.2.1. Wenn Ich EXPRESSION in meiner *.map Datei verwende, gibt die WHERE Bedingung niemals TRUE zurück, obwohl Ich weiß, dass sich die Werte in meiner Tabelle befinden.
7.1.2.2. Der FILTER, den ich bei meinen Shapefiles verwende, funktioniert nicht für meine PostGIS Tabelle, obwohl diese die gleichen Daten aufweist.
7.1.2.3. Mein PostGIS Layer wird viel langsamer dargestellt als mein Shapefile Layer. Ist das normal?
7.1.2.4. Mein PostGIS Layer wird ausgezeichnet dargestellt, aber die Abfragen sind sehr langsam. Was läuft falsch?
7.1.2.5. Kann Ich "Geography" Spalten (neu in PostGIS 1.5) als Quelle für MapServer Layer verwenden?

7.1.2.1.

Wenn Ich EXPRESSION in meiner *.map Datei verwende, gibt die WHERE Bedingung niemals TRUE zurück, obwohl Ich weiß, dass sich die Werte in meiner Tabelle befinden.

Anders als bei Shapefiles müssen die PostGIS-Feldnamen in EXPRESSION mit Kleinbuchstaben eingetragen werden.

EXPRESSION ([numlanes] >= 6)

7.1.2.2.

Der FILTER, den ich bei meinen Shapefiles verwende, funktioniert nicht für meine PostGIS Tabelle, obwohl diese die gleichen Daten aufweist.

Anders als bei Shapefiles, nutzen die Filter bei PostGIS-Layern die SQL Syntax (sie werden an die SQL-Anweisung, die vom PostGIS Konnektor für die Darstellung der Layer im Mapserver erzeugt wird, angehängt).

FILTER "type = 'highway' and numlanes >= 4"

7.1.2.3.

Mein PostGIS Layer wird viel langsamer dargestellt als mein Shapefile Layer. Ist das normal?

Je mehr Features eine bestimmte Karte aufweist, umso wahrscheinlicher ist es, dass PostGIS langsamer ist als Shapefiles. Bei Karten mit relativ wenigen Features (100te) ist PostGIS meist schneller. Bei Karten mit einer hohen Feature Dichte (1000e) wird PostGIS immer langsamer sein.

Falls erhebliche Probleme mit der Zeichenperformance auftreten, haben Sie eventuell keinen räumlichen Index auf die Tabelle gelegt.

postgis# CREATE INDEX geotable_gix ON geotable USING GIST ( geocolumn );
postgis# VACUUM ANALYZE;

7.1.2.4.

Mein PostGIS Layer wird ausgezeichnet dargestellt, aber die Abfragen sind sehr langsam. Was läuft falsch?

Damit Abfragen schnell gehen, müssen Sie einen eindeutigen Schlüssel in Ihrer Tabelle haben und einen Index auf diesen eindeutigen Schlüssell legen.

Sie können den von MapServer zu verwendenden eindeutigen Schlüssel mit der USING UNIQUE Klausel in Ihrer DATA Zeile angeben:

DATA "geom FROM geotable USING UNIQUE gid"

7.1.2.5.

Kann Ich "Geography" Spalten (neu in PostGIS 1.5) als Quelle für MapServer Layer verwenden?

Ja! Für MapServer sind "Geography" Attribute und "Geometry" Attriute dasselbe. Es kann allerdings nur die SRID 4325 verwendet werden. Stellen Sie bitte sicher, dass sich eine "using srid=4326" Klausel in Ihrer DATA Anweisung befindet. Alles andere funktioniert genau so wie bei "Geometry".

DATA "geog FROM geogtable USING SRID=4326 USING UNIQUE gid"

7.1.3. Erweiterte Verwendung

Die SQL-Pseudoklausel USING wird verwendet, um MapServer zusätzliche Information über komplexere Abfragen zukommen zu lassen. Genauer gesagt, wenn entweder ein View oder ein Subselect als Ursprungstabelle verwendet wird (der Ausdruck rechts von "FROM" bei einer DATA Definition) ist es für MapServer schwieriger einen eindeutigen Identifikator für jede Zeile und die SRID der Tabelle automatisch zu bestimmen. Die USINGKlausel kann MapServer die Information über diese beiden Teile wie folgt zukommen lassen:

DATA "geom FROM (
  SELECT
    table1.geom AS geom,
    table1.gid AS gid,
    table2.data AS data
  FROM table1
  LEFT JOIN table2
  ON table1.id = table2.id
) AS new_table USING UNIQUE gid USING SRID=4326"
USING UNIQUE <uniqueid>

MapServer benötigt eine eindeutige ID für jede Zeile um die Zeile bei Kartenabfragen identifizieren zu können. Normalerweise wird der Primärschlüssel aus den Systemtabellen ermittelt. Views und Subselects haben jedoch nicht automatisch eine bekannte eindeutige Spalte. Wenn Sie MapServer's Abfragefunktionalität nutzen wollen, müssen Sie sicherstellen, dass Ihr View oder Subselect eine mit eindeutigen Werten versehene Spalte enthält und diese mit USING UNIQUE gekennzeichnet ist. Zum Beispiel können Sie hierfür die Werte des Primärschlüssels verwenden, oder irgendeine andere Spalte bei der sichergestellt ist dass sie eindeutige Werte für die Ergebnismenge aufweist.

[Note]

"eine Karte abfragen" ist jene Aktion, bei der man auf die Karte klickt und nach Information über Kartenfeatures an dieser Stelle fragt. Verwechseln Sie bitte nicht "Kartenabfragen" mit der SQL Abfrage in der DATA Definition.

USING SRID=<srid>

PostGIS muss wissen, welches Koordinatenreferenzsystem von der Geometrie verwendet wird, um korrekte Daten an MapServer zurückzugeben. Üblicherweise kann man diese Information in der Tabelle "geometry_columns" in der PostGIS Datenbank finden. Dies ist jedoch nicht möglich bei Tabellen die On-the-fly erzeugt wurden, wo wie bei Subselects oder Views. Hierfür erlaubt die Option USING SRID= die Festlegung der richtigen SRID in der DATA Definition.

7.1.4. Beispiele

Beginnen wir mit einem einfachen Beispiel und arbeiten uns dann langsam vor. Betrachten Sie die nachfolgende MapServer Layerdefinition:

LAYER
  CONNECTIONTYPE postgis
  NAME "roads"
  CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
  DATA "geom from roads"
  STATUS ON
  TYPE LINE
  CLASS
    STYLE
      COLOR 0 0 0
    END
  END
END

Dieser Layer stellt alle Straßengeometrien der "roads"-Tabelle schwarz dar.

Angenommen, wir wollen bis zu einem Maßstab von 1:100000 nur die Autobahnen anzeigen - die nächsten zwei Layer erreichen diesen Effekt:

LAYER
  CONNECTIONTYPE postgis
  CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
  PROCESSING "CLOSE_CONNECTION=DEFER"
  DATA "geom from roads"
  MINSCALE 100000
  STATUS ON
  TYPE LINE
  FILTER "road_type = 'highway'"
  CLASS
    COLOR 0 0 0
  END
END
LAYER
  CONNECTIONTYPE postgis
  CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
  PROCESSING "CLOSE_CONNECTION=DEFER"
  DATA "geom from roads"
  MAXSCALE 100000
  STATUS ON
  TYPE LINE
  CLASSITEM road_type
  CLASS
    EXPRESSION "highway"
    STYLE
      WIDTH 2
      COLOR 255 0 0
    END
  END
  CLASS
    STYLE
      COLOR 0 0 0
    END
  END
END

Der erste Layer wird verwendet, wenn der Maßstab größer als 1:100000 ist und es werden nur die Straßen vom Typ "highway"/Autobahn als schwarze Linien dargestellt. Die Option FILTER bedingt, dass nur Straßen vom Typ "highway" angezeigt werden.

Der zweite Layer wird angezeigt, wenn der Maßstab kleiner als 1:100000 ist. Er zeigt die Autobahnen als doppelt so dicke rote Linien an, die anderen Straßen als normale schwarze Linien.

Wir haben eine Reihe von interessanten Aufgaben lediglich mit der von MapServer zur Verfügung gestellten Funktionalität durchgeführt, und unsere SQL-Anweisung unter DATA ist trotzdem einfach geblieben. Angenommen, die Namen der Straßen sind in einer anderen Tabelle gespeichert (wieso auch immer) und wir müssen einen Join ausführen, um sie für die Straßenbeschriftung verwenden zu können.

LAYER
  CONNECTIONTYPE postgis
  CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
  DATA "geom FROM (SELECT roads.gid AS gid, roads.geom AS geom,
        road_names.name as name FROM roads LEFT JOIN road_names ON
        roads.road_name_id = road_names.road_name_id)
        AS named_roads USING UNIQUE gid USING SRID=4326"
  MAXSCALE 20000
  STATUS ON
  TYPE ANNOTATION
  LABELITEM name
  CLASS
    LABEL
      ANGLE auto
      SIZE 8
      COLOR 0 192 0
      TYPE truetype
      FONT arial
    END
  END
END

Dieser Beschriftungslayer fügt grüne Beschriftungen zu allen Straßen hinzu, wenn der Maßstab 1:20000 oder weniger wird. Es zeigt auch wie man einen SQL-Join in einer DATA Definition verwenden kann.

7.2. Java Clients (JDBC)

Java Clients können auf die PostGIS Geoobjekte in der PostgreSQL Datenbank entweder direkt über die Textdarstellung zugreifen oder über die Objekte der JDBC Erweiterung, die mit PostGIS gebündelt sind. Um die Objekte der Erweiterung zu nutzen, muss sich die Datei "postgis.jar" zusammen mit dem JDBC Treiberpaket "postgresql.jar" in Ihrem CLASSPATH befinden.

import java.sql.*;
import java.util.*;
import java.lang.*;
import org.postgis.*;

public class JavaGIS {

public static void main(String[] args) {

  java.sql.Connection conn;

  try {
    /*
    * Den JDBC Treiber laden und eine Verbindung herstellen.
    */
    Class.forName("org.postgresql.Driver");
    String url = "jdbc:postgresql://localhost:5432/database";
    conn = DriverManager.getConnection(url, "postgres", "");
    /*
    * Die geometrischen Datentypen zu der Verbindung hinzufügen. Beachten Sie bitte,
    * dass Sie die Verbindung in eine pgsql-specifische Verbindung umwandeln
    * bevor Sie die Methode addDataType() aufrufen.
    */
    ((org.postgresql.PGConnection)conn).addDataType("geometry",Class.forName("org.postgis.PGgeometry"));
    ((org.postgresql.PGConnection)conn).addDataType("box3d",Class.forName("org.postgis.PGbox3d"));
    /*
    * Eine Anweisung erzeugen und eine Select Abfrage ausführen.
    */
    Statement s = conn.createStatement();
    ResultSet r = s.executeQuery("select geom,id from geomtable");
    while( r.next() ) {
      /*
      * Die Geometrie als Objekt abrufen und es in einen geometrischen Datentyp umwandeln.
      * Ausdrucken.
      */
      PGgeometry geom = (PGgeometry)r.getObject(1);
      int id = r.getInt(2);
      System.out.println("Row " + id + ":");
      System.out.println(geom.toString());
    }
    s.close();
    conn.close();
  }
catch( Exception e ) {
  e.printStackTrace();
  }
}
}

Das Objekt "PGgeometry" ist ein Adapter, der abhängig vom Datentyp ein bestimmtes topologisches Geoobjekt (Unterklassen der abstrakten Klasse "Geometry") enthält: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon.

PGgeometry geom = (PGgeometry)r.getObject(1);
if( geom.getType() == Geometry.POLYGON ) {
  Polygon pl = (Polygon)geom.getGeometry();
  for( int r = 0; r < pl.numRings(); r++) {
    LinearRing rng = pl.getRing(r);
    System.out.println("Ring: " + r);
    for( int p = 0; p < rng.numPoints(); p++ ) {
      Point pt = rng.getPoint(p);
      System.out.println("Point: " + p);
      System.out.println(pt.toString());
    }
  }
}

Das JavaDoc der Erweiterung liefert eine Referenz für die verschiedenen Zugriffsfunktionen auf die Geoobjekte.

7.3. C Clients (libpq)

...

7.3.1. Text Cursor

...

7.3.2. Binäre Cursor

...

Chapter 8. Referenz PostGIS

Nachfolgend sind jene Funktionen aufgeführt, die ein PostGIS Anwender am ehesten benötigt. Es gibt weitere Funktionen, die jedoch keinen Nutzen für den allgemeinen Anwender haben, da es sich um Hilfsfunktionen für PostGIS Objekte handelt.

[Note]

PostGIS hat begonnen die bestehende Namenskonvention in eine SQL-MM orientierte Konvention zu ändern. Daher wurden die meisten Funktionen, die Sie kennen und lieben gelernt haben, mit dem Standardpräfix (ST) für spatiale Datentypen umbenannt. Vorhergegangene Funktionen sind noch verfügbar; wenn es aber entsprechende aktualisierte Funktionen gibt, dann werden sie in diesem Dokument nicht mehr aufgeführt. Wenn Funktionen kein ST_ Präfix aufweisen und in dieser Dokumentation nicht mehr angeführt sind, dann gelten sie als überholt und werden in einer zukünftigen Release entfernt. Benutzten Sie diese daher BITTE NICHT MEHR.

8.1. PostgreSQL und PostGIS Datentypen - Geometry/Geography/Box

Abstract

Dieser Abschnitt listet die von PostGIS installierten PostgreSQL-Datentypen auf. Beachten Sie bitte die hier beschriebene Verhaltensweise bei der Typumwandlung. Diese ist insbesondere dann sehr wesentlich, wenn Sie Ihre eigenen Funktionen entwerfen.

Each data type describes its type casting behaviour. A type cast converts values of one data type into another type. PostgreSQL allows defining casting behavior for custom types, along with the functions used to convert type values. Casts can have automatic behaviour, which allows automatic conversion of a function argument to a type supported by the function.

Some casts have explicit behaviour, which means the cast must be specified using the syntax CAST(myval As sometype) or myval::sometype. Explicit casting avoids the issue of ambiguous casts, which can occur when using an overloaded function which does not support a given type. For example, a function may accept a box2d or a box3d, but not a geometry. Since geometry has an automatic cast to both box types, this produces an "ambiguous function" error. To prevent the error use an explicit cast to the desired box type.

All data types can be cast to text, so this does not need to be specified explicitly.

box2d — Ein Quader der aus Xmin, Ymin, Zmin, Xmax, Ymax und Zmax gebildet wird. Wird oft verwendet, um die 3D Ausdehnung einer Geometrie oder einer Sammelgeometrie zu erhalten.
box3d — Ein Quader der aus Xmin, Ymin, Zmin, Xmax, Ymax und Zmax gebildet wird. Wird oft verwendet, um die 3D Ausdehnung einer Geometrie oder einer Sammelgeometrie zu erhalten.
geometry — Der geographische Datentyp "Geography" wird zur Abbildung eines Geoobjektes im geographischen Kugelkoordinatensystem verwendet.
geometry_dump — A composite type used to describe the parts of complex geometry.
geography — The type representing spatial features with geodetic (ellipsoidal) coordinate systems.

Name

box2d — Ein Quader der aus Xmin, Ymin, Zmin, Xmax, Ymax und Zmax gebildet wird. Wird oft verwendet, um die 3D Ausdehnung einer Geometrie oder einer Sammelgeometrie zu erhalten.

Beschreibung

Box3D ist ein geometrischer Datentyp, der den umschreibenden Quader einer oder mehrerer geometrischer Objekte abbildet. ST_3DExtent gibt ein Box3D-Objekt zurück.

The representation contains the values xmin, ymin, xmax, ymax. These are the minimum and maxium values of the X and Y extents.


Name

box3d — Ein Quader der aus Xmin, Ymin, Zmin, Xmax, Ymax und Zmax gebildet wird. Wird oft verwendet, um die 3D Ausdehnung einer Geometrie oder einer Sammelgeometrie zu erhalten.

Beschreibung

Box3D ist ein geometrischer Datentyp, der den umschreibenden Quader einer oder mehrerer geometrischer Objekte abbildet. ST_3DExtent gibt ein Box3D-Objekt zurück.

The representation contains the values xmin, ymin, zmin, xmax, ymax, zmax. These are the minimum and maxium values of the X, Y and Z extents.

Typumwandlung

Dieser Abschnitt beschreibt sowohl die automatischen, als auch die expliziten Typumwandlungen, die für diesen Datentyp erlaubt sind.

Typumwandlung nachVerhaltensweise
boxautomatisch
box2dautomatisch
geometryautomatisch

Name

geometry — Der geographische Datentyp "Geography" wird zur Abbildung eines Geoobjektes im geographischen Kugelkoordinatensystem verwendet.

Beschreibung

Der Datentyp "geometry" ist der elementare räumliche Datentyp von PostGIS zur Abbildung eines Geoobjektes in das kartesische Koordinatensystem.

Alle räumlichen Operationen an einer Geometrie verwenden die Einheiten des Koordinatenreferenzsystems in dem die Geometrie vorliegt.

Typumwandlung

Dieser Abschnitt beschreibt sowohl die automatischen, als auch die expliziten Typumwandlungen, die für diesen Datentyp erlaubt sind.

Typumwandlung nachVerhaltensweise
boxautomatisch
box2dautomatisch
box3dautomatisch
Byteaautomatisch
geographyautomatisch
Textautomatisch

Name

geometry_dump — A composite type used to describe the parts of complex geometry.

Beschreibung

geometry_dump is a composite data type containing the fields:

  • geom - a geometry representing a component of the dumped geometry. The geometry type depends on the originating function.

  • path[] - an integer array that defines the navigation path within the dumped geometry to the geom component. The path array is 1-based (i.e. path[1] is the first element.)

It is used by the ST_Dump* family of functions as an output type to explode a complex geometry into its constituent parts.


Name

geography — The type representing spatial features with geodetic (ellipsoidal) coordinate systems.

Beschreibung

Der geographische Datentyp "Geography" wird zur Abbildung eines Geoobjektes im geographischen Kugelkoordinatensystem verwendet.

Spatial operations on the geography type provide more accurate results by taking the ellipsoidal model into account.

Typumwandlung

Dieser Abschnitt beschreibt sowohl die automatischen, als auch die expliziten Typumwandlungen, die für diesen Datentyp erlaubt sind.

Typumwandlung nachVerhaltensweise
geometryexplizit

8.2. PostGIS Grand Unified Custom Variables (GUCs)

Abstract

Dieser Abschnitt listet die PostGIS-spezifischen Grand Unified Custom Variables (GUC) auf. Diese können global, pro Datenbank, Session oder Transaktion gesetzt werden. Am Besten werden diese global oder auf Datenbankebene gesetzt.

postgis.backend — Dieses Backend stellt eine Funktion zur Auswahl zwischen GEOS und SFCGAL zur Verfügung.
postgis.gdal_datapath — Eine Konfigurationsmöglichkeit um den Wert von GDAL's GDAL_DATA Option zu setzen. Wenn sie nicht gesetzt ist, wird die Umgebungsvariable GDAL_DATA verwendet.
postgis.gdal_enabled_drivers — Eine Konfigurationsmöglichkeit um einen GDAL Treiber in der PostGIS Umgebung zu aktivieren. Beeinflusst die Konfigurationsvariable GDAL_SKIP von GDAL.
postgis.enable_outdb_rasters — Eine boolesche Konfigurationsmöglichkeit um den Zugriff auf out-db Rasterbänder zu ermöglichen

Name

postgis.backend — Dieses Backend stellt eine Funktion zur Auswahl zwischen GEOS und SFCGAL zur Verfügung.

Beschreibung

Diese GUC hat nur Bedeutung, wenn Sie PostGIS mit SFCGAL Unterstützung kompiliert haben. Funktionen, welche sowohl bei GEOS als auch bei SFCGAL die gleiche Bezeichnung haben, werden standardmäßig mit dem geos Backend ausgeführt. Die Standardeinstellung wird mit dieser Variablen überschrieben und SFCGAL für den Aufruf verwendet.

Verfügbarkeit: 2.1.0

Beispiele

Setzt das Backend für die Dauer der Verbindung

set postgis.backend = sfcgal;

Setzt das Backend für neue Verbindungen zur Datenbank

ALTER DATABASE mygisdb SET postgis.backend = sfcgal;

Name

postgis.gdal_datapath — Eine Konfigurationsmöglichkeit um den Wert von GDAL's GDAL_DATA Option zu setzen. Wenn sie nicht gesetzt ist, wird die Umgebungsvariable GDAL_DATA verwendet.

Beschreibung

Eine PostgreSQL GUC Variable zum setzten von GDAL's GDAL_DATA Option. Der postgis.gdal_datapath Wert sollte dem gesamten physischen Pfad zu den Datendateien von GDAL entsprechen.

Diese Konfigurationsmöglichkeit ist am nützlichsten auf Windows Plattformen, wo der Dateipfad von "data" nicht fest kodiert ist. Diese Option sollte auch gesetzt werden, wenn sich die Datendateien nicht in dem von GDAL erwarteten Pfad befinden.

[Note]

Diese Option kann in der Konfigurationsdatei "postgresql.conf" gesetzt werden. Sie kann auch pro Verbindung oder pro Transaktion gesetzt werden.

Verfügbarkeit: 2.2.0

[Note]

Zusätzliche Informationen über GDAL_DATA ist unter den Konfigurationsmöglichkeiten für GDAL zu finden.

Beispiele

Den postgis.gdal_datapath setzen oder zurücksetzen

SET postgis.gdal_datapath TO '/usr/local/share/gdal.hidden';
SET postgis.gdal_datapath TO default;
                                

Auf Windows für eine bestimmte Datenbank setzen

ALTER DATABASE gisdb
SET postgis.gdal_datapath = 'C:/Program Files/PostgreSQL/9.3/gdal-data';

Name

postgis.gdal_enabled_drivers — Eine Konfigurationsmöglichkeit um einen GDAL Treiber in der PostGIS Umgebung zu aktivieren. Beeinflusst die Konfigurationsvariable GDAL_SKIP von GDAL.

Beschreibung

Eine Konfigurationsmöglichkeit um einen GDAL Treiber in der PostGIS Umgebung zu aktivieren. Beeinflusst die Konfigurationsvariable GDAL_SKIP von GDAL. Diese Option kann in der PostgreSQL Konfigurationsdatei "postgresql.conf" gesetzt werden. Sie kann aber auch pro Verbindung oder pro Transaktion gesetzt werden. 

Der Ausgangswert von postgis.gdal_enabled_drivers kann auch beim Startprozess von PostgreSQL gesetzt werden, nämlich durch die Übergabe der Umgebungsvariablen POSTGIS_GDAL_ENABLED_DRIVERS, welche die Liste der aktivierten Treiber enthält.

Aktivierte GDAL Treiber können auch über die Kurzbezeichnung oder den Code des Treibers bestimmt werden. Kurzbezeichnungen und Codes für die Treiber finden sich unter GDAL Raster Formate Es können mehrere, durch Leerzeichen getrennte Treiber angegeben werden.

[Note]

Für postgis.gdal_enabled_drivers sind drei spezielle, case-sensitive Codes verfügbar.

  • DISABLE_ALL deaktiviert alle GDAL-Treiber. Falls vorhanden, überschreibt DISABLE_ALL alle anderen Werte in postgis.gdal_enabled_drivers.

  • ENABLE_ALL aktiviert alle GDAL-Treiber.

  • VSICURL aktiviert GDAL's /vsicurl/ virtuelles Dateisystem.

Falls postgis.gdal_enabled_driversauf DISABLE_ALL gesetzt ist, kommt es bei der Anwendung von out-db Rastern, ST_FromGDALRaster(), ST_AsGDALRaster(), ST_AsTIFF(), ST_AsJPEG() und ST_AsPNG() zu Fehlermeldungen.

[Note]

postgis.gdal_enabled_drivers wird bei der Standardinstallation von PostGIS auf DISABLE_ALL gesetzt.

[Note]

Weiterführende Informationen über GDAL_SKIP ist auf GDAL's Configuration Options zu finden.

Verfügbarkeit: 2.2.0

Beispiele

postgis.gdal_enabled_drivers setzen und zurücksetzen

Bestimmt das Backend, das für alle neuen Verbindungen zur Datenbank verwendet wird

ALTER DATABASE mygisdb SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';

Setzt die standardmäßig aktivierten Treiber für alle neuen Verbindungen zum Server. Benötigt Administratorrechte und PostgreSQL 9.4+. Beachten Sie aber bitte, dass die Datenbank-, Sitzungs- und Benutzereinstellungen dies überschreiben.

ALTER SYSTEM SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SELECT pg_reload_conf();
                                
SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SET postgis.gdal_enabled_drivers = default;
                                

Aktiviert alle GDAL-Treiber

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
                                

Deaktiviert alle GDAL-Treiber

SET postgis.gdal_enabled_drivers = 'DISABLE_ALL';
                                

Name

postgis.enable_outdb_rasters — Eine boolesche Konfigurationsmöglichkeit um den Zugriff auf out-db Rasterbänder zu ermöglichen

Beschreibung

Eine boolesche Konfigurationsmöglichkeit um den Zugriff auf out-db Rasterbänder zu ermöglichen. Diese Option kann in der PostgreSQL Konfigurationsdatei "postgresql.conf" gesetzt werden. Kann aber auch pro Verbindung oder pro Transaktion gesetzt werden.

Der Ausgangswert von postgis.enable_outdb_rasters kann auch beim Startprozess von PostgreSQL gesetzt werden, nämlich durch die Übergabe der Umgebungsvariablen POSTGIS_ENABLE_OUTDB_RASTERS, welche ungleich null sein muss.

[Note]

Auch wenn postgis.enable_outdb_rasters True ist, bestimmt die GUC postgis.enable_outdb_rasters die zugänglichen Rasterformate.

[Note]

Bei der Standardinstallation von PostGIS ist postgis.enable_outdb_rasters auf False gesetzt.

Verfügbarkeit: 2.2.0

Beispiele

postgis.enable_outdb_rasters setzen oder zurücksetzen

SET postgis.enable_outdb_rasters TO True;
SET postgis.enable_outdb_rasters = default;
SET postgis.enable_outdb_rasters = True;
SET postgis.enable_outdb_rasters = False;
                                

Set for specific database

ALTER DATABASE mygisdb SET postgis.backend = sfcgal;
                                

Setting for whole database cluster. You need to reconnect to the database for changes to take effect.

--writes to postgres.auto.conf
ALTER SYSTEM postgis.enable_outdb_rasters = true;
 --Reloads postgres conf
SELECT pg_reload_conf();
                                

8.3. Geometrische Managementfunktionen

Abstract

These functions assist in defining tables containing geometry columns.

AddGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
DropGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
DropGeometryTable — Löscht eine Tabelle und alle Referenzen in dem geometry_columns View.
Find_SRID — Returns the SRID defined for a geometry column.
Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.
UpdateGeometrySRID — Updates the SRID of all features in a geometry column, and the table metadata.

Name

AddGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.

Synopsis

text AddGeometryColumn(varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true);

text AddGeometryColumn(varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true);

text AddGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true);

Beschreibung

Fügt eine Geometriespalte zu den Attributen einer bestehende Tabelle hinzu. Der schema_name ist der Name des Schemas, in dem sich die Tabelle befindet. Bei der srid handelt es sich um eine Ganzzahl, welche auf einen entsprechenden Eintrag in der SPATIAL_REF_SYS Tabelle verweist. Beim type handelt es sich um eine Zeichenkette, welche dem Geometrietyp entsprechen muss, z.B.: 'POLYGON' oder 'MULTILINESTRING'. Falls der Name des Schemas nicht existiert (oder im aktuellen search_path nicht sichtbar ist), oder die angegebene SRID, der Geometrietyp, oder die Dimension ungültig sind, wird ein Fehler angezeigt.

[Note]

Änderung: 2.0.0 Diese Funktion aktualisiert die geometry_columns Tabelle nicht mehr, da geometry_columns jetzt ein View ist, welcher den Systemkatalog ausliest. Standardmäßig werden auch keine Bedingungen/constraints erzeugt, sondern es wird der in PostgreSQL integrierte Typmodifikaor verwendet. So entspricht zum Beispiel die Erzeugung einer wgs84 POINT Spalte mit dieser Funktion: ALTER TABLE some_table ADD COLUMN geom geometry(Point,4326);

Änderung: 2.0.0 Falls Sie das alte Verhalten mit Constraints wünschen, setzen Sie bitte use_typmod vom standardmäßigen true auf false.

[Note]

Änderung: 2.0.0 Views können nicht mehr händisch in "geometry_columns" registriert werden. Views auf eine Geometrie in Typmod-Tabellen, bei denen keine Adapterfunktion verwendet wird, registrieren sich selbst auf korrekte Weise, da sie die Typmod-Verhaltensweise von der Spalte der Stammtabelle erben. Views die ein geometrische Funktion ausführen die eine andere Geometrie ausgibt, benötigen die Umwandlung in eine Typmod-Geometrie, damit die Geometrie des Views korrekt in "geometry_columns" registriert wird. Siehe Section 4.3.3, “Geometrische Spalten in "geometry_columns" händisch registrieren”.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Verbesserung: 2.0.0 use_typmod Argument eingeführt. Standardmäßig wird eine typmod Geometrie anstelle einer Constraint-basierten Geometrie erzeugt.

Beispiele

-- Ein Schema für die Daten erzeugen
CREATE SCHEMA my_schema;
-- Eine neue einfache PostgreSQL Tabelle ersellen
CREATE TABLE my_schema.my_spatial_table (id serial);

-- Die Beschreibung der Tabelle zeigt eine einfache Tabelle mit einer einzigen "id" Spalte Describing the table shows a simple table with a single "id" column.
postgis=# \d my_schema.my_spatial_table
                                                         Table "my_schema.my_spatial_table"
 Column |  Type   |                                Modifiers
--------+---------+-------------------------------------------------------------------------
 id     | integer | not null default nextval('my_schema.my_spatial_table_id_seq'::regclass)

-- Fügt eine Geometriespalte an die Tabelle an
SELECT AddGeometryColumn ('my_schema','my_spatial_table','geom',4326,'POINT',2);

-- Hinzufügen einer Punktgeometrie mit dem alten, auf Bedingungen basierten Verhalten/old constraint behavior
SELECT AddGeometryColumn ('my_schema','my_spatial_table','geom_c',4326,'POINT',2, false);

--Hinzufügen eines Kurvenpolygons/curvepolygon mittels old constraint behavior
SELECT AddGeometryColumn ('my_schema','my_spatial_table','geomcp_c',4326,'CURVEPOLYGON',2, false);

-- Die neuerliche Beschreibung der Tabelle zeigt die hinzugefügten Geometriespalten an.
\d my_schema.my_spatial_table
                            addgeometrycolumn
-------------------------------------------------------------------------
 my_schema.my_spatial_table.geomcp_c SRID:4326 TYPE:CURVEPOLYGON DIMS:2
(1 row)

                                    Table "my_schema.my_spatial_table"
  Column  |         Type         |                                Modifiers
----------+----------------------+-------------------------------------------------------------------------
 id       | integer              | not null default nextval('my_schema.my_spatial_table_id_seq'::regclass)
 geom     | geometry(Point,4326) |
 geom_c   | geometry             |
 geomcp_c | geometry             |
Check constraints:
    "enforce_dims_geom_c" CHECK (st_ndims(geom_c) = 2)
    "enforce_dims_geomcp_c" CHECK (st_ndims(geomcp_c) = 2)
    "enforce_geotype_geom_c" CHECK (geometrytype(geom_c) = 'POINT'::text OR geom_c IS NULL)
    "enforce_geotype_geomcp_c" CHECK (geometrytype(geomcp_c) = 'CURVEPOLYGON'::text OR geomcp_c IS NULL)
    "enforce_srid_geom_c" CHECK (st_srid(geom_c) = 4326)
    "enforce_srid_geomcp_c" CHECK (st_srid(geomcp_c) = 4326)

-- Der geometry_columns View registriert die neuen Spalten --
SELECT f_geometry_column As col_name, type, srid, coord_dimension As ndims
    FROM geometry_columns
    WHERE f_table_name = 'my_spatial_table' AND f_table_schema = 'my_schema';

 col_name |     type     | srid | ndims
----------+--------------+------+-------
 geom     | Point        | 4326 |     2
 geom_c   | Point        | 4326 |     2
 geomcp_c | CurvePolygon | 4326 |     2

Name

DropGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.

Synopsis

text DropGeometryColumn(varchar table_name, varchar column_name);

text DropGeometryColumn(varchar schema_name, varchar table_name, varchar column_name);

text DropGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name);

Beschreibung

Entfernt eine geometrische Spalte aus der Geometrietabelle. Der "schema_name" muss mit dem Feld "f_table_schema" in der Tabelle "geometry_columns" übereinstimmen.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

[Note]

Änderung: 2.0.0 Diese Funktion wurde zwecks Abwärtskompatibilität eingeführt. Seit geometry_columns ein View auf den Systemkatalog ist, können Sie die Geometriespalte, so wie jede andere Tabellenspalte, mit ALTER TABLE löschen.

Beispiele

SELECT DropGeometryColumn ('my_schema','my_spatial_table','geom');
                        ----RESULT output ---
                                          dropgeometrycolumn
------------------------------------------------------
 my_schema.my_spatial_table.geom effectively removed.

-- In PostGIS 2.0+ entspricht das oben angeführte Aufruf ebenfalls dem Standard
-- Der standardmäßige ALTER TABLE Aufruf.  Beide Aufrufe entfernen die Tabelle aus dem  geometry_columns Register.
ALTER TABLE my_schema.my_spatial_table DROP column geom;
                

Name

DropGeometryTable — Löscht eine Tabelle und alle Referenzen in dem geometry_columns View.

Synopsis

boolean DropGeometryTable(varchar table_name);

boolean DropGeometryTable(varchar schema_name, varchar table_name);

boolean DropGeometryTable(varchar catalog_name, varchar schema_name, varchar table_name);

Beschreibung

Löscht eine Tabelle und deren Verweise in "geometry_columns". Anmerkung: verwendet current_schema() wenn kein Schema angegeben wird, eine Schema erkennende pgsql Installation vorausgesetzt.

[Note]

Änderung: 2.0.0 Diese Funktion wurde zwecks Abwärtskompatibilität eingeführt. Seit geometry_columns ein View auf den Systemkatalog ist, können Sie eine Tabelle mit einer Geometriespalte, so wie jede andere Tabelle, mit DROP TABLE löschen.

Beispiele

SELECT DropGeometryTable ('my_schema','my_spatial_table');
---- RESULT output ---
my_schema.my_spatial_table dropped.

-- Obiges ist nun gleichbedeund mit --
DROP TABLE my_schema.my_spatial_table;
                

Name

Find_SRID — Returns the SRID defined for a geometry column.

Synopsis

text Populate_Geometry_Columns(boolean use_typmod=true);

int Populate_Geometry_Columns(oid relation_oid, boolean use_typmod=true);

Beschreibung

Returns the integer SRID of the specified geometry column by searching through the GEOMETRY_COLUMNS table. If the geometry column has not been properly added (e.g. with the AddGeometryColumn function), this function will not work.

Beispiele

SELECT Find_SRID('public', 'tiger_us_state_2007', 'the_geom_4269');
find_srid
----------
4269

Siehe auch

???


Name

Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.

Synopsis

text Populate_Geometry_Columns(boolean use_typmod=true);

int Populate_Geometry_Columns(oid relation_oid, boolean use_typmod=true);

Beschreibung

Sorgt dafür, dass die Geometriespalten mit Typmodifikatoren oder mit passenden räumlichen Constraints versehen sind. Dadurch wird die korrekte Registrierung im View geometry_columns sichergestellt. Standardmäßig werden alle Geometriespalten, die keinen Typmodifikator aufweisen, mit Typmodifikatoren versehen. Für die alte Verhaltensweise setzen Sie bitte use_typmod=false

Aus Gründen der Abwärtskompatibilität und für räumliche Anwendungen, wie eine Tabellenvererbung bei denen jede Kindtabelle einen anderen geometrischen Datentyp aufweist, wird die alte Verhaltensweise mit Check-Constraints weiter unterstützt. Wenn Sie diese alte Verhaltensweise benötigen, können Sie den neuen Übergabewert auf FALSE setzen - use_typmod=false. Wenn Sie dies tun, so werden die Geometriespalten anstelle von Typmodifikatoren mit 3 Constraints erstellt. Insbesondere bedeutet dies, dass jede Geometriespalte, die zu einer Tabelle gehört, mindestens drei Constraints aufweist:

  • enforce_dims_the_geom - stellt sicher, dass jede Geometrie dieselbe Dimension hat (siehe ST_NDims)

  • enforce_geotype_the_geom - stellt sicher, dass jede Geometrie vom selben Datentyp ist (siehe GeometryType)

  • enforce_srid_the_geom - stellt sicher, dass jede Geometrie die selbe Projektion hat (siehe ???)

Wenn die oid einer Tabelle übergeben wird, so versucht diese Funktion, die SRID, die Dimension und den Datentyp der Geometrie in der Tabelle zu bestimmen und fügt, falls notwendig, Constraints hinzu. Bei Erfolg wird eine entsprechende Spalte in die Tabelle "geometry_columns" eingefügt, andernfalls wird der Fehler abgefangen und eine Fehlermeldung ausgegeben, die das Problem beschreibt.

Wenn die oid eines Views übergeben wird, so versucht diese Funktion, die SRID, die Dimension und den Datentyp der Geometrie in dem View zu bestimmen und die entsprechenden Einträge in die Tabelle geometry_columns vorzunehmen. Constraints werden allerdings nicht erzwungen.

Die parameterlose Variante ist ein einfacher Adapter für die parametrisierte Variante, welche die Tabelle "geometry_columns" zuerst entleert und dann für jede räumliche Tabelle oder View in der Datenbank wiederbefüllt. Wo es passend ist, werden räumliche Constraints auf die Tabellen gelegt. Es wird die Anzahl der in der Datenbank gefundenen Geometriespalten und die Anzahl der in die Tabelle geometry_columns eingefügten Zeilen ausgegeben. Die parametrisierte Version gibt lediglich die Anzahl der Zeilen aus, die in die Tabelle geometry_columns eingefügt wurden.

Verfügbarkeit: 1.4.0

Änderung: 2.0.0 Standardmäßig werden nun Typmodifikatoren anstelle von Check-Constraints für die Beschränkung des Geometrietyps verwendet. Sie können nach wie vor stattdessen die Verhaltensweise mit Check-Constraints verwenden, indem Sie die neu eingeführte Variable use_typmod auf FALSE setzen.

Erweiterung: 2.0.0 Der optionale Übergabewert use_typmod wurde eingeführt, um bestimmen zu können, ob die Spalten mit Typmodifikatoren oder mit Check-Constraints erstellt werden sollen.

Beispiele

CREATE TABLE public.myspatial_table(gid serial, geom geometry);
INSERT INTO myspatial_table(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326) );
-- Hier werden nun Typmodifikatoren verwendet. Damit dies funktioniert, müssen Daten vorhanden sein
SELECT Populate_Geometry_Columns('public.myspatial_table'::regclass);

populate_geometry_columns
--------------------------
                        1


\d myspatial_table

                                   Table "public.myspatial_table"
 Column |           Type            |                           Modifiers
--------+---------------------------+---------------------------------------------------------------
 gid    | integer                   | not null default nextval('myspatial_table_gid_seq'::regclass)
 geom   | geometry(LineString,4326) |
-- Dies stellt die Geometriespalten auf die Verwendung von Constraints um. Allerdings nur, wenn sie sich nicht in typmod befinden oder nicht bereits Constraints aufweisen.
-- Damit dies funktioniert müssen Daten vorhanden sein
CREATE TABLE public.myspatial_table_cs(gid serial, geom geometry);
INSERT INTO myspatial_table_cs(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326) );
SELECT Populate_Geometry_Columns('public.myspatial_table_cs'::regclass, false);
populate_geometry_columns
--------------------------
                        1
\d myspatial_table_cs

                          Table "public.myspatial_table_cs"
 Column |   Type   |                            Modifiers
--------+----------+------------------------------------------------------------------
 gid    | integer  | not null default nextval('myspatial_table_cs_gid_seq'::regclass)
 geom   | geometry |
Check constraints:
    "enforce_dims_geom" CHECK (st_ndims(geom) = 2)
    "enforce_geotype_geom" CHECK (geometrytype(geom) = 'LINESTRING'::text OR geom IS NULL)
    "enforce_srid_geom" CHECK (st_srid(geom) = 4326)

Name

UpdateGeometrySRID — Updates the SRID of all features in a geometry column, and the table metadata.

Synopsis

text UpdateGeometrySRID(varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar schema_name, varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer srid);

Beschreibung

Erneuert die SRID aller Features in einer Geometriespalte; erneuert die Constraints und die Referenz in "geometry_columns". Anmerkung: verwendet current_schema() wenn kein Schema angegeben wird, eine Schema erkennende pgsql Installation vorausgesetzt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

Insert geometries into roads table with a SRID set already using EWKT format:

COPY roads (geom) FROM STDIN;
SRID=4326;LINESTRING(0 0, 10 10)
SRID=4326;LINESTRING(10 10, 15 0)
\.
                

Ändert die SRID der Straßentabelle auf 4326

SELECT UpdateGeometrySRID('roads','geom',4326);

Das vorhergegangene Beispiel ist gleichbedeutend mit diesr DDL Anweisung

ALTER TABLE roads
  ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 4326)
    USING ST_SetSRID(geom,4326);

Falls Sie sich in der Projektion geirrt haben (oder sie als "unknown" importiert haben) und sie in einem Aufwaschen in die Web Mercator Projektion transformieren wollen, so können Sie dies mit DDL bewerkstelligen. Es gibt jedoch keine äquivalente PostGIS Managementfunktion, die dies in einem Schritt bewerkstelligen könnte.

ALTER TABLE roads
 ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 3857) USING ST_Transform(ST_SetSRID(geom,4326),3857) ;

Siehe auch

UpdateRasterSRID, ???, ???

8.4. Geometrische Konstruktoren

ST_GeomCollFromText — Creates a GeometryCollection or Multi* geometry from a set of geometries.
ST_LineFromMultiPoint — Erzeugt einen LineString aus einer MultiPoint Geometrie.
ST_MakeEnvelope — Erzeugt ein rechteckiges Polygon aus den gegebenen Minimum- und Maximumwerten. Die Eingabewerte müssen in dem Koordinatenreferenzsystem sein, welches durch die SRID angegeben wird.
ST_MakeLine — Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.
ST_MakePoint — Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie.
ST_MakePointM — Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.
ST_MakePolygon — Creates a Polygon from a shell and optional list of holes.
ST_Point — Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein OGC-Alias für ST_MakePoint.
ST_Polygon — Creates a Polygon from a LineString with a specified SRID.
ST_MakeEnvelope — Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.
ST_HexagonGrid — Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.
ST_Hexagon — Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.
ST_SquareGrid — Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.
ST_Square — Returns a single square, using the provided edge size and cell coordinate within the square grid space.

Name

ST_GeomCollFromText — Creates a GeometryCollection or Multi* geometry from a set of geometries.

Synopsis

geometry ST_GeomFromGeoJSON(text geomjson);

geometry ST_GeomFromGeoJSON(json geomjson);

geometry ST_GeomFromGeoJSON(jsonb geomjson);

Beschreibung

Collects geometries into a geometry collection. The result is either a Multi* or a GeometryCollection, depending on whether the input geometries have the same or different types (homogeneous or heterogeneous). The input geometries are left unchanged within the collection.

Variant 1: accepts two input geometries

Variant 2: accepts an array of geometries

Variant 3: aggregate function accepting a rowset of geometries.

[Note]

If any of the input geometries are collections (Multi* or GeometryCollection) ST_Collect returns a GeometryCollection (since that is the only type which can contain nested collections). To prevent this, use ST_Dump in a subquery to expand the input collections to their atomic elements (see example below).

[Note]

ST_Collect and ??? appear similar, but in fact operate quite differently. ST_Collect aggregates geometries into a collection without changing them in any way. ST_Union geometrically merges geometries where they overlap, and splits linestrings at intersections. It may return single geometries when it dissolves boundaries.

Verfügbarkeit: 1.4.0 - ST_MakeLine(geomarray) wurde eingeführt. ST_MakeLine Aggregatfunktion wurde verbessert, um mehr Punkte schneller handhaben zu können.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele - Verwendung von XLink

Collect 2D points.

SELECT ST_AsText( ST_Collect( ST_GeomFromText('POINT(1 2)'),
        ST_GeomFromText('POINT(-2 3)') ));

st_astext
----------
MULTIPOINT(1 2,-2 3)

Collect 3D points.

SELECT ST_AsEWKT( ST_Collect( ST_GeomFromEWKT('POINT(1 2 3)'),
                ST_GeomFromEWKT('POINT(1 2 4)') ) );

                st_asewkt
-------------------------
 MULTIPOINT(1 2 3,1 2 4)
 

Collect curves.

SELECT ST_AsText( ST_Collect( 'CIRCULARSTRING(220268 150415,220227 150505,220227 150406)',
                'CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)'));

                st_astext
------------------------------------------------------------------------------------
MULTICURVE(CIRCULARSTRING(220268 150415,220227 150505,220227 150406),
 CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))

Beispiele: Verwendung der Feld-Version

Using an array constructor for a subquery.

SELECT ST_Collect( ARRAY( SELECT the_geom FROM sometable ) );

Using an array constructor for values.

SELECT ST_AsText(  ST_Collect(
                ARRAY[ ST_GeomFromText('LINESTRING(1 2, 3 4)'),
                        ST_GeomFromText('LINESTRING(3 4, 4 5)') ] )) As wktcollect;

--wkt collect --
MULTILINESTRING((1 2,3 4),(3 4,4 5))

Beispiele: Spatiale Aggregatversion

Creating multiple collections by grouping geometries in a table.

SELECT stusps, ST_Collect(f.the_geom) as geom
         FROM (SELECT stusps, (ST_Dump(the_geom)).geom As the_geom
                                FROM
                                somestatetable ) As f
        GROUP BY stusps

Siehe auch

ST_Dump, ST_AsBinary


Name

ST_LineFromMultiPoint — Erzeugt einen LineString aus einer MultiPoint Geometrie.

Synopsis

geometry ST_LineFromMultiPoint(geometry aMultiPoint);

Beschreibung

Erzeugt einen LineString aus einer MultiPoint Geometrie.

Für Punkt mit X-, Y- und M-Koordinaten verwenden Sie bitte ST_MakePointM .

This function supports 3d and will not drop the z-index.

Beispiele

Erzeugt einen LineString aus einer MultiPoint Geometrie.

--ERzeugt die Zeichenkette einer 3D-Linie aus einem 3D-MultiPoint
SELECT ST_AsEWKT(ST_LineFromMultiPoint(ST_GeomFromEWKT('MULTIPOINT(1 2 3, 4 5 6, 7 8 9)')));
--result--
LINESTRING(1 2 3,4 5 6,7 8 9)

Siehe auch

ST_AsEWKT, ST_AsKML


Name

ST_MakeEnvelope — Erzeugt ein rechteckiges Polygon aus den gegebenen Minimum- und Maximumwerten. Die Eingabewerte müssen in dem Koordinatenreferenzsystem sein, welches durch die SRID angegeben wird.

Synopsis

geometry ST_MakeEnvelope(double precision xmin, double precision ymin, double precision xmax, double precision ymax, integer srid=unknown);

Beschreibung

Erzeugt ein rechteckiges Polygon das durch die Minima und Maxima angegeben wird. durch die gegebene Hülle. Die Eingabewerte müssen in dem Koordinatenreferenzsystem sein, welches durch die SRID angegeben wird. Wenn keine SRID angegeben ist, so wird das Koordinatenreferenzsystem "unknown" angenommen

Verfügbarkeit: 1.5

Erweiterung: 2.0: es wurde die Möglichkeit eingeführt, eine Einhüllende/Envelope festzulegen, ohne dass die SRID spezifiziert ist.

Beispiel: Ein Umgebungsrechteck Polygon erzeugen

SELECT ST_AsText(ST_MakeEnvelope(10, 10, 11, 11, 4326));

st_asewkt
-----------
POLYGON((10 10, 10 11, 11 11, 11 10, 10 10))

Name

ST_MakeLine — Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.

Synopsis

geometry ST_MakeLine(geometry set geoms);

geometry ST_MakeLine(geometry geom1, geometry geom2);

geometry ST_MakeLine(geometry[] geoms_array);

Beschreibung

Creates a LineString containing the points of Point, MultiPoint, or LineString geometries. Other geometry types cause an error.

Variant 1: accepts two input geometries

Variant 2: accepts an array of geometries

Variant 3: aggregate function accepting a rowset of geometries. To ensure the order of the input geometries use ORDER BY in the function call, or a subquery with an ORDER BY clause.

Repeated nodes at the beginning of input LineStrings are collapsed to a single point. Repeated points in Point and MultiPoint inputs are not collapsed. ST_RemovePoint can be used to collapse repeated points from the output LineString.

This function supports 3d and will not drop the z-index.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung zur Eingabe von MultiPoint Elementen eingeführt

Verfügbarkeit: 2.0.0 - Unterstützung zur Eingabe von LineString Elementen eingeführt

Verfügbarkeit: 1.4.0 - ST_MakeLine(geomarray) wurde eingeführt. ST_MakeLine Aggregatfunktion wurde verbessert, um mehr Punkte schneller handhaben zu können.

Beispiele: Verwendung der Feld-Version

Create a line composed of two points.

SELECT ST_AsText( ST_MakeLine(ST_Point(1,2), ST_Point(3,4)) );

          st_astext
---------------------
 LINESTRING(1 2,3 4)

Erzeugt eine BOX3D, die durch 2 geometrische 3D-Punkte definiert wird.

SELECT ST_AsEWKT( ST_MakeLine(ST_MakePoint(1,2,3), ST_MakePoint(3,4,5) ));

                st_asewkt
-------------------------
 LINESTRING(1 2 3,3 4 5)

Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.

select ST_AsText( ST_MakeLine( 'LINESTRING(0 0, 1 1)', 'LINESTRING(2 2, 3 3)' ) );

          st_astext
-----------------------------
 LINESTRING(0 0,1 1,2 2,3 3)

Beispiele: Verwendung der Feld-Version

Create a line from an array formed by a subquery with ordering.

SELECT ST_MakeLine( ARRAY( SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY visit_time) );

Create a 3D line from an array of 3D points

SELECT ST_MakeLine(ARRAY(SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY visit_time));

--Making a 3d line with 3 3-d points
SELECT ST_AsEWKT(ST_MakeLine(ARRAY[ST_MakePoint(1,2,3),
                                ST_MakePoint(3,4,5), ST_MakePoint(6,6,6)]));
                st_asewkt
-------------------------
LINESTRING(1 2 3,3 4 5,6 6 6)

Beispiele: Spatiale Aggregatversion

Diese Beispiel nimmt eine Abfolge von GPS Punkten entgegen und erzeugt einen Datensatz für jeden GPS Pfad, wobei das Geometriefeld ein Linienzug ist, welcher in der Reihenfolge der Aufnahmeroute aus den GPS Punkten zusammengesetzt wird.

Using aggregate ORDER BY provides a correctly-ordered linestring.

SELECT gps.track_id, ST_MakeLine(gps.geom ORDER BY gps_time) As geom
        FROM gps_points As gps
        GROUP BY track_id;

Prior to PostgreSQL 9, ordering in a subquery can be used. However, sometimes the query plan may not respect the order of the subquery.

-- Bei Vorgängerversionen von PostgreSQL 9.0 funktioniert dies üblicherweise,
-- allerdings kann es der Anfrageoptimierer gelegentlich vorziehen, die Reihenfolge der Unterabfrage zu missachten.
SELECT gps.gps_track, ST_MakeLine(gps.the_geom) As newgeom
        FROM (SELECT gps_track,gps_time, the_geom
                        FROM gps_points ORDER BY gps_track, gps_time) As gps
        GROUP BY gps.gps_track;

Name

ST_MakePoint — Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie.

Synopsis

geometry ST_Point(float x_lon, float y_lat);

geometry ST_MakePointM(float x, float y, float m);

geometry ST_MakePoint(double precision x, double precision y, double precision z, double precision m);

Beschreibung

Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie.

Für Punkt mit X-, Y- und M-Koordinaten verwenden Sie bitte ST_MakePointM .

Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie (Geometrie mit Kilometrierung). ST_MakePoint ist zwar nicht OGC-konform, ist aber im Allgemeinen schneller und genauer als ??? oder??? und auch leichter anzuwenden wenn Sie mit rohen Koordinaten anstatt mit WKT arbeiten.

[Note]

For geodetic coordinates, X is longitude and Y is latitude

This function supports 3d and will not drop the z-index.

Beispiele

--Gibt einen Punkt mit unbekannter SRID aus
SELECT ST_MakePoint(-71.1043443253471, 42.3150676015829);

--Gibt einen Punkt in geographischer Länge und Breite im WGS84 aus
SELECT ST_SetSRID(ST_MakePoint(-71.1043443253471, 42.3150676015829),4326);

--Gibt einen 3D-Punkt zurück (z.B.: wenn der Punkt eine Höhe aufweist)
SELECT ST_MakePoint(1, 2,1.5);

--Gibt die Z-Koordinate des Punktes zurück
SELECT ST_Z(ST_MakePoint(1, 2,1.5));
result
-------
1.5

Siehe auch

???, ???, ???, ST_MakePointM


Name

ST_MakePointM — Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.

Synopsis

geometry ST_MakePointM(float x, float y, float m);

Beschreibung

Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.

Für Punkt mit X-, Y- und M-Koordinaten verwenden Sie bitte ST_MakePointM .

[Note]

For geodetic coordinates, X is longitude and Y is latitude

Beispiele

[Note]

ST_AsEWKT is used for text output because ST_AsText does not support M values.

Create point with unknown SRID.

SELECT ST_AsEWKT(  ST_MakePointM(-71.1043443253471, 42.3150676015829, 10)  );

                                   st_asewkt
-----------------------------------------------
 POINTM(-71.1043443253471 42.3150676015829 10)

Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.

SELECT ST_AsEWKT( ST_SetSRID(  ST_MakePointM(-71.104, 42.315, 10),  4326));

                                                st_asewkt
---------------------------------------------------------
SRID=4326;POINTM(-71.104 42.315 10)

Get measure of created point.

SELECT ST_M(  ST_MakePointM(-71.104, 42.315, 10)  );

result
-------
10

Name

ST_MakePolygon — Creates a Polygon from a shell and optional list of holes.

Synopsis

geometry ST_MakePolygon(geometry linestring);

geometry ST_MakePolygon(geometry outerlinestring, geometry[] interiorlinestrings);

Beschreibung

Erzeugt ein Polygon, das durch die gegebene Hülle gebildet wird. Die Eingabegeometrie muss aus geschlossenen Linienzügen bestehen.

Variant 1: Accepts one shell LineString.

Variant 2: Accepts a shell LineString and an array of inner (hole) LineStrings. A geometry array can be constructed using the PostgreSQL array_agg(), ARRAY[] or ARRAY() constructs.

[Note]

Diese Funktion akzeptiert keine MULTILINESTRINGs. Verwenden Sie bitte ST_LineMerge oder ST_Dump um Linienzüge zu erzeugen.

This function supports 3d and will not drop the z-index.

Beispiele: Verwendung der Feld-Version

Erzeugt einen LineString aus einem codierten Linienzug.

SELECT ST_MLineFromText('MULTILINESTRING((1 2, 3 4), (4 5, 6 7))');

Create a Polygon from an open LineString, using ST_StartPoint and ST_AddPoint to close it.

SELECT ST_MakePolygon( ST_AddPoint(foo.open_line, ST_StartPoint(foo.open_line)) )
FROM (
  SELECT ST_GeomFromText('LINESTRING(75 29,77 29,77 29, 75 29)') As open_line) As foo;

Erzeugt einen LineString aus einem codierten Linienzug.

SELECT ST_AsEWKT( ST_MakePolygon( 'LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, 75.15 29.53 1)'));

st_asewkt
-----------
POLYGON((75.15 29.53 1,77 29 1,77.6 29.5 1,75.15 29.53 1))

Create a Polygon from a LineString with measures

SELECT ST_AsEWKT( ST_MakePolygon( 'LINESTRINGM(75.15 29.53 1,77 29 1,77.6 29.5 2, 75.15 29.53 2)' ));

st_asewkt
----------
POLYGONM((75.15 29.53 1,77 29 1,77.6 29.5 2,75.15 29.53 2))

Beispiele: Außenhülle mit inneren Ringen

Erzeugung eines Donuts mit einem Ameisenloch

SELECT ST_MakePolygon( ST_ExteriorRing( ST_Buffer(ring.line,10)),
        ARRAY[  ST_Translate(ring.line, 1, 1),
                ST_ExteriorRing(ST_Buffer(ST_Point(20,20),1)) ]
        )
FROM (SELECT ST_ExteriorRing(
        ST_Buffer(ST_Point(10,10),10,10)) AS line ) AS ring;

Create a set of province boundaries with holes representing lakes. The input is a table of province Polygons/MultiPolygons and a table of water linestrings. Lines forming lakes are determined by using ST_IsClosed. The province linework is extracted by using ST_Boundary. As required by ST_MakePolygon, the boundary is forced to be a single LineString by using ST_LineMerge. (However, note that if a province has more than one region or has islands this will produce an invallid polygon.) Using a LEFT JOIN ensures all provinces are included even if they have no lakes.

[Note]

Das Konstrukt mit CASE wird verwendet, da die Übergabe eines NULL-Feldes an ST_MakePolygon NULL ergibt.

SELECT p.gid, p.province_name,
        CASE WHEN array_agg(w.geom) IS NULL
        THEN p.geom
        ELSE  ST_MakePolygon( ST_LineMerge(ST_Boundary(p.geom)),
                        array_agg(w.geom)) END
FROM
        provinces p LEFT JOIN waterlines w
                ON (ST_Within(w.geom, p.geom) AND ST_IsClosed(w.geom))
GROUP BY p.gid, p.province_name, p.geom;

Another technique is to utilize a correlated subquery and the ARRAY() constructor that converts a row set to an array.

SELECT p.gid, p.province_name,
                CASE WHEN
                        ST_Accum(w.the_geom) IS NULL THEN p.the_geom
                ELSE  ST_MakePolygon(ST_LineMerge(ST_Boundary(p.the_geom)), ST_Accum(w.the_geom)) END
        FROM
                provinces p LEFT JOIN waterlines w
                        ON (ST_Within(w.the_geom, p.the_geom) AND ST_IsClosed(w.the_geom))
        GROUP BY p.gid, p.province_name, p.the_geom;

        --Gleiches Beispiel wie oben, nur mit einer korrespondierenden Unterabfrage
        --und der PostgreSQL interen ARRAY() Funktion, welche eine Menge von Zeilen in ein Feld/Array umwandelt

        SELECT p.gid,  p.province_name, CASE WHEN
                EXISTS(SELECT w.the_geom
                        FROM waterlines w
                        WHERE ST_Within(w.the_geom, p.the_geom)
                        AND ST_IsClosed(w.the_geom))
                THEN
                ST_MakePolygon(ST_LineMerge(ST_Boundary(p.the_geom)),
                        ARRAY(SELECT w.the_geom
                                FROM waterlines w
                                WHERE ST_Within(w.the_geom, p.the_geom)
                                AND ST_IsClosed(w.the_geom)))
                ELSE p.the_geom END As the_geom
        FROM
                provinces p;

Name

ST_Point — Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein OGC-Alias für ST_MakePoint.

Synopsis

geometry ST_Point(float x_lon, float y_lat);

Beschreibung

Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein SQL/MM kompatibler Alias für ST_MakePoint, der nur ein X und ein Y entgegennimmt.

[Note]

For geodetic coordinates, X is longitude and Y is latitude

This method implements the SQL/MM specification. SQL-MM 3: 6.1.2

Beispiele: Geometrie

SELECT ST_SetSRID(ST_Point(-71.1043443253471, 42.3150676015829),4326)

Beispiele: Geographie

SELECT CAST(ST_SetSRID(ST_Point(-71.1043443253471, 42.3150676015829),4326) As geography);

PostgreSQL also provides the :: short-hand for casting

SELECT CAST(ST_SetSRID(ST_Point(-71.1043443253471, 42.3150676015829),4326) As geography);

If the point coordinates are not in a geodetic coordinate system (such as WGS84), then they must be reprojected before casting to a geography. In this example a point in Pennsylvania State Plane feet (SRID 2273) is projected to WGS84 (SRID 4326).

SELECT CAST(ST_SetSRID(ST_Point(-71.1043443253471, 42.3150676015829),4326) As geography);

Name

ST_Polygon — Creates a Polygon from a LineString with a specified SRID.

Synopsis

geometry ST_Polygon(geometry aLineString, integer srid);

Beschreibung

Returns a polygon built from the given LineString and sets the spatial reference system from the srid.

ST_Polygon is similar to ST_MakePolygon Variant 1 with the addition of setting the SRID.

, ST_MakePoint, ???

[Note]

Diese Funktion akzeptiert keine MULTILINESTRINGs. Verwenden Sie bitte ST_LineMerge oder ST_Dump um Linienzüge zu erzeugen.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.3.2

This function supports 3d and will not drop the z-index.

Beispiele

Create a 2D polygon.

SELECT ST_AsText( ST_Polygon('LINESTRING(75 29, 77 29, 77 29, 75 29)'::geometry, 4326) );

-- result --
POLYGON((75 29, 77 29, 77 29, 75 29))

Create a 3D polygon.

SELECT ST_AsEWKT( ST_Polygon( ST_GeomFromEWKT('LINESTRING(75 29 1, 77 29 2, 77 29 3, 75 29 1)'), 4326) );

-- result --
SRID=4326;POLYGON((75 29 1, 77 29 2, 77 29 3, 75 29 1))

Name

ST_MakeEnvelope — Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

Synopsis

geometry ST_MakePoint(double precision x, double precision y, double precision z, double precision m);

Beschreibung

Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system. By default, the bounds are the in EPSG:3857 using the standard range of the Web Mercator system (-20037508.342789, 20037508.342789). The optional bounds parameter can be used to generate envelopes for any tiling scheme: provide a geometry that has the SRID and extent of the initial "zoom level zero" square within which the tile system is to be inscribed.

The optional margin parameter can be used to grow a tile by the given percentage, e.g. margin=0.125 grows the tile by 12.5%, which is equivalent to buffer=512 when extent is 4096, as used in ST_AsMVTGeom. This is useful to create a tile buffer -- to include data lying outside of the tile's visible area, but whose existence affects current tile's rendering. For example, a city name (a geopoint) could be near an edge of a tile, but the text would need to render on two tiles, even though the geopoint is located in the visible area of just one tile. Using an expanded tile in a search would include the city geopoint for both tiles. Use negative value to shrink the tile instead. Values less than -0.5 are prohibited because that would eliminate the tile completely. Do not use margin with ST_AsMVTGeom(). See example in ST_AsMVT.

Erweiterung: 2.0.0 Standardwert für den optionalen Parameter SRID eingefügt.

Verfügbarkeit: 2.1.0

Beispiel: Ein Umgebungsrechteck Polygon erzeugen

SELECT ST_AsText( ST_TileEnvelope(2, 1, 1) );

 st_astext
------------------------------
 POLYGON((-10018754.1713945 0,-10018754.1713945 10018754.1713945,0 10018754.1713945,0 0,-10018754.1713945 0))

SELECT ST_AsText( ST_TileEnvelope(3, 1, 1, ST_MakeEnvelope(-180, -90, 180, 90, 4326) ) );

                      st_astext
------------------------------------------------------
 POLYGON((-135 45,-135 67.5,-90 67.5,-90 45,-135 45))

Siehe auch

ST_MakeEnvelope


Name

ST_HexagonGrid — Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.

Synopsis

geometry ST_Point(float x_lon, float y_lat);

Beschreibung

Starts with the concept of a hexagon tiling of the plane. (Not a hexagon tiling of the globe, this is not the H3 tiling scheme.) For a given planar SRS, and a given edge size, starting at the origin of the SRS, there is one unique hexagonal tiling of the plane, Tiling(SRS, Size). This function answers the question: what hexagons in a given Tiling(SRS, Size) overlap with a given bounds.

The SRS for the output hexagons is the SRS provided by the bounds geometry.

Doubling or tripling the edge size of the hexagon generates a new parent tiling that fits with the origin tiling. Unfortunately, it is not possible to generate parent hexagon tilings that the child tiles perfectly fit inside.

Verfügbarkeit: 2.1.0

Beispiele: Verwendung der Feld-Version

To do a point summary against a hexagonal tiling, generate a hexagon grid using the extent of the points as the bounds, then spatially join to that grid.

SELECT COUNT(*), hexes.geom
FROM
    ST_HexagonGrid(
        10000,
        ST_SetSRID(ST_EstimatedExtent('pointtable', 'geom'), 3857)
    ) AS hexes
    INNER JOIN
    pointtable AS pts
    ON ST_Intersects(pts.geom, hexes.geom)
GROUP BY hexes.geom;

Beispiel: Ein Umgebungsrechteck Polygon erzeugen

If we generate a set of hexagons for each polygon boundary and filter out those that do not intersect their hexagons, we end up with a tiling for each polygon.

Tiling states results in a hexagon coverage of each state, and multiple hexagons overlapping at the borders between states.

[Note]

The LATERAL keyword is implied for set-returning functions when referring to a prior table in the FROM list. So CROSS JOIN LATERAL, CROSS JOIN, or just plain , are equivalent constructs for this example.

SELECT admin1.gid, hex.geom
FROM
    admin1
    CROSS JOIN
    ST_HexagonGrid(100000, admin1.geom) AS hex
WHERE
    adm0_a3 = 'USA'
    AND
    ST_Intersects(admin1.geom, hex.geom)

Name

ST_Hexagon — Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.

Synopsis

geometry ST_MakePoint(double precision x, double precision y, double precision z, double precision m);

Beschreibung

Uses the same hexagon tiling concept as ST_HexagonGrid, but generates just one hexagon at the desired cell coordinate. Optionally, can adjust origin coordinate of the tiling, the default origin is at 0,0.

Hexagons are generated with no SRID set, so use ??? to set the SRID to the one you expect.

Verfügbarkeit: 2.1.0

Example: Creating a hexagon at the origin

SELECT ST_AsText(ST_SetSRID(ST_Hexagon(1.0, 0, 0), 3857));

POLYGON((-1 0,-0.5
         -0.866025403784439,0.5
         -0.866025403784439,1
         0,0.5
         0.866025403784439,-0.5
         0.866025403784439,-1 0)) 

Name

ST_SquareGrid — Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

Synopsis

geometry ST_Point(float x_lon, float y_lat);

Beschreibung

Starts with the concept of a square tiling of the plane. For a given planar SRS, and a given edge size, starting at the origin of the SRS, there is one unique square tiling of the plane, Tiling(SRS, Size). This function answers the question: what grids in a given Tiling(SRS, Size) overlap with a given bounds.

The SRS for the output squares is the SRS provided by the bounds geometry.

Doubling or edge size of the square generates a new parent tiling that perfectly fits with the original tiling. Standard web map tilings in mercator are just powers-of-two square grids in the mercator plane.

Verfügbarkeit: 2.1.0

Example: Generating a 1 degree grid for a country

The grid will fill the whole bounds of the country, so if you want just squares that touch the country you will have to filter afterwards with ST_Intersects.

WITH grid AS (
SELECT (ST_SquareGrid(1, ST_Transform(geom,4326))).*
FROM admin0 WHERE name = 'Canada'
)
  SELEcT ST_AsText(geom)
  FROM grid

Example: Counting points in squares (using single chopped grid)

To do a point summary against a square tiling, generate a square grid using the extent of the points as the bounds, then spatially join to that grid. Note the estimated extent might be off from actual extent, so be cautious and at very least make sure you've analyzed your table.

SELECT COUNT(*), squares.geom
    FROM
    pointtable AS pts
    INNER JOIN
    ST_SquareGrid(
        1000,
        ST_SetSRID(ST_EstimatedExtent('pointtable', 'geom'), 3857)
    ) AS squares
    ON ST_Intersects(pts.geom, squares.geom)
    GROUP BY squares.geom

Example: Counting points in squares using set of grid per point

This yields the same result as the first example but will be slower for a large number of points

SELECT COUNT(*), squares.geom
    FROM
    pointtable AS pts
    INNER JOIN
    ST_SquareGrid(
        1000,
       pts.geom
    ) AS squares
    ON ST_Intersects(pts.geom, squares.geom)
    GROUP BY squares.geom

Name

ST_Square — Returns a single square, using the provided edge size and cell coordinate within the square grid space.

Synopsis

geometry ST_MakePoint(double precision x, double precision y, double precision z, double precision m);

Beschreibung

Uses the same square tiling concept as ST_SquareGrid, but generates just one square at the desired cell coordinate. Optionally, can adjust origin coordinate of the tiling, the default origin is at 0,0.

Squares are generated with no SRID set, so use ??? to set the SRID to the one you expect.

Verfügbarkeit: 2.1.0

Example: Creating a square at the origin

SELECT ST_AsText(ST_MakeEnvelope(10, 10, 11, 11, 4326));

st_asewkt
-----------
POLYGON((10 10, 10 11, 11 11, 11 10, 10 10))

8.5. Geometrische Zugriffsfunktionen

GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
ST_Boundary — Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück.
ST_BoundingDiagonal — Gibt die Diagonale des Umgebungsdreiecks der angegebenen Geometrie zurück.
ST_CoordDim

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

ST_Dimension

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

ST_Dump — Returns a set of geometry_dump rows for the components of a geometry.
ST_NumPoints — Returns a set of geometry_dump rows for the coordinates in a geometry.
ST_NRings — Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.
ST_EndPoint — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
ST_Envelope — Gibt eine Geometrie in doppelter Genauigkeit (float8) zurück, welche das Umgebungsrechteck der beigestellten Geometrie darstellt.
ST_ExteriorRing — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
ST_GeometryN — Return an element of a geometry collection.
ST_GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
ST_HasArc — Tests if a geometry contains a circular arc
ST_InteriorRingN — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
ST_IsClosed — Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind.
ST_IsCollection — Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.
ST_IsEmpty — Tests if a geometry is empty.
ST_IsPolygonCCW — Gibt TRUE zurück, wenn alle äußeren Ringe gegen den Uhrzeigersinn orientiert sind und alle inneren Ringe im Uhrzeigersinn ausgerichtet sind.
ST_IsPolygonCW — Gibt den Wert TRUE zurück, wenn alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn ausgerichtet sind.
ST_IsRing — Tests if a LineString is closed and simple.
ST_IsSimple — Gibt den Wert (TRUE) zurück, wenn die Geometrie keine irregulären Stellen, wie Selbstüberschneidungen oder Selbstberührungen, aufweist.
ST_M — Returns the M coordinate of a Point.
ST_MemSize — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
ST_NDims

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

ST_NPoints — Gibt die Anzahl der Punkte (Knoten) einer Geometrie zurück.
ST_NRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
ST_NumGeometries — Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.
ST_NumInteriorRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
ST_NumInteriorRing — Gibt die Anzahl der inneren Ringe eines Polygons in der Geometrie aus. Ist ein Synonym für ST_NumInteriorRings.
ST_NumPatches — Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich nicht um polyedrische Geometrien handelt.
ST_NumPoints — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
ST_PatchN — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
ST_PointN — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
ST_Points — Returns a MultiPoint containing the coordinates of a geometry.
ST_StartPoint — Returns the first point of a LineString.
ST_Summary

Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.

ST_X — Returns the X coordinate of a Point.
ST_Y — Returns the Y coordinate of a Point.
ST_Z — Returns the Z coordinate of a Point.
ST_Zmflag — Gibt die Dimension der Koordinaten von ST_Geometry zurück.

Name

GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.

Synopsis

text GeometryType(geometry geomA);

Beschreibung

Gibt den Geometrietyp als Zeichenkette zurück. z.B.: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.

OGC SPEC s2.1.1.1 - Gibt den Namen des instanziierbaren Subtyps der Geometrie zurück, von dem die geometrische Instanz ein Mitglied ist. Der Name des instanziierbaren Subtyps der Geometrie wird als Zeichenkette ausgegeben.

[Note]

Die Funktion zeigt auch an ob die Geometrie eine Maßzahl aufweist, indem eine Zeichenkette wie 'POINTM' zurückgegeben wird.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
 geometrytype
--------------
 LINESTRING
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
                        --result
                        POLYHEDRALSURFACE
                        
SELECT GeometryType(geom) as result
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
 result
--------
 TIN    

Siehe auch

ST_GeometryType


Name

ST_Boundary — Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück.

Synopsis

geometry ST_Boundary(geometry geomA);

Beschreibung

Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück. Die Definition der kombinierte Begrenzung ist in Abschnitt 3.12.3.2 der OGC SPEC beschrieben. Da das Ergebnis dieser Funktion eine abgeschlossene Hülle und daher topologisch geschlossen ist, kann die resultierende Begrenzung durch geometrische Primitive, wie in Abschnitt 3.12.2. der OGC SPEC erörtert, dargestellt werden.

Wird durch das GEOS Modul ausgeführt

[Note]

Vor 2.0.0 meldete diese Funktion einen Fehler, falls sie auf eine GEOMETRYCOLLECTION angewandt wurde. Ab 2.0.0 wird stattdessen NULL (nicht unterstützte Eingabe) zurückgegeben.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. OGC SPEC s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.14

This function supports 3d and will not drop the z-index.

Erweiterung: mit 2.1.0 wurde die Unterstützung von Dreiecken eingeführt

Changed: 3.2.0 support for TIN, does not use geos, does not linearize curves

Beispiele

Linienzug mit überlagerten Begrenzungspunkten

SELECT ST_Boundary(geom)
FROM (SELECT 'LINESTRING(100 150,50 60, 70 80, 160 170)'::geometry As geom) As f;
                                

-- Ausgabe als ST_AsText
MULTIPOINT(100 150,160 170)

Polygon mit Lücke und der Abgrenzung/Boundary als Multilinestring

SELECT ST_Boundary(geom)
FROM (SELECT
'POLYGON (( 10 130, 50 190, 110 190, 140 150, 150 80, 100 10, 20 40, 10 130 ),
        ( 70 40, 100 50, 120 80, 80 110, 50 90, 70 40 ))'::geometry As geom) As f;
                                

-- Ausgabe als ST_AsText
MULTILINESTRING((10 130,50 190,110 190,140 150,150 80,100 10,20 40,10 130),
        (70 40,100 50,120 80,80 110,50 90,70 40))

SELECT ST_AsText(ST_Boundary(ST_GeomFromText('LINESTRING(1 1,0 0, -1 1)')));
st_astext
-----------
MULTIPOINT(1 1,-1 1)

SELECT ST_AsText(ST_Boundary(ST_GeomFromText('POLYGON((1 1,0 0, -1 1, 1 1))')));
st_astext
----------
LINESTRING(1 1,0 0,-1 1,1 1)

--Verwendung eines 3D Polygons
SELECT ST_AsEWKT(ST_Boundary(ST_GeomFromEWKT('POLYGON((1 1 1,0 0 1, -1 1 1, 1 1 1))')));

st_asewkt
-----------------------------------
LINESTRING(1 1 1,0 0 1,-1 1 1,1 1 1)

--Verwendung eines 3D Multilinestrings
SELECT ST_AsEWKT(ST_Boundary(ST_GeomFromEWKT('MULTILINESTRING((1 1 1,0 0 0.5, -1 1 1),(1 1 0.5,0 0 0.5, -1 1 0.5, 1 1 0.5) )')));

st_asewkt
----------
MULTIPOINT(-1 1 1,1 1 0.75)

Name

ST_BoundingDiagonal — Gibt die Diagonale des Umgebungsdreiecks der angegebenen Geometrie zurück.

Synopsis

geometry ST_BoundingDiagonal(geometry geom, boolean fits=false);

Beschreibung

Returns the diagonal of the supplied geometry's bounding box as a LineString. The diagonal is a 2-point LineString with the minimum values of each dimension in its start point and the maximum values in its end point. If the input geometry is empty, the diagonal line is a LINESTRING EMPTY.

The optional fits parameter specifies if the best fit is needed. If false, the diagonal of a somewhat larger bounding box can be accepted (which is faster to compute for geometries with many vertices). In either case, the bounding box of the returned diagonal line always covers the input geometry.

The returned geometry retains the SRID and dimensionality (Z and M presence) of the input geometry.

[Note]

In degenerate cases (i.e. a single vertex in input) the returned linestring will be formally invalid (no interior). The result is still topologically valid.

Verfügbarkeit: 2.2.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

Beispiele

-- Get the minimum X in a buffer around a point
SELECT ST_X(ST_StartPoint(ST_BoundingDiagonal(
  ST_Buffer(ST_Point(0,0),10)
)));
 st_x
------
  -10
                

Name

ST_CoordDim —

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Synopsis

integer ST_CoordDim(geometry geomA);

Beschreibung

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Dies ist der MM konforme Alias für ST_NDims

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.3

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_CoordDim('CIRCULARSTRING(1 2 3, 1 3 4, 5 6 7, 8 9 10, 11 12 13)');
                        ---result--
                                3

                                SELECT ST_CoordDim(ST_Point(1,2));
                        --result--
                                2

                

Siehe auch

ST_NDims


Name

ST_Dimension —

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Synopsis

integer ST_Dimension(geometry g);

Beschreibung

Die inhärente Dimension eines geometrischen Objektes, welche kleiner oder gleich der Dimension der Koordinaten sein muss. Nach OGC SPEC s2.1.1.1 wird 0 für POINT, 1 für LINESTRING, 2 for POLYGON, und die größte Dimension der Teile einer GEOMETRYCOLLECTION zurückgegeben. Wenn die Dimension nicht bekannt ist (leereGEOMETRYCOLLECTION) wird 0 zurückgegeben.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.2

Erweiterung: 2.0.0 - Unterstützung für polyedrische Oberflächen und TIN eingeführt.

[Note]

Vor 2.0.0 meldete diese Funktion einen Fehler, falls sie auf eine leere Geometrie angewandt wurde.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_Dimension('GEOMETRYCOLLECTION(LINESTRING(1 1,0 0),POINT(0 0))');
ST_Dimension
-----------
1

Siehe auch

ST_NDims


Name

ST_Dump — Returns a set of geometry_dump rows for the components of a geometry.

Synopsis

geometry ST_Envelope(geometry g1);

Beschreibung

A set-returning function (SRF) that extracts the components of a geometry. It returns a set of geometry_dump rows, each containing a geometry (geom field) and an array of integers (path field).

For an atomic geometry type (POINT,LINESTRING,POLYGON) a single record is returned with an empty path array and the input geometry as geom. For a collection or multi-geometry a record is returned for each of the collection components, and the path denotes the position of the component inside the collection.

ST_Dump is useful for expanding geometries. It is the inverse of a ST_GeomCollFromText / GROUP BY, in that it creates new rows. For example it can be use to expand MULTIPOLYGONS into POLYGONS.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Availability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.

[Note]

Vor 1.3.4 ist diese Funktion abgestürzt, wenn die Geometrien CURVES enthalten. Dies wurde mit 1.3.4+ behoben

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Standard Beispiele

SELECT sometable.field1, sometable.field1,
      (ST_Dump(sometable.the_geom)).geom AS the_geom
FROM sometable;

-- Break a compound curve into its constituent linestrings and circularstrings
SELECT ST_AsEWKT(a.geom), ST_HasArc(a.geom)
  FROM ( SELECT (ST_Dump(p_geom)).geom AS geom
         FROM (SELECT ST_GeomFromEWKT('COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))') AS p_geom) AS b
        ) AS a;
          st_asewkt          | st_hasarc
-----------------------------+----------
 CIRCULARSTRING(0 0,1 1,1 0) | t
 LINESTRING(1 0,0 1)         | f
(2 rows)

Beispiele für polyedrische Oberflächen, TIN und Dreieck

-- Beispiel für eine polyedrische Oberfläche
-- Auftrennung einer polyedrischen Oberfläche in Teilflächen/Faces
SELECT ST_AsEWKT(ST_GeometryN(p_geom,3)) As geom_ewkt
  FROM (SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE(
((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))
)')  AS p_geom )  AS a;

                geom_ewkt
------------------------------------------
 POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0))
-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
-- result --
                 wkt
-------------------------------------
 TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))

Name

ST_NumPoints — Returns a set of geometry_dump rows for the coordinates in a geometry.

Synopsis

geometry_dump[] ST_DumpPoints(geometry geom);

Beschreibung

A set-returning function (SRF) that extracts the coordinates (vertices) of a geometry. It returns a set of geometry_dump rows, each containing a geometry (geom field) and an array of integers (path field).

  • the geom field POINTs represent the coordinates of the supplied geometry.

  • the path field (an integer[]) is an index enumerating the coordinate positions in the elements of the supplied geometry. The indices are 1-based. For example, for a LINESTRING the paths are {i} where i is the nth coordinate in the LINESTRING. For a POLYGON the paths are {i,j} where i is the ring number (1 is outer; inner rings follow) and j is the coordinate position in the ring.

To obtain a single geometry containing the coordinates use ST_Points.

Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Verfügbarkeit: 1.2.2

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Classic Explode a Table of LineStrings into nodes

SELECT edge_id, (dp).path[1] As index, ST_AsText((dp).geom) As wktnode
FROM (SELECT 1 As edge_id
        , ST_DumpPoints(ST_GeomFromText('LINESTRING(1 2, 3 4, 10 10)')) AS dp
     UNION ALL
     SELECT 2 As edge_id
        , ST_DumpPoints(ST_GeomFromText('LINESTRING(3 5, 5 6, 9 10)')) AS dp
   ) As foo;
 edge_id | index |    wktnode
---------+-------+--------------
       1 |     1 | POINT(1 2)
       1 |     2 | POINT(3 4)
       1 |     3 | POINT(10 10)
       2 |     1 | POINT(3 5)
       2 |     2 | POINT(5 6)
       2 |     3 | POINT(9 10)

Standard Beispiele

SELECT path, ST_AsText(geom)
FROM (
  SELECT (ST_DumpPoints(g.geom)).*
  FROM
    (SELECT
       'GEOMETRYCOLLECTION(
          POINT ( 0 1 ),
          LINESTRING ( 0 3, 3 4 ),
          POLYGON (( 2 0, 2 3, 0 2, 2 0 )),
          POLYGON (( 3 0, 3 3, 6 3, 6 0, 3 0 ),
                   ( 5 1, 4 2, 5 2, 5 1 )),
          MULTIPOLYGON (
                  (( 0 5, 0 8, 4 8, 4 5, 0 5 ),
                   ( 1 6, 3 6, 2 7, 1 6 )),
                  (( 5 4, 5 8, 6 7, 5 4 ))
          )
        )'::geometry AS geom
    ) AS g
  ) j;

   path    | st_astext
-----------+------------
 {1,1}     | POINT(0 1)
 {2,1}     | POINT(0 3)
 {2,2}     | POINT(3 4)
 {3,1,1}   | POINT(2 0)
 {3,1,2}   | POINT(2 3)
 {3,1,3}   | POINT(0 2)
 {3,1,4}   | POINT(2 0)
 {4,1,1}   | POINT(3 0)
 {4,1,2}   | POINT(3 3)
 {4,1,3}   | POINT(6 3)
 {4,1,4}   | POINT(6 0)
 {4,1,5}   | POINT(3 0)
 {4,2,1}   | POINT(5 1)
 {4,2,2}   | POINT(4 2)
 {4,2,3}   | POINT(5 2)
 {4,2,4}   | POINT(5 1)
 {5,1,1,1} | POINT(0 5)
 {5,1,1,2} | POINT(0 8)
 {5,1,1,3} | POINT(4 8)
 {5,1,1,4} | POINT(4 5)
 {5,1,1,5} | POINT(0 5)
 {5,1,2,1} | POINT(1 6)
 {5,1,2,2} | POINT(3 6)
 {5,1,2,3} | POINT(2 7)
 {5,1,2,4} | POINT(1 6)
 {5,2,1,1} | POINT(5 4)
 {5,2,1,2} | POINT(5 8)
 {5,2,1,3} | POINT(6 7)
 {5,2,1,4} | POINT(5 4)
(29 rows)

Beispiele für polyedrische Oberflächen, TIN und Dreieck

-- Polyhedral surface cube --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
  FROM
    (SELECT
       ST_DumpPoints(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )') ) AS gdump
    ) AS g;
-- result --
  path   |     wkt
---------+--------------
 {1,1,1} | POINT(0 0 0)
 {1,1,2} | POINT(0 0 1)
 {1,1,3} | POINT(0 1 1)
 {1,1,4} | POINT(0 1 0)
 {1,1,5} | POINT(0 0 0)
 {2,1,1} | POINT(0 0 0)
 {2,1,2} | POINT(0 1 0)
 {2,1,3} | POINT(1 1 0)
 {2,1,4} | POINT(1 0 0)
 {2,1,5} | POINT(0 0 0)
 {3,1,1} | POINT(0 0 0)
 {3,1,2} | POINT(1 0 0)
 {3,1,3} | POINT(1 0 1)
 {3,1,4} | POINT(0 0 1)
 {3,1,5} | POINT(0 0 0)
 {4,1,1} | POINT(1 1 0)
 {4,1,2} | POINT(1 1 1)
 {4,1,3} | POINT(1 0 1)
 {4,1,4} | POINT(1 0 0)
 {4,1,5} | POINT(1 1 0)
 {5,1,1} | POINT(0 1 0)
 {5,1,2} | POINT(0 1 1)
 {5,1,3} | POINT(1 1 1)
 {5,1,4} | POINT(1 1 0)
 {5,1,5} | POINT(0 1 0)
 {6,1,1} | POINT(0 0 1)
 {6,1,2} | POINT(1 0 1)
 {6,1,3} | POINT(1 1 1)
 {6,1,4} | POINT(0 1 1)
 {6,1,5} | POINT(0 0 1)
(30 rows)
-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
-- result --
                 wkt
-------------------------------------
 TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
-- result --
                 wkt
-------------------------------------
 TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))

Name

ST_NRings — Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.

Synopsis

geometry ST_ExteriorRing(geometry a_polygon);

Beschreibung

A set-returning function (SRF) that extracts the rings of a polygon. It returns a set of geometry_dump rows, each containing a geometry (geom field) and an array of integers (path field).

The geom field contains each ring as a POLYGON. The path field is an integer array of length 1 containing the polygon ring index. The exterior ring (shell) has index 0. The interior rings (holes) have indices of 1 and higher.

[Note]

This only works for POLYGON geometries. It does not work for MULTIPOLYGONS

Availability: PostGIS 1.1.3. Requires PostgreSQL 7.3 or higher.

This function supports 3d and will not drop the z-index.

Beispiele

General form of query.

SELECT polyTable.field1, polyTable.field1,
          (ST_DumpRings(polyTable.the_geom)).geom As the_geom
FROM polyTable;

A polygon with a single hole.

SELECT path, ST_AsEWKT(geom) As the_geom
        FROM ST_DumpRings(
                ST_GeomFromEWKT('POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 1,-8148958 5132508 1,-8148941 5132466 1,-8148924 5132394 1,
                -8148903 5132210 1,-8148930 5131967 1,-8148992 5131978 1,-8149237 5132093 1,-8149404 5132211 1,-8149647 5132310 1,-8149757 5132394 1,
                -8150305 5132788 1,-8149064 5133092 1),
                (-8149362 5132394 1,-8149446 5132501 1,-8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))')
                )  as foo;
 path |                                            the_geom
----------------------------------------------------------------------------------------------------------------
  {0} | POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 1,-8148958 5132508 1,
          |          -8148941 5132466 1,-8148924 5132394 1,
          |          -8148903 5132210 1,-8148930 5131967 1,
          |          -8148992 5131978 1,-8149237 5132093 1,
          |          -8149404 5132211 1,-8149647 5132310 1,-8149757 5132394 1,-8150305 5132788 1,-8149064 5133092 1))
  {1} | POLYGON((-8149362 5132394 1,-8149446 5132501 1,
          |          -8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))

Name

ST_EndPoint — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.

Synopsis

geometry ST_Points( geometry geom );

Beschreibung

Gibt den Anfangspunkt einer LINESTRING oder CIRCULARLINESTRING Geometrie als POINT oder NULL zurück, falls es sich beim Eingabewert nicht um einen LINESTRING oder CIRCULARLINESTRING handelt.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.4

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

[Note]

Änderung: 2.0.0 unterstützt die Verarbeitung von MultiLinestring's die nur aus einer einzelnen Geometrie bestehen, nicht mehr. In früheren Versionen von PostGIS gab die Funktion bei einem aus einer einzelnen Linie bestehender MultiLinestring den Anfangspunkt zurück. Ab 2.0.0 gibt sie nur NULL zurück, so wie bei jedem anderen MultiLinestring. Die alte Verhaltensweise war undokumentiert, aber Anwender, die annahmen, dass Sie Ihre Daten als LINESTRING vorliegen haben, könnten in 2.0 dieses zurückgegebene NULL bemerken.

Beispiele

Einhüllende von Punkt und Linienzug.

postgis=# SELECT ST_AsText(ST_EndPoint('LINESTRING(1 1, 2 2, 3 3)'::geometry));
 st_astext
------------
 POINT(3 3)

End point of a non-LineString is NULL

SELECT ST_EndPoint('POINT(1 1)'::geometry) IS NULL AS is_null;
  is_null
----------
 t

Einhüllende von Punkt und Linienzug.

--3d endpoint
SELECT ST_AsEWKT(ST_EndPoint('LINESTRING(1 1 2, 1 2 3, 0 0 5)'));
  st_asewkt
--------------
 POINT(0 0 5)

Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.

SELECT ST_AsText(ST_EndPoint('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 6 3)'::geometry));
 st_astext
------------
 POINT(6 3)

Name

ST_Envelope — Gibt eine Geometrie in doppelter Genauigkeit (float8) zurück, welche das Umgebungsrechteck der beigestellten Geometrie darstellt.

Synopsis

geometry ST_Envelope(geometry g1);

Beschreibung

Gibt das kleinstmögliche Umgebungsrechteck der bereitgestellten Geometrie als Geometrie im Float8-Format zurück. Das Polygon wird durch die Eckpunkte des Umgebungsrechteckes beschrieben ((MINX, MINY), (MINX, MAXY), (MAXX, MAXY), (MAXX, MINY), (MINX, MINY)). (PostGIS fügt auch die ZMIN/ZMAX Koordinaten hinzu).

Spezialfälle (vertikale Linien, Punkte) geben eine Geometrie geringerer Dimension zurück als POLYGON, insbesondere POINT oder LINESTRING.

Verfügbarkeit: 1.5.0 Änderung der Verhaltensweise insofern, das die Ausgabe in Double Precision anstelle von Float4 erfolgt

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.15

Beispiele

SELECT ST_AsText(ST_Envelope('POINT(1 3)'::geometry));
 st_astext
------------
 POINT(1 3)
(1 row)


SELECT ST_AsText(ST_Envelope('LINESTRING(0 0, 1 3)'::geometry));
                   st_astext
--------------------------------
 POLYGON((0 0,0 3,1 3,1 0,0 0))
(1 row)


SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000001 1, 1.0000001 0, 0 0))'::geometry));
                                                  st_astext
--------------------------------------------------------------
 POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000000001 1, 1.0000000001 0, 0 0))'::geometry));
                                                  st_astext
--------------------------------------------------------------
 POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)

SELECT Box3D(geom), Box2D(geom), ST_AsText(ST_Envelope(geom)) As envelopewkt
        FROM (SELECT 'POLYGON((0 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, 0 0))'::geometry As geom) As foo;


        

Einhüllende von Punkt und Linienzug.

SELECT ST_AsText(ST_Envelope(
                ST_Collect(
                        ST_GeomFromText('LINESTRING(55 75,125 150)'),
                                ST_Point(20, 80))
                                )) As wktenv;
wktenv
-----------
POLYGON((20 75,20 150,125 150,125 75,20 75))

Name

ST_ExteriorRing — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.

Synopsis

geometry ST_ExteriorRing(geometry a_polygon);

Beschreibung

Returns a LINESTRING representing the exterior ring (shell) of a POLYGON. Returns NULL if the geometry is not a polygon.

[Note]

This function does not support MULTIPOLYGONs. For MULTIPOLYGONs use in conjunction with ST_GeometryN or ST_Dump

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3

This function supports 3d and will not drop the z-index.

Beispiele

--Wenn Sie eine Tabelle mit Polygonen haben
SELECT gid, ST_ExteriorRing(the_geom) AS ering
FROM sometable;

--Wenn Sie eine Tabelle mit MULTIPOLYGONen haben
--und Sie wollen als Ergebnis einen MULTILINESTRING der aus Außenringen der Polygone zusammengesetzt ist
SELECT gid, ST_Collect(ST_ExteriorRing(the_geom)) AS erings
        FROM (SELECT gid, (ST_Dump(the_geom)).geom As the_geom
                        FROM sometable) As foo
GROUP BY gid;

--3D Beispiel
SELECT ST_AsEWKT(
        ST_ExteriorRing(
        ST_GeomFromEWKT('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))')
        )
);

st_asewkt
---------
LINESTRING(0 0 1,1 1 1,1 2 1,1 1 1,0 0 1)

Name

ST_GeometryN — Return an element of a geometry collection.

Synopsis

geometry ST_GeometryN(geometry geomA, integer n);

Beschreibung

Return the 1-based Nth element geometry of an input geometry which is a GEOMETRYCOLLECTION, MULTIPOINT, MULTILINESTRING, MULTICURVE, MULTI)POLYGON, or POLYHEDRALSURFACE. Otherwise, returns NULL.

[Note]

Seit Version 0.8.0 basiert der Index auf 1, so wie in der OGC Spezifikation. Vorhergegangene Versionen waren 0-basiert.

[Note]

To extract all elements of a geometry, ST_Dump is more efficient and works for atomoic geometrie.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Änderung: 2.0.0 Vorangegangene Versionen geben bei Einzelgeometrien NULL zurück. Dies wurde geändert um die Geometrie für den ST_GeometrieN(..,1) Fall zurückzugeben.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 9.1.5

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Standard Beispiele

--Entnahme einer Teilmenge von Punkten aus einem 3D Multipoint
SELECT n, ST_AsEWKT(ST_GeometryN(the_geom, n)) As geomewkt
FROM (
VALUES (ST_GeomFromEWKT('MULTIPOINT(1 2 7, 3 4 7, 5 6 7, 8 9 10)') ),
( ST_GeomFromEWKT('MULTICURVE(CIRCULARSTRING(2.5 2.5,4.5 2.5, 3.5 3.5), (10 11, 12 11))') )
        )As foo(the_geom)
        CROSS JOIN generate_series(1,100) n
WHERE n <= ST_NumGeometries(the_geom);

 n |               geomewkt
---+-----------------------------------------
 1 | POINT(1 2 7)
 2 | POINT(3 4 7)
 3 | POINT(5 6 7)
 4 | POINT(8 9 10)
 1 | CIRCULARSTRING(2.5 2.5,4.5 2.5,3.5 3.5)
 2 | LINESTRING(10 11,12 11)


--Entnahme aller Geometrien (sinnvoll, wenn Sie einen Schlüssel/ID zuweisen wollen)
SELECT gid, n, ST_GeometryN(the_geom, n)
FROM sometable CROSS JOIN generate_series(1,100) n
WHERE n <= ST_NumGeometries(the_geom);

Beispiele für polyedrische Oberflächen, TIN und Dreieck

-- Beispiel für eine polyedrische Oberfläche
-- Auftrennung einer polyedrischen Oberfläche in Teilflächen/Faces
SELECT ST_AsEWKT(ST_GeometryN(p_geom,3)) As geom_ewkt
  FROM (SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE(
((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))
)')  AS p_geom )  AS a;

                geom_ewkt
------------------------------------------
 POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0))
-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
-- result --
                 wkt
-------------------------------------
 TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))

Name

ST_GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.

Synopsis

text ST_GeometryType(geometry g1);

Beschreibung

Gibt den Geometrietyp als Zeichenkette zurück. Z.B.: 'ST_LineString', 'ST_Polygon','ST_MultiPolygon' etc. Diese Funktion unterscheidet sich von GeometryType(geometry) durch den Präfix ST_ und dadurch, das nicht angezeigt wird, ob die Geometrie eine Maßzahl besitzt.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.4

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
                        --result
                        ST_LineString
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
                        --result
                        ST_PolyhedralSurface
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
                        --result
                        ST_PolyhedralSurface
SELECT ST_GeometryType(geom) as result
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
 result
--------
 ST_Tin    

Siehe auch

GeometryType


Name

ST_HasArc — Tests if a geometry contains a circular arc

Synopsis

boolean ST_IsEmpty(geometry geomA);

Beschreibung

Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.

Verfügbarkeit: 1.2.2

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_HasArc(ST_Collect('LINESTRING(1 2, 3 4, 5 6)', 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 7, 5 6)'));
                st_hasarc
                --------
                t
                

Name

ST_InteriorRingN — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.

Synopsis

geometry ST_InteriorRingN(geometry a_polygon, integer n);

Beschreibung

Returns the Nth interior ring (hole) of a POLYGON geometry as a LINESTRING. The index starts at 1. Returns NULL if the geometry is not a polygon or the index is out of range.

[Note]

This function does not support MULTIPOLYGONs. For MULTIPOLYGONs use in conjunction with ST_GeometryN or ST_Dump

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsText(ST_InteriorRingN(the_geom, 1)) As the_geom
FROM (SELECT ST_BuildArea(
                ST_Collect(ST_Buffer(ST_Point(1,2), 20,3),
                        ST_Buffer(ST_Point(1, 2), 10,3))) As the_geom
                )  as foo;
                

Name

ST_IsClosed — Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind.

Synopsis

boolean ST_IsClosed(geometry g);

Beschreibung

Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen wird angezeigt, ob die Oberfläche eine Fläche (offen) oder ein Volumen (geschlossen) beschreibt.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.5, 9.3.3

[Note]

SQL-MM gibt vor, daß das Ergebnis von ST_IsClosed(NULL) 0 ergeben soll, während PostGIS NULL zurückgibt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

This function supports Polyhedral surfaces.

Beispiele für Linienzüge und Punkte

postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 1 1)'::geometry);
 st_isclosed
-------------
 f
(1 row)

postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 0 1, 1 1, 0 0)'::geometry);
 st_isclosed
-------------
 t
(1 row)

postgis=# SELECT ST_IsClosed('MULTILINESTRING((0 0, 0 1, 1 1, 0 0),(0 0, 1 1))'::geometry);
 st_isclosed
-------------
 f
(1 row)

postgis=# SELECT ST_IsClosed('POINT(0 0)'::geometry);
 st_isclosed
-------------
 t
(1 row)

postgis=# SELECT ST_IsClosed('MULTIPOINT((0 0), (1 1))'::geometry);
 st_isclosed
-------------
 t
(1 row)

Beispiel für eine polyedrische Oberfläche

-- Ein Würfel --
                SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));

 st_isclosed
-------------
 t


 -- Ein Würfel, bei dem eine Seite fehlt --
 SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)) )'));

 st_isclosed
-------------
 f

Siehe auch

ST_IsRing


Name

ST_IsCollection — Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.

Synopsis

boolean ST_IsCollection(geometry g);

Beschreibung

Gibt den Wert TRUE zurück, wenn der Geometrietyp einer der folgenden Gemetrietypen entspricht:

  • GEOMETRYCOLLECTION

  • MULTI{POINT,POLYGON,LINESTRING,CURVE,SURFACE}

  • COMPOUNDCURVE

[Note]

Diese Funktion wertet den Geometrietyp aus. D.h.: sie gibt den Wert TRUE für Geometriekollektionen zurück, wenn diese leer sind, oder nur ein einziges Element aufweisen.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

postgis=# SELECT ST_IsCollection('LINESTRING(0 0, 1 1)'::geometry);
 st_iscollection
-------------
 f
(1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT EMPTY'::geometry);
 st_iscollection
-------------
 t
(1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0))'::geometry);
 st_iscollection
-------------
 t
(1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0), (42 42))'::geometry);
 st_iscollection
-------------
 t
(1 row)

postgis=# SELECT ST_IsCollection('GEOMETRYCOLLECTION(POINT(0 0))'::geometry);
 st_iscollection
-------------
 t
(1 row)

Name

ST_IsEmpty — Tests if a geometry is empty.

Synopsis

boolean ST_IsEmpty(geometry geomA);

Beschreibung

Gibt den Wert TRUE zurück, wenn es sich um eine leere Geometrie handelt. Falls TRUE, dann repräsentiert diese Geometrie eine leere GeometryCollection, Polygon, Point etc.

[Note]

SQL-MM gibt vor, daß das Ergebnis von ST_IsEmpty(NULL) der Wert 0 ist, während PostGIS den Wert NULL zurückgibt.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.7

This method supports Circular Strings and Curves

[Warning]

Änderung: 2.0.0 - In Vorgängerversionen von PostGIS war ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') erlaubt. Um eine bessere Übereinstimmung mit der SQL/MM Norm zu erreichen, ist dies nun nicht mehr gestattet.

Beispiele

SELECT ST_IsEmpty(ST_GeomFromText('GEOMETRYCOLLECTION EMPTY'));
 st_isempty
------------
 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON EMPTY'));
 st_isempty
------------
 t
(1 row)

SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));

 st_isempty
------------
 f
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))')) = false;
 ?column?
----------
 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('CIRCULARSTRING EMPTY'));
  st_isempty
------------
 t
(1 row)


                

Name

ST_IsPolygonCCW — Gibt TRUE zurück, wenn alle äußeren Ringe gegen den Uhrzeigersinn orientiert sind und alle inneren Ringe im Uhrzeigersinn ausgerichtet sind.

Synopsis

boolean ST_IsPolygonCCW ( geometry geom );

Beschreibung

Gibt TRUE zurück, wenn für alle Bestandteile der angegebenen Geometrie gilt: die äußeren Ringe sind gegen den Uhrzeigersinn und die inneren Ringe im Uhrzeigersinn ausgerichtet.

Gibt TRUE zurück, wenn die Geometrie keine Polygonbestandteile aufweist.

[Note]

Da geschlossene Linienzüge nicht als Polygonbestandteile betrachtet werden, erhalten Sie auch dann TRUE, wenn Sie einen einzelnen geschlossenen Linienzug eingeben und zwar unabhängig von dessen Ausrichtung.

[Note]

Wenn bei einer Polygongeometrie die inneren Ringe nicht entgegengesetzt orientiert sind (insbesondere, wenn einer oder mehrere innere Ringe die selbe Ausrichtung wie die äußeren Ringe haben), dann geben sowohl ST_IsPolygonCW als auch ST_IsPolygonCCW den Wert FALSE zurück.

Verfügbarkeit: 2.2.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.


Name

ST_IsPolygonCW — Gibt den Wert TRUE zurück, wenn alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn ausgerichtet sind.

Synopsis

boolean ST_IsPolygonCW ( geometry geom );

Beschreibung

Gibt den Wert TRUE zurück, wenn für alle Polygonbestandteile der eingegebenen Geometrie gilt: die äußeren Ringe sind im Uhrzeigersinn orientiert, die inneren Ringe entgegen dem Uhrzeigersinn.

Gibt TRUE zurück, wenn die Geometrie keine Polygonbestandteile aufweist.

[Note]

Da geschlossene Linienzüge nicht als Polygonbestandteile betrachtet werden, erhalten Sie auch dann TRUE, wenn Sie einen einzelnen geschlossenen Linienzug eingeben und zwar unabhängig von dessen Ausrichtung.

[Note]

Wenn bei einer Polygongeometrie die inneren Ringe nicht entgegengesetzt orientiert sind (insbesondere, wenn einer oder mehrere innere Ringe die selbe Ausrichtung wie die äußeren Ringe haben), dann geben sowohl ST_IsPolygonCW als auch ST_IsPolygonCCW den Wert FALSE zurück.

Verfügbarkeit: 2.2.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.


Name

ST_IsRing — Tests if a LineString is closed and simple.

Synopsis

boolean ST_IsRing(geometry g);

Beschreibung

Gibt den Wert TRUE zurück, wenn der LINESTRING sowohl ST_IsClosed (ST_StartPoint(g) ~= ST_Endpoint(g)) als auch ST_IsSimple (sich nicht selbst überschneidet) ist.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 7.1.6

[Note]

SQL-MM gibt vor, daß das Ergebnis vonST_IsRing(NULL) der Wert 0 sein soll, während PostGIS den Wert NULL zurückgibt.

Beispiele

SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 1, 1 0, 0 0)'::geometry AS the_geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 t         | t           | t
(1 row)

SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 0, 1 1, 0 0)'::geometry AS the_geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 f         | t           | f
(1 row)

Name

ST_IsSimple — Gibt den Wert (TRUE) zurück, wenn die Geometrie keine irregulären Stellen, wie Selbstüberschneidungen oder Selbstberührungen, aufweist.

Synopsis

boolean ST_IsSimple(geometry geomA);

Beschreibung

Gibt TRUE zurück, wenn keine regelwidrigen geometrischen Merkmale, wie Geometrien die sich selbst kreuzen oder berühren, auftreten. Für weiterführende Information zur OGC-Definition von Simplizität und Gültigkeit von Geometrien, siehe "Ensuring OpenGIS compliancy of geometries"

[Note]

SQL-MM definiert das Ergebnis von ST_IsSimple(NULL) als 0, während PostGIS NULL zurückgibt.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.8

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_IsSimple(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));
 st_issimple
-------------
 t
(1 row)

 SELECT ST_IsSimple(ST_GeomFromText('LINESTRING(1 1,2 2,2 3.5,1 3,1 2,2 1)'));
 st_issimple
-------------
 f
(1 row)

Siehe auch

???


Name

ST_M — Returns the M coordinate of a Point.

Synopsis

float ST_M(geometry a_point);

Beschreibung

Gibt die M-Koordinate des Punktes zurück, oder NULL wenn keine vorhanden ist. Der Einabewert muss ein Punkt sein.

[Note]

Dies ist (noch) kein Teil der OGC Spezifikation, wird aber hier aufgeführt um die Liste von Funktionen zum Auslesen von Punktkoordinaten zu vervollständigen.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification.

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_M(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_m
------
        4
(1 row)

                

Siehe auch

???, ST_X, ST_Y, ST_Z


Name

ST_MemSize — Gibt den Geometrietyp des ST_Geometry Wertes zurück.

Synopsis

integer ST_NRings(geometry geomA);

Beschreibung

Gibt den Geometrietyp des ST_Geometry Wertes zurück.

This complements the PostgreSQL built-in database object functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size.

[Note]

pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.

pg_total_relation_size - includes, the table, the toasted tables, and the indexes.

pg_column_size returns how much space a geometry would take in a column considering compression, so may be lower than ST_MemSize

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Changed: 2.2.0 name changed to ST_MemSize to follow naming convention.

Beispiele

--Return how much byte space Boston takes up  in our Mass data set
SELECT pg_size_pretty(SUM(ST_MemSize(the_geom))) as totgeomsum,
pg_size_pretty(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(the_geom) ELSE 0 END)) As bossum,
CAST(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(the_geom) ELSE 0 END)*1.00 /
                SUM(ST_MemSize(the_geom))*100 As numeric(10,2)) As perbos
FROM towns;

totgeomsum        bossum        perbos
----------        ------        ------
1522 kB                30 kB        1.99


SELECT ST_MemSize(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'));

---
73

--What percentage of our table is taken up by just the geometry
SELECT pg_total_relation_size('public.neighborhoods') As fulltable_size, sum(ST_MemSize(the_geom)) As geomsize,
sum(ST_MemSize(the_geom))*1.00/pg_total_relation_size('public.neighborhoods')*100 As pergeom
FROM neighborhoods;
fulltable_size geomsize  pergeom
------------------------------------------------
262144         96238         36.71188354492187500000
        

Name

ST_NDims —

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Synopsis

integer ST_NDims(geometry g1);

Beschreibung

Gibt die Koordinatendimension der Geometrie zurück. PostGIS unterstützt 2- (x,y), 3- (x,y,z) oder 2D mit Kilometrierung - x,y,m, und 4- dimensionalen Raum - 3D mit Kilometrierung x,y,z,m .

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_NDims(ST_GeomFromText('POINT(1 1)')) As d2point,
        ST_NDims(ST_GeomFromEWKT('POINT(1 1 2)')) As d3point,
        ST_NDims(ST_GeomFromEWKT('POINTM(1 1 0.5)')) As d2pointm;

         d2point | d3point | d2pointm
---------+---------+----------
           2 |       3 |        3
                        

Name

ST_NPoints — Gibt die Anzahl der Punkte (Knoten) einer Geometrie zurück.

Synopsis

integer ST_NPoints(geometry g1);

Beschreibung

Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

[Note]

Vor 1.3.4 ist diese Funktion abgestürzt, wenn die Geometrien CURVES enthalten. Dies wurde mit 1.3.4+ behoben

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_NPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
--result
4

--Polygon im 3D Raum
SELECT ST_NPoints(ST_GeomFromEWKT('LINESTRING(77.29 29.07 1,77.42 29.26 0,77.27 29.31 -1,77.29 29.07 3)'))
--result
4

Siehe auch

ST_NumPoints


Name

ST_NRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.

Synopsis

integer ST_NRings(geometry geomA);

Beschreibung

Wenn es sich bei der Geometrie um ein Polygon oder um ein MultiPolygon handelt, wird die Anzahl der Ringe zurückgegeben. Anders als NumInteriorRings werden auch die äußeren Ringe gezählt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_NRings(the_geom) As Nrings, ST_NumInteriorRings(the_geom) As ninterrings
                                        FROM (SELECT ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))') As the_geom) As foo;
         nrings | ninterrings
--------+-------------
          1 |           0
(1 row)

Name

ST_NumGeometries — Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.

Synopsis

integer ST_NumGeometries(geometry geom);

Beschreibung

Gibt die Anzahl an Geometrien aus. Wenn es sich bei der Geometrie um eine GEOMETRYCOLLECTION (oder MULTI*) handelt, wird die Anzahl der Geometrien zurückgegeben, bei Einzelgeometrien wird 1, ansonsten NULL zurückgegeben.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Änderung: 2.0.0 Bei früheren Versionen wurde NULL zurückgegeben, wenn die Geometrie nicht vom Typ GEOMETRYCOLLECTION/MULTI war. 2.0.0+ gibt nun 1 für Einzelgeometrien, wie POLYGON, LINESTRING, POINT zurück.

This method implements the SQL/MM specification. SQL-MM 3: 9.1.4

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

--Frühere Versionen gaben hier den Wert NULL zurück -- ab 2.0.0 wird der Wert 1 zurückgegeben
SELECT ST_NumGeometries(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
--result
1

--Beispiel einer Geometriekollektion - Multis zählen als eine Geometrie in einer Kollektion
SELECT ST_NumGeometries(ST_GeomFromEWKT('GEOMETRYCOLLECTION(MULTIPOINT(-2 3 , -2 2),
LINESTRING(5 5 ,10 10),
POLYGON((-7 4.2,-7.1 5,-7.1 4.3,-7 4.2)))'));
--result
3

Name

ST_NumInteriorRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.

Synopsis

integer ST_NumInteriorRings(geometry a_polygon);

Beschreibung

Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus. Gibt NULL zurück, wenn die Geometrie kein Polygon ist.

This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

Änderung: 2.0.0 - In füheren Versionen war ein MULTIPOLYGON als Eingabe erlaubt, wobei die Anzahl der inneren Ringe des ersten Polygons ausgegeben wurde.

Beispiele

--Falls Sie ein normales Polygon haben
SELECT gid, field1, field2, ST_NumInteriorRings(the_geom) AS numholes
FROM sometable;

--Falls Sie Multipolygone haben
--und die Gesamtzahl der inneren Ringe im MULTIPOLYGON wissen wollen
SELECT gid, field1, field2, SUM(ST_NumInteriorRings(the_geom)) AS numholes
FROM (SELECT gid, field1, field2, (ST_Dump(the_geom)).geom As the_geom
        FROM sometable) As foo
GROUP BY gid, field1,field2;
                        

Name

ST_NumInteriorRing — Gibt die Anzahl der inneren Ringe eines Polygons in der Geometrie aus. Ist ein Synonym für ST_NumInteriorRings.

Synopsis

integer ST_NumInteriorRing(geometry a_polygon);


Name

ST_NumPatches — Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich nicht um polyedrische Geometrien handelt.

Synopsis

integer ST_NumPatches(geometry g1);

Beschreibung

Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich um keine polyedrische Geometrie handelt. Ist ein Synonym für ST_NumGeometries zur Unterstützung der MM Namensgebung. Wenn Ihnen die MM-Konvention egal ist, so ist die Verwendung von ST_NumGeometries schneller.

Verfügbarkeit: 2.0.0

This function supports 3d and will not drop the z-index.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: ?

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_NumPatches(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
                --result
                6
                

Name

ST_NumPoints — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.

Synopsis

integer ST_NumPoints(geometry g1);

Beschreibung

Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück. Vor 1.4 funktionierte dies nur mit ST_LineString, wie von der Spezifikation festgelegt. Ab 1.4 aufwärts handelt es sich um einen Alias für ST_NPoints, das die Anzahl der Knoten nicht nur für Linienzüge ausgibt. Erwägen Sie stattdessen die Verwendung von ST_NPoints, das vielseitig ist und mit vielen Geometrietypen funktioniert.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.2.4

Beispiele

SELECT ST_NumPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
                --result
                4
                

Siehe auch

ST_NPoints


Name

ST_PatchN — Gibt den Geometrietyp des ST_Geometry Wertes zurück.

Synopsis

geometry ST_PatchN(geometry geomA, integer n);

Beschreibung

Returns the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE or POLYHEDRALSURFACEM. Otherwise, returns NULL. This returns the same answer as ST_GeometryN for PolyhedralSurfaces. Using ST_GeometryN is faster.

[Note]

Der Index ist auf 1 basiert.

[Note]

Falls Sie alle Geometrien einer Geometrie entnehmen wollen, so ist ST_Dump wesentlich leistungsfähiger.

Verfügbarkeit: 2.0.0

This method implements the SQL/MM specification. SQL-MM 3: ?

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

--Entnimmt die 2te Fläche einer polyedrischen Oberfläche
SELECT ST_AsEWKT(ST_PatchN(geom, 2)) As geomewkt
FROM (
VALUES (ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
        ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
        ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
        ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')) ) As foo(geom);

              geomewkt
---+-----------------------------------------
 POLYGON((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0))

Name

ST_PointN — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.

Synopsis

geometry ST_PointN(geometry a_linestring, integer n);

Beschreibung

Gibt den n-ten Punkt des ersten LineString's oder des kreisförmigen LineStrings's einer Geometrie zurück. Negative Werte werden rückwärts, vom Ende des LineString's her gezählt, sodass -1 der Endpunkt ist. Gibt NULL aus, wenn die Geometrie keinen LineString enthält.

[Note]

Seit Version 0.8.0 ist der Index 1-basiert, so wie in der OGC Spezifikation. Rückwärtiges Indizieren (negativer Index) findet sich nicht in der OGC Spezifikation. Vorhergegangene Versionen waren 0-basiert.

[Note]

Falls Sie den n-ten Punkt eines jeden LineString's in einem MultiLinestring wollen, nutzen Sie diese Funktion gemeinsam mit ST_Dump.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.2.5, 7.3.5

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

[Note]

Änderung: 2.0.0 arbeitet nicht mehr mit MultiLinestring's, die nur eine einzelne Geometrie enthalten. In früheren Versionen von PostGIS gab die Funktion bei einem, aus einer einzelnen Linie bestehender MultiLinestring, den Anfangspunkt zurück. Ab 2.0.0 wird, so wie bei jedem anderen MultiLinestring auch, NULL zurückgegeben.

Änderung: 2.3.0 : negatives Indizieren verfügbar (-1 entspricht dem Endpunkt)

Beispiele

-- Entnimmt alle POINTs eines LINESTRINGs
SELECT ST_AsText(
   ST_PointN(
          column1,
          generate_series(1, ST_NPoints(column1))
   ))
FROM ( VALUES ('LINESTRING(0 0, 1 1, 2 2)'::geometry) ) AS foo;

 st_astext
------------
 POINT(0 0)
 POINT(1 1)
 POINT(2 2)
(3 rows)

--Beispiel für einen Kreisbogen
SELECT ST_AsText(ST_PointN(ST_GeomFromText('CIRCULARSTRING(1 2, 3 2, 1 2)'),2));

st_astext
----------
POINT(3 2)

SELECT st_astext(f)
FROM ST_GeometryFromtext('LINESTRING(0 0 0, 1 1 1, 2 2 2)') as g
        ,ST_PointN(g, -2) AS f -- 1 based index

st_astext
----------
"POINT Z (1 1 1)"

Siehe auch

ST_NPoints


Name

ST_Points — Returns a MultiPoint containing the coordinates of a geometry.

Synopsis

geometry ST_Points( geometry geom );

Beschreibung

Returns a MultiPoint containing all the coordinates of a geometry. Does not remove points that are repeated in the geometry, including the start and end points of ring geometries. (If this behavior is undesired, duplicates may be removed using ST_RemovePoint).

To obtain information about the position of each coordinate in the parent geometry use ST_NumPoints.

Vorhandene M- und Z-Ordinaten werden erhalten.

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

Verfügbarkeit: 2.3.0

Beispiele

SELECT ST_AsText(ST_Points('POLYGON Z ((30 10 4,10 30 5,40 40 6, 30 10))'));

--result
MULTIPOINT Z (30 10 4,10 30 5,40 40 6, 30 10 4)
                        

Name

ST_StartPoint — Returns the first point of a LineString.

Synopsis

geometry ST_StartPoint(geometry geomA);

Beschreibung

Gibt den Anfangspunkt einer LINESTRING oder CIRCULARLINESTRING Geometrie als POINT oder NULL zurück, falls es sich beim Eingabewert nicht um einen LINESTRING oder CIRCULARLINESTRING handelt.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.3

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

[Note]

Änderung: 2.0.0 unterstützt die Verarbeitung von MultiLinestring's die nur aus einer einzelnen Geometrie bestehen, nicht mehr. In früheren Versionen von PostGIS gab die Funktion bei einem aus einer einzelnen Linie bestehender MultiLinestring den Anfangspunkt zurück. Ab 2.0.0 gibt sie nur NULL zurück, so wie bei jedem anderen MultiLinestring. Die alte Verhaltensweise war undokumentiert, aber Anwender, die annahmen, dass Sie Ihre Daten als LINESTRING vorliegen haben, könnten in 2.0 dieses zurückgegebene NULL bemerken.

Beispiele

Start point of a LineString

SELECT ST_AsText(ST_StartPoint('LINESTRING(0 1, 0 2)'::geometry));
 st_astext
------------
 POINT(0 1)

Start point of a non-LineString is NULL

SELECT ST_StartPoint('POINT(0 1)'::geometry) IS NULL AS is_null;
  is_null
----------
 t

Start point of a 3D LineString

SELECT ST_AsEWKT(ST_StartPoint('LINESTRING(0 1 1, 0 2 2)'::geometry));
 st_asewkt
------------
 POINT(0 1 1)

Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.

SELECT ST_AsText(ST_StartPoint('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 6 3)'::geometry));
 st_astext
------------
 POINT(5 2)

Name

ST_Summary —

Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.

Synopsis

text ST_Summary(geometry g);

text ST_Summary(geography g);

Beschreibung

Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.

Die Bedeutung der Flags, welche in eckigen Klammern hinter dem Geometrietyp angezeigt werden, ist wie folgt:

  • M: besitzt eine M-Ordinate

  • Z: besitzt eine Z-Ordinate

  • B: besitzt ein zwischengespeichertes Umgebungsrechteck

  • G: ist geodätisch (Geographie)

  • S: besitzt ein räumliches Koordinatenreferenzsystem

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Verfügbarkeit: 1.2.2

Erweiterung: 2.0.0 Unterstützung für geographische Koordinaten hinzugefügt

Erweiterung: 2.1.0 S-Flag, diese zeigt an ob das Koordinatenreferenzsystem bekannt ist

Erweiterung: 2.2.0 Unterstützung für TIN und Kurven

Beispiele

=# SELECT ST_Summary(ST_GeomFromText('LINESTRING(0 0, 1 1)')) as geom,
        ST_Summary(ST_GeogFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) geog;
            geom             |          geog
-----------------------------+--------------------------
 LineString[B] with 2 points | Polygon[BGS] with 1 rings
                             | ring 0 has 5 points
                             :
(1 row)


=# SELECT ST_Summary(ST_GeogFromText('LINESTRING(0 0 1, 1 1 1)')) As geog_line,
        ST_Summary(ST_GeomFromText('SRID=4326;POLYGON((0 0 1, 1 1 2, 1 2 3, 1 1 1, 0 0 1))')) As geom_poly;
;
           geog_line             |        geom_poly
-------------------------------- +--------------------------
 LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings
                                :    ring 0 has 5 points
                                :
(1 row)


Name

ST_X — Returns the X coordinate of a Point.

Synopsis

float ST_X(geometry a_point);

Beschreibung

Gibt die X-Koordinate eines Punktes, oder NULL wenn diese nicht vorhanden ist, zurück. Die Eingabe muss ein Punkt sein.

[Note]

To get the minimum and maximum X value of geometry coordinates use the functions ??? and ???.

This method implements the SQL/MM specification. SQL-MM 3: 6.1.3

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_X(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_x
------
        1
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y
------
  1.5
(1 row)

                

Siehe auch

ST_Centroid, ???, ST_M, ???, ???, ST_Y, ST_Z


Name

ST_Y — Returns the Y coordinate of a Point.

Synopsis

float ST_Y(geometry a_point);

Beschreibung

Gibt die Y-Koordinate eines Punktes, oder NULL wenn diese nicht vorhanden ist, zurück. Die Eingabe muss ein Punkt sein.

[Note]

To get the minimum and maximum Y value of geometry coordinates use the functions ??? and ???.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 6.1.4

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_Y(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_y
------
        2
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y
------
  1.5
(1 row)


                

Siehe auch

ST_Centroid, ???, ST_M, ST_X, ???, ???, ST_Z


Name

ST_Z — Returns the Z coordinate of a Point.

Synopsis

float ST_Z(geometry a_point);

Beschreibung

Gibt die Z-Koordinate eines Punktes, oder NULL wenn diese nicht vorhanden ist, zurück. Die Eingabe muss ein Punkt sein.

[Note]

To get the minimum and maximum Z value of geometry coordinates use the functions ??? and ???.

This method implements the SQL/MM specification.

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_Z(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_z
------
        3
(1 row)

                

Siehe auch

???, ST_M, ST_X, ST_Y, ???, ???


Name

ST_Zmflag — Gibt die Dimension der Koordinaten von ST_Geometry zurück.

Synopsis

smallint ST_Zmflag(geometry geomA);

Beschreibung

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Values are: 0 = 2D, 1 = 3D-M, 2 = 3D-Z, 3 = 4D.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRING(1 2, 3 4)'));
 st_zmflag
-----------
                 0

SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRINGM(1 2 3, 3 4 3)'));
 st_zmflag
-----------
                 1

SELECT ST_Zmflag(ST_GeomFromEWKT('CIRCULARSTRING(1 2 3, 3 4 3, 5 6 3)'));
 st_zmflag
-----------
                 2
SELECT ST_Zmflag(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_zmflag
-----------
                 3

8.6. Geometrische Editoren

Abstract

These functions create modified geometries by changing type, structure or vertices.

ST_AddPoint — Fügt einem Linienzug einen Punkt hinzu.
ST_CollectionExtract — Given a geometry collection, returns a multi-geometry containing only elements of a specified type.
ST_CollectionHomogenize — Returns the simplest representation of a geometry collection.
ST_CurveToLine — Converts a geometry containing curves to a linear geometry.
ST_QuantizeCoordinates — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
ST_Force2D — Die Geometrien in einen "2-dimensionalen Modus" zwingen.
ST_Force3D — Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ.
ST_Force3DZ — Zwingt die Geometrien in einen XYZ Modus.
ST_Force3DM — Zwingt die Geometrien in einen XYM Modus.
ST_Force4D — Zwingt die Geometrien in einen XYZM Modus.
ST_ForcePolygonCCW — Richtet alle äußeren Ringe gegen den Uhrzeigersinn und alle inneren Ringe mit dem Uhrzeigersinn aus.
ST_ForceCollection — Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um.
ST_ForcePolygonCW — Richtet alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn aus.
ST_ForceSFS — Erzwingt, dass Geometrien nur vom Typ SFS 1.1 sind.
ST_ForceRHR — Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen.
ST_ForceCurve — Wandelt einen geometrischen in einen Kurven Datentyp um, soweit anwendbar.
ST_LineMerge — Gibt einen (Satz von) LineString(s) zurück, der aus einem MultiLinestring "zusammengebastelt" wird.
ST_LineMerge — Gibt die Geometrie als MULTI* Geometrie zurück.
ST_Multi — Gibt die Geometrie als MULTI* Geometrie zurück.
ST_Normalize — Gibt die Geometrie in Normalform zurück.
ST_QuantizeCoordinates — Setzt die niedrigwertigsten Bits der Koordinaten auf Null
ST_RemovePoint — Remove a point from a linestring.
ST_RemovePoint — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
ST_Reverse — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
ST_Segmentize — Gibt eine veränderte Geometrie/Geographie zurück, bei der kein Sement länger als der gegebene Abstand ist.
ST_SetPoint — Einen Punkt eines Linienzuges durch einen gegebenen Punkt ersetzen.
ST_ShiftLongitude — Shifts a geometry with geographic coordinates between -180..180 and 0..360.
ST_WrapX — Wrap a geometry around an X value.
ST_SnapToGrid — Fängt alle Punkte der Eingabegeometrie auf einem regelmäßigen Gitter.
ST_Snap — Fängt die Segmente und Knoten einer Eingabegeometrie an den Knoten einer Referenzgeometrie.
ST_QuantizeCoordinates — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

Name

ST_AddPoint — Fügt einem Linienzug einen Punkt hinzu.

Synopsis

geometry ST_AddPoint(geometry linestring, geometry point);

geometry ST_AddPoint(geometry linestring, geometry point, integer position = -1);

Beschreibung

Adds a point to a LineString before the index position (using a 0-based index). If the position parameter is omitted or is -1 the point is appended to the end of the LineString.

Verfügbarkeit: 1.1.0

This function supports 3d and will not drop the z-index.

Beispiele

Add a point to the end of a 3D line

SELECT ST_AsEWKT(ST_AddPoint('LINESTRING(0 0 1, 1 1 1)', ST_MakePoint(1, 2, 3)));

    st_asewkt
    ----------
    LINESTRING(0 0 1,1 1 1,1 2 3)

Guarantee all lines in a table are closed by adding the start point of each line to the end of the line only for those that are not closed.

UPDATE sometable
SET the_geom = ST_AddPoint(the_geom, ST_StartPoint(the_geom))
FROM sometable
WHERE ST_IsClosed(the_geom) = false;

Name

ST_CollectionExtract — Given a geometry collection, returns a multi-geometry containing only elements of a specified type.

Synopsis

geometry ST_CollectionHomogenize(geometry collection);

geometry ST_CollectionExtract(geometry collection, integer type);

Beschreibung

Given a geometry collection, returns a homogeneous multi-geometry.

If the type is not specified, returns a multi-geometry containing only geometries of the highest dimension. So polygons are preferred over lines, which are preferred over points.

If the type is specified, returns a multi-geometry containing only that type. If there are no sub-geometries of the right type, an EMPTY geometry is returned. Only points, lines and polygons are supported. The type numbers are:

  • 1 == POINT

  • 2 == LINESTRING

  • 3 == POLYGON

For atomic geometry inputs, the geometry is retured unchanged if the input type matches the requested type. Otherwise, the result is an EMPTY geometry of the specified type. If required, these can be converted to multi-geometries using ST_Multi.

[Warning]

MultiPolygon results are not checked for validity. If the polygon components are adjacent or overlapping the result will be invalid. (For example, this can occur when applying this function to an ??? result.) This situation can be checked with ??? and repaired with ???.

Verfügbarkeit: 1.5.0

[Note]

Prior to 1.5.3 this function returned atomic inputs unchaanged, no matter type. In 1.5.3 non-matching single geometries returned a NULL result. In 2.0.0 non-matching single geometries return an EMPTY result of the requested type.

Beispiele

Extract highest-dimension type:

SELECT ST_AsText(ST_CollectionExtract(
        'GEOMETRYCOLLECTION( POINT(0 0), LINESTRING(1 1, 2 2) )'));
    st_astext
    ---------------
    MULTILINESTRING((1 1, 2 2))

Extract points (type 1 == POINT):

SELECT ST_AsText(ST_CollectionExtract(
        'GEOMETRYCOLLECTION(GEOMETRYCOLLECTION(POINT(0 0)))',
        1 ));
    st_astext
    ---------------
    MULTIPOINT(0 0)

Extract lines (type 2 == LINESTRING):

SELECT ST_AsText(ST_CollectionExtract(
        'GEOMETRYCOLLECTION(GEOMETRYCOLLECTION(LINESTRING(0 0, 1 1)),LINESTRING(2 2, 3 3))',
        2 ));
    st_astext
    ---------------
    MULTILINESTRING((0 0, 1 1), (2 2, 3 3))

Name

ST_CollectionHomogenize — Returns the simplest representation of a geometry collection.

Synopsis

geometry ST_CollectionHomogenize(geometry collection);

Beschreibung

Given a geometry collection, returns the "simplest" representation of the contents.

  • Homogeneous (uniform) collections are returned as the appropriate multi-geometry.

  • Heterogeneous (mixed) collections are flattened into a single GeometryCollection.

  • Collections containing a single atomic element are returned as that element.

  • Atomic geometries are returned unchanged. If required, these can be converted to a multi-geometry using ST_Multi.

[Warning]

This function does not ensure that the result is valid. In particular, a collection containing adjacent or overlapping Polygons will create an invalid MultiPolygon. This situation can be checked with ??? and repaired with ???.

Verfügbarkeit: 2.0.0

Beispiele

Single-element collection converted to an atomic geometry

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0))'));

        st_astext
        ------------
        POINT(0 0)

Nested single-element collection converted to an atomic geometry:

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(MULTIPOINT((0 0)))'));

        st_astext
        ------------
        POINT(0 0)

Collection converted to a multi-geometry:

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0),POINT(1 1))'));

        st_astext
        ---------------------
        MULTIPOINT(0 0,1 1)

Nested heterogeneous collection flattened to a GeometryCollection:

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0), GEOMETRYCOLLECTION( LINESTRING(1 1, 2 2)))'));

        st_astext
        ---------------------
        GEOMETRYCOLLECTION(POINT(0 0),LINESTRING(1 1,2 2))

Collection of Polygons converted to an (invalid) MultiPolygon:

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION (POLYGON ((10 50, 50 50, 50 10, 10 10, 10 50)), POLYGON ((90 50, 90 10, 50 10, 50 50, 90 50)))'));

        st_astext
        ---------------------
        MULTIPOLYGON(((10 50,50 50,50 10,10 10,10 50)),((90 50,90 10,50 10,50 50,90 50)))

Name

ST_CurveToLine — Converts a geometry containing curves to a linear geometry.

Synopsis

geometry ST_TransScale(geometry geomA, float deltaX, float deltaY, float XFactor, float YFactor);

Beschreibung

Converts a CIRCULAR STRING to regular LINESTRING or CURVEPOLYGON to POLYGON or MULTISURFACE to MULTIPOLYGON. Useful for outputting to devices that can't support CIRCULARSTRING geometry types

Converts a given geometry to a linear geometry. Each curved geometry or segment is converted into a linear approximation using the given `tolerance` and options (32 segments per quadrant and no options by default).

The 'tolerance_type' argument determines interpretation of the `tolerance` argument. It can take the following values:

  • 0 (default): Tolerance is max segments per quadrant.

  • 1: Tolerance is max-deviation of line from curve, in source units.

  • 2: Tolerance is max-angle, in radians, between generating radii.

The 'flags' argument is a bitfield. 0 by default. Supported bits are:

  • 1: Symmetric (orientation idependent) output.

  • 2: Retain angle, avoids reducing angles (segment lengths) when producing symmetric output. Has no effect when Symmetric flag is off.

Verfügbarkeit: 1.1.0

Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output.

Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.6

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)')));

--Result --
 LINESTRING(220268 150415,220269.95064912 150416.539364228,220271.823415575 150418.17258804,220273.613787707 150419.895736857,
 220275.317452352 150421.704659462,220276.930305234 150423.594998003,220278.448460847 150425.562198489,
 220279.868261823 150427.60152176,220281.186287736 150429.708054909,220282.399363347 150431.876723113,
 220283.50456625 150434.10230186,220284.499233914 150436.379429536,220285.380970099 150438.702620341,220286.147650624 150441.066277505,
 220286.797428488 150443.464706771,220287.328738321 150445.892130112,220287.740300149 150448.342699654,
 220288.031122486 150450.810511759,220288.200504713 150453.289621251,220288.248038775 150455.77405574,
 220288.173610157 150458.257830005,220287.977398166 150460.734960415,220287.659875492 150463.199479347,
 220287.221807076 150465.64544956,220286.664248262 150468.066978495,220285.988542259 150470.458232479,220285.196316903 150472.81345077,
 220284.289480732 150475.126959442,220283.270218395 150477.39318505,220282.140985384 150479.606668057,
 220280.90450212 150481.762075989,220279.5637474 150483.85421628,220278.12195122 150485.87804878,
 220276.582586992 150487.828697901,220274.949363179 150489.701464356,220273.226214362 150491.491836488,
 220271.417291757 150493.195501133,220269.526953216 150494.808354014,220267.559752731 150496.326509628,
 220265.520429459 150497.746310603,220263.41389631 150499.064336517,220261.245228106 150500.277412127,
 220259.019649359 150501.38261503,220256.742521683 150502.377282695,220254.419330878 150503.259018879,
 220252.055673714 150504.025699404,220249.657244448 150504.675477269,220247.229821107 150505.206787101,
 220244.779251566 150505.61834893,220242.311439461 150505.909171266,220239.832329968 150506.078553494,
 220237.347895479 150506.126087555,220234.864121215 150506.051658938,220232.386990804 150505.855446946,
 220229.922471872 150505.537924272,220227.47650166 150505.099855856,220225.054972724 150504.542297043,
 220222.663718741 150503.86659104,220220.308500449 150503.074365683,
 220217.994991777 150502.167529512,220215.72876617 150501.148267175,
 220213.515283163 150500.019034164,220211.35987523 150498.7825509,
 220209.267734939 150497.441796181,220207.243902439 150496,
 220205.293253319 150494.460635772,220203.420486864 150492.82741196,220201.630114732 150491.104263143,
 220199.926450087 150489.295340538,220198.313597205 150487.405001997,220196.795441592 150485.437801511,
 220195.375640616 150483.39847824,220194.057614703 150481.291945091,220192.844539092 150479.123276887,220191.739336189 150476.89769814,
 220190.744668525 150474.620570464,220189.86293234 150472.297379659,220189.096251815 150469.933722495,
 220188.446473951 150467.535293229,220187.915164118 150465.107869888,220187.50360229 150462.657300346,
 220187.212779953 150460.189488241,220187.043397726 150457.710378749,220186.995863664 150455.22594426,
 220187.070292282 150452.742169995,220187.266504273 150450.265039585,220187.584026947 150447.800520653,
 220188.022095363 150445.35455044,220188.579654177 150442.933021505,220189.25536018 150440.541767521,
 220190.047585536 150438.18654923,220190.954421707 150435.873040558,220191.973684044 150433.60681495,
 220193.102917055 150431.393331943,220194.339400319 150429.237924011,220195.680155039 150427.14578372,220197.12195122 150425.12195122,
 220198.661315447 150423.171302099,220200.29453926 150421.298535644,220202.017688077 150419.508163512,220203.826610682 150417.804498867,
 220205.716949223 150416.191645986,220207.684149708 150414.673490372,220209.72347298 150413.253689397,220211.830006129 150411.935663483,
 220213.998674333 150410.722587873,220216.22425308 150409.61738497,220218.501380756 150408.622717305,220220.824571561 150407.740981121,
 220223.188228725 150406.974300596,220225.586657991 150406.324522731,220227 150406)

--3d example
SELECT ST_AsEWKT(ST_CurveToLine(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)')));
Output
------
 LINESTRING(220268 150415 1,220269.95064912 150416.539364228 1.0181172856673,
 220271.823415575 150418.17258804 1.03623457133459,220273.613787707 150419.895736857 1.05435185700189,....AD INFINITUM ....
    220225.586657991 150406.324522731 1.32611114201132,220227 150406 3)

--use only 2 segments to approximate quarter circle
SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'),2));
st_astext
------------------------------
 LINESTRING(220268 150415,220287.740300149 150448.342699654,220278.12195122 150485.87804878,
 220244.779251566 150505.61834893,220207.243902439 150496,220187.50360229 150462.657300346,
 220197.12195122 150425.12195122,220227 150406)

-- Ensure approximated line is no further than 20 units away from
-- original curve, and make the result direction-neutral
SELECT ST_AsText(ST_CurveToLine(
 'CIRCULARSTRING(0 0,100 -100,200 0)'::geometry,
    20, -- Tolerance
    1, -- Above is max distance between curve and line
    1  -- Symmetric flag
));
st_astext
-------------------------------------------------------------------------------------------
 LINESTRING(0 0,50 -86.6025403784438,150 -86.6025403784439,200 -1.1331077795296e-13,200 0)


        

Siehe auch

ST_LineMerge


Name

ST_QuantizeCoordinates — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

Synopsis

geometry ST_Force2D(geometry geomA);

Beschreibung

Returns a version of the given geometry with X and Y axis flipped. Useful for fixing geometries which contain coordinates expressed as latitude/longitude (Y,X).

Verfügbarkeit: 2.0.0

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_AsEWKT(ST_FlipCoordinates(GeomFromEWKT('POINT(1 2)')));
 st_asewkt
------------
POINT(2 1)
         

Name

ST_Force2D — Die Geometrien in einen "2-dimensionalen Modus" zwingen.

Synopsis

geometry ST_Force2D(geometry geomA);

Beschreibung

Zwingt die Geometrien in einen "2-dimensionalen Modus", sodass in der Ausgabe nur die X- und Y-Koordinaten dargestellt werden. Nützlich um eine OGC-konforme Ausgabe zu erhalten (da OGC nur 2-D Geometrien spezifiziert).

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_2D bezeichnet.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsEWKT(ST_Force2D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                st_asewkt
-------------------------------------
CIRCULARSTRING(1 1,2 3,4 5,6 7,5 6)

SELECT  ST_AsEWKT(ST_Force2D('POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))'));

                                  st_asewkt
----------------------------------------------
 POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))

                

Siehe auch

ST_Force3D


Name

ST_Force3D — Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ.

Synopsis

geometry ST_RotateX(geometry geomA, float rotRadians);

Beschreibung

Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ. Wenn die Geometrie keine Z-Komponente aufweist, wird eine Z-Koordinate mit dem Wert 0 angeheftet.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_3D bezeichnet.

Erweiterung: mit 2.1.0 wurde die Unterstützung des geographischen Datentyps eingeführt.

This function supports Polyhedral surfaces.

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

Beispiele

--Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts
                SELECT ST_AsEWKT(ST_Force3D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                                   st_asewkt
-----------------------------------------------
 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)


SELECT  ST_AsEWKT(ST_Force3D('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

                                                 st_asewkt
--------------------------------------------------------------
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
                

Name

ST_Force3DZ — Zwingt die Geometrien in einen XYZ Modus.

Synopsis

geometry ST_RotateZ(geometry geomA, float rotRadians);

Beschreibung

Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ. Wenn die Geometrie keine Z-Komponente aufweist, wird eine Z-Koordinate mit dem Wert 0 angeheftet.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_3DZ bezeichnet.

Erweiterung: mit 2.1.0 wurde die Unterstützung des geographischen Datentyps eingeführt.

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

--Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts 
SELECT ST_AsEWKT(ST_Force3DZ(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                                   st_asewkt
-----------------------------------------------
 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)


SELECT  ST_AsEWKT(ST_Force3DZ('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

                                                 st_asewkt
--------------------------------------------------------------
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
                

Name

ST_Force3DM — Zwingt die Geometrien in einen XYM Modus.

Synopsis

geometry ST_RotateX(geometry geomA, float rotRadians);

Beschreibung

Zwingt die Geometrien in einen XYM Modus. Wenn die Geometrie keine M-Komponente aufweist, wird eine M-Koordinate mit dem Wert 0 angeheftet. Falls die Geometrie eine Z-Komponente aufweist, wird diese gelöscht.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_3DM bezeichnet.

Erweiterung: mit 2.1.0 wurde die Unterstützung des geographischen Datentyps eingeführt.

This method supports Circular Strings and Curves

Beispiele

----Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts
SELECT ST_AsEWKT(ST_Force3DM(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                                   st_asewkt
------------------------------------------------
 CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)


SELECT  ST_AsEWKT(ST_Force3DM('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))'));

                                                  st_asewkt
---------------------------------------------------------------
 POLYGONM((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))

                

Name

ST_Force4D — Zwingt die Geometrien in einen XYZM Modus.

Synopsis

geometry ST_Snap(geometry input, geometry reference, float tolerance);

Beschreibung

Zwingt die Geometrien in einen XYZM Modus. Fehlenden Z- und M-Dimensionen wird eine 0 angeheftet.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_4D bezeichnet.

Changed: 3.1.0. Added support for supplying non-zero Z and M values.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

--Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts
SELECT ST_AsEWKT(ST_Force4D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                                                st_asewkt
---------------------------------------------------------
 CIRCULARSTRING(1 1 2 0,2 3 2 0,4 5 2 0,6 7 2 0,5 6 2 0)



SELECT  ST_AsEWKT(ST_Force4D('MULTILINESTRINGM((0 0 1,0 5 2,5 0 3,0 0 4),(1 1 1,3 1 1,1 3 1,1 1 1))'));

                                                                          st_asewkt
--------------------------------------------------------------------------------------
 MULTILINESTRING((0 0 0 1,0 5 0 2,5 0 0 3,0 0 0 4),(1 1 0 1,3 1 0 1,1 3 0 1,1 1 0 1))

                

Name

ST_ForcePolygonCCW — Richtet alle äußeren Ringe gegen den Uhrzeigersinn und alle inneren Ringe mit dem Uhrzeigersinn aus.

Synopsis

geometry ST_ForcePolygonCCW ( geometry geom );

Beschreibung

Zwingt (Multi)Polygone, den äusseren Ring gegen den Uhrzeigersinn und die inneren Ringe im Uhrzeigersinn zu orientieren. Andere Geometrien werden unverändert zurückgegeben.

Verfügbarkeit: 2.0.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.


Name

ST_ForceCollection — Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um.

Synopsis

geometry ST_ForceCollection(geometry geomA);

Beschreibung

Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um. Nützlich um eine WKB-Darstellung zu vereinfachen.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Verfügbarkeit: 1.2.2, Vor 1.3.4 ist diese Funktion bei CURVES abgestürzt. Dies wurde mit 1.3.4+ behoben

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_Collection bezeichnet.

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT  ST_AsEWKT(ST_ForceCollection('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))'));

                                                                   st_asewkt
----------------------------------------------------------------------------------
 GEOMETRYCOLLECTION(POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1)))


  SELECT ST_AsText(ST_ForceCollection('CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)'));
                                                                   st_astext
--------------------------------------------------------------------------------
 GEOMETRYCOLLECTION(CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))
(1 row)

                
-- Beispiel für eine polyedrische Oberfläche --
SELECT ST_AsEWKT(ST_ForceCollection('POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
 ((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
 ((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
 ((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
 ((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
 ((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)))'))

                                                                   st_asewkt
----------------------------------------------------------------------------------
GEOMETRYCOLLECTION(
  POLYGON((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
  POLYGON((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
  POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
  POLYGON((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
  POLYGON((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
  POLYGON((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1))
)
                

Name

ST_ForcePolygonCW — Richtet alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn aus.

Synopsis

geometry ST_ForcePolygonCW ( geometry geom );

Beschreibung

Zwingt (Multi)Polygone, den äusseren Ring im Uhrzeigersinn und die inneren Ringe gegen den Uhrzeigersinn zu orientieren. Andere Geometrien werden unverändert zurückgegeben.

Verfügbarkeit: 2.0.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.


Name

ST_ForceSFS — Erzwingt, dass Geometrien nur vom Typ SFS 1.1 sind.

Synopsis

geometry ST_ForceSFS(geometry geomA);

geometry ST_ForceSFS(geometry geomA, text version);

Beschreibung

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.


Name

ST_ForceRHR — Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen.

Synopsis

geometry ST_ForceRHR(geometry g);

Beschreibung

Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen. Dadurch kommt die durch das Polygon begrenzte Fläche auf der rechten Seite der Begrenzung zu liegen. Insbesondere sind der äussere Ring im Uhrzeigersinn und die inneren Ringe gegen den Uhrzeigersinn orientiert. Diese Funktion ist ein Synonym für ST_ForcePolygonCW

[Note]

Die obere Definition mit der Drei-Finger-Regel widerspricht den Definitionen, die in anderen Zusammenhängen verwendet werden. Um Verwirrung zu vermeiden, wird die Verwendung von ST_ForcePolygonCW empfohlen.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_AsEWKT(
  ST_ForceRHR(
        'POLYGON((0 0 2, 5 0 2, 0 5 2, 0 0 2),(1 1 2, 1 3 2, 3 1 2, 1 1 2))'
  )
);
                                                  st_asewkt
--------------------------------------------------------------
 POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))
(1 row)

Name

ST_ForceCurve — Wandelt einen geometrischen in einen Kurven Datentyp um, soweit anwendbar.

Synopsis

geometry ST_ForceCurve(geometry g);

Beschreibung

Wandelt eine Geometrie in eine Kurvendarstellung um, soweit anwendbar: Linien werden CompundCurves, MultiLines werden MultiCurves, Polygone werden zu CurvePolygons, Multipolygons werden MultiSurfaces. Wenn die Geometrie bereits in Kurvendarstellung vorliegt, wird sie unverändert zurückgegeben.

Verfügbarkeit: 2.2.0

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_AsText(
  ST_ForceCurve(
        'POLYGON((0 0 2, 5 0 2, 0 5 2, 0 0 2),(1 1 2, 1 3 2, 3 1 2, 1 1 2))'::geometry
  )
);
                              st_astext
----------------------------------------------------------------------
 CURVEPOLYGON Z ((0 0 2,5 0 2,0 5 2,0 0 2),(1 1 2,1 3 2,3 1 2,1 1 2))
(1 row)

Siehe auch

ST_LineMerge


Name

ST_LineMerge — Gibt einen (Satz von) LineString(s) zurück, der aus einem MultiLinestring "zusammengebastelt" wird.

Synopsis

geometry ST_LineMerge(geometry amultilinestring);

Beschreibung

Gibt einen (Satz von) LineString(s) zurück, der aus den Bestandteilen eines MultiLinestring zusammengesetzt wird.

[Note]

Ist nur mit MULTILINESTRING/LINESTRING verwendbar. Wenn Sie ein Polygon oder eine Sammelgeometrie in diese Funktion einspeisen, wird eine leere GEOMETRYCOLLECTION zurückgegeben

Performed by the GEOS module.

Verfügbarkeit: 1.1.0

[Warning]

Schneidet die Dimension M ab.

Beispiele

SELECT ST_AsText(ST_LineMerge(
ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45 -33,-46 -32))')
                )
);
st_astext
--------------------------------------------------------------------------------------------------
LINESTRING(-29 -27,-30 -29.7,-36 -31,-45 -33,-46 -32)
(1 row)

--Wenn eine Vereinigung nicht möglich ist, wird der urspüngliche MULTILINESTRING zurückgegeben
SELECT ST_AsText(ST_LineMerge(
ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45.2 -33.2,-46 -32))')
)
);
st_astext
----------------
MULTILINESTRING((-45.2 -33.2,-46 -32),(-29 -27,-30 -29.7,-36 -31,-45 -33))

-- Beispiel mit Dimension Z
SELECT ST_AsText(ST_LineMerge(
ST_GeomFromText('MULTILINESTRING((-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 6), (-29 -27 12,-30 -29.7 5), (-45 -33 1,-46 -32 11))')
                )
);
st_astext
--------------------------------------------------------------------------------------------------
LINESTRING Z (-30 -29.7 5,-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 1,-46 -32 11)
(1 row)
                        

Name

ST_LineMerge — Gibt die Geometrie als MULTI* Geometrie zurück.

Synopsis

geometry ST_Force2D(geometry geomA);

Beschreibung

Converts plain LINESTRING/POLYGON to CIRCULAR STRINGs and Curved Polygons. Note much fewer points are needed to describe the curved equivalent.

[Note]

If the input LINESTRING/POLYGON is not curved enough to clearly represent a curve, the function will return the same input geometry.

Verfügbarkeit: 1.1.0

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

-- 2D Example
SELECT ST_AsText(ST_LineToCurve(foo.the_geom)) As curvedastext,ST_AsText(foo.the_geom) As non_curvedastext
    FROM (SELECT ST_Buffer('POINT(1 3)'::geometry, 3) As the_geom) As foo;

curvedatext                                                            non_curvedastext
--------------------------------------------------------------------|-----------------------------------------------------------------
CURVEPOLYGON(CIRCULARSTRING(4 3,3.12132034355964 0.878679656440359, | POLYGON((4 3,3.94235584120969 2.41472903395162,3.77163859753386 1.85194970290473,
1 0,-1.12132034355965 5.12132034355963,4 3))                        |  3.49440883690764 1.33328930094119,3.12132034355964 0.878679656440359,
                                                                    |  2.66671069905881 0.505591163092366,2.14805029709527 0.228361402466141,
                                                                    |  1.58527096604839 0.0576441587903094,1 0,
                                                                    |  0.414729033951621 0.0576441587903077,-0.148050297095264 0.228361402466137,
                                                                    |  -0.666710699058802 0.505591163092361,-1.12132034355964 0.878679656440353,
                                                                    |  -1.49440883690763 1.33328930094119,-1.77163859753386 1.85194970290472
                                                                    |  --ETC-- ,3.94235584120969 3.58527096604839,4 3))

--3D example
SELECT ST_AsText(ST_LineToCurve(geom)) As curved, ST_AsText(geom) AS not_curved
FROM (SELECT ST_Translate(ST_Force3D(ST_Boundary(ST_Buffer(ST_Point(1,3), 2,2))),0,0,3) AS geom) AS foo;

                        curved                        |               not_curved
------------------------------------------------------+---------------------------------------------------------------------
 CIRCULARSTRING Z (3 3 3,-1 2.99999999999999 3,3 3 3) | LINESTRING Z (3 3 3,2.4142135623731 1.58578643762691 3,1 1 3,
                                                      | -0.414213562373092 1.5857864376269 3,-1 2.99999999999999 3,
                                                      | -0.414213562373101 4.41421356237309 3,
                                                      | 0.999999999999991 5 3,2.41421356237309 4.4142135623731 3,3 3 3)
(1 row)

Siehe auch

ST_CurveToLine


Name

ST_Multi — Gibt die Geometrie als MULTI* Geometrie zurück.

Synopsis

geometry ST_Multi(geometry geom);

Beschreibung

Returns the geometry as a MULTI* geometry collection. If the geometry is already a collection, it is returned unchanged.

Beispiele

SELECT ST_AsText(ST_Multi('POLYGON ((10 30, 30 30, 30 10, 10 10, 10 30))'));
                    st_astext
    -------------------------------------------------
    MULTIPOLYGON(((10 30,30 30,30 10,10 10,10 30)))

Siehe auch

ST_AsText


Name

ST_Normalize — Gibt die Geometrie in Normalform zurück.

Synopsis

geometry ST_Normalize(geometry geom);

Beschreibung

Gibt die Geometrie in Normalform aus. Möglicherweise werden die Knoten der Polygonringe, die Ringe eines Polygons oder die Elemente eines Komplexes von Mehrfachgeometrien neu gereiht.

Hauptsächlich für Testzwecke sinnvoll (zum Vergleich von erwarteten und erhaltenen Ergebnissen).

Verfügbarkeit: 2.3.0

Beispiele

SELECT ST_AsText(ST_Normalize(ST_GeomFromText(
  'GEOMETRYCOLLECTION(
    POINT(2 3),
    MULTILINESTRING((0 0, 1 1),(2 2, 3 3)),
    POLYGON(
      (0 10,0 0,10 0,10 10,0 10),
      (4 2,2 2,2 4,4 4,4 2),
      (6 8,8 8,8 6,6 6,6 8)
    )
  )'
)));
                                                                     st_astext
----------------------------------------------------------------------------------------------------------------------------------------------------
 GEOMETRYCOLLECTION(POLYGON((0 0,0 10,10 10,10 0,0 0),(6 6,8 6,8 8,6 8,6 6),(2 2,4 2,4 4,2 4,2 2)),MULTILINESTRING((2 2,3 3),(0 0,1 1)),POINT(2 3))
(1 row)
                        

Siehe auch

???,


Name

ST_QuantizeCoordinates — Setzt die niedrigwertigsten Bits der Koordinaten auf Null

Synopsis

geometry ST_QuantizeCoordinates ( geometry g , int prec_x , int prec_y , int prec_z , int prec_m );

Beschreibung

ST_QuantizeCoordinates bestimmt die Anzahl der Bits ( N ), die zur Darstellung eines Koordinatenwerts mit einer angegebenen Anzahl von Stellen nach dem Dezimalpunkt erforderlich sind, und setzt dann alle außer dem N höchstwertige Bits zu Null. Der resultierende Koordinatenwert wird immer noch auf den ursprünglichen Wert abgerundet, hat jedoch eine verbesserte Komprimierbarkeit. Dies kann zu einer erheblichen Reduzierung der Festplattenbelegung führen, wenn die Geometrie-Spalte einen komprimierbarer Speichertyp verwendet. Die Funktion ermöglicht unterschiedliche Angabe für die Anzahl von Nachkommastellen je Dimension. Bei nicht angegebenen Dimensionen wird davon ausgegangen, dass sie die Dimension x haben. Negative Ziffern werden so interpretiert, dass sie die Ziffern vor dem Komma geziehen (d. h. prec_x = -2 rundet auf die nächste Hundert).

Die von ST_QuantizeCoordinates erzeugten Koordinaten sind unabhängig von der Geometrie, die diese Koordinaten und die relative Position dieser Koordinaten in der Geometrie enthält. Daher sind vorhandene topologische Beziehungen zwischen Geometrien durch die Verwendung dieser Funktion nicht betroffen. Die Funktion erzeugt möglicherweise ungültige Geometrie, wenn sie mit einer Anzahl von Stellen aufgerufen wird, die Koordinaten innerhalb der Geometrie zusammenfallen lassen.

Verfügbarkeit: 2.5.0

Technischer Hintergrund

PostGIS speichert alle Koordinatenwerte als Gleitkommazahlen mit doppelter Genauigkeit, die 15 signifikante Stellen zuverlässig darstellen können. PostGIS kann jedoch verwendet werden, um Daten zu verwalten, die weniger als 15 signifikante Ziffern enthalten. Ein Beispiel sind TIGER-Daten, die als geografische Koordinaten mit sechs Nachkommastellen zur Verfügung gestellt werden (so dass nur neun signifikante Ziffern des Längengrads und acht signifikante Breitengrade erforderlich sind).

Wenn 15 signifikante Ziffern verfügbar sind, gibt es viele mögliche Darstellungen einer Zahl mit 9 signifikanten Ziffern. Eine Gleitkommazahl mit doppelter Genauigkeit verwendet 52 explizite Bits, um den Mantisse der Koordinate darzustellen. Nur 30 Bits werden benötigt, um eine Mantisse mit 9 signifikanten Ziffern darzustellen, wobei 22 unbedeutende Bits übrig bleiben; Wir können ihren Wert auf alles setzen, was wir wollen, und erhalten trotzdem eine zum Eingabewert passende Zahl. Beispielsweise kann der Wert 100.123456 durch die nächstliegenden Zahlen 100.123456000000, 100.123456000001 und 100.123456432199 dargestellt werden. Alle sind gleichermaßen gültig, da ST_AsText (geom, 6) bei allen dieser Eingaben das gleiche Ergebnis liefert. Da wir diese Bits auf einen beliebigen Wert setzen können, setzt ST_QuantizeCoordinates die 22 nicht signifikanten Bits auf Null. Für eine lange Koordinatensequenz wird dadurch ein Muster aus Blöcken von aufeinanderfolgenden Nullen erzeugt, das von PostgreSQL effizienter komprimiert wird.

[Note]

Von ST_QuantizeCoordinates ist möglicherweise nur die Größe der Geometrie auf der Festplatte betroffen. ST_MemSize, das die speicherinterne Verwendung der Geometrie meldet, gibt unabhängig vom von einer Geometrie belegten Speicherplatz den gleichen Wert zurück.

Beispiele

SELECT ST_AsText(ST_QuantizeCoordinates('POINT (100.123456 0)'::geometry, 4));
st_astext
-------------------------
POINT(100.123455047607 0)
                        
WITH test AS (SELECT 'POINT (123.456789123456 123.456789123456)'::geometry AS geom)
SELECT
  digits,
  encode(ST_QuantizeCoordinates(geom, digits), 'hex'),
  ST_AsText(ST_QuantizeCoordinates(geom, digits))
FROM test, generate_series(15, -15, -1) AS digits;

digits  |                   encode                   |                st_astext
--------+--------------------------------------------+------------------------------------------
15      | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
14      | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
13      | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
12      | 01010000005c9a72083cdd5e405c9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
11      | 0101000000409a72083cdd5e40409a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
10      | 0101000000009a72083cdd5e40009a72083cdd5e40 | POINT(123.456789123455 123.456789123455)
9       | 0101000000009072083cdd5e40009072083cdd5e40 | POINT(123.456789123418 123.456789123418)
8       | 0101000000008072083cdd5e40008072083cdd5e40 | POINT(123.45678912336 123.45678912336)
7       | 0101000000000070083cdd5e40000070083cdd5e40 | POINT(123.456789121032 123.456789121032)
6       | 0101000000000040083cdd5e40000040083cdd5e40 | POINT(123.456789076328 123.456789076328)
5       | 0101000000000000083cdd5e40000000083cdd5e40 | POINT(123.456789016724 123.456789016724)
4       | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375)
3       | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375)
2       | 01010000000000000038dd5e400000000038dd5e40 | POINT(123.45654296875 123.45654296875)
1       | 01010000000000000000dd5e400000000000dd5e40 | POINT(123.453125 123.453125)
0       | 01010000000000000000dc5e400000000000dc5e40 | POINT(123.4375 123.4375)
-1      | 01010000000000000000c05e400000000000c05e40 | POINT(123 123)
-2      | 01010000000000000000005e400000000000005e40 | POINT(120 120)
-3      | 010100000000000000000058400000000000005840 | POINT(96 96)
-4      | 010100000000000000000058400000000000005840 | POINT(96 96)
-5      | 010100000000000000000058400000000000005840 | POINT(96 96)
-6      | 010100000000000000000058400000000000005840 | POINT(96 96)
-7      | 010100000000000000000058400000000000005840 | POINT(96 96)
-8      | 010100000000000000000058400000000000005840 | POINT(96 96)
-9      | 010100000000000000000058400000000000005840 | POINT(96 96)
-10     | 010100000000000000000058400000000000005840 | POINT(96 96)
-11     | 010100000000000000000058400000000000005840 | POINT(96 96)
-12     | 010100000000000000000058400000000000005840 | POINT(96 96)
-13     | 010100000000000000000058400000000000005840 | POINT(96 96)
-14     | 010100000000000000000058400000000000005840 | POINT(96 96)
-15     | 010100000000000000000058400000000000005840 | POINT(96 96)

Siehe auch

ST_SnapToGrid


Name

ST_RemovePoint — Remove a point from a linestring.

Synopsis

geometry ST_RemovePoint(geometry linestring, integer offset);

Beschreibung

Removes a point from a LineString, given its index (0-based). Useful for turning a closed line (ring) into an open linestring.

Verfügbarkeit: 1.1.0

This function supports 3d and will not drop the z-index.

Beispiele

Guarantees no lines are closed by removing the end point of closed lines (rings). Assumes geom is of type LINESTRING

UPDATE sometable
        SET geom = ST_RemovePoint(geom, ST_NPoints(geom) - 1)
        FROM sometable
        WHERE ST_IsClosed(geom);

Name

ST_RemovePoint — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

Synopsis

geometry ST_RotateY(geometry geomA, float rotRadians);

Beschreibung

Returns a version of the given geometry with duplicated points removed. Will actually do something only with (multi)lines, (multi)polygons and multipoints but you can safely call it with any kind of geometry. Since simplification occurs on a object-by-object basis you can also feed a GeometryCollection to this function.

If the tolerance parameter is provided, vertices within the tolerance of one another will be considered the "same" for the purposes of removal.

Verfügbarkeit: 2.2.0

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

Siehe auch

ST_Simplify


Name

ST_Reverse — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

Synopsis

geometry ST_Reverse(geometry g1);

Beschreibung

Kann mit jedem geometrischen Datentyp verwendet werden; kehrt die Reihenfolge der Knoten um

Erweiterung: mit 2.4.0 wurde die Unterstützung für Kurven eingeführt.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_AsText(the_geom) as line, ST_AsText(ST_Reverse(the_geom)) As reverseline
FROM
(SELECT ST_MakeLine(ST_Point(1,2),
                ST_Point(1,10)) As the_geom) as foo;
--result
                line         |     reverseline
---------------------+----------------------
LINESTRING(1 2,1 10) | LINESTRING(1 10,1 2)

Name

ST_Segmentize — Gibt eine veränderte Geometrie/Geographie zurück, bei der kein Sement länger als der gegebene Abstand ist.

Synopsis

geometry ST_Segmentize(geometry geom, float max_segment_length);

geography ST_Segmentize(geography geog, float max_segment_length);

Beschreibung

Gibt eine veränderte Geometrie/Geographie zurück, bei der kein Sement länger als die gegebene max_segment_length ist. Die Entfernungsberechnung wird nur in 2D ausgeführt. Beim geometrischen Datentyp ist die Längeneinheit die Einheit des Koordinatenreferenzsystems. Beim geographischen Datentyp ist die Einheit Meter.

Verfügbarkeit: 1.2.2

Erweiterung: 3.0.0 - Das Segmentieren des geometrischen Datentyps ergibt nun Segmente gleicher Länge

Erweiterung: 2.3.0 - Das Segmentieren des geographischen Datentyps ergibt nun Segmente gleicher Länge

Erweiterung: mit 2.1.0 wurde die Unterstützung des geographischen Datentyps eingeführt.

Änderung: 2.1.0 Als Ergebnis der eingeführten Unterstützung für den geographischen Datentyp: Das Konstrukt SELECT ST_Segmentize('LINESTRING(1 2, 3 4)',0.5); resultiert in einen Funktionsfehler aufgrund von Mehrdeutigkeit. Sie benötigen korrekt typisierte Geoobjekte; Verwenden Sie z.B. ST_GeomFromText, ST_GeogFromText oder SELECT ST_Segmentize('LINESTRING(1 2, 3 4)'::geometry,0.5); für Ihre Geometrie-/Geographiespalte.

[Note]

Segmente werden lediglich verlängert. Die Länge von Segmenten, die kürzer als max_segment_length sind, wird nicht verändert.

Beispiele

SELECT ST_AsText(ST_Segmentize(
ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45 -33,-46 -32))')
                ,5)
);
st_astext
--------------------------------------------------------------------------------------------------
MULTILINESTRING((-29 -27,-30 -29.7,-34.886615700134 -30.758766735029,-36 -31,
-40.8809353009198 -32.0846522890933,-45 -33),
(-45 -33,-46 -32))
(1 row)

SELECT ST_AsText(ST_Segmentize(ST_GeomFromText('POLYGON((-29 28, -30 40, -29 28))'),10));
st_astext
-----------------------
POLYGON((-29 28,-29.8304547985374 37.9654575824488,-30 40,-29.1695452014626 30.0345424175512,-29 28))
(1 row)

                        

Name

ST_SetPoint — Einen Punkt eines Linienzuges durch einen gegebenen Punkt ersetzen.

Synopsis

geometry ST_SetPoint(geometry linestring, integer zerobasedposition, geometry point);

Beschreibung

Ersetzt den Punkt N eines Linienzuges mit dem gegebenen Punkt. Der Index beginnt mit 0. Negative Indizes werden rückwärts gezählt, sodasss -1 der letzte Punkt ist. Dies findet insbesondere bei Triggern verwendung, wenn man die Beziehung zwischen den Verbindungsstücken beim Verschieben von Knoten erhalten will

Verfügbarkeit: 1.1.0

Änderung: 2.3.0 : negatives Indizieren

This function supports 3d and will not drop the z-index.

Beispiele

--Ändert den ersten Punkt eines Linienzuges von -1 3 auf -1 1
SELECT ST_AsText(ST_SetPoint('LINESTRING(-1 2,-1 3)', 0, 'POINT(-1 1)'));
           st_astext
-----------------------
 LINESTRING(-1 1,-1 3)

---Ändert den Endpunkt eines Linienzuges (diesmal ein 3D-Linienzug)
SELECT ST_AsEWKT(ST_SetPoint(foo.the_geom, ST_NumPoints(foo.the_geom) - 1, ST_GeomFromEWKT('POINT(-1 1 3)')))
FROM (SELECT ST_GeomFromEWKT('LINESTRING(-1 2 3,-1 3 4, 5 6 7)') As the_geom) As foo;
           st_asewkt
-----------------------
LINESTRING(-1 2 3,-1 3 4,-1 1 3)

SELECT ST_AsText(ST_SetPoint(g, -3, p))
FROM ST_GEomFromText('LINESTRING(0 0, 1 1, 2 2, 3 3, 4 4)') AS g
        , ST_PointN(g,1) as p;
           st_astext
-----------------------
LINESTRING(0 0,1 1,0 0,3 3,4 4)

                        

Name

ST_ShiftLongitude — Shifts a geometry with geographic coordinates between -180..180 and 0..360.

Synopsis

geometry ST_Force2D(geometry geomA);

Beschreibung

Reads every point/vertex in a geometry, and if the longitude coordinate is <0, adds 360 to it. The result is a 0-360 version of the data to be plotted in a 180 centric map

[Note]

This is only useful for data with coordinates in longitude/latitude; e.g. SRID 4326 (WGS 84 geographic)

[Warning]

Pre-1.3.4 bug prevented this from working for MULTIPOINT. 1.3.4+ works with MULTIPOINT as well.

This function supports 3d and will not drop the z-index.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

NOTE: this function was renamed from "ST_Shift_Longitude" in 2.2.0

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

--3d points
SELECT ST_AsEWKT(ST_ShiftLongitude(ST_GeomFromEWKT('SRID=4326;POINT(-118.58 38.38 10)'))) As geomA,
    ST_AsEWKT(ST_ShiftLongitude(ST_GeomFromEWKT('SRID=4326;POINT(241.42 38.38 10)'))) As geomb
geomA                             geomB
----------                        -----------
SRID=4326;POINT(241.42 38.38 10) SRID=4326;POINT(-118.58 38.38 10)

--regular line string
SELECT ST_AsText(ST_ShiftLongitude(ST_GeomFromText('LINESTRING(-118.58 38.38, -118.20 38.45)')))

st_astext
----------
LINESTRING(241.42 38.38,241.8 38.45)
        

Siehe auch

ST_WrapX


Name

ST_WrapX — Wrap a geometry around an X value.

Synopsis

geometry ST_Snap(geometry input, geometry reference, float tolerance);

Beschreibung

This function splits the input geometries and then moves every resulting component falling on the right (for negative 'move') or on the left (for positive 'move') of given 'wrap' line in the direction specified by the 'move' parameter, finally re-unioning the pieces togheter.

[Note]

This is useful to "recenter" long-lat input to have features of interest not spawned from one side to the other.

Verfügbarkeit: 2.0.0 benötigt GEOS >= 3.3.0.

This function supports 3d and will not drop the z-index.

Beispiele

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=0 to +360
select ST_WrapX(the_geom, 0, 360);

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=-30 to +360
select ST_WrapX(the_geom, -30, 360);
        

Name

ST_SnapToGrid — Fängt alle Punkte der Eingabegeometrie auf einem regelmäßigen Gitter.

Synopsis

geometry ST_SnapToGrid(geometry geomA, float originX, float originY, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float size);

geometry ST_SnapToGrid(geometry geomA, geometry pointOrigin, float sizeX, float sizeY, float sizeZ, float sizeM);

Beschreibung

Variante 1, 2 und 3: Fängt alle Punkte der Eingabegeometrie auf den Gitterpunkten, die durch Ursprung und Gitterkästchengröße festgelegt sind. Aufeinanderfolgende Punkte, die in dasselbe Gitterkästchen fallen, werden gelöscht, wobei NULL zurückgegeben wird, wenn nicht mehr genug Punkte für den jeweiligen geometrischen Datentyp vorhanden sind. Collapsed geometries in a collection are stripped from it. Kollabierte Geometrien einer Kollektion werden von dieser entfernt. Nützlich um die Genauigkeit zu verringern.

Variante 4: wurde mit 1.1.0 eingeführt - Fängt alle Punkte der Eingabegeometrie auf den Gitterpunkten, welche durch den Ursprung des Gitters (der zweite Übergabewert muss ein Punkt sein) und die Gitterkästchengröße bestimmt sind. Geben Sie 0 als Größe für jene Dimension an, die nicht auf den Gitterpunkten gefangen werden soll.

[Note]

Die zurückgegebene Geometrie kann ihre Simplizität verlieren (siehe ST_IsSimple).

[Note]

Vor Release 1.1.0 gab diese Funktion immer eine 2D-Geometrie zurück. Ab 1.1.0 hat die zurückgegebene Geometrie dieselbe Dimensionalität wie die Eingabegemetrie, wobei höhere Dimensionen unangetastet bleiben. Verwenden Sie die Version, welche einen zweiten geometrischen Übergabewert annimmt, um sämtliche Grid-Dimensionen zu bestimmen.

Verfügbarkeit: 1.0.0RC1

Verfügbarkeit: 1.1.0, Unterstützung für Z und M

This function supports 3d and will not drop the z-index.

Beispiele

--Fängt die Geometrien an einem Gitter mit einer Genauigkeit von 10^-3
UPDATE mytable
   SET the_geom = ST_SnapToGrid(the_geom, 0.001);

SELECT ST_AsText(ST_SnapToGrid(
                        ST_GeomFromText('LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667)'),
                        0.001)
                );
                          st_astext
-------------------------------------
 LINESTRING(1.112 2.123,4.111 3.237)
 --Fängt eine 4D-Geometrie
SELECT ST_AsEWKT(ST_SnapToGrid(
        ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 2.3456 1.11111,
                4.111111 3.2374897 3.1234 1.1111, -1.11111112 2.123 2.3456 1.1111112)'),
 ST_GeomFromEWKT('POINT(1.12 2.22 3.2 4.4444)'),
 0.1, 0.1, 0.1, 0.01) );
                                                                  st_asewkt
------------------------------------------------------------------------------
 LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144)


--Bei einer 4D-Geometrie - ST_SnapToGrid(geom,size) behandelt nur die X- und Y-Koordinaten und belässt die M- und Z-Koordinaten
SELECT ST_AsEWKT(ST_SnapToGrid(ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 3 2.3456,
                4.111111 3.2374897 3.1234 1.1111)'),
           0.01)      );
                                                st_asewkt
---------------------------------------------------------
 LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)

                

Name

ST_Snap — Fängt die Segmente und Knoten einer Eingabegeometrie an den Knoten einer Referenzgeometrie.

Synopsis

geometry ST_Snap(geometry input, geometry reference, float tolerance);

Beschreibung

Fängt die Knoten und Segmente einer Geometrie an den Knoten einer anderen Geometrie. Eine Entfernungstoleranz bestimmt, wo das Fangen durchgeführt wird. Die Ergebnisgeometrie ist die Eingabegeometrie mit gefangenen Knoten. Wenn kein Fangen auftritt, wird die Eingabegeometrie unverändert ausgegeben..

Eine Geometrie an einer anderen zu fangen, kann die Robustheit von Überlagerungs-Operationen verbessern, indem nahe zusammenfallende Kanten beseitigt werden (diese verursachen Probleme bei der Knoten- und Verschneidungsberechnung).

Übermäßiges Fangen kann zu einer invaliden Topologie führen. Die Anzahl und der Ort an dem Knoten sicher gefangen werden können wird mittels Heuristik bestimmt. Dies kann allerdings dazu führen, dass einige potentielle Knoten nicht gefangen werden.

[Note]

Die zurückgegebene Geometrie kann ihre Simplizität (see ST_IsSimple) und Valididät (see ???) verlieren.

Performed by the GEOS module.

Verfügbarkeit: 2.0.0

Beispiele

Ein Mehrfachpolygon mit einem Linienzug (vor dem Fangen)

Ein Mehrfachpolygon das an einem Linienzug gefangen wird; die Toleranz beträgt 1.01 der Entfernung. Das neue Mehrfachpolygon wird mit dem betreffenden Linienzug angezeigt.

SELECT ST_AsText(ST_Snap(poly,line, ST_Distance(poly,line)*1.01)) AS polysnapped
FROM (SELECT
   ST_GeomFromText('MULTIPOLYGON(
     ((26 125, 26 200, 126 200, 126 125, 26 125 ),
      ( 51 150, 101 150, 76 175, 51 150 )),
      (( 151 100, 151 200, 176 175, 151 100 )))') As poly,
       ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line

        ) As foo;

                             polysnapped
---------------------------------------------------------------------
 MULTIPOLYGON(((26 125,26 200,126 200,126 125,101 100,26 125),
 (51 150,101 150,76 175,51 150)),((151 100,151 200,176 175,151 100)))
                                

Ein Mehrfachpolygon das an einem Linienzug gefangen wird; die Toleranz beträgt 1.25 der Entfernung. Das neue Mehrfachpolygon wird mit dem betreffenden Linienzug angezeigt.

SELECT ST_AsText(
    ST_Snap(poly,line, ST_Distance(poly,line)*1.25)
  ) AS polysnapped
FROM (SELECT
  ST_GeomFromText('MULTIPOLYGON(
    (( 26 125, 26 200, 126 200, 126 125, 26 125 ),
      ( 51 150, 101 150, 76 175, 51 150 )),
      (( 151 100, 151 200, 176 175, 151 100 )))') As poly,
       ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line

        ) As foo;

                             polysnapped
---------------------------------------------------------------------
MULTIPOLYGON(((5 107,26 200,126 200,126 125,101 100,54 84,5 107),
(51 150,101 150,76 175,51 150)),((151 100,151 200,176 175,151 100)))
                                

Ein Linienzug der an dem ursprünglichen Mehrfachpolygon gefangen wird; die Toleranz beträgt 1.01 der Entfernung. Das neue Linienzug wird mit dem betreffenden Mehrfachpolygon angezeigt.

SELECT ST_AsText(
   ST_Snap(line, poly, ST_Distance(poly,line)*1.01)
  ) AS linesnapped
FROM (SELECT
  ST_GeomFromText('MULTIPOLYGON(
     ((26 125, 26 200, 126 200, 126 125, 26 125),
      (51 150, 101 150, 76 175, 51 150 )),
      ((151 100, 151 200, 176 175, 151 100)))') As poly,
       ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
        ) As foo;

              linesnapped
----------------------------------------
 LINESTRING(5 107,26 125,54 84,101 100)
                                

Ein Linienzug der an dem ursprünglichen Mehrfachpolygon gefangen wird; die Toleranz beträgt 1.25 der Entfernung. Das neue Linienzug wird mit dem betreffenden Mehrfachpolygon angezeigt.

SELECT ST_AsText(
 ST_Snap(line, poly, ST_Distance(poly,line)*1.25)
  ) AS linesnapped
FROM (SELECT
  ST_GeomFromText('MULTIPOLYGON(
     (( 26 125, 26 200, 126 200, 126 125, 26 125 ),
      (51 150, 101 150, 76 175, 51 150 )),
      ((151 100, 151 200, 176 175, 151 100 )))') As poly,
       ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
        ) As foo;
              linesnapped
---------------------------------------
LINESTRING(26 125,54 84,101 100)
                                

Siehe auch

ST_SnapToGrid


Name

ST_QuantizeCoordinates — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

Synopsis

geometry ST_SetSRID(geometry geom, integer srid);

Beschreibung

Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

The ords parameter is a 2-characters string naming the ordinates to swap. Valid names are: x,y,z and m.

Verfügbarkeit: 2.2.0

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

-- Scale M value by 2
SELECT ST_AsText(
  ST_SwapOrdinates(
    ST_Scale(
      ST_SwapOrdinates(g,'xm'),
      2, 1
    ),
  'xm')
) FROM ( SELECT 'POINT ZM (0 0 0 2)'::geometry g ) foo;
     st_astext
--------------------
 POINT ZM (0 0 0 4)
                 

8.7. Ausgabe von Geometrie

Abstract

These functions convert geometry objects into various textual or binary formats.

8.7.1. Well-Known Text (WKT)

ST_AsEWKT — Gibt die Well-known-Text(WKT) Darstellung der Geometrie mit den SRID-Metadaten zurück.
ST_AsText — Gibt die Well-known-Text(WKT) Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.

Name

ST_AsEWKT — Gibt die Well-known-Text(WKT) Darstellung der Geometrie mit den SRID-Metadaten zurück.

Synopsis

bytea ST_AsBinary(geometry g1);

bytea ST_AsBinary(geometry g1, text NDR_or_XDR);

bytea ST_AsBinary(geography g1);

bytea ST_AsBinary(geography g1, text NDR_or_XDR);

Beschreibung

Das dritte Argument kann verwendet werden um die maximale Anzahl der Dezimalstellen in der Ausgabe zu beschränken (Sandardwert ist 15).

[Note]

Die WKT Spezifikation bezieht die SRID nicht mit ein. Für die OGC WKT-Darstellung verwenden Sie bitte ST_AsText.

[Warning]

Das WKT Format erhält die Genauigkeit von Fließpunktzahlen nicht. Um das Abschneiden von Kommastellen zu verhindern, benutzen Sie bitte das ST_AsBinary oder das ST_AsEWBK Format für die Übertragung.

[Note]

ST_AsEWKT ist die Umkehrfunktion von ???. Verwenden Sie bitte ??? um eine PostGIS Geometrie aus einer ST_AsEWKT Darstellung zu erstellen.

Erweiterung: 2.0.0 - Unterstützung für höherdimensionale Koordinatensysteme eingeführt.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für den geographischen Datentyp, polyedrische Oberflächen, Dreiecke und TIN eingeführt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_AsEWKT('0103000020E61000000100000005000000000000
                        000000000000000000000000000000000000000000000000000000
                        F03F000000000000F03F000000000000F03F000000000000F03
                        F000000000000000000000000000000000000000000000000'::geometry);

                   st_asewkt
--------------------------------
SRID=4326;POLYGON((0 0,0 1,1 1,1 0,0 0))
(1 row)

SELECT ST_AsEWKT('0108000080030000000000000060E30A4100000000785C0241000000000000F03F0000000018
E20A4100000000485F024100000000000000400000000018
E20A4100000000305C02410000000000000840')

--st_asewkt---
CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)

Name

ST_AsText — Gibt die Well-known-Text(WKT) Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.

Synopsis

text ST_AsText(geometry g1);

text ST_AsText(geometry g1, integer maxdecimaldigits = 15);

text ST_AsText(geography g1);

text ST_AsText(geography g1, integer maxdecimaldigits = 15);

Beschreibung

Returns the OGC Well-Known Text (WKT) representation of the geometry/geography. The optional maxdecimaldigits argument may be used to limit the number of digits after the decimal point in output ordinates (defaults to 15).

To perform the inverse conversion of WKT representation to PostGIS geometry use ???.

[Note]

The standard OGC WKT representation does not include the SRID. To include the SRID as part of the output representation, use the non-standard PostGIS function ST_AsEWKT

[Warning]

The textual representation of numbers in WKT may not maintain full floating-point precision. To ensure full accuracy for data storage or transport it is best to use Well-Known Binary (WKB) format (see ST_AsBinary and ST_AsEWKB).

Verfügbarkeit: 1.5 - Unterstützung von geograpischen Koordinaten.

Erweiterung: 2.0.0 - Unterstützung für höherdimensionale Koordinatensysteme eingeführt.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

This method supports Circular Strings and Curves

Beispiele

SELECT ST_AsText('01030000000100000005000000000000000000
000000000000000000000000000000000000000000000000
F03F000000000000F03F000000000000F03F000000000000F03
F000000000000000000000000000000000000000000000000');

    st_astext
--------------------------------
 POLYGON((0 0,0 1,1 1,1 0,0 0))

Full precision output is the default.

SELECT ST_AsText('POINT(111.1111111 1.1111111)'));
    st_astext
------------------------------
 POINT(111.1111111 1.1111111)

The maxdecimaldigits argument can be used to limit output precision.

SELECT ST_AsText('POINT(111.1111111 1.1111111)'), 2);
    st_astext
--------------------
 POINT(111.11 1.11)

8.7.2. Well-Known Binary (WKB)

ST_AsBinary — Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
ST_AsEWKB — Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta data.
ST_AsHEXEWKB — Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung.

Name

ST_AsBinary — Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.

Synopsis

bytea ST_AsBinary(geometry g1);

bytea ST_AsBinary(geometry g1, text NDR_or_XDR);

bytea ST_AsBinary(geography g1);

bytea ST_AsBinary(geography g1, text NDR_or_XDR);

Beschreibung

Returns the OGC/ISO Well-Known Binary (WKB) representation of the geometry. The first function variant defaults to encoding using server machine endian. The second function variant takes a text argument specifying the endian encoding, either little-endian ('NDR') or big-endian ('XDR').

WKB format is useful to read geometry data from the database and maintaining full numeric precision. This avoids the precision rounding that can happen with text formats such as WKT.

To perform the inverse conversion of WKB to PostGIS geometry use ???.

[Note]

The OGC/ISO WKB format does not include the SRID. To get the EWKB format which does include the SRID use ST_AsEWKB

[Note]

The default behavior in PostgreSQL 9.0 has been changed to output bytea in hex encoding. If your GUI tools require the old behavior, then SET bytea_output='escape' in your database.

Erweiterung: 2.0.0 - Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Erweiterung: 2.0.0 - Unterstützung für höherdimensionale Koordinatensysteme eingeführt.

Erweiterung: 2.0.0 Unterstützung zum Festlegen des Endian beim geographischen Datentyp eingeführt.

Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.

Änderung: 2.0.0 - Eingabewerte für diese Funktion dürfen nicht "unknown" sein -- es muss sich um eine Geometrie handeln. Konstrukte, wie ST_AsBinary('POINT(1 2)'), sind nicht länger gültig und geben folgende Fehlermeldung aus: n st_asbinary(unknown) is not unique error. Dieser Code muss in ST_AsBinary('POINT(1 2)'::geometry); geändert werden. Falls dies nicht möglich ist, so installieren Sie bitte legacy.sql.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.37

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

                   st_asbinary
--------------------------------
\x01030000000100000005000000000000000000000000000000000000000000000000000000000000
000000f03f000000000000f03f000000000000f03f000000000000f03f0000000000000000000000
00000000000000000000000000
SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR');
                   st_asbinary
--------------------------------
\x000000000300000001000000050000000000000000000000000000000000000000000000003ff000
00000000003ff00000000000003ff00000000000003ff00000000000000000000000000000000000
00000000000000000000000000

Name

ST_AsEWKB — Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta data.

Synopsis

bytea ST_AsEWKB(geometry g1);

bytea ST_AsEWKB(geometry g1, text NDR_or_XDR);

Beschreibung

Returns the Extended Well-Known Binary (EWKB) representation of the geometry with SRID metadata. The first function variant defaults to encoding using server machine endian. The second function variant takes a text argument specifying the endian encoding, either little-endian ('NDR') or big-endian ('XDR').

WKB format is useful to read geometry data from the database and maintaining full numeric precision. This avoids the precision rounding that can happen with text formats such as WKT.

To perform the inverse conversion of EWKB to PostGIS geometry use ???.

[Note]

To get the OGC/ISO WKB format use ST_AsBinary. Note that OGC/ISO WKB format does not include the SRID.

Erweiterung: 2.0.0 - Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

                   st_asewkb
--------------------------------
\x0103000020e610000001000000050000000000000000000000000000000000000000000000000000
00000000000000f03f000000000000f03f000000000000f03f000000000000f03f00000000000000
0000000000000000000000000000000000
SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR');
                   st_asewkb
--------------------------------
\x0020000003000010e600000001000000050000000000000000000000000000000000000000000000
003ff00000000000003ff00000000000003ff00000000000003ff000000000000000000000000000
0000000000000000000000000000000000
                

Siehe auch

ST_AsBinary, ???, ???


Name

ST_AsHEXEWKB — Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung.

Synopsis

text ST_AsHEXEWKB(geometry g1, text NDRorXDR);

text ST_AsHEXEWKB(geometry g1);

Beschreibung

Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung. Wenn keine Zeichenkodierung angegeben wurde, wird NDR verwendet.

[Note]

Verfügbarkeit: 1.2.2

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_AsHEXEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
               --gibt die selbe Antword wie

                SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)::text;

                st_ashexewkb
                --------
                0103000020E6100000010000000500
                00000000000000000000000000000000
                00000000000000000000000000000000F03F
                000000000000F03F000000000000F03F000000000000F03
                F000000000000000000000000000000000000000000000000

8.7.3. Other Formats

ST_AsEncodedPolyline — Erzeugt eine codierte Polylinie aus einer LineString Geometrie.
ST_AsGeobuf — Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.
ST_AsGeoJSON — Gibt die Geometrie eines GeoJSON Elements zurück.
ST_AsGML — Gibt die Geometrie als GML-Element - Version 2 oder 3 - zurück.
ST_AsKML — Gibt die Geometrie als ein KML Element aus. Mehrere Varianten. Standardmäßig ist version=2 und precision=15
ST_AsLatLonText — Gibt die "Grad, Minuten, Sekunden"-Darstellung für den angegebenen Punkt aus.
ST_AsMVTGeom — Transformiert eine Geometrie in das Koordinatensystem eines Mapbox Vector Tiles.
ST_AsMVT — Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.
ST_AsSVG — Gibt ein Geoobjekt als SVG-Pfadgeometrie zurück. Unterstützt den geometrischen und den geographischen Datentyp.
ST_AsTWKB — Gibt die Geometrie als TWKB, aka "Tiny Well-known Binary" zurück
ST_AsX3D — Gibt eine Geometrie im X3D XML Knotenelement-Format zurück: ISO-IEC-19776-1.2-X3DEncodings-XML
ST_GeoHash — Gibt die Geometrie in der GeoHash Darstellung aus.

Name

ST_AsEncodedPolyline — Erzeugt eine codierte Polylinie aus einer LineString Geometrie.

Synopsis

text ST_AsEncodedPolyline(geometry geom, integer precision=5);

Beschreibung

Gibt die Geometrie als codierte Polylinie zurück. Dieses Format ist geeignet, wenn Sie Google Maps verwenden.

Optional precision specifies how many decimal places will be preserved in Encoded Polyline. Value should be the same on encoding and decoding, or coordinates will be incorrect.

Verfügbarkeit: 2.2.0

Beispiele

Grundlegendes

SELECT ST_AsEncodedPolyline(GeomFromEWKT('SRID=4326;LINESTRING(-120.2 38.5,-120.95 40.7,-126.453 43.252)'));
        --result--
        |_p~iF~ps|U_ulLnnqC_mqNvxq`@
        

Anwendung in Verbindung mit LINESTRING und ST_Segmentize für den geographischen Datentyp, und auf Google Maps stellen

-- das SQL von Boston nach San Francisco, segmentiert alle 100 KM
        SELECT ST_AsEncodedPolyline(
                ST_Segmentize(
                        ST_GeogFromText('LINESTRING(-71.0519 42.4935,-122.4483 37.64)'),
                                100000)::geometry) As encodedFlightPath;

In JavaScript sieht dies ungefähr wie folgt aus, wobei die $ Variable durch das Abfrageergebnis ersetzt wird

<script type="text/javascript" src="http://maps.googleapis.com/maps/api/js?libraries=geometry"
></script>
<script type="text/javascript">
         flightPath = new google.maps.Polyline({
                        path:  google.maps.geometry.encoding.decodePath("$encodedFlightPath"),
                        map: map,
                        strokeColor: '#0000CC',
                        strokeOpacity: 1.0,
                        strokeWeight: 4
                });
</script>
        

Siehe auch

???, ST_Segmentize


Name

ST_AsGeobuf — Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.

Synopsis

bytea ST_AsGeobuf(anyelement set row);

bytea ST_AsGeobuf(anyelement row, text geom_name);

Beschreibung

Gibt Zeilen einer FeatureCollection in der Geobuf Darstellung (https://github.com/mapbox/geobuf) aus. Von jeder Eingabegeometrie wird die maximale Genauigkeit analysiert, um eine optimale Speicherung zu erreichen. Anmerkung: In der jetzigen Form kann Geobuf nicht "gestreamt" werden, wodurch die gesamte Ausgabe im Arbeitsspeicher zusammengestellt wird.

row Datenzeilen mit zumindest einer Geometriespalte.

geom_name ist die Bezeichnung der Geometriespalte in den Datenzeilen. Wenn NULL, dann wird standardmäßig die erste aufgefundene Geometriespalte verwendet.

Verfügbarkeit: 2.4.0

Beispiele

SELECT encode(ST_AsGeobuf(q, 'geom'), 'base64')
    FROM (SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))') AS geom) AS q;
 st_asgeobuf
----------------------------------
 GAAiEAoOCgwIBBoIAAAAAgIAAAE=

                
                

Name

ST_AsGeoJSON — Gibt die Geometrie eines GeoJSON Elements zurück.

Synopsis

text ST_AsGeoJSON(geometry geom, integer maxdecimaldigits=15, integer options=0);

text ST_AsGeoJSON(geography geog, integer maxdecimaldigits=15, integer options=0);

text ST_AsGeoJSON(integer gj_version, geometry geom, integer maxdecimaldigits=15, integer options=0);

text ST_AsGeoJSON(integer gj_version, geography geog, integer maxdecimaldigits=15, integer options=0);

Beschreibung

Gibt die Geometrie als Geometrische Javascript Objekt Notation (GeoJSON) Element aus. (Vggl. GeoJSON specifications 1.0). Es werden sowohl 2D- als auch 3D-Geometrien unterstützt. GeoJSON unterstützt lediglich den geometrischer Datentyp SFS 1.1 (hat z.B. keine Unterstützung für Kurven).

The maxdecimaldigits argument may be used to reduce the maximum number of decimal places used in output (defaults to 9). If you are using EPSG:4326 and are outputting the geometry only for display, maxdecimaldigits=6 can be a good choice for many maps.

Mit dem letzten 'options' Argument kann eine BBox oder ein CRS zur GeoJSON Ausgabe hinzugefügt werden:

  • 0: bedeutet keine Option (Standardwert)

  • 1: GeoJSON Bbox

  • 2: GeoJSON CRS-Kurzform (z.B. EPSG:4326)

  • 4: GeoJSON CRS-Langform (z.B. urn:ogc:def:crs:EPSG::4326)

  • 2: GeoJSON CRS-Kurzform (z.B. EPSG:4326)

Verfügbarkeit: 1.3.4

Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.

Änderung: 2.0.0 Unterstützung für Standardargumente und benannte Argumente.

Änderung: 2.0.0 Unterstützung für Standardargumente und benannte Argumente.

Changed: 3.0.0 output SRID if not EPSG:4326.

This function supports 3d and will not drop the z-index.

Beispiele

GeoJSON format is popular among web mapping frameworks.

You can test and view your GeoJSON data online on geojson.io.

To build FeatureCollection:

select json_build_object(
    'type', 'FeatureCollection',
    'features', json_agg(ST_AsGeoJSON(t.*)::json)
    )
from ( values (1, 'one', 'POINT(1 1)'::geometry),
              (2, 'two', 'POINT(2 2)'),
              (3, 'three', 'POINT(3 3)')
     ) as t(id, name, geom);
{"type" : "FeatureCollection", "features" : [{"type": "Feature", "geometry": {"type":"Point","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[2,2]}, "properties": {"id": 2, "name": "two"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[3,3]}, "properties": {"id": 3, "name": "three"}}]}

To get Features as records:

SELECT ST_AsGeoJSON(t.*)
FROM (VALUES
  (1, 'one', 'POINT(1 1)'::geometry),
  (2, 'two', 'POINT(2 2)'),
  (3, 'three', 'POINT(3 3)'))
AS t(id, name, geom);
st_asgeojson
-----------------------------------------------------------------------------------------------------------------
 {"type": "Feature", "geometry": {"type":"Point","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}
 {"type": "Feature", "geometry": {"type":"Point","coordinates":[2,2]}, "properties": {"id": 2, "name": "two"}}
 {"type": "Feature", "geometry": {"type":"Point","coordinates":[3,3]}, "properties": {"id": 3, "name": "three"}}

Don't forget to transform your data to WGS84 longitude, latitude to conform with RFC7946:

SELECT ST_AsGeoJSON(ST_Transform(geom,4326)) from fe_edges limit 1;
SELECT ST_AsGeoJSON(the_geom) from fe_edges limit 1;
                                           st_asgeojson
-----------------------------------------------------------------------------------------------------------

{"type":"MultiLineString","coordinates":[[[-89.734634999999997,31.492072000000000],
[-89.734955999999997,31.492237999999997]]]}
(1 row)
--3d point
SELECT ST_AsGeoJSON('LINESTRING(1 2 3, 4 5 6)');

st_asgeojson
-----------------------------------------------------------------------------------------
 {"type":"LineString","coordinates":[[1,2,3],[4,5,6]]}

You can also use it with 3D geometries:

SELECT ST_AsGeoJSON('LINESTRING(1 2 3, 4 5 6)');
{"type":"LineString","coordinates":[[1,2,3],[4,5,6]]}

Name

ST_AsGML — Gibt die Geometrie als GML-Element - Version 2 oder 3 - zurück.

Synopsis

text ST_AsGML(geometry geom, integer maxdecimaldigits=15, integer options=0);

text ST_AsGML(geography geog, integer maxdecimaldigits=15, integer options=0);

text ST_AsGML(integer version, geometry geom, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);

text ST_AsGML(integer version, geography geog, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);

Beschreibung

Gibt die Geometrie als ein Geography Markup Language (GML) Element zurück. Der Versionsparameter kann 2 oder 3 sein, falls angegeben. Wenn kein Versionsparameter angegeben ist, wird dieser standardmäßig mit 2 angenommen. Das Genauigkeitsargument "precision" kann verwendet werden, um die Anzahl der Dezimalstellen (maxdecimaldigits)  bei der Ausgabe zu reduzieren (standardmäßig 15).

GML 2 verweist auf Version 2.1.2, GML 3 auf Version 3.1.1

Der Übergabewert "options" ist ein Bitfeld. Es kann verwendet werden um das Koordinatenreferenzsystem bei der GML Ausgabe zu bestimmen und um die Daten in Länge/Breite anzugeben.

  • 0: GML Kurzform für das CRS (z.B. EPSG:4326), Standardwert

  • 1: GML Langform für das CRS (z.B. urn:ogc:def:crs:EPSG::4326)

  • 2: Nur für GML 3, entfernt das srsDimension Attribut von der Ausgabe.

  • 4: Nur für GML 3, Für Linien verwenden Sie bitte den Tag <LineString> anstatt <Curve>.

  • 16: Deklarieren, dass die Daten in Breite/Länge (z.B. SRID=4326) vorliegen. Standardmäßig wird angenommen, dass die Daten planar sind. Diese Option ist nur bei Ausgabe in GML 3.1.1, in Bezug auf die Anordnung der Achsen sinnvoll. Falls Sie diese setzen, werden die Koordinaten von Länge/Breite auf Breite/Länge vertauscht.

  • 32: Ausgabe der BBox der Geometrie (Umhüllende/Envelope).

Der Übergabewert 'namespace prefix' kann verwendet werden, um ein benutzerdefiniertes Präfix für den Namensraum anzugeben, oder kein Präfix (wenn leer). Wenn Null oder weggelassen, so wird das Präfix "gml" verwendet.

Verfügbarkeit: 1.3.2

Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.

Erweiterung: 2.0.0 Unterstützung durch Präfix eingeführt. Für GML3 wurde die Option 4 eingeführt, um die Verwendung von LineString anstatt von Kurven für Linien zu erlauben. Ebenfalls wurde die GML3 Unterstützung für polyedrische Oberflächen und TINS eingeführt, sowie die Option 32 zur Ausgabe der BBox.

Änderung: 2.0.0 verwendet standardmäßig benannte Argumente.

Erweiterung: 2.1.0 Für GML 3 wurde die Unterstützung einer ID eingeführt.

[Note]

Nur die Version 3+ von ST_AsGML unterstützt polyedrische Oberflächen und TINs.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele: Version 2

SELECT ST_AsGML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
                st_asgml
                --------
                <gml:Polygon srsName="EPSG:4326"
><gml:outerBoundaryIs
><gml:LinearRing
><gml:coordinates
>0,0 0,1 1,1 1,0 0,0</gml:coordinates
></gml:LinearRing
></gml:outerBoundaryIs
></gml:Polygon
>
                        

Beispiele: Version 3

-- Koordinaten umdrehen und Ausgabe in erweitertem EPSG (16 | 1)--
SELECT ST_AsGML(3, ST_GeomFromText('POINT(5.234234233242 6.34534534534)',4326), 5, 17);
                        st_asgml
                        --------
                <gml:Point srsName="urn:ogc:def:crs:EPSG::4326"
><gml:pos
>6.34535 5.23423</gml:pos
></gml:Point
>
                        
-- Die Umhüllende/Envelope ausgeben (32) --
SELECT ST_AsGML(3, ST_GeomFromText('LINESTRING(1 2, 3 4, 10 20)',4326), 5, 32);
                st_asgml
                --------
        <gml:Envelope srsName="EPSG:4326">
                <gml:lowerCorner
>1 2</gml:lowerCorner>
                <gml:upperCorner
>10 20</gml:upperCorner>
        </gml:Envelope
>
                        
-- Die Umhüllende (32) ausgeben, umgedreht (Breite/Länge anstatt Länge/Bereite) (16), long srs (1)= 32 | 16 | 1 = 49 --
SELECT ST_AsGML(3, ST_GeomFromText('LINESTRING(1 2, 3 4, 10 20)',4326), 5, 49);
        st_asgml
        --------
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
        <gml:lowerCorner
>2 1</gml:lowerCorner>
        <gml:upperCorner
>20 10</gml:upperCorner>
</gml:Envelope
>
                        
-- Polyeder Beispiel --
SELECT ST_AsGML(3, ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
        st_asgml
        --------
 <gml:PolyhedralSurface>
<gml:polygonPatches>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 0 0 0 1 0 1 1 0 1 0 0 0 0 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 0 0 1 0 0 1 0 1 0 0 1 0 0 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface
>
                        

Siehe auch

???


Name

ST_AsKML — Gibt die Geometrie als ein KML Element aus. Mehrere Varianten. Standardmäßig ist version=2 und precision=15

Synopsis

text ST_AsSVG(geometry geom, integer rel=0, integer maxdecimaldigits=15);

text ST_AsSVG(geography geog, integer rel=0, integer maxdecimaldigits=15);

Beschreibung

Gibt die Geometrie als ein Keyhole Markup Language (KML) Element zurück. Diese Funktion verfügt über mehrere Varianten. Die maximale Anzahl der Dezimalstellen die bei der Ausgabe verwendet wird (standardmäßig 15), die Version ist standardmäßig 2 und der Standardnamensraum hat kein Präfix.

Version 1: ST_AsKML(geom_or_geog, maxdecimaldigits) / version=2 / maxdecimaldigits=15

Version 2: ST_AsKML(version, geom_or_geog, maxdecimaldigits, nprefix) maxdecimaldigits=15 / nprefix=NULL

[Note]

Setzt voraus, dass PostGIS mit Proj-Unterstützung kompiliert wurde. Verwenden Sie bitte ???, um festzustellen ob mit proj kompiliert wurde.

[Note]

Verfügbarkeit: 1.2.2 - spätere Varianten ab 1.3.2 nehmen den Versionsparameter mit auf

[Note]

Erweiterung: 2.0.0 - Präfix Namensraum hinzugefügt. Standardmäßig kein Präfix

[Note]

Änderung: 2.0.0 verwendet Standardargumente und unterstützt benannte Argumente.

[Note]

Die Ausgabe AsKML funktioniert nicht bei Geometrien ohne SRID

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsKML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

                st_askml
                --------
                <Polygon
><outerBoundaryIs
><LinearRing
><coordinates
>0,0 0,1 1,1 1,0 0,0</coordinates
></LinearRing
></outerBoundaryIs
></Polygon>

                --3D Linienzug
                SELECT ST_AsKML('SRID=4326;LINESTRING(1 2 3, 4 5 6)');
                <LineString
><coordinates
>1,2,3 4,5,6</coordinates
></LineString>
                
                

Siehe auch

ST_AsSVG, ST_AsGML


Name

ST_AsLatLonText — Gibt die "Grad, Minuten, Sekunden"-Darstellung für den angegebenen Punkt aus.

Synopsis

text ST_AsLatLonText(geometry pt, text format='');

Beschreibung

Gibt die "Grad, Minuten, Sekunden"-Darstellung des Punktes aus.

[Note]

Es wird angenommen, dass der Punkt in einer Breite/Länge-Projektion vorliegt. Die X (Länge) und Y (Breite) Koordinaten werden bei der Ausgabe in den "üblichen" Bereich (-180 to +180 für die Länge, -90 to +90 für die Breite) normalisiert.

Der Textparameter ist eine Zeichenkette für die Formatierung der Ausgabe, ähnlich wie die Zeichenkette für die Formatierung der Datumsausgabe. Gültige Zeichen sind "D" für Grad/Degrees, "M" für Minuten, "S" für Sekunden, und "C" für die Himmelsrichtung (NSEW). DMS Zeichen können wiederholt werden, um die gewünschte Zeichenbreite und Genauigkeit anzugeben ("SSS.SSSS" bedeutet z.B. " 1.0023").

"M", "S", und "C" sind optional. Wenn "C" weggelassen wird, werden Grad mit einem "-" Zeichen versehen, wenn Süd oder West. Wenn "S" weggelassen wird, werden die Minuten als Dezimalzahl mit der vorgegebenen Anzahl an Kommastellen angezeigt. Wenn "M" wegggelassen wird, werden die Grad als Dezimalzahl mit der vorgegebenen Anzahl an Kommastellen angezeigt.

Wenn die Zeichenkette für das Ausgabeformat weggelassen wird (oder leer ist) wird ein Standardformat verwendet.

Verfügbarkeit: 2.0

Beispiele

Standardformat.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)'));
      st_aslatlontext
----------------------------
 2°19'29.928"S 3°14'3.243"W

Ein Format angeben (identisch mit Standardformat).

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"C'));
      st_aslatlontext
----------------------------
 2°19'29.928"S 3°14'3.243"W

Andere Zeichen als D, M, S, C und "." werden lediglich durchgereicht.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D degrees, M minutes, S seconds to the C'));
                                   st_aslatlontext
--------------------------------------------------------------------------------------
 2 degrees, 19 minutes, 30 seconds to the S 3 degrees, 14 minutes, 3 seconds to the W

Grad mit einem Vorzeichen versehen - anstatt der Himmelsrichtung.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"'));
      st_aslatlontext
----------------------------
 -2°19'29.928" -3°14'3.243"

Dezimalgrad.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D.DDDD degrees C'));
          st_aslatlontext
-----------------------------------
 2.3250 degrees S 3.2342 degrees W

Überhöhte Werte werden normalisiert.

SELECT (ST_AsLatLonText('POINT (-302.2342342 -792.32498)'));
        st_aslatlontext
-------------------------------
 72°19'29.928"S 57°45'56.757"E

Name

ST_AsMVTGeom — Transformiert eine Geometrie in das Koordinatensystem eines Mapbox Vector Tiles.

Synopsis

geometry ST_AsMVTGeom(geometry geom, box2d bounds, int4 extent=4096, int4 buffer=256, bool clip_geom=true);

Beschreibung

Transformiert eine Geometrie in das Koordinatensystem eines Mapbox Vector Tiles aus Zeilen die einem Layer entsprechen. Unternimmt alle Anstrengungen, damit die Geometrie valide bleibt oder korrigiert sie eventuell sogar. Bei diesem Prozess kann es vorkommen, dass die Geometrie in eine niedrigere Dimension übergeführt wird.

geom Die zu Transformierende Geometrie.

bounds ist die geometrische Abgrenzung des Inhalts der Kachel ohne Puffer.

extent ist die Größe der Kachel, angegeben im Koordinatensystem der Vektorkacheln und so wie in der Spezifikation festgelegt. Wenn dieser Wert NULL ist, wird der Standardwert 4096 angenommen.

buffer ist die Puffergröße im Koordinatensystem der Vektorkacheln, an der die Geometrie optional ausgeschnitten werden kann. Wenn NULL, dann wird der Standardwert 256 angenommen.

clip_geom ist ein boolescher Eingabewert, der bestimmt ob die Geometrie ausgeschnitten werden soll, oder so wie sie vorliegt codiert wird. Wenn der Wert NULL ist, wird der Standardwert TRUE angenommen.

Verfügbarkeit: 2.4.0

[Note]

From 3.0, Wagyu can be chosen at configure time to clip and validate MVT polygons. This library is faster and produces more correct results than the GEOS default, but it might drop small polygons.

Beispiele

SELECT ST_AsText(ST_AsMVTGeom(
        ST_GeomFromText('POLYGON ((0 0, 10 0, 10 5, 0 -5, 0 0))'),
        ST_MakeBox2D(ST_Point(0, 0), ST_Point(4096, 4096)),
        4096, 0, false));
                              st_astext
--------------------------------------------------------------------
 MULTIPOLYGON(((5 4096,10 4096,10 4091,5 4096)),((5 4096,0 4096,0 4101,5 4096)))

                
                

Name

ST_AsMVT — Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.

Synopsis

bytea ST_AsMVT(anyelement set row);

bytea ST_AsMVT(anyelement row, text name);

bytea ST_AsMVT(anyelement row, text name, int4 extent);

bytea ST_AsMVT(anyelement row, text name, int4 extent, text geom_name);

Beschreibung

Gibt eine Menge an Zeilen, die einem Layer entsprechen, in der Mapbox Vector Tile Darstellung aus. Mehrere Aufrufe können aneinandergereiht werden, um eine Kachel mit mehreren Layern zu erstellen. Es wird angenommen, dass die Geometrie im Koordinatensystem der Vektorkacheln vorliegt und entsprechend derSpezifikation valide ist. Üblicherweise wird ST_AsMVTGeom verwendet, um die Geometrie in das Koordinatensystem der Vektorkacheln zu transformieren. Die übrigen Daten werden als Attribute codiert.

Das Mapbox Vector Tile Format kann Geoobjekte mit unterschiedlichen Attributen pro Feature speichern. Um dies zu nutzen, legen Sie bitte eine JSONB-Spalte mit JSON-Objekten in den Rohdaten an. Die Schlüssel und Werte in dem Objekt werden in die Feature-Attribute zerlegt.

Tiles with multiple layers can be created by concatenating multiple calls to this function using ||.

[Important]

Do not call with a GEOMETRYCOLLECTION as an element in the row. However you can use ST_AsMVTGeom to prepare a geometry collection for inclusion.

row Datenzeilen mit zumindest einer Geometriespalte.

name ist der Name des Layers. Wenn NULL, dann wird die Zeichenfolge "default" verwendet.

extent ist die Kachelausdehnung in Bildschirmeinheiten, so wie in der Spezifikation festgelegt. Wenn NULL, wird der Standardwert 4096 angenommen.

geom_name ist die Bezeichnung der Geometriespalte in den Datenzeilen. Wenn NULL, dann wird standardmäßig die erste aufgefundene Geometriespalte verwendet.

feature_id_name is the name of the Feature ID column in the row data. If NULL or negative the Feature ID is not set. The first column matching name and valid type (smallint, integer, bigint) will be used as Feature ID, and any subsequent column will be added as a property. JSON properties are not supported.

Enhanced: 3.0 - added support for Feature ID.

Erweiterung: 2.1.0 Für GML 3 wurde die Unterstützung einer ID eingeführt.

Verfügbarkeit: 2.4.0

Beispiele

WITH mvtgeom AS
(
  SELECT ST_AsMVTGeom(geom, ST_TileEnvelope(12, 513, 412), extent => 4096, buffer => 64) AS geom, name, description
  FROM points_of_interest
  WHERE geom && ST_TileEnvelope(12, 513, 412, margin => (64.0 / 4096))
)
SELECT ST_AsMVT(mvtgeom.*)
FROM mvtgeom;

Name

ST_AsSVG — Gibt ein Geoobjekt als SVG-Pfadgeometrie zurück. Unterstützt den geometrischen und den geographischen Datentyp.

Synopsis

text ST_AsSVG(geometry geom, integer rel=0, integer maxdecimaldigits=15);

text ST_AsSVG(geography geog, integer rel=0, integer maxdecimaldigits=15);

Beschreibung

Gibt die Geometrie als Skalare Vektor Graphik (SVG-Pfadgeometrie) aus. Verwenden Sie 1 als zweiten Übergabewert um die Pfadgeometrie in relativen Schritten zu implementieren; Standardmäßig (oder 0) verwendet absolute Schritte. Der dritte Übergabewert kann verwendet werden, um die maximale Anzahl der Dezimalstellen bei der Ausgabe einzuschränken (standardmäßig 15). Punktgeometrie wird als cx/cy übersetzt wenn der Übergabewert 'rel' gleich 0 ist, x/y wenn 'rel' 1 ist. Mehrfachgeometrie wird durch Beistriche (",") getrennt, Sammelgeometrie wird durch Strichpunkt (";") getrennt.

[Note]

Verfügbarkeit: 1.2.2. Änderung: 1.4.0 L-Befehl beim absoluten Pfad aufgenommen, um mit http://www.w3.org/TR/SVG/paths.html#PathDataBNF konform zu sein.

Änderung: 2.0.0 verwendet Standardargumente und unterstützt benannte Argumente.

Beispiele

SELECT ST_AsSVG(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

                st_assvg
                --------
                M 0 0 L 0 -1 1 -1 1 0 Z

Name

ST_AsTWKB — Gibt die Geometrie als TWKB, aka "Tiny Well-known Binary" zurück

Synopsis

bytea ST_AsTWKB(geometry g1, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer decimaldigits_m=0, boolean include_sizes=false, boolean include_bounding boxes=false);

bytea ST_AsTWKB(geometry[] geometries, bigint[] unique_ids, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer decimaldigits_m=0, boolean include_sizes=false, boolean include_bounding_boxes=false);

Beschreibung

Gibt die Geometrie im TWKB ("Tiny Well-Known Binary") Format aus. TWKB ist ein komprimiertes binäres Format mit dem Schwerpunkt, die Ausgabegröße zu minimieren.

Der Parameter 'decimaldigits' bestimmt die Anzahl der Dezimalstellen bei der Ausgabe. Standardmäßig werden die Werte vor der Zeichenkodierung auf die Einserstelle gerundet. Wenn Sie die Daten mit höherer Genauigkeit übergeben wollen, erhöhen Sie bitte die Anzahl der Dezimalstellen. Zum Beispiel bedeutet ein Wert von 1, dass die erste Dezimalstelle erhalten bleibt.

Die Parameter "sizes" und "bounding_boxes" bestimmen ob zusätzliche Information über die kodierte Länge und die Abgrenzung des Objektes in der Ausgabe eingebunden werden. Standardmäßig passiert dies nicht. Drehen Sie diese bitte nicht auf, solange dies nicht von Ihrer Client-Software benötigt wird, da dies nur unnötig Speicherplatz verbraucht (Einsparen von Speicherplatz ist der Sinn von TWKB).

Das Feld-Eingabeformat dieser Funktion wird verwendet um eine Sammelgeometriee und eindeutige Identifikatoren in eine TWKB-Collection zu konvertieren, welche die Identifikatoren erhält. Dies ist nützlich für Clients, die davon ausgehen, eine Sammelgeometrie auszupacken, um so auf zusätzliche Information über die internen Objekte zuzugreifen. Sie können das Feld mit der Funktion array_agg erstellen. Die anderen Parameter bewirken dasselbe wie bei dem einfachen Format dieser Funktion.

[Note]

Die Formatspezifikation steht Online unter https://github.com/TWKB/Specification zur Verfügung, und Code zum Aufbau eines JavaScript Clints findet sich unter https://github.com/TWKB/twkb.js.

Enhanced: 2.4.0 memory and speed improvements.

Verfügbarkeit: 2.2.0

Beispiele

SELECT ST_AsTWKB('LINESTRING(1 1,5 5)'::geometry);
                 st_astwkb
--------------------------------------------
\x02000202020808

Um ein aggregiertes TWKB-Objekt inklusive Identifikatoren zu erzeugen, fassen Sie bitte die gewünschte Geometrie und Objekte zuerst mittels "array_agg()" zusammen und rufen anschließend die passende TWKB Funktion auf.

SELECT ST_AsTWKB(array_agg(geom), array_agg(gid)) FROM mytable;
                 st_astwkb
--------------------------------------------
\x040402020400000202

Siehe auch

???, ST_AsEWKB, ST_AsEWKT, ???


Name

ST_AsX3D — Gibt eine Geometrie im X3D XML Knotenelement-Format zurück: ISO-IEC-19776-1.2-X3DEncodings-XML

Synopsis

text ST_AsX3D(geometry g1, integer maxdecimaldigits=15, integer options=0);

Beschreibung

Gibt eine Geometrie als X3D knotenformatiertes XML Element zurück http://www.web3d.org/standards/number/19776-1. Falls maxdecimaldigits (Genauigkeit) nicht angegeben ist, wird sie standardmäßig 15.

[Note]

Es gibt verschiedene Möglichkeiten eine PostGIS Geometrie in X3D zu übersetzen, da sich der X3D Geometrietyp nicht direkt in den geometrischen Datentyp von PostGIS abbilden lässt. Einige neuere X3D Datentypen, die sich besser abbilden lassen könnten haben wir vermieden, da diese von den meisten Rendering-Tools zurzeit nicht untestützt werden. Dies sind die Abbildungen für die wir uns entschieden haben. Falls Sie Ideen haben, wie wir es den Anwendern ermöglichen können ihre bevorzugten Abbildungen anzugeben, können Sie gerne ein Bug-Ticket senden.

Im Folgenden wird beschrieben, wie der PostGIS 2D/3D Datentyp derzeit in den X3D Datentyp abgebildet wird

Das Argument 'options' ist ein Bitfeld. Ab PostGIS 2.2+ wird dieses verwendet, um anzuzeigen ob die Koordinaten als X3D geospatiale Knoten in GeoKoordinaten dargestellt werden und auch ob X- und Y-Achse vertauscht werden sollen. Standardmäßig erfolgt die Ausgabe durch ST_AsX3D im Datenbankformat (Länge, Breite oder X,Y), aber es kann auch der X3D Standard mit Breite/Länge oder Y/X bevorzugt werden.

  • 0: X/Y in der Datenbankreihenfolge (z.B. ist Länge/Breite = X,Y die standardmäßige Datenbankreihenfolge), Standardwert, und nicht-spatiale Koordinaten (nur der normale alte Koordinaten-Tag).

  • 1: X und Y umdrehen. In Verbindung mit der Option für GeoKoordinaten wird bei der Standardausgabe die Breite zuerst/"latitude_first" ausgegeben und die Koordinaten umgedreht.

  • 2: Die Koordinaten werden als geospatiale GeoKoordinaten ausgegeben. Diese Option gibt eine Fehlermeldung aus, falls die Geometrie nicht in WGS 84 Länge/Breite (SRID: 4326) vorliegt. Dies ist zurzeit der einzige GeoKoordinaten-Typ der unterstützt wird.Siehe die X3D Spezifikation für Koordinatenreferenzsysteme. Die Standardausgabe ist GeoCoordinate geoSystem='"GD" "WE" "longitude_first"'. Wenn Sie den X3D Standard bevorzugen GeoCoordinate geoSystem='"GD" "WE" "latitude_first"' verwenden Sie bitte (2+1) = 3

PostGIS Datentyp2D X3D Datentyp3D X3D Datentyp
LINESTRINGzurzeit nicht implementiert - wird PolyLine2DLineSet
MULTILINESTRINGzurzeit nicht implementiert - wird PolyLine2DIndexedLineSet
MULTIPOINTPolypoint2DPointSet
POINTgibt leerzeichengetrennte Koordinaten ausgibt leerzeichengetrennte Koordinaten aus
(MULTI) POLYGON, POLYHEDRALSURFACEUngültiges X3D MarkupIndexedFaceSet (die inneren Ringe werden zurzeit als ein weiteres FaceSet abgebildet)
TINTriangleSet2D (zurzeit nicht implementiert)IndexedTriangleSet
[Note]

Die Unterstützung von 2D-Geometrie ist noch nicht vollständig. Die inneren Ringe werden zur Zeit lediglich als gesonderte Polygone abgebildet. Wir arbeiten daran.

Bezüglich 3D sind viele Weiterentwicklungen im Gange, insbesondere in Bezug auf X3D Integration mit HTML5

Es gibt auch einen feinen OpenSource X3D Viewer, den Sie benützen können, um Geometrien darzustellen. Free Wrl http://freewrl.sourceforge.net/ Binärdateien sind für Mac, Linux und Windows verfügbar. Sie können den mitgelieferten FreeWRL_Launcher verwenden, um Gemetrien darzustellen.

Riskieren Sie auch einen Blick auf PostGIS minimalist X3D viewer, der diese Funktionalität einsetzt und auf x3dDom HTML/JS OpenSource Toolkit.

Verfügbarkeit: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML

Erweiterung: 2.2.0: Unterstützung für geographische Koordinaten und Vertauschen der Achsen (x/y, Länge/Breite). Für nähere Details siehe Optionen.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiel: Erzeugung eines voll funktionsfähigen X3D Dokuments - Dieses erzeugt einen Würfel, den man sich mit FreeWrl und anderen X3D-Viewern ansehen kann.

SELECT '<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d-3.0.dtd">
<X3D>
  <Scene>
    <Transform>
      <Shape>
       <Appearance>
            <Material emissiveColor=''0 0 1''/>
       </Appearance
> ' ||
       ST_AsX3D( ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')) ||
      '</Shape>
    </Transform>
  </Scene>
</X3D
>' As x3ddoc;

                x3ddoc
                --------
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d-3.0.dtd">
<X3D>
  <Scene>
    <Transform>
      <Shape>
       <Appearance>
            <Material emissiveColor='0 0 1'/>
       </Appearance>
       <IndexedFaceSet  coordIndex='0 1 2 3 -1 4 5 6 7 -1 8 9 10 11 -1 12 13 14 15 -1 16 17 18 19 -1 20 21 22 23'>
            <Coordinate point='0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1' />
      </IndexedFaceSet>
      </Shape>
    </Transform>
  </Scene>
</X3D
>

Beispiel: Ein Achteck, um 3 Einheiten gehoben und mit einer dezimalen Genauigkeit von 6

SELECT ST_AsX3D(
ST_Translate(
    ST_Force_3d(
        ST_Buffer(ST_Point(10,10),5, 'quad_segs=2')), 0,0,
    3)
  ,6) As x3dfrag;

x3dfrag
--------
<IndexedFaceSet coordIndex="0 1 2 3 4 5 6 7">
    <Coordinate point="15 10 3 13.535534 6.464466 3 10 5 3 6.464466 6.464466 3 5 10 3 6.464466 13.535534 3 10 15 3 13.535534 13.535534 3 " />
</IndexedFaceSet
>

Beispiel: TIN

SELECT ST_AsX3D(ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')) As x3dfrag;

                x3dfrag
                --------
<IndexedTriangleSet  index='0 1 2 3 4 5'
><Coordinate point='0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0'/></IndexedTriangleSet
>

Beispiel: Geschlossener MultiLinestring (die Begrenzung eines Polygons mit Lücken)

SELECT ST_AsX3D(
                    ST_GeomFromEWKT('MULTILINESTRING((20 0 10,16 -12 10,0 -16 10,-12 -12 10,-20 0 10,-12 16 10,0 24 10,16 16 10,20 0 10),
  (12 0 10,8 8 10,0 12 10,-8 8 10,-8 0 10,-8 -4 10,0 -8 10,8 -4 10,12 0 10))')
) As x3dfrag;

                x3dfrag
                --------
<IndexedLineSet  coordIndex='0 1 2 3 4 5 6 7 0 -1 8 9 10 11 12 13 14 15 8'>
    <Coordinate point='20 0 10 16 -12 10 0 -16 10 -12 -12 10 -20 0 10 -12 16 10 0 24 10 16 16 10 12 0 10 8 8 10 0 12 10 -8 8 10 -8 0 10 -8 -4 10 0 -8 10 8 -4 10 ' />
 </IndexedLineSet
>

Name

ST_GeoHash — Gibt die Geometrie in der GeoHash Darstellung aus.

Synopsis

text ST_GeoHash(geometry geom, integer maxchars=full_precision_of_point);

Beschreibung

Gibt die Geometrie in der GeoHash-Darstellung (http://en.wikipedia.org/wiki/Geohash) aus. Ein GeoHash codiert einen Punkt in einem Textformat, das über Präfixe sortierbar und durchsuchbar ist. Ein kürzer codierter GeoHash ergibt eine ungenauere Darstellung des Punktes. Man kann sich einen GeoHash auch als eine Box vorstellen, welche den tatsächlichen Punkt enthält.

Wenn maxchars nicht angegeben wird, gibt ST_GeoHash einen GeoHash mit der vollen Genauigkeit der Eingabegeometrie zurück. Punkte ergeben so einen GeoHash mit einer Genauigkeit von 20 Zeichen (dies sollte ausreichen um die Eingabe in Double Precision zur Gänze abzuspeichern). Andere Varianten geben einen Geohash, basierend auf der Größe des Geoobjektes, mit veränderlicher Genauigkeit zurück, Größere Geoobjekte werden mit geringerer, kleinere Geoobjekte mit höherer Genauigkeit dargestellt. Die Idee dahinter ist, dass die durch den GeoHash implizierte Box immer das gegebene Geoobjekt beinhaltet.

Wenn maxchars angegeben wird, gibt ST_GeoHash einen GeoHash zurück, der maximal die Anzahl dieser Zeichen aufweist. Auf diese Weise ist es möglich die Eingabegeometrie mit einer geringeren Präzision darzustellen. Bei Nicht-Punkten befindet sich der Anfangspunkt der Berechnung im Mittelpunkt des Umgebungsrechtecks der Geometrie.

Verfügbarkeit: 1.4.0

[Note]

ST_GeoHash funktioniert nicht, wenn die Geometrien nicht in geographischen (Länge/Breite) Koordinaten vorliegen.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_GeoHash(ST_SetSRID(ST_Point(-126,48),4326));

         st_geohash
----------------------
 c0w3hf1s70w3hf1s70w3

SELECT ST_GeoHash(ST_SetSRID(ST_Point(-126,48),4326),5);

 st_geohash
------------
 c0w3h
                
                

Siehe auch

???

8.8. Operatoren

8.8.1. Bounding Box Operators

&& — Gibt TRUE zurück, wenn die 2D Bounding Box von A die 2D Bounding Box von B schneidet.
&&(geometry,box2df) — Gibt TRUE zurück, wenn sich die 2D Bounding Box (cached) einer Geometrie mit einer 2D Bounding Box mit Gleitpunktgenauigkeit (BOX2DF) überschneidet.
&&(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine Geometrie (cached) 2D bounding box schneidet.
&&(box2df,box2df) — Gibt TRUE zurück, wenn sich zwei 2D float precision Bounding Boxes (BOX2DF) überschneiden.
&&& — Gibt TRUE zurück, wenn A's n-D bounding box B's n-D bounding box schneidet.
&&&(geometry,gidx) — Gibt TRUE zurück, wenn die (cached) n-D bounding box einer Geometrie eine n-D float precision bounding box (GIDX) schneidet.
&&&(gidx,geometry) — Gibt TRUE zurück, wenn eine n-D float precision bounding box (GIDX) eine (cached) n-D bounding box einer Geometrie schneidet.
&&&(gidx,gidx) — Gibt TRUE zurück, wenn sich zwei n-D float precision bounding boxes (GIDX) gegenseitig überschneiden.
&< — Gibt TRUE zurück, wenn die bounding box der Geometrie A, die bounding box der Geometrie B überlagert oder links davon liegt.
&<| — Gibt TRUE zurück, wenn die bounding box von A jene von B überlagert oder unterhalb liegt.
&> — Gibt TRUE zurück, wenn die Bounding Box von A jene von B überlagert oder rechts davon liegt.
<< — Gibt TRUE zurück, wenn die Bounding Box von A zur Gänze links von der von B liegt.
<<| — Gibt TRUE zurück, wenn A's Bounding Box zur Gänze unterhalb von der von B liegt.
= — Gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind.
>> — Gibt TRUE zurück, wenn A's bounding box zur Gänze rechts von der von B liegt.
@ — Gibt TRUE zurück, wenn die Bounding Box von A in jener von B enthalten ist.
@(geometry,box2df) — Gibt TRUE zurück, wenn die 2D Bounding Box einer Geometrie in einer 2D float precision Bbounding Box (BOX2DF) enthalten ist.
@(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) in der 2D Bounding Box einer Geometrie enthalten ist..
@(box2df,box2df) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) innerhalb einer anderen 2D float precision bounding box enthalten ist.
|&> — Gibt TRUE zurück, wenn A's bounding box diejenige von B überlagert oder oberhalb von B liegt.
|>> — Gibt TRUE zurück, wenn A's bounding box is zur Gänze oberhalb der von B liegt.
~ — Gibt TRUE zurück, wenn A's bounding box die von B enthält.
~(geometry,box2df) — Gibt TRUE zurück, wenn die 2D bounding box einer Geometrie eine 2D float precision bounding box (GIDX) enthält.
~(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) die 2D Bounding Box einer Geometrie enthält.
~(box2df,box2df) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine andere 2D float precision bounding box (BOX2DF) enthält.
~= — Gibt TRUE zurück, wenn die bounding box von A ident mit jener von B ist.

Name

&& — Gibt TRUE zurück, wenn die 2D Bounding Box von A die 2D Bounding Box von B schneidet.

Synopsis

boolean &&( geometry A , geometry B );

boolean &&( geography A , geography B );

Beschreibung

Der && Operator gibt TRUE zurück, wenn die 2D Bounding Box von Geometrie A die 2D Bounding Box der Geometrie von B schneidet.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Verfügbarkeit: Mit 1.5.0 wurde die Unterstützung von geograpischen Koordinaten eingeführt

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 && tbl2.column2 AS overlaps
FROM ( VALUES
        (1, 'LINESTRING(0 0, 3 3)'::geometry),
        (2, 'LINESTRING(0 1, 0 5)'::geometry)) AS tbl1,
( VALUES
        (3, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overlaps
---------+---------+----------
           1 |       3 | t
           2 |       3 | f
(2 rows)

Siehe auch

???, &>, &<|, &<, ~, @


Name

&&(geometry,box2df) — Gibt TRUE zurück, wenn sich die 2D Bounding Box (cached) einer Geometrie mit einer 2D Bounding Box mit Gleitpunktgenauigkeit (BOX2DF) überschneidet.

Synopsis

boolean &&( geometry A , box2df B );

Beschreibung

Der && Operator gibt TRUE zurück, wenn die im Cache befindliche 2D Bounding Box der Geometrie A sich mit der 2D Bounding Box von B, unter Verwendung von Gleitpunktgenauigkeit überschneidet. D.h.: falls B eine (double precision) box2d ist, wird diese intern in eine auf Gleitpunkt genaue 2D Bounding Box (BOX2DF) umgewandelt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_Point(1,1) && ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine Geometrie (cached) 2D bounding box schneidet.

Synopsis

boolean &&( box2df A , geometry B );

Beschreibung

Der && Operator gibt TRUE zurück, wenn die 2D Bounding Box A die zwischengespeicherte 2D Bounding Box der Geometrie B, unter Benutzung von Fließpunktgenauigkeit, schneidet. D.h.: wenn A eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) && ST_Point(1,1) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&(box2df,box2df) — Gibt TRUE zurück, wenn sich zwei 2D float precision Bounding Boxes (BOX2DF) überschneiden.

Synopsis

boolean &&( box2df A , box2df B );

Beschreibung

Der && Operator gibt TRUE zurück, wenn sich zwei 2D Bounding Boxes A und B, unter Benutzung von float precision, gegenseitig überschneiden. D.h.: Wenn A (oder B) eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt

[Note]

Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) && ST_MakeBox2D(ST_Point(1,1), ST_Point(3,3)) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&& — Gibt TRUE zurück, wenn A's n-D bounding box B's n-D bounding box schneidet.

Synopsis

boolean &&&( geometry A , geometry B );

Beschreibung

Der &&& Operator gibt TRUE zurück, wenn die n-D bounding box der Geometrie A die n-D bounding box der Geometrie B schneidet.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Verfügbarkeit: 2.0.0

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele: 3D LineStrings

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3d,
                                    tbl1.column2 && tbl2.column2 AS overlaps_2d
FROM ( VALUES
        (1, 'LINESTRING Z(0 0 1, 3 3 2)'::geometry),
        (2, 'LINESTRING Z(1 2 0, 0 5 -1)'::geometry)) AS tbl1,
( VALUES
        (3, 'LINESTRING Z(1 2 1, 4 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overlaps_3d | overlaps_2d
---------+---------+-------------+-------------
       1 |       3 | t           | t
       2 |       3 | f           | t

Beispele: 3M LineStrings

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3zm,
                                    tbl1.column2 && tbl2.column2 AS overlaps_2d
FROM ( VALUES
        (1, 'LINESTRING M(0 0 1, 3 3 2)'::geometry),
        (2, 'LINESTRING M(1 2 0, 0 5 -1)'::geometry)) AS tbl1,
( VALUES
        (3, 'LINESTRING M(1 2 1, 4 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overlaps_3zm | overlaps_2d
---------+---------+-------------+-------------
       1 |       3 | t           | t
       2 |       3 | f           | t

Siehe auch

&&


Name

&&&(geometry,gidx) — Gibt TRUE zurück, wenn die (cached) n-D bounding box einer Geometrie eine n-D float precision bounding box (GIDX) schneidet.

Synopsis

boolean &&&( geometry A , gidx B );

Beschreibung

Der &&& Operator gibt TRUE zurück, wenn die zwischengespeicherte n-D bounding box der Geometrie A die n-D bounding box B, unter Benutzung von float precision, schneidet. D.h.: Wenn B eine (double precision) box3d ist, wird diese intern in eine float precision 3D bounding box (GIDX) umgewandelt

[Note]

Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_MakePoint(1,1,1) &&& ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&&(gidx,geometry) — Gibt TRUE zurück, wenn eine n-D float precision bounding box (GIDX) eine (cached) n-D bounding box einer Geometrie schneidet.

Synopsis

boolean &&&( gidx A , geometry B );

Beschreibung

Der &&& Operator gibt TRUE zurück, wenn die n-D bounding box A die cached n-D bounding box der Geometrie B, unter Benutzung von float precision, schneidet. D.h.: wenn A eine (double precision) box3d ist, wir diese intern in eine float precision 3D bounding box (GIDX) umgewandelt

[Note]

Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_MakePoint(1,1,1) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&&(gidx,gidx) — Gibt TRUE zurück, wenn sich zwei n-D float precision bounding boxes (GIDX) gegenseitig überschneiden.

Synopsis

boolean &&&( gidx A , gidx B );

Beschreibung

Der &&& Operator gibt TRUE zurück, wenn sich zwei n-D bounding boxes A und B, unter Benutzung von float precision, gegenseitig überschneiden. D.h.: wenn A (oder B) eine (double precision) box3d ist, wird diese intern in eine float precision 3D bounding box (GIDX) umgewandelt

[Note]

Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_3DMakeBox(ST_MakePoint(1,1,1), ST_MakePoint(3,3,3)) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&< — Gibt TRUE zurück, wenn die bounding box der Geometrie A, die bounding box der Geometrie B überlagert oder links davon liegt.

Synopsis

boolean &<( geometry A , geometry B );

Beschreibung

Der &< Operator gibt TRUE zurück, wenn die bounding box der Geometrie A die bounding box der Geometrie B überlagert oder links davon liegt, oder präziser, überlagert und NICHT rechts von der bounding box der Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &< tbl2.column2 AS overleft
FROM
  ( VALUES
        (1, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING(0 0, 3 3)'::geometry),
        (3, 'LINESTRING(0 1, 0 5)'::geometry),
        (4, 'LINESTRING(6 0, 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overleft
---------+---------+----------
           1 |       2 | f
           1 |       3 | f
           1 |       4 | t
(3 rows)

Siehe auch

&&, |&>, &>, &<|


Name

&<| — Gibt TRUE zurück, wenn die bounding box von A jene von B überlagert oder unterhalb liegt.

Synopsis

boolean &<|( geometry A , geometry B );

Beschreibung

Der &<| Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A die Bounding Box der Geometrie B überlagert oder unterhalb liegt, oder präziser, überlagert oder NICHT oberhalb der Bounding der Geometrie B liegt.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &<| tbl2.column2 AS overbelow
FROM
  ( VALUES
        (1, 'LINESTRING(6 0, 6 4)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING(0 0, 3 3)'::geometry),
        (3, 'LINESTRING(0 1, 0 5)'::geometry),
        (4, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overbelow
---------+---------+-----------
           1 |       2 | f
           1 |       3 | t
           1 |       4 | t
(3 rows)

Siehe auch

&&, |&>, &>, &<


Name

&> — Gibt TRUE zurück, wenn die Bounding Box von A jene von B überlagert oder rechts davon liegt.

Synopsis

boolean &>( geometry A , geometry B );

Beschreibung

Der &> Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A die Bounding Box der Geometrie B überlagert oder rechts von ihr liegt, oder präziser, überlagert und NICHT links von der Bounding Box der Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &> tbl2.column2 AS overright
FROM
  ( VALUES
        (1, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING(0 0, 3 3)'::geometry),
        (3, 'LINESTRING(0 1, 0 5)'::geometry),
        (4, 'LINESTRING(6 0, 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overright
---------+---------+-----------
           1 |       2 | t
           1 |       3 | t
           1 |       4 | f
(3 rows)

Siehe auch

&&, |&>, &<|, &<


Name

<< — Gibt TRUE zurück, wenn die Bounding Box von A zur Gänze links von der von B liegt.

Synopsis

boolean <<( geometry A , geometry B );

Beschreibung

Der << Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A zur Gänze links der Bounding Box der Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 << tbl2.column2 AS left
FROM
  ( VALUES
        (1, 'LINESTRING (1 2, 1 5)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (0 0, 4 3)'::geometry),
        (3, 'LINESTRING (6 0, 6 5)'::geometry),
        (4, 'LINESTRING (2 2, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | left
---------+---------+------
           1 |       2 | f
           1 |       3 | t
           1 |       4 | t
(3 rows)

Siehe auch

>>, |>>, <<|


Name

<<| — Gibt TRUE zurück, wenn A's Bounding Box zur Gänze unterhalb von der von B liegt.

Synopsis

boolean <<|( geometry A , geometry B );

Beschreibung

Der <<| Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A zur Gänze unterhalb der Bounding Box von Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 <<| tbl2.column2 AS below
FROM
  ( VALUES
        (1, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (1 4, 1 7)'::geometry),
        (3, 'LINESTRING (6 1, 6 5)'::geometry),
        (4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | below
---------+---------+-------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | f
(3 rows)

Siehe auch

<<, >>, |>>


Name

= — Gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind.

Synopsis

boolean =( geometry A , geometry B );

boolean =( geography A , geography B );

Beschreibung

Der Operator = gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind. PostgreSQL verwendet die =, <, und > Operatoren um die interne Sortierung und den Vergleich von Geometrien durchzuführen (z.B.: in einer GROUP BY oder ORDER BY Klausel). 

[Note]

Nur die Geometrie/Geographie die in allen Gesichtspunkten übereinstimmt, d.h. mit den selben Koordinaten in der gleichen Reihenfolge, werden von diesem Operator als gleich betrachtet. Für "räumliche Gleichheit", bei der Dinge wie die Reihenfolge der Koordinaten außer Acht gelassen werden, und die es ermöglicht Geoobjekte zu erfassen, die denselben räumlichen Bereich mit unterschiedlicher Darstellung abdecken, verwenden Sie bitte ??? oder ???

[Caution]

Dieser Operator verwendet NICHT die Indizes, welche für die Geometrien vorhanden sind. Um eine Überprüfung auf exakte Gleichheit indexgestützt durchzuführen, kombinieren Sie bitte = mit &&.

Änderung: 2.4.0, in Vorgängerversionen war dies die Gleichheit der umschreibenden Rechtecke, nicht die geometrische Gleichheit. Falls Sie auf Gleichheit der umschreibenden Rechtecke prüfen wollen, verwenden Sie stattdesse bitte ~=.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT 'LINESTRING(0 0, 0 1, 1 0)'::geometry = 'LINESTRING(1 1, 0 0)'::geometry;
 ?column?
----------
 f
(1 row)

SELECT ST_AsText(column1)
FROM ( VALUES
        ('LINESTRING(0 0, 1 1)'::geometry),
        ('LINESTRING(1 1, 0 0)'::geometry)) AS foo;
          st_astext
---------------------
 LINESTRING(0 0,1 1)
 LINESTRING(1 1,0 0)
(2 rows)

-- Anmerkung: die Klausel GROUP BY berwendet "=" um auf geometrische Gleichwertigkeit zu prüfen.
SELECT ST_AsText(column1)
FROM ( VALUES
        ('LINESTRING(0 0, 1 1)'::geometry),
        ('LINESTRING(1 1, 0 0)'::geometry)) AS foo
GROUP BY column1;
      st_astext
---------------------
 LINESTRING(0 0,1 1)
 LINESTRING(1 1,0 0)
(2 rows)

-- In Vorgängerversionen von 2.0 wurde hier üblicherweise TRUE zurückgegeben --
 SELECT ST_GeomFromText('POINT(1707296.37 4820536.77)') =
        ST_GeomFromText('POINT(1707296.27 4820536.87)') As pt_intersect;

--pt_intersect --
f

Siehe auch

???, ???, ~=


Name

>> — Gibt TRUE zurück, wenn A's bounding box zur Gänze rechts von der von B liegt.

Synopsis

boolean >>( geometry A , geometry B );

Beschreibung

Der >> Operator gibt TRUE zurück, wenn die Bounding Box von Geometrie A zur Gänze rechts der Bounding Box von Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 >> tbl2.column2 AS right
FROM
  ( VALUES
        (1, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (1 4, 1 7)'::geometry),
        (3, 'LINESTRING (6 1, 6 5)'::geometry),
        (4, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl2;

 column1 | column1 | right
---------+---------+-------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | f
(3 rows)

Siehe auch

<<, |>>, <<|


Name

@ — Gibt TRUE zurück, wenn die Bounding Box von A in jener von B enthalten ist.

Synopsis

boolean @( geometry A , geometry B );

Beschreibung

Der @ Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A vollstänig in der Bounding Box der Geometrie B enthalten ist.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 @ tbl2.column2 AS contained
FROM
  ( VALUES
        (1, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (0 0, 4 4)'::geometry),
        (3, 'LINESTRING (2 2, 4 4)'::geometry),
        (4, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl2;

 column1 | column1 | contained
---------+---------+-----------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | t
(3 rows)

Siehe auch

~, &&


Name

@(geometry,box2df) — Gibt TRUE zurück, wenn die 2D Bounding Box einer Geometrie in einer 2D float precision Bbounding Box (BOX2DF) enthalten ist.

Synopsis

boolean @( geometry A , box2df B );

Beschreibung

Der @ Operator gibt TRUE zurück, wenn die 2D Bounding Box der Geometrie A in der 2D Bounding Box der Geometrie B , unter Benutzung von float precision, enthalten ist. D.h.: wenn B eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) übersetzt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_Buffer(ST_GeomFromText('POINT(2 2)'), 1) @ ST_MakeBox2D(ST_Point(0,0), ST_Point(5,5)) AS is_contained;

 is_contained
--------------
 t
(1 row)

Name

@(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) in der 2D Bounding Box einer Geometrie enthalten ist..

Synopsis

boolean @( box2df A , geometry B );

Beschreibung

Der @ Operator gibt TRUE zurück, wenn die 2D bounding box A in der 2D bounding box der Geometrie B, unter Verwendung von float precision, enthalten ist. D.h.: wenn B eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_Point(2,2), ST_Point(3,3)) @ ST_Buffer(ST_GeomFromText('POINT(1 1)'), 10) AS is_contained;

 is_contained
--------------
 t
(1 row)

Name

@(box2df,box2df) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) innerhalb einer anderen 2D float precision bounding box enthalten ist.

Synopsis

boolean @( box2df A , box2df B );

Beschreibung

Der @ Operator gibt TRUE zurück, wenn die 2D bounding box A innerhalb der 2D bounding box B, unter Verwendung von float precision, enthalten ist. D.h.: wenn A (oder B) eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_Point(2,2), ST_Point(3,3)) @ ST_MakeBox2D(ST_Point(0,0), ST_Point(5,5)) AS is_contained;

 is_contained
--------------
 t
(1 row)

Name

|&> — Gibt TRUE zurück, wenn A's bounding box diejenige von B überlagert oder oberhalb von B liegt.

Synopsis

boolean |&>( geometry A , geometry B );

Beschreibung

Der |&> Operator gibt TRUE zurück, wenn die bounding box der Geometrie A die bounding box der Geometrie B überlagert oder oberhalb liegt, oder präziser, überlagert oder NICHT unterhalb der Bounding Box der Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 |&> tbl2.column2 AS overabove
FROM
  ( VALUES
        (1, 'LINESTRING(6 0, 6 4)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING(0 0, 3 3)'::geometry),
        (3, 'LINESTRING(0 1, 0 5)'::geometry),
        (4, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overabove
---------+---------+-----------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | f
(3 rows)

Siehe auch

&&, &>, &<|, &<


Name

|>> — Gibt TRUE zurück, wenn A's bounding box is zur Gänze oberhalb der von B liegt.

Synopsis

boolean |>>( geometry A , geometry B );

Beschreibung

Der Operator |>> gibt TRUE zurück, wenn die Bounding Box der Geometrie A zur Gänze oberhalb der Bounding Box von Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 |>> tbl2.column2 AS above
FROM
  ( VALUES
        (1, 'LINESTRING (1 4, 1 7)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (0 0, 4 2)'::geometry),
        (3, 'LINESTRING (6 1, 6 5)'::geometry),
        (4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | above
---------+---------+-------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | f
(3 rows)

Siehe auch

<<, >>, <<|


Name

~ — Gibt TRUE zurück, wenn A's bounding box die von B enthält.

Synopsis

boolean ~( geometry A , geometry B );

Beschreibung

Der ~ Operator gibt TRUE zurück, wenn die bounding box der Geometrie A zur Gänze die bounding box der Geometrie B enthält.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 ~ tbl2.column2 AS contains
FROM
  ( VALUES
        (1, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (0 0, 4 4)'::geometry),
        (3, 'LINESTRING (1 1, 2 2)'::geometry),
        (4, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl2;

 column1 | column1 | contains
---------+---------+----------
           1 |       2 | f
           1 |       3 | t
           1 |       4 | t
(3 rows)

Siehe auch

@, &&


Name

~(geometry,box2df) — Gibt TRUE zurück, wenn die 2D bounding box einer Geometrie eine 2D float precision bounding box (GIDX) enthält.

Synopsis

boolean ~( geometry A , box2df B );

Beschreibung

Der ~ Operator gibt TRUE zurück, wenn die 2D bounding box einer Geometrie A die 2D bounding box B, unter Verwendung von float precision, enthält. D.h.: wenn B eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) übersetzt

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_Buffer(ST_GeomFromText('POINT(1 1)'), 10) ~ ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) AS contains;

 contains
----------
 t
(1 row)

Name

~(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) die 2D Bounding Box einer Geometrie enthält.

Synopsis

boolean ~( box2df A , geometry B );

Beschreibung

Der ~ Operator gibt TRUE zurück, wenn die 2D bounding box A die Bounding Box der Geometrie B, unter Verwendung von float precision, enthält. D.h.: wenn A eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_Point(0,0), ST_Point(5,5)) ~ ST_Buffer(ST_GeomFromText('POINT(2 2)'), 1) AS contains;

 contains
----------
 t
(1 row)

Name

~(box2df,box2df) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine andere 2D float precision bounding box (BOX2DF) enthält.

Synopsis

boolean ~( box2df A , box2df B );

Beschreibung

Der ~ Operator gibt TRUE zurück, wenn die 2D bounding box A die 2D bounding box B, unter Verwendung von float precision, enthält. D.h.: wenn A eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_Point(0,0), ST_Point(5,5)) ~ ST_MakeBox2D(ST_Point(2,2), ST_Point(3,3)) AS contains;

 contains
----------
 t
(1 row)

Name

~= — Gibt TRUE zurück, wenn die bounding box von A ident mit jener von B ist.

Synopsis

boolean ~=( geometry A , geometry B );

Beschreibung

Der ~= Operator gibt TRUE zurück, wenn die bounding box der Geometrie/Geographie A ident mit der bounding box der Geometrie/Geographie B ist.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Verfügbarkeit: 1.5.0 "Verhaltensänderung"

This function supports Polyhedral surfaces.

[Warning]

Dieser Operator verhält sich ab PostGIS 1.5 insofern anders, als er vom Prüfen der Übereinstimmung der tatsächlichen Geometrie auf eine ledigliche Überprüfung der Gleichheit der Bounding Boxes abgeändert wurde. Um die Sache noch weiter zu komplizieren, hängt dieses Verhalten der Datenbank davon ab, ob ein hard oder soft upgrade durchgeführt wurde. Um herauszufinden, wie sich die Datenbank in dieser Beziehung verhält, führen Sie bitte die untere Abfrage aus. Um auf exakte Gleichheit zu prüfen benutzen Sie bitte ??? oder ???.

Beispiele

select 'LINESTRING(0 0, 1 1)'::geometry ~= 'LINESTRING(0 1, 1 0)'::geometry as equality;
 equality   |
-----------------+
          t    |
                        

Siehe auch

???, ???, =

8.8.2. Operatoren

<-> — Gibt die 2D Entfernung zwischen A und B zurück.
|=| — Gibt die Entfernung zwischen den Trajektorien A und B, am Ort der dichtesten Annäherung, an.
<#> — Gibt die 2D Entfernung zwischen den Bounding Boxes von A und B zurück
<<->> — Gibt die n-D Entfernung zwischen den geometrischen Schwerpunkten der Begrenzungsrechtecke/Bounding Boxes von A und B zurück.
<<#>> — Gibt die n-D Entfernung zwischen den Bounding Boxes von A und B zurück.

Name

<-> — Gibt die 2D Entfernung zwischen A und B zurück.

Synopsis

double precision <->( geometry A , geometry B );

double precision <->( geography A , geography B );

Beschreibung

Der <-> Operator gibt die 2D Entfernung zwischen zwei Geometrien zurück. Wird er in einer "ORDER BY" Klausel verwendet, so liefert er Index-unterstützte nearest-neighbor Ergebnismengen. PostgreSQL Versionen unter 9.5 geben jedoch lediglich die Entfernung der Centroide der bounding boxes zurück, während PostgreSQL 9.5+ mittels KNN-Methode die tatsächliche Entfernung zwischen den Geometrien, bei geographischen Koordinaten die Entfernung auf der Späre, widergibt.

[Note]

Dieser Operand verwendet 2D GiST Indizes, falls diese für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, die räumliche Indizes verwenden, indem der räumliche Index nur dann verwendet wird, wenn sich der Operator in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist (sich nicht in einer Subquery/CTE befindet). Z.B. 'SRID=3005;POINT(1011102 450541)'::geometry und nicht a.geom

Siehe OpenGeo workshop: Nearest-Neighbour Searching für ein praxisbezogenes Anwendungsbeispiel.

Verbesserung: 2.2.0 -- Echtes KNN ("K nearest neighbor") Verhalten für Geometrie und Geographie ab PostgreSQL 9.5+. Beachten Sie bitte, das KNN für Geographie auf der Späre und nicht auf dem Sphäroid beruht. Für PostgreSQL 9.4 und darunter, wird die Berechnung nur auf Basis des Centroids der Box unterstützt.

Änderung: 2.2.0 -- Da für Anwender von PostgreSQL 9.5 der alte hybride Syntax langsamer sein kann, möchten sie diesen Hack eventuell loswerden, falls der Code nur auf PostGIS 2.2+ 9.5+ läuft. Siehe die unteren Beispiele.

Verfügbarkeit: 2.0.0 -- Weak KNN liefert nearest neighbors, welche sich auf die Entfernung der Centroide der Geometrien, anstatt auf den tatsächlichen Entfernungen, stützen. Genaue Ergebnisse für Punkte, ungenau für alle anderen Geometrietypen. Verfügbar ab PostgreSQL 9.1+.

Beispiele

SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY d limit 10;

        d         | edabbr | vaabbr
------------------+--------+--------
                0 | ALQ    | 128
 5541.57712511724 | ALQ    | 129A
 5579.67450712005 | ALQ    | 001
  6083.4207708641 | ALQ    | 131
  7691.2205404848 | ALQ    | 003
 7900.75451037313 | ALQ    | 122
 8694.20710669982 | ALQ    | 129B
 9564.24289057111 | ALQ    | 130
  12089.665931705 | ALQ    | 127
 18472.5531479404 | ALQ    | 002
(10 rows)

Then the KNN raw answer:

SELECT st_distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry limit 10;

        d         | edabbr | vaabbr
------------------+--------+--------
                0 | ALQ    | 128
 5541.57712511724 | ALQ    | 129A
 5579.67450712005 | ALQ    | 001
  6083.4207708641 | ALQ    | 131
  7691.2205404848 | ALQ    | 003
 7900.75451037313 | ALQ    | 122
 8694.20710669982 | ALQ    | 129B
 9564.24289057111 | ALQ    | 130
  12089.665931705 | ALQ    | 127
 18472.5531479404 | ALQ    | 002
(10 rows)

Wenn Sie "EXPLAIN ANALYZE" an den zwei Abfragen ausführen, sollte eine Performance Verbesserung im Ausmaß von einer Sekunde auftreten.

Anwender von PostgreSQL < 9.5 können eine hybride Abfrage erstellen, um die echten nearest neighbors aufzufinden. Zuerst eine CTE-Abfrage, welche die Index-unterstützten KNN-Methode anwendet, dann eine exakte Abfrage um eine korrekte Sortierung zu erhalten:

WITH index_query AS (
  SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
        FROM va2005
  ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry LIMIT 100)
  SELECT *
        FROM index_query
  ORDER BY d limit 10;

        d         | edabbr | vaabbr
------------------+--------+--------
                0 | ALQ    | 128
 5541.57712511724 | ALQ    | 129A
 5579.67450712005 | ALQ    | 001
  6083.4207708641 | ALQ    | 131
  7691.2205404848 | ALQ    | 003
 7900.75451037313 | ALQ    | 122
 8694.20710669982 | ALQ    | 129B
 9564.24289057111 | ALQ    | 130
  12089.665931705 | ALQ    | 127
 18472.5531479404 | ALQ    | 002
(10 rows)

                        

Siehe auch

???, ST_Distance, <#>


Name

|=| — Gibt die Entfernung zwischen den Trajektorien A und B, am Ort der dichtesten Annäherung, an.

Synopsis

double precision |=|( geometry A , geometry B );

Beschreibung

Der |=| Operator gibt die 3D Entfernung zwischen zwei Trajektorien (Siehe ???). Dieser entspricht ???, da es sich jedoch um einen Operator handelt, kann dieser für nearest neightbor searches mittels eines N-dimensionalen Index verwendet werden (verlangt PostgreSQL 9.5.0 oder höher).

[Note]

Dieser Operand verwendet die ND GiST Indizes, welche für Geometrien vorhanden sein können. Er unterscheidet sich insofern von anderen Operatoren, die ebenfalls räumliche Indizes verwenden, als der räumliche Index nur dann angewandt wird, wenn sich der Operand in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist (sich nicht in einer Subquery/CTE befindet). Z.B. 'SRID=3005;LINESTRINGM(0 0 0,0 0 1)'::geometry und nicht a.geom

Verfügbarkeit: 2.2.0. Index-unterstützt steht erst ab PostgreSQL 9.5+ zur Verfügung.

Beispiele

-- Save a literal query trajectory in a psql variable...
\set qt 'ST_AddMeasure(ST_MakeLine(ST_MakePointM(-350,300,0),ST_MakePointM(-410,490,0)),10,20)'
-- Run the query !
SELECT track_id, dist FROM (
  SELECT track_id, ST_DistanceCPA(tr,:qt) dist
  FROM trajectories
  ORDER BY tr |=| :qt
  LIMIT 5
) foo;
 track_id        dist
----------+-------------------
      395 | 0.576496831518066
      380 |  5.06797130410151
      390 |  7.72262293958322
      385 |   9.8004461358071
      405 |  10.9534397988433
(5 rows)

Siehe auch

???, ???, ???


Name

<#> — Gibt die 2D Entfernung zwischen den Bounding Boxes von A und B zurück

Synopsis

double precision <#>( geometry A , geometry B );

Beschreibung

Der <#> Operator gibt die Entfernung zwischen zwei floating point bounding boxes zurück, wobei diese eventuell vom räumlichen Index ausgelesen wird (PostgreSQL 9.1+ vorausgesetzt). Praktikabel falls man eine nearest neighbor Abfrage approximate nach der Entfernung sortieren will.

[Note]

Dieser Operand verwendet sämtliche Indizes, welche für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, welche ebenfalls räumliche Indizes verwenden, als der räumliche Index nur dann verwendet wird, falls sich der Operand in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist; z.B.: ORDER BY (ST_GeomFromText('POINT(1 2)') <#> geom) anstatt g1.geom <#>.

Verfügbarkeit: 2.0.0 -- KNN steht erst ab PostgreSQL 9.1+ zur Verfügung

Beispiele

SELECT *
FROM (
SELECT b.tlid, b.mtfcc,
        b.geom <#
> ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
                745787 2948499,745740 2948468,745712 2948438,
                745690 2948384,745677 2948319)',2249) As b_dist,
                ST_Distance(b.geom, ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
                745787 2948499,745740 2948468,745712 2948438,
                745690 2948384,745677 2948319)',2249)) As act_dist
    FROM bos_roads As b
    ORDER BY b_dist, b.tlid
    LIMIT 100) As foo
    ORDER BY act_dist, tlid LIMIT 10;

   tlid    | mtfcc |      b_dist      |     act_dist
-----------+-------+------------------+------------------
  85732027 | S1400 |                0 |                0
  85732029 | S1400 |                0 |                0
  85732031 | S1400 |                0 |                0
  85734335 | S1400 |                0 |                0
  85736037 | S1400 |                0 |                0
 624683742 | S1400 |                0 | 128.528874268666
  85719343 | S1400 | 260.839270432962 | 260.839270432962
  85741826 | S1400 | 164.759294123275 | 260.839270432962
  85732032 | S1400 |           277.75 | 311.830282365264
  85735592 | S1400 |           222.25 | 311.830282365264
(10 rows)

Siehe auch

???, ST_Distance, <->


Name

<<->> — Gibt die n-D Entfernung zwischen den geometrischen Schwerpunkten der Begrenzungsrechtecke/Bounding Boxes von A und B zurück.

Synopsis

double precision <<->>( geometry A , geometry B );

Beschreibung

Der <<->> Operator gibt die n-D (euklidische) Entfernung zwischen den geometrischen Schwerpunkten der Begrenzungsrechtecke zweier Geometrien zurück. Praktikabel für nearest neighbor approximate distance ordering.

[Note]

Dieser Operator verwendet n-D GiST Indizes, falls diese für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, die räumliche Indizes verwenden, indem der räumliche Index nur dann verwendet wird, wenn sich der Operator in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist (sich nicht in einer Subquery/CTE befindet). Z.B. 'SRID=3005;POINT(1011102 450541)'::geometry und nicht a.geom

Verfügbarkeit: 2.2.0 -- KNN steht erst ab PostgreSQL 9.1+ zur Verfügung.

Siehe auch

<<#>>, <->


Name

<<#>> — Gibt die n-D Entfernung zwischen den Bounding Boxes von A und B zurück.

Synopsis

double precision <<#>>( geometry A , geometry B );

Beschreibung

Der <<#>> Operator gibt die Entfernung zwischen zwei floating point bounding boxes zurück, wobei diese eventuell vom räumlichen Index ausgelesen wird (PostgreSQL 9.1+ vorausgesetzt). Praktikabel falls man eine nearest neighbor Abfrage nach der Entfernung sortieren will / approximate distance ordering.

[Note]

Dieser Operand verwendet sämtliche Indizes, welche für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, welche ebenfalls räumliche Indizes verwenden, als der räumliche Index nur dann verwendet wird, falls sich der Operand in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist; z.B.: ORDER BY (ST_GeomFromText('POINT(1 2)') <<#>> geom) anstatt g1.geom <<#>>.

Verfügbarkeit: 2.2.0 -- KNN steht erst ab PostgreSQL 9.1+ zur Verfügung.

Siehe auch

<<->>, <#>

8.9. Measurement Functions

Abstract

These functions compute measurements of distance, area and angles. There are also functions to compute geometry values determined by measurements.

ST_Area — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_Azimuth — Gibt den auf die Nordrichtung bezogenen Azimut in Radiant zurück. Der Winkel wird von einer Senkrechten auf "pointA" nach pointB im Uhrzeigersinn gemessen.
ST_Angle — Gibt den Winkel zwischen 3 Punkten oder zwischen 2 Vektoren (4 Punkte oder 2 Linien) zurück.
ST_ClosestPoint — Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.
ST_3DClosestPoint — Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.
ST_Distance — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
ST_3DDistance — Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurückgegeben.
ST_DistanceSphere — Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.
ST_DistanceSpheroid — Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.
ST_FrechetDistance — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück
ST_HausdorffDistance — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück
ST_Length — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_Length2D

Gibt die 2-dimensionale Länge einer Linie oder einer Mehrfachlinie zurück. Dies ist ein Alias für ST_Length

ST_3DLength — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_LengthSpheroid — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_LongestLine — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
ST_3DLongestLine — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
ST_MaxDistance — Gibt die größte 2-dimensionale Distanz zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.
ST_3DMaxDistance — Für den geometrischen Datentyp. Gibt die maximale 3-dimensionale kartesische Distanz (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.
ST_MinimumClearance — Gibt das Mindestabstandsmaß für eine Geometrie zurück; ein Maß für die Robustheit einer Geometrie.
ST_MinimumClearanceLine — Gibt ein Linienstück mit zwei Punkten zurück, welche sich über das Mindestabstandsmaß erstreckt.
ST_Perimeter — Returns the length of the boundary of a polygonal geometry or geography.
ST_Perimeter2D — Returns the 2D perimeter of a polygonal geometry. Alias for ST_Perimeter.
ST_3DPerimeter — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_Project — Gibt einen POINT zurück, der von einem Anfangspunkt weg, entsprechend einer Distanz in Meter und einer Peilung (Azimut) in Radiant, projiziert wird.
ST_ShortestLine — Gibt die 2-dimenionale kürzeste Strecke zwischen zwei Geometrien als Linie zurück
ST_3DShortestLine — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück

Name

ST_Area — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_Area(geometry g1);

float ST_Area(geography geog, boolean use_spheroid=true);

Beschreibung

Gibt den Flächeninhalt von Polygonen und Mehrfachpolygonen zurück. Gibt den Flächeninhalt der Datentypen "ST_Surface" und "ST_MultiSurface" zurück. Beim geometrischen Datentyp wird die kartesische 2D-Fläche ermittelt und in den Einheiten des SRID ausgegeben. Beim geographischen Datentyp wird die Fläche standardmäßig auf einem Referenzellipsoid ermittelt und in Quadratmeter ausgegeben. Mit ST_Area(geog,false) kann der Flächeninhalt auf einer Kugel ermittelt werden; dies ist zwar schneller aber auch weniger genau.

Erweiterung: Mit 2.0.0 wurde 2D-Unterstützung für polyedrische Oberflächen eingeführt.

Erweiterung: 2.2.0 - die Messung auf dem Referenzellipsoid wird mit der Bibliothek "GeographicLib" durchgeführt. Dadurch wurde die Genauigkeit und die Robustheit erhöht. Um die Vorteile dieser neuen Funktionalität zu nutzen, benötigen Sie Proj >= 4.9.0.

Changed: 3.0.0 - does not depend on SFCGAL anymore.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.1.2, 9.5.3

This function supports Polyhedral surfaces.

[Note]

Bei polyedrischen Oberflächen wird nur 2D (nicht 2.5D) unterstützt. Bei 2.5D kann ein Ergebnis ungleich null geliefert werden, wenn die Oberflächen vollständig in der XY-Ebene liegen.

Beispiele

Gibt den Flächeninhalt eines Grundstücks in Massachusetts - in Quadratfuß und konvertiert in Quadratmeter - zurück. Anmerkung: Wegen "Massachusetts State Plane Feet" (EPSG:2249) wird der Flächeninhalt in Quadratfuß ausgegeben

select ST_Area(geom) sqft,
    ST_Area(geom) * 0.3048 ^ 2 sqm
from (
         select 'SRID=2249;POLYGON((743238 2967416,743238 2967450,
                                 743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
     ) subquery;
┌─────────┬─────────────┐
│  sqft   │     sqm     │
├─────────┼─────────────┤
│ 928.625 │ 86.27208552 │
└─────────┴─────────────┘

Gibt den Flächeninhalt in Quadratfuß aus und transformiert nach "Massachusetts state plane meters" (EPSG:26986) um Quadratmeter zu erhalten. Da die Fläche in "Massachusetts State Plane Feet" (EPSG:2249) vorliegt, wird der Flächeninhalt in Quadratfuß ausgegeben. Die transformierte Fläche ist in Quadratmeter, da sie in EPSG:26986 "Massachusetts state plane meters" (EPSG:26986) vorliegt.

select ST_Area(geom) sqft,
    ST_Area(ST_Transform(geom, 26986)) As sqm
from (
         select
             'SRID=2249;POLYGON((743238 2967416,743238 2967450,
             743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
     ) subquery;
┌─────────┬─────────────────┐
│  sqft   │       sqm       │
├─────────┼─────────────────┤
│ 928.625 │ 86.272430607008 │
└─────────┴─────────────────┘

Gibt den Flächeninhalt in Quadratfuß und in Quadratmeter für den geographischen Datentyp zurück. Beachten Sie bitte, dass wir den geometrischen in den geographischen Datentyp umwandeln (dafür muss die Geometrie in WGS84 lon lat 4326 vorliegen). Beim geographischen Datentyp wird immer in Meter gemessen. Dies ist nur für Vergleichszwecke gedacht, da Ihre Tabelle üblicherweise bereits den geographischen Datentyp aufweisen wird.

select ST_Area(geog) / 0.3048 ^ 2 sqft_spheroid,
    ST_Area(geog, false) / 0.3048 ^ 2 sqft_sphere,
    ST_Area(geog) sqm_spheroid
from (
         select ST_Transform(
                    'SRID=2249;POLYGON((743238 2967416,743238 2967450,743265 2967450,743265.625 2967416,743238 2967416))'::geometry,
                    4326
             ) :: geography geog
     ) as subquery;
┌──────────────────┬──────────────────┬──────────────────┐
│  sqft_spheroid   │   sqft_sphere    │   sqm_spheroid   │
├──────────────────┼──────────────────┼──────────────────┤
│ 928.684405784452 │ 927.049336105925 │ 86.2776044979692 │
└──────────────────┴──────────────────┴──────────────────┘

If your data is in geography already:

select ST_Area(geog) / 0.3048 ^ 2 sqft,
    ST_Area(the_geog) sqm
from somegeogtable;

Name

ST_Azimuth — Gibt den auf die Nordrichtung bezogenen Azimut in Radiant zurück. Der Winkel wird von einer Senkrechten auf "pointA" nach pointB im Uhrzeigersinn gemessen.

Synopsis

float ST_Azimuth(geometry pointA, geometry pointB);

float ST_Azimuth(geography pointA, geography pointB);

Beschreibung

Gibt den Azimut des Kreisbogens in Radiant zurück, der durch die gegebenen Punkte bestimmt ist. Wenn sich die beiden Punkte decken, wird NULL zurückgegeben. Der Azimut ist der auf die Nordrichtung bezogene Winkel; er ist im Uhrzeigersinn positiv: Norden = 0; Osten = π/2; Süden = π; Westen = 3π/2.

Beim geographischen Datentyp wird der vorwärtsgerichtete Azimuth als Teil der zweiten geodätischen Hauptaufgabe gelöst.

Der mathematische Begriff Azimut ist als Winkel zwischen einer Referenzebene und einem Punkt definiert, wobei das Winkelmaß in Radiant angegeben wird. Wie im folgenden Beispiel gezeigt, kann mit der in PostgreSQL integrierten Funktion "degrees()" von der Einheit Radiant auf die Einheit Grad umgerechnet werden.

Verfügbarkeit: 1.1.0

Erweiterung: mit 2.0.0 wurde die Unterstützung des geographischen Datentyps eingeführt.

Erweiterung: 2.2.0 die Messungen auf dem Referenzellipsoid werden mit der Bibliothek "GeographicLib" durchgeführt. Dadurch wurde die Genauigkeit und die Robustheit erhöht. Um die Vorteile dieser neuen Funktionalität zu nutzen, benötigen Sie Proj >= 4.9.0.

Der Azimut ist in Verbindung mit ST_Translate besonders nützlich, weil damit ein Objekt entlang seiner rechtwinkeligen Achse verschoben werden kann. Siehe dazu die Funktion "upgis_lineshift", in dem Abschnitt Plpgsqlfunctions des PostGIS Wiki, für ein Beispiel.

Beispiele

Geometrischer Datentyp - Azimut in Grad

SELECT degrees(ST_Azimuth(ST_Point(25, 45), ST_Point(75, 100))) AS degA_B,
            degrees(ST_Azimuth(ST_Point(75, 100), ST_Point(25, 45))) AS degB_A;

      dega_b       |     degb_a
------------------+------------------
 42.2736890060937 | 222.273689006094

Grün: der Anfangspunkt Point(25,45) mit der Senkrechten darauf. Gelb: der zu durchlaufende Pfad "degA_B" (Azimut).

Grün: der Anfangspunkt Point(75,100) mit der Senkrechten darauf. Gelb: der zu durchlaufende Pfad "degB_A" (Azimut).


Name

ST_Angle — Gibt den Winkel zwischen 3 Punkten oder zwischen 2 Vektoren (4 Punkte oder 2 Linien) zurück.

Synopsis

float ST_Angle(geometry point1, geometry point2, geometry point3, geometry point4);

float ST_Angle(geometry line1, geometry line2);

Beschreibung

Fpr 3 Punkte wird der Winkel im Uhrzeigersinn von P1P2P3 errechnet. Bei der Eingabe von 2 Linien werden 4 Punkte aus den Anfangs- und Endpunkten der Linien ermittelt. Für die 4 Punkte wird der Winkel im Uhrzeigersinn von P1P2,P3P4 berechnet. Das ergebnis ist immer positiv, zwischen 0 und 2*Pi Radiant. Verwendet den Azimut von Linienpaaren oder Punkten.

ST_Angle(P1,P2,P3) = ST_Angle(P2,P1,P2,P3)

Das Ergebnis wird in Radiant ausgegeben. Wie im folgenden Beispiel gezeigt, kann mit der in PostgreSQL integrierten Funktion "degrees()" von der Einheit Radiant auf die Einheit Grad umgerechnet werden.

Verfügbarkeit: 2.5.0

Beispiele

Geometrischer Datentyp - Azimut in Grad

WITH rand AS (
                SELECT s, random() * 2 * PI() AS rad1
                        , random() * 2 * PI() AS rad2
                FROM  generate_series(1,2,2) AS s
        )
         , points AS (
                SELECT s, rad1,rad2, ST_Point(cos1+s,sin1+s) as p1, ST_Point(s,s) AS p2, ST_Point(cos2+s,sin2+s) as p3
                FROM rand
                        ,cos(rad1) cos1, sin(rad1) sin1
                        ,cos(rad2) cos2, sin(rad2) sin2
        )
        SELECT s, ST_AsText(ST_SnapToGrid(ST_MakeLine(ARRAY[p1,p2,p3]),0.001)) AS line
                , degrees(ST_Angle(p1,p2,p3)) as computed_angle
                , round(degrees(2*PI()-rad2 -2*PI()+rad1+2*PI()))::int%360 AS reference
                , round(degrees(2*PI()-rad2 -2*PI()+rad1+2*PI()))::int%360 AS reference
        FROM points ;

1 | line | computed_angle | reference
------------------+------------------
1 | LINESTRING(1.511 1.86,1 1,0.896 0.005) | 155.27033848688 | 155


Name

ST_ClosestPoint — Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.

Synopsis

geometry ST_ClosestPoint(geometry g1, geometry g2);

Beschreibung

Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.

[Note]

Falls es sich um eine 3D-Geometrie handelt, sollten Sie ST_3DClosestPoint vorziehen.

Verfügbarkeit: 1.5.0

Beispiele

Der nächstliegende Punkt zwischen einem Punkt und einem Linienzug ist der Punkt selbst. Aber der nächstliegende Punkt zwischen einem Linienzug und einem Punkt ist der Punkt auf dem Linienzug mit dem geringsten Abstand.

SELECT ST_AsText(ST_ClosestPoint(pt,line)) AS cp_pt_line,
        ST_AsText(ST_ClosestPoint(line,pt)) As cp_line_pt
FROM (SELECT 'POINT(100 100)'::geometry As pt,
                'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry As line
        ) As foo;


   cp_pt_line   |                cp_line_pt
----------------+------------------------------------------
 POINT(100 100) | POINT(73.0769230769231 115.384615384615)
                                

Der Punkt des Polygons A der am nähesten beim Polygon B liegt

SELECT ST_AsText(
                ST_ClosestPoint(
                        ST_GeomFromText('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'),
                        ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                        )
                ) As ptwkt;

                  ptwkt
------------------------------------------
 POINT(140.752120669087 125.695053378061)
                                


Name

ST_3DClosestPoint — Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.

Synopsis

geometry ST_3DClosestPoint(geometry g1, geometry g2);

Beschreibung

Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D. Die Länge des kürzesten Abstands in 3D ergibt sich aus der 3D-Distanz.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Wenn 2 geometrische Objekte in 2D übergegeben werden, wird ein 2D-Punkt zurückgegeben (anstelle wie früher 0 für ein fehlendes Z). Im Falle von 2D und 3D, wird für fehlende Z nicht länger 0 angenommen.

Beispiele

Linienstück und Punkt -- Punkt mit kürzestem Abstand; in 3D und in 2D

SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
                ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
        FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
                ) As foo;


 cp3d_line_pt                                                |               cp2d_line_pt
-----------------------------------------------------------+------------------------------------------
 POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(73.0769230769231 115.384615384615)
                                        

Linienstück und Mehrfachpunkt - Punkt mit kürzestem Abstand; in 3D und in 2D

SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
                ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
        FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
                ) As foo;


                       cp3d_line_pt                        | cp2d_line_pt
-----------------------------------------------------------+--------------
 POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(50 75)
                                        

Mehrfachlinie und Polygon - Punkt mit kürzestem Abstand; in 3D und in 2D

SELECT ST_AsEWKT(ST_3DClosestPoint(poly, mline)) As cp3d,
    ST_AsEWKT(ST_ClosestPoint(poly, mline)) As cp2d
        FROM (SELECT  ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
                ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
                (1 10 2, 5 20 1))') As mline ) As foo;
                   cp3d                    |     cp2d
-------------------------------------------+--------------
 POINT(39.993580415989 54.1889925532825 5) | POINT(20 40)
             


Name

ST_Distance — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

float ST_HausdorffDistance(geometry g1, geometry g2);

float ST_HausdorffDistance(geometry g1, geometry g2, float densifyFrac);

Beschreibung

Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand zwischen zwei geometrischen Objekten in projizierten Einheiten (Einheiten des Koordinatenreferenzsystem) zurückgegeben.

Beim geometrischen Datentyp geometry wird die geringste kartesische Distanz in 2D zwischen zwei geometrischen Objekten - in projizierten Einheiten (Einheiten des Koordinatenreferenzsystem) - zurückgegeben. Beim geographischen Datentyp geography wird standardmäßig die geringste geodätische Distanz zwischen zwei geographischen Objekten in Meter zurückgegeben. Wenn use_speroid FALSE ist, erfolgt eine schnellere Berechnung auf einer Kugel anstatt auf dem Referenzellipsoid.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.23

This method supports Circular Strings and Curves

Verfügbarkeit: 1.5.0 die Unterstützung des geograpischen Datentyps wurde eingeführt. Geschwindigkeitsverbesserungen bei einer umfangreichen Geometrie und bei einer Geometrie mit vielen Knoten

Enhanced: 2.1.0 Geschwindigkeitsverbesserung beim geographischen Datentyp. Siehe Making Geography faster für Details.

Erweiterung: 2.1.0 - Unterstützung für Kurven beim geometrischen Datentyp eingeführt.

Erweiterung: 2.2.0 - die Messung auf dem Referenzellipsoid wird mit der Bibliothek "GeographicLib" durchgeführt. Dadurch wurde die Genauigkeit und die Robustheit erhöht. Um die Vorteile dieser neuen Funktionalität zu nutzen, benötigen Sie Proj >= 4.9.0.

Changed: 3.0.0 - does not depend on SFCGAL anymore.

Standardbeispiele Geometrie

Geometry example - units in planar degrees 4326 is WGS 84 long lat, units are degrees.

SELECT ST_AsText(
        ST_LongestLine('POINT(100 100)'::geometry,
                'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry)
        ) As lline;


   lline
-----------------
LINESTRING(100 100,98 190)

Geometry example - units in meters (SRID: 3857, proportional to pixels on popular web maps). Although the value is off, nearby ones can be compared correctly, which makes it a good choice for algorithms like KNN or KMeans.

SELECT ST_Intersects(
                ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
                ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
                );

 st_intersects
---------------
t

Geometry example - units in meters (SRID: 3857 as above, but corrected by cos(lat) to account for distortion)

SELECT ST_Intersects(
                ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
                ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
                );

 st_intersects
---------------
t

Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most accurate for Massachusetts)

SELECT ST_Intersects(
                ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
                ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
                );

 st_intersects
---------------
t

Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least accurate)

SELECT ST_Intersects(
                ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
                ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
                );

 st_intersects
---------------
t

Beispiele für den geographischen Datentyp 

Same as geometry example but note units in meters - use sphere for slightly faster and less accurate computation.

-- gleich wie das Beispiel mit dem geometrischen Datentyp, aber Einheiten in Meter - verwendet Kugel für eine geringfügige Geschwindigkeitsverbesserung, allerdings ungenauer
SELECT ST_Distance(gg1, gg2) As spheroid_dist, ST_Distance(gg1, gg2, false) As sphere_dist
FROM (SELECT
        'SRID=4326;POINT(-72.1235 42.3521)'::geography as gg1,
        'SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geography as gg2
        ) As foo  ;

  spheroid_dist   |   sphere_dist
------------------+------------------
 123.802076746848 | 123.475736916397

Name

ST_3DDistance — Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurückgegeben.

Synopsis

float ST_3DDistance(geometry g1, geometry g2);

Beschreibung

Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand zwischen zwei geometrischen Objekten in projizierten Einheiten (Einheiten des Koordinatenreferenzsystem) zurückgegeben.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This method implements the SQL/MM specification. SQL-MM ?

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Im Falle von 2D und 3D wird für ein fehlendes Z nicht mehr 0 angenommen.

Changed: 3.0.0 - SFCGAL version removed

Beispiele

-- Beispiel Geometrie - Einheiten in Meter (SRID: 2163 US National Atlas Equal area) (Abstand zwischen Punkt und Linie; Vergleich zwischen 3D und 2D)
-- Anmerkung: zur Zeit gibt es keine Unterstützung für ein Höhendatum, daher wird Z unverändert übernommen und nicht transformiert.
SELECT ST_3DDistance(
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 4)'),2163),
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
                ) As dist_3d,
                ST_Distance(
                        ST_Transform(ST_GeomFromText('POINT(-72.1235 42.3521)',4326),2163),
                        ST_Transform(ST_GeomFromText('LINESTRING(-72.1260 42.45, -72.123 42.1546)', 4326),2163)
                ) As dist_2d;

     dist_3d      |     dist_2d
------------------+-----------------
 127.295059324629 | 126.66425605671
-- MultiLinestring und Polygon, Distanz in 3D und in 2D
-- Gleiches Beispiel wie das mit dem nächstliegenden Punkt in 3D
SELECT ST_3DDistance(poly, mline) As dist3d,
    ST_Distance(poly, mline) As dist2d
        FROM (SELECT  ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
                ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
                (1 10 2, 5 20 1))') As mline ) As foo;
      dist3d       | dist2d
-------------------+--------
 0.716635696066337 |      0

Name

ST_DistanceSphere — Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

Synopsis

float ST_DistanceSphere(geometry geomlonlatA, geometry geomlonlatB);

Beschreibung

Gibt die kürzeste Distanz zwischen zwei Punkten zurück, die über Länge und Breite gegeben sind. Verwendet die Kugelform für die Erde und den Radius des Referenzellipsoids, der durch die SRID festgelegt ist. Ist schneller als ST_DistanceSpheroid, aber weniger genau. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

Verfügbarkeit: 1.5 die Unterstützung für weitere geometrische Datentypen neben Punkten eingeführt. Bei Vorgängerversionen wurden nur Punkte unterstützt.

Änderung: 2.2.0 In Vorgängerversionen als ST_Distance_Sphere bezeichet.

Beispiele

SELECT round(CAST(ST_DistanceSphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
                ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters,
round(CAST(ST_Distance(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)', 4326)) As numeric),5) As dist_degrees,
round(CAST(ST_Distance(ST_Transform(the_geom,32611),
                ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As min_dist_line_point_meters
FROM
        (SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom) as foo;
         dist_meters | dist_utm11_meters | dist_degrees | min_dist_line_point_meters
        -------------+-------------------+--------------+----------------------------
                70424.47 |          70438.00 |      0.72900 |                   65871.18

        

Name

ST_DistanceSpheroid — Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

Synopsis

float ST_DistanceSpheroid(geometry geomlonlatA, geometry geomlonlatB, spheroid measurement_spheroid);

Beschreibung

Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten in Meter zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Siehe die Erklärung zu Referenzellipsoiden unter ST_LengthSpheroid. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

[Note]

Aktuell schaut diese Funktion nicht auf die SRID der Geometrie, sondern nimmt an, dass die Geometrie in den Koordinaten des gegebenen Referenzellipsoids vorliegt. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

Verfügbarkeit: 1.5 die Unterstützung für weitere geometrische Datentypen neben Punkten eingeführt. Bei Vorgängerversionen wurden nur Punkte unterstützt.

Änderung: 2.2.0 In Vorgängerversionen als ST_Distance_Spheroid bezeichet.

Beispiele

SELECT round(CAST(
                ST_DistanceSpheroid(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326), 'SPHEROID["WGS 84",6378137,298.257223563]')
                        As numeric),2) As dist_meters_spheroid,
                round(CAST(ST_DistanceSphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters_sphere,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
                ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters
FROM
        (SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom) as foo;
 dist_meters_spheroid | dist_meters_sphere | dist_utm11_meters
----------------------+--------------------+-------------------
                         70454.92 |           70424.47 |          70438.00

        

Name

ST_FrechetDistance — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

float ST_FrechetDistance(geometry g1, geometry g2, float densifyFrac = -1);

Beschreibung

Implementiert einen Algorithmus zur Berechnung der Fréchet-Metrik, der für beide geometrischen Objekte auf diskrete Punkte beschränkt ist und auf Computing Discrete Fréchet Distance beruht. Die Fréchet-Metrik ist ein Maß für die Ähnlichkeit von Kurven, welches die Position und die Reihenfolge der Kurvenstützpunkte mit einbezieht. Daher ist sie oft besser geeignet als die Hausdorff-Metrik.

Wenn der optionale Parameter "densifyFrac" vorgegeben wird, dann führt diese Funktion eine Verdichtung der Linienstücke durch, bevor die diskrete Fréchet-Metrik berechnet wird. Der Parameter "densifyFrac" bestimmt um welchen Anteil die Linienstücke verdichtet werden. Jedes Linienstück wird in gleichlange Teilsegmente zerlegt, deren Anteil an der Gesamtlänge am nächsten an den vorgegebenen Anteil herankommt.

Units are in the units of the spatial reference system of the geometries.

[Note]

Bei der aktuellen Implementierung können die diskreten Punkte nur Knoten sein. Dies könnte erweitert werden, um eine beliebige Punktdichte zu ermöglichen.

[Note]

Umso kleiner wir densifyFrac wählen, umso genauer wird die Fréchet-Metrik. Aber die Rechenzeit und der Speicherplatzbedarf steigen quadratisch mit der Anzahl der Teilabschnitte.

Wird durch das GEOS Modul ausgeführt

Verfügbarkeit: 2.4.0 - benötigt GEOS >= 3.7.0

Beispiele

postgres=# SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry);
 st_frechetdistance
--------------------
   70.7106781186548
(1 row)
                        
SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry, 0.5);
 st_frechetdistance
--------------------
                 50
(1 row)
                        

Name

ST_HausdorffDistance — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

float ST_HausdorffDistance(geometry g1, geometry g2);

float ST_HausdorffDistance(geometry g1, geometry g2, float densifyFrac);

Beschreibung

Gibt die Hausdorff-Metrik von zwei geometrischen Objekten zurück. Dies ist ein grundsätzliches Maß für die Ähnlichkeit oder Unähnlichkeit von 2 geometrischen Objekten. Die Einheiten sind in den Einheiten des Koordinatenreferenzsystems der Geometrie.

Implementiert einen Algorithmus zur Berechnung einer Abstandsmetrik, welche als "Diskrete Hausdorff-Metrik" gedacht werden kann. Dabei handelt es sich um eine Hausdorff-Metrik, die auf diskrete Punkte einer Geometrie beschränkt ist.Wikipedia article on Hausdorff distance Martin Davis Notizen wie die Hausdorff-Metrik zur Überprüfung der Korrektheit des CascadePolygonUnion Ansatzes verwendet wurde.

Wenn densifyFrac vorgegeben wird, dann führt diese Funktion eine Verdichtung der Linienstücke durch, bevor die diskrete Hausdorff-Metrik berechnet wird. Der Parameter "densifyFrac" bestimmt um welchen Anteil die Linienstücke verdichtet werden. Jedes Linienstück wird in gleichlange Teilsegmente zerlegt, deren Anteil an der Gesamtlänge am nächsten an den vorgegebenen Anteil herankommt.

Units are in the units of the spatial reference system of the geometries.

[Note]

Bei der aktuellen Implementierung können die diskreten Punkte nur Knoten sein. Dies könnte erweitert werden, um eine beliebige Punktdichte zu ermöglichen.

[Note]

Dieser Algorithmus ist NICHT gleichwertig mit der normalen Hausdorff-Metrik. Er führt aber eine Näherungsberechnung durch, die für eine große Zahl von Anwendungsfällen korrekt ist. Ein wichtiger Anwendungsfall sind Linienstücke, die ungefähr parallel sind und etwa die gleiche Länge haben. Diese Funktion bietet eine wertvolle Metrik zum Anpassen von Linien.

Verfügbarkeit: 1.5.0

Beispiele

Finde zu jedem Bauwerk das Grundstück, das am besten dazu passt. Zuerst verlangen wir, dass sich das Grundstück mit dem Bauwerk schneidet. DISTINCT ON stellt sicher, dass wir jedes Bauwerk nur einmal aufgelistet bekommen, ORDER BY .. ST_HausdorffDistance bevorzugt die Grundstücke, die dem Bauwerk am ähnlichsten sind.

SELECT DISTINCT ON(buildings.gid) buildings.gid, parcels.parcel_id
   FROM buildings INNER JOIN parcels ON ST_Intersects(buildings.geom,parcels.geom)
     ORDER BY buildings.gid, ST_HausdorffDistance(buildings.geom, parcels.geom);
postgis=# SELECT ST_HausdorffDistance(
                                'LINESTRING (0 0, 2 0)'::geometry,
                                'MULTIPOINT (0 1, 1 0, 2 1)'::geometry);
 st_hausdorffdistance
 ----------------------
                                         1
(1 row)
                        
postgis=# SELECT st_hausdorffdistance('LINESTRING (130 0, 0 0, 0 150)'::geometry, 'LINESTRING (10 10, 10 150, 130 10)'::geometry, 0.5);
 st_hausdorffdistance
 ----------------------
                                        70
(1 row)
                        

Name

ST_Length — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_Length(geometry a_2dlinestring);

float ST_Length(geography geog, boolean use_spheroid=true);

Beschreibung

Beim geometrischen Datentyp wird die kartesische 2D Länge der Geometrie zurückgegeben. Dabei muss es sich um einen LineString, einen MultiLineString, eine ST_Curve oder eine ST_MultiCurve handeln. Bei einer flächigen Geometrie wird 0 zurückgegeben. Für eine flächige Geometrie können Sie ST_Perimeter verwenden. Bei den geometrischen Datentypen sind die Einheiten für die Längenmessungen durch das Koordinatenreferenzsystem festgelegt.

Beim geographischen Datentyp werden die Berechnungen über die zweite geodätische Hauptaufgabe mit der Längeneinheit Meter durchgeführt. Wenn PostGIS mit PROJ Version 4.8.0 oder höher kompiliert wurde, dann ist das Referenzellipsoid durch die SRID bestimmt; sonst ist es ausschließlich WGS84. Wenn use_spheroid=false ist, dann werden die Berechnungen auf einer Kugel anstatt auf einem Referenzellipsoid ausgeführt.

Zur Zeit ein Synonym für ST_Length2D; dies kann sich allerdings ändern, wenn höhere Dimensionen unterstützt werden.

[Warning]

Änderung: 2.0.0 Wesentliche Änderung -- In früheren Versionen ergab die Anwendung auf ein MULTI/POLYGON vom geographischen Datentyp den Umfang des POLYGON/MULTIPOLYGON. In 2.0.0 wurde dies geändert und es wird jetzt 0 zurückgegeben, damit es mit der Verhaltensweise beim geometrischen Datentyp übereinstimmt. Verwenden Sie bitte ST_Perimeter, wenn Sie den Umfang eines Polygons wissen wollen

[Note]

Beim geographischer Datentyp werden die Messungen standardmäßig am Referenzellipsoid durchgeführt. Für die schnellere, aber ungenauere Berechnung auf einer Kugel können Sie ST_Length(gg,false) verwenden;

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 7.1.2, 9.3.4

Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.

This method is also provided by SFCGAL backend.

Beispiele mit geometrischem Datentyp

Gibt die Länge eines Linienstücks zurück. Beachten Sie, dass die Einheit Fuß ist, da EPSG:2249 "Massachusetts State Plane Feet" ist

SELECT ST_Length(ST_GeomFromText('LINESTRING(743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416)',2249));
st_length
---------
 122.630744000095


--Koordinatentransformation eines Linienzuges von "WGS 84" nach "Massachusetts state plane meters"
SELECT ST_Length(
        ST_Transform(
                ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)'),
                26986
        )
);
st_length
---------
34309.4563576191
                        

Beispiele für den geographischen Datentyp 

Gibt die Länge einer Linie zurück, die in geographischen WGS 84 Koordinaten vorliegt.

-- standardmäßig wird die Berechnung auf einer Kugel anstatt auf dem Referenzellipsoid ausgeführt
SELECT ST_Length(the_geog) As length_spheroid,  ST_Length(the_geog,false) As length_sphere
FROM (SELECT ST_GeographyFromText(
'SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)') As the_geog)
 As foo;
 length_spheroid  |  length_sphere
------------------+------------------
 34310.5703627288 | 34346.2060960742
                        

Name

ST_Length2D —

Gibt die 2-dimensionale Länge einer Linie oder einer Mehrfachlinie zurück. Dies ist ein Alias für ST_Length

Synopsis

float ST_Length2D(geometry a_2dlinestring);

Beschreibung

Gibt die 2-dimensionale Länge einer Linie oder einer Mehrfachlinie zurück. Dies ist ein Alias für ST_Length


Name

ST_3DLength — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_3DLength(geometry a_3dlinestring);

Beschreibung

Gibt die 2- oder 3-dimensionale Länge einer Linie oder einer Mehrfachlinie zurück. Bei einer 2-D Linie wird die Länge nur in 2D zurückgegeben (gleich wie ST_Length und ST_Length2D)

This function supports 3d and will not drop the z-index.

Änderung: 2.0.0 In Vorgängerversionen als ST_Length3D bezeichet.

Beispiele

Gibt die Länge eines 3D-Kabels zurück. Beachten Sie, dass die Einheit Fuß ist, da EPSG:2249 "Massachusetts State Plane Feet" ist

SELECT ST_3DLength(ST_GeomFromText('LINESTRING(743238 2967416 1,743238 2967450 1,743265 2967450 3,
743265.625 2967416 3,743238 2967416 3)',2249));
ST_3DLength
-----------
122.704716741457
                

Name

ST_LengthSpheroid — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_LengthSpheroid(geometry a_geometry, spheroid a_spheroid);

Beschreibung

Berechnet die/den Länge/Umfang einer Geometrie auf einem Ellipsoid. Dies ist nützlich wenn die Koordinaten der Geometrie in Länge und Breite vorliegen, und die Länge der Geometrie ohne benötigt wird, ohne dass umprojiziert werden muss. Das Ellipsoid ist ein eigener Datentyp und kann wie folgt erstellt werden:

SPHEROID[<NAME>,<SEMI-MAJOR AXIS>,<INVERSE FLATTENING>]

Geometrie Beispiel

SPHEROID["GRS_1980",6378137,298.257222101]

Verfügbarkeit: 1.2.2

Änderung: 2.2.0 In Vorgängerversionen als ST_Length_Spheroid bezeichet.und mit dem Alias "ST_3DLength_Spheroid" versehen

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_LengthSpheroid( geometry_column,
                          'SPHEROID["GRS_1980",6378137,298.257222101]' )
                          FROM geometry_table;

SELECT ST_LengthSpheroid( the_geom, sph_m ) As tot_len,
ST_LengthSpheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
                          FROM (SELECT ST_GeomFromText('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
        (-71.05957 42.3589 , -71.061 43))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m)  as foo;
        tot_len      |    len_line1     |    len_line2
------------------+------------------+------------------
 85204.5207562955 | 13986.8725229309 | 71217.6482333646

 --3D
SELECT ST_LengthSpheroid( the_geom, sph_m ) As tot_len,
ST_LengthSpheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
                          FROM (SELECT ST_GeomFromEWKT('MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30),
        (-71.05957 42.3589 75, -71.061 43 90))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m)  as foo;

         tot_len      |    len_line1    |    len_line2
------------------+-----------------+------------------
 85204.5259107402 | 13986.876097711 | 71217.6498130292


Name

ST_LongestLine — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

geometry ST_LongestLine(geometry g1, geometry g2);

Beschreibung

Gibt die längste 2-dimensionale Linie zwischen den Punkten zweier Geometrien zurück.

Gibt den größten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück. Wenn es mehr als einen größten Abstand gibt, dann wird nur die erste zurückgegeben. Die zurückgegebene Linie fängt immer mit "g1" an und endet mit "g2". Die Länge der 3D-Linie die von dieser Funktion zurückgegeben wird ist immer ident mit der von ST_3DMaxDistance für "g1" und "g2" zurückgegebenen Distanz.

Verfügbarkeit: 1.5.0

Beispiele

Längste Strecke zwischen Punkt und Linie

SELECT ST_AsText(
        ST_LongestLine('POINT(100 100)'::geometry,
                'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry)
        ) As lline;


   lline
-----------------
LINESTRING(100 100,98 190)
                                

Längste Strecke zwischen Polygon und Polygon

SELECT ST_AsText(
        ST_LongestLine(
                ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                )
        ) As llinewkt;

   lline
-----------------
LINESTRING(20 40,121.111404660392 186.629392246051)
                                

Die längste Luftlinie um von einer Seite einer eleganten Stadt auf die andere zu wechseln. Beachten Sie, dass das Ergebnis von ST_MaxDistance ident mit der Länge von ST_LongestLine ist.

SELECT ST_AsText(ST_LongestLine(c.the_geom, c.the_geom)) As llinewkt,
        ST_MaxDistance(c.the_geom,c.the_geom) As max_dist,
        ST_Length(ST_LongestLine(c.the_geom, c.the_geom)) As lenll
FROM (SELECT ST_BuildArea(ST_Collect(the_geom)) As the_geom
        FROM (SELECT ST_Translate(ST_SnapToGrid(ST_Buffer(ST_Point(50 ,generate_series(50,190, 50)
                        ),40, 'quad_segs=2'),1), x, 0)  As the_geom
                        FROM generate_series(1,100,50) As x)  AS foo
) As c;

          llinewkt          |     max_dist     |      lenll
---------------------------+------------------+------------------
 LINESTRING(23 22,129 178) | 188.605408193933 | 188.605408193933
                                


Name

ST_3DLongestLine — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

geometry ST_3DLongestLine(geometry g1, geometry g2);

Beschreibung

Gibt den größten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück. Wenn es mehr als einen größten Abstand gibt, dann wird nur die erste zurückgegeben. Die zurückgegebene Linie fängt immer mit "g1" an und endet mit "g2". Die Länge der 3D-Linie die von dieser Funktion zurückgegeben wird ist immer ident mit der von ST_3DMaxDistance für "g1" und "g2" zurückgegebenen Distanz.

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Wenn 2 geometrische Objekte in 2D übergegeben werden, wird ein 2D-Punkt zurückgegeben (anstelle wie früher 0 für ein fehlendes Z). Im Falle von 2D und 3D, wird für fehlende Z nicht länger 0 angenommen.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

Linienstück und Punkt -- größter Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DLongestLine(line,pt)) AS lol3d_line_pt,
                ST_AsEWKT(ST_LongestLine(line,pt)) As lol2d_line_pt
        FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
                ) As foo;


           lol3d_line_pt           |       lol2d_line_pt
-----------------------------------+----------------------------
 LINESTRING(50 75 1000,100 100 30) | LINESTRING(98 190,100 100)
                                        

Linienstück und Mehrfachpunkt -- größter Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DLongestLine(line,pt)) AS lol3d_line_pt,
                ST_AsEWKT(ST_LongestLine(line,pt)) As lol2d_line_pt
        FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
                ) As foo;


          lol3d_line_pt          |      lol2d_line_pt
---------------------------------+--------------------------
 LINESTRING(98 190 1,50 74 1000) | LINESTRING(98 190,50 74)
                                        

Mehrfachlinie und Polygon - größter Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DLongestLine(poly, mline)) As lol3d,
    ST_AsEWKT(ST_LongestLine(poly, mline)) As lol2d
        FROM (SELECT  ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
                ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
                (1 10 2, 5 20 1))') As mline ) As foo;
            lol3d             |          lol2d
------------------------------+--------------------------
 LINESTRING(175 150 5,1 10 2) | LINESTRING(175 150,1 10)
             


Name

ST_MaxDistance — Gibt die größte 2-dimensionale Distanz zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.

Synopsis

float ST_MaxDistance(geometry g1, geometry g2);

Beschreibung

Gibt die größte 2-dimensionale Distanz zwischen zwei geometrischen Objekten in projizierten Einheiten zurück. Wenn g1 und g2 dieselbe Geometrie sind, dann gibt die Funktion die Distanz zwischen den beiden am weitesten entfernten Knoten in dieser Geometrie zurück.

Gibt die größte 2-dimensionale Distanz zwischen zwei geometrischen Objekten in projizierten Einheiten zurück. Wenn g1 und g2 dieselbe Geometrie sind, dann gibt die Funktion die Distanz zwischen den beiden am weitesten entfernten Knoten in dieser Geometrie zurück.

Verfügbarkeit: 1.5.0

Beispiele

Längste Strecke zwischen Punkt und Linie

postgis=# SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry);
   st_maxdistance
-----------------
 2
(1 row)

postgis=# SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING ( 2 2, 2 2 )'::geometry);
  st_maxdistance
------------------
 2.82842712474619
(1 row)

Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück

postgres=# SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry);
 st_frechetdistance
--------------------
   70.7106781186548
(1 row)

Name

ST_3DMaxDistance — Für den geometrischen Datentyp. Gibt die maximale 3-dimensionale kartesische Distanz (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.

Synopsis

float ST_3DMaxDistance(geometry g1, geometry g2);

Beschreibung

Für den geometrischen Datentyp. Gibt die maximale 3-dimensionale kartesische Distanz zwischen zwei geometrischen Objekten in projizierten Einheiten (Einheiten des Koordinatenreferenzsystem) zurück.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Im Falle von 2D und 3D wird für ein fehlendes Z nicht mehr 0 angenommen.

Beispiele

-- Beispiel Geometrie - Einheiten in Meter (SRID: 2163 US National Atlas Equal area) (Vergleich von 3D-Punkt und Linie mit 2D-Punkt und Linie)
-- Anmerkung: zur Zeit gibt es keine Unterstützung für ein Höhendatum, daher wird Z unverändert übernommen und nicht transformiert.
SELECT ST_3DMaxDistance(
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
                ) As dist_3d,
                ST_MaxDistance(
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
                ) As dist_2d;

     dist_3d      |     dist_2d
------------------+------------------
 24383.7467488441 | 22247.8472107251

Name

ST_MinimumClearance — Gibt das Mindestabstandsmaß für eine Geometrie zurück; ein Maß für die Robustheit einer Geometrie.

Synopsis

float ST_MinimumClearance(geometry g);

Beschreibung

It is possible for a geometry to meet the criteria for validity according to ??? (polygons) or ST_IsSimple (lines), but to become invalid if one of its vertices is moved by a small distance. This can happen due to loss of precision during conversion to text formats (such as WKT, KML, GML, GeoJSON), or binary formats that do not use double-precision floating point coordinates (e.g. MapInfo TAB).

The minimum clearance is a quantitative measure of a geometry's robustness to change in coordinate precision. It is the largest distance by which vertices of the geometry can be moved without creating an invalid geometry. Larger values of minimum clearance indicate greater robustness.

If a geometry has a minimum clearance of e, then:

  • No two distinct vertices in the geometry are closer than the distance e.

  • Kein Knoten liegt näher als e bei einem Liniensegment, außer es ist ein Endpunkt.

If no minimum clearance exists for a geometry (e.g. a single point, or a multipoint whose points are identical), the return value is Infinity.

To avoid validity issues caused by precision loss, ST_ReducePrecision can reduce coordinate precision while ensuring that polygonal geometry remains valid.

Verfügbarkeit: 2.3.0

Beispiele

SELECT ST_MinimumClearance('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))');
 st_minimumclearance
---------------------
             0.00032
     

Name

ST_MinimumClearanceLine — Gibt ein Linienstück mit zwei Punkten zurück, welche sich über das Mindestabstandsmaß erstreckt.

Synopsis

Geometry ST_MinimumClearanceLine(geometry g);

Beschreibung

Gibt ein Zwei-Punkt-Linienstück zurück, welches sich über das Mindestabstandsmaß erstreckt. Wenn die Geometrie kein Mindestabstandsmaß aufweist, dann wird LINESTRING EMPTY zurückgegeben.

Wird durch das GEOS Modul ausgeführt

Verfügbarkeit: 2.3.0 - benötigt GEOS >= 3.6.0

Beispiele

SELECT ST_AsText(ST_MinimumClearanceLine('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))'));
st_astext
-------------------------------
LINESTRING(0.5 0.00032,0.5 0)
                  

Name

ST_Perimeter — Returns the length of the boundary of a polygonal geometry or geography.

Synopsis

float ST_Perimeter(geometry g1);

float ST_Perimeter(geography geog, boolean use_spheroid=true);

Beschreibung

Gibt für die geometrischen/geographischen Datentypen ST_Surface, ST_MultiSurface (Polygon, MultiPolygon) den Umfang in 2D zurück. Bei einer nicht flächigen Geometrie wird 0 zurückgegeben. Für eine lineare Geometrie können Sie ST_Length verwenden. Beim geometrischen Datentyp sind die Einheiten der Umfangsmessung durch das Koordinatenreferenzsystem der Geometrie festgelegt.

Beim geographischen Datentyp werden die Berechnungen über die zweite geodätische Hauptaufgabe durchgeführt, wobei die Einheit für den Umfang Meter ist. Wenn PostGIS mit PROJ Version 4.8.0 oder höher kompiliert wurde, dann ist das Referenzellipsoid durch die SRID bestimmt; sonst ist es ausschließlich WGS84. Wenn use_spheroid=false ist, dann werden die Berechnungen auf einer Kugel anstatt auf einem Referenzellipsoid ausgeführt.

Zur Zeit ein Synonym für ST_Perimeter2D; dies kann sich allerdings ändern, wenn höhere Dimensionen unterstützt werden.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 8.1.3, 9.5.4

Verfügbarkeit: Mit 2.0.0 wurde die Unterstützung für geograpischen Koordinaten eingeführt

Beispiele: geometrischer Datentyp

Den Umfang eines Polygons und eines Mehrfachpolygons in Fuß ausgeben. Beachten Sie bitte, dass die Einheit Fuß ist, da EPSG:2249 "Massachusetts State Plane Feet" ist

SELECT ST_Perimeter(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416))', 2249));
st_perimeter
---------
 122.630744000095
(1 row)

SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,
763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003)))', 2249));
st_perimeter
---------
 845.227713366825
(1 row)
                        

Beispiele: geographischer Datentyp

Gibt den Umfang eines Polygons und eines Mehrfachpolygons in Meter und in Fuß aus. Beachten Sie, dass diese in geographischen Koordinaten (WGS 84 Länge/Breite) vorliegen.

SELECT  ST_Perimeter(geog) As per_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('POLYGON((-71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.1776848522251 42.3902896512902))') As geog;

   per_meters    |      per_ft
-----------------+------------------
37.3790462565251 | 122.634666195949


-- Beispiel MultiPolygon  --
SELECT  ST_Perimeter(geog) As per_meters, ST_Perimeter(geog,false) As per_sphere_meters,  ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('MULTIPOLYGON(((-71.1044543107478 42.340674480411,-71.1044542869917 42.3406744369506,
-71.1044553562977 42.340673886454,-71.1044543107478 42.340674480411)),
((-71.1044543107478 42.340674480411,-71.1044860600303 42.3407237015564,-71.1045215770124 42.3407653385914,
-71.1045498002983 42.3407946553165,-71.1045611902745 42.3408058316308,-71.1046016507427 42.340837442371,
-71.104617893173 42.3408475056957,-71.1048586153981 42.3409875993595,-71.1048736143677 42.3409959528211,
-71.1048878050242 42.3410084812078,-71.1044020965803 42.3414730072048,
-71.1039672113619 42.3412202916693,-71.1037740497748 42.3410666421308,
-71.1044280218456 42.3406894151355,-71.1044543107478 42.340674480411)))') As geog;

    per_meters    | per_sphere_meters |      per_ft
------------------+-------------------+------------------
 257.634283683311 |  257.412311446337 | 845.256836231335
                        

Siehe auch

???, ???, ST_Length


Name

ST_Perimeter2D — Returns the 2D perimeter of a polygonal geometry. Alias for ST_Perimeter.

Synopsis

float ST_Perimeter2D(geometry geomA);

Beschreibung

Gibt den 2-dimensionalen Umfang eines Polygons oder eines Mehrfachpolygons zurück.

[Note]

Zurzeit ein Alias für ST_Perimeter. In zukünftigen Versionen dürfte ST_Perimeter den Umfang in der höchsten Dimension einer Geometrie zurückgeben. Dies befindet sich jedoch noch im Aufbau.

Siehe auch

ST_Perimeter


Name

ST_3DPerimeter — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_3DPerimeter(geometry geomA);

Beschreibung

Gibt den 3-dimensionalen Umfang eines Polygons oder eines Mehrfachpolygons zurück. Wenn es sich um eine 2-dimensionale Geometrie handelt wird der 2-dimensionale Umfang zurückgegeben.

This function supports 3d and will not drop the z-index.

Änderung: 2.0.0 In Vorgängerversionen als ST_Perimeter3D bezeichet.

Beispiele

Umfang eines leicht erhöhten Polygons in "Massachusetts state plane feet"

SELECT ST_3DPerimeter(the_geom), ST_Perimeter2d(the_geom), ST_Perimeter(the_geom) FROM
                        (SELECT ST_GeomFromEWKT('SRID=2249;POLYGON((743238 2967416 2,743238 2967450 1,
743265.625 2967416 1,743238 2967416 2))') As the_geom) As foo;

  ST_3DPerimeter  |  st_perimeter2d  |   st_perimeter
------------------+------------------+------------------
 105.465793597674 | 105.432997272188 | 105.432997272188


Name

ST_Project — Gibt einen POINT zurück, der von einem Anfangspunkt weg, entsprechend einer Distanz in Meter und einer Peilung (Azimut) in Radiant, projiziert wird.

Synopsis

geography ST_Project(geography g1, float distance, float azimuth);

Beschreibung

Gibt einen POINT zurück, der sich von einem Standpunkt aus durch den Azimut (Pelilung) in Radiant und die Distanz in Meter zum Zielpunkt ergibt. Dies wird auch als erste geodätische Hauptaufgabe bezeichnet.

Die Entfernung wird in Meter angegeben.

In der Navigation wird das Azimut auch manchmal als Kurs oder Peilung bezeichnet. Es wird relativ zur Nordrichtung (Azimut null) gemessen. Osten hat ein Azimut von 90 (π/2), Süden 180 (π) und Westen 270 (3π/2).

Verfügbarkeit: 2.0.0

Erweiterung: 2.4.0 Erlaubt negative Distanzen und nicht normalisierten Azimut.

Beispiel: verwendet Grad - die Distanz zum Zielpunkt ist 100,000 Meter und die Peilung liegt bei 45 Grad

SELECT ST_AsText(ST_Project('POINT(0 0)'::geography, 100000, radians(45.0)));

                 st_astext
--------------------------------------------
 POINT(0.635231029125537 0.639472334729198)
(1 row)
      

Name

ST_ShortestLine — Gibt die 2-dimenionale kürzeste Strecke zwischen zwei Geometrien als Linie zurück

Synopsis

geometry ST_ShortestLine(geometry g1, geometry g2);

Beschreibung

Gibt den kürzesten 2-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück. Wenn es mehrere kürzeste Abstände gibt, dann wird nur der erste zurückgegeben, der von der Funktion gefunden wurde. Wenn sich g1 und g2 nur in einem Punkt schneiden, dann gibt die Funktion eine Linie zurück, die ihren Anfang und ihr Ende in dem Schnittpunkt hat. Wenn sich g1 und g2 in mehreren Punkten schneiden, dann gibt die Funktion eine Linie zurück, die Anfang und Ende in irgendeinem der Schnittpunkte hat. Die zurückgegebene Linie beginnt immer mit g1 und endet mit g2. Die Länge der 2D-Linie die von dieser Funktion zurückgegeben wird ist immer gleich der von ST_Distance für g1 und g2 zurückgegebenen Distanz.

Verfügbarkeit: 1.5.0

Beispiele

Kürzeste Strecke zwischen Punkt und Linienzug

SELECT ST_AsText(
        ST_ShortestLine('POINT(100 100)'::geometry,
                'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry)
        ) As sline;


   sline
-----------------
LINESTRING(100 100,73.0769230769231 115.384615384615)
                                

kürzeste Strecke zwischen Polygon und Polygon

SELECT ST_AsText(
                ST_ShortestLine(
                        ST_GeomFromText('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'),
                        ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                        )
                ) As slinewkt;

 LINESTRING(140.752120669087 125.695053378061,121.111404660392 153.370607753949)
                                


Name

ST_3DShortestLine — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

geometry ST_3DShortestLine(geometry g1, geometry g2);

Beschreibung

Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück. Wenn es mehrere kürzeste Abstände gibt, dann wird nur der erste zurückgegeben, der von der Funktion gefunden wurde. Wenn sich g1 und g2 nur in einem Punkt schneiden, dann gibt die Funktion eine Linie zurück, die ihren Anfang und ihr Ende in dem Schnittpunkt hat. Wenn sich g1 und g2 in mehreren Punkten schneiden, dann gibt die Funktion eine Linie zurück, die Anfang und Ende in irgendeinem der Schnittpunkte hat. Die zurückgegebene Linie beginnt immer mit g1 und endet mit g2. Die Länge der 3D-Linie die von dieser Funktion zurückgegeben wird ist immer ident mit der von ST_3DDistance für g1 und g2 zurückgegebenen Distanz.

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Wenn 2 geometrische Objekte in 2D übergegeben werden, wird ein 2D-Punkt zurückgegeben (anstelle wie früher 0 für ein fehlendes Z). Im Falle von 2D und 3D, wird für fehlende Z nicht länger 0 angenommen.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

Linienzug und Punkt -- kürzester Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
                ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
        FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
                ) As foo;


 shl3d_line_pt                                                                 |               shl2d_line_pt
----------------------------------------------------------------------------+------------------------------------------------------
 LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30)  | LINESTRING(73.0769230769231 115.384615384615,100 100)
                                        

Linienstück und Mehrfachpunkt -- kürzester Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
                ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
        FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
                ) As foo;


                       shl3d_line_pt                                       | shl2d_line_pt
---------------------------------------------------------------------------+------------------------
 LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) | LINESTRING(50 75,50 74)
                                        

Mehrfachlinienzug und Polygon - kürzester Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DShortestLine(poly, mline)) As shl3d,
    ST_AsEWKT(ST_ShortestLine(poly, mline)) As shl2d
        FROM (SELECT  ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
                ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
                (1 10 2, 5 20 1))') As mline ) As foo;
                   shl3d                                                                           |     shl2d
---------------------------------------------------------------------------------------------------+------------------------
 LINESTRING(39.993580415989 54.1889925532825 5,40.4078575708294 53.6052383805529 5.03423778139177) | LINESTRING(20 40,20 40)
             

8.10. SFCGAL Funktionen

Abstract

SFCGAL ist ein C++ Adapter für CGAL, welches fortgeschrittene Funktionen in 2D und in 3D zur Verfügung stellt. Aus Gründen der Robustheit liegen die geometrischen Koordinaten in einer fehlerfreien rationalen Zahlendarstellung vor.

Eine Anleitung zur Installation der Bibliothek finden Sie auf der SFCGAL Homepage http://www.sfcgal.org. Um die Funktionen zu laden, müssen Sie die Anweisung "CREATE EXTENSION postgis_sfscal;" ausführen.

postgis_sfcgal_version — Gibt die verwendete Version von SFCGAL aus
ST_Extrude — Weitet eine Oberfläche auf ein entsprechendes Volumen aus
ST_StraightSkeleton — Berechnet aus einer Geometrie ein "Gerippe" aus Geraden.
ST_ApproximateMedialAxis — Errechnet die genäherte Mediale Achse einer Flächengeometrie.
ST_IsPlanar — Überprüft ob es sich um eine ebene Oberfläche handelt oder nicht
ST_Orientation — Bestimmt die Ausrichtung der Fläche
ST_ForceLHR — Erzwingt LHR Orientierung
ST_MinkowskiSum — Berechnet die Minkowski-Summe
ST_ConstrainedDelaunayTriangles — Return a constrained Delaunay triangulation around the given input geometry.
ST_3DIntersection — Führt eine Verschneidung in 3D aus
ST_3DDifference — Errechnet die Differenzmenge in 3D
ST_3DUnion — Führt eine Vereinigung/Union in 3D aus
ST_3DArea — Berechnet die Fläche von 3D-Oberflächengeometrien. Gibt 0 für Solids zurück.
ST_Tesselate — Erzeugt ein Oberflächen-Mosaik aus einem Polygon oder einer polyedrischen Oberfläche und gibt dieses als TIN oder als TIN-Kollektion zurück
ST_Volume — Berechnet das Volumen eines 3D-Solids. Auf Oberflächengeometrien (auch auf geschlossene) angewandt wird 0 zurückgegeben.
ST_MakeSolid — Wandelt die Geometrie in ein Solid um. Es wird keine Überprüfung durchgeführt. Um ein gültiges Solid zu erhalten muss die eingegebene Geometrie entweder eine geschlossene polyedrische Oberfläche oder ein geschlossenes TIN sein.
ST_IsSolid — Überprüft ob die Geometrie ein Solid ist. Es wird keine Plausibilitätsprüfung durchgeführt.

Name

postgis_sfcgal_version — Gibt die verwendete Version von SFCGAL aus

Synopsis

text postgis_sfcgal_version(void);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).


Name

ST_Extrude — Weitet eine Oberfläche auf ein entsprechendes Volumen aus

Synopsis

geometry ST_Extrude(geometry geom, float x, float y, float z);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Die 3D Bilder sind mit PostGIS ST_AsX3D erzeugt und das Rendern in HTML mit X3Dom HTML Javascript rendering library.

SELECT ST_Buffer(ST_GeomFromText('POINT(100 90)'),
  50, 'quad_segs=2'),0,0,30);

Ursprüngliches Achteck aus einem gepufferten Punkt gebildet

ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30);

Ein Achteck, um 30 Einheiten entlang der Z-Achse ausgeweitet, ergibt ein PolyhedralSurfaceZ

SELECT ST_GeomFromText('LINESTRING(50 50, 100 90, 95 150)')

Ursprünglicher Linienzug

SELECT ST_Extrude(
 ST_GeomFromText('LINESTRING(50 50, 100 90, 95 150)'),0,0,10));

Ein Linienzug, entlang der Z Achse ausgeweitet, ergibt ein PolyhedralSurfaceZ

Siehe auch

ST_AsX3D


Name

ST_StraightSkeleton — Berechnet aus einer Geometrie ein "Gerippe" aus Geraden.

Synopsis

geometry ST_StraightSkeleton(geometry geom);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_StraightSkeleton(ST_GeomFromText('POLYGON (( 190 190, 10 190, 10 10, 190 10, 190 20, 160 30, 60 30, 60 130, 190 140, 190 190 ))'));

Ursprüngliches Polygon

Das "Gerippe" des Polygons


Name

ST_ApproximateMedialAxis — Errechnet die genäherte Mediale Achse einer Flächengeometrie.

Synopsis

geometry ST_ApproximateMedialAxis(geometry geom);

Beschreibung

Gibt die genäherte mediale Achse einer Flächeneingabe als eine Art Gerippe an Geraden zurück. Wenn mit einer geeigneten Version (1.2.0+) kompiliert wurde, wird die SFCGAL-eigene API ausgeführt. Sonst verhält sich die Funktion nur wie ein Adapter für ST_StraightSkeleton (langsamerer Fall).

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_ApproximateMedialAxis(ST_GeomFromText('POLYGON (( 190 190, 10 190, 10 10, 190 10, 190 20, 160 30, 60 30, 60 130, 190 140, 190 190 ))'));

Ein Polygon und dessen angenäherte mediale Achse


Name

ST_IsPlanar — Überprüft ob es sich um eine ebene Oberfläche handelt oder nicht

Synopsis

boolean ST_IsPlanar(geometry geom);

Beschreibung

Verfügbarkeit: 2.2.0: Wurde zwar für 2.1.0 dokumentiert, aber unabsichtlich in der Version 2.1 weggelassen.

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).


Name

ST_Orientation — Bestimmt die Ausrichtung der Fläche

Synopsis

integer ST_Orientation(geometry geom);

Beschreibung

Die Funktion ist nur auf Polygone anwendbar. Sie gibt -1 zurück, wenn das Polygon gegen den Uhrzeigersinn ausgerichttet ist und 1, wenn das Polygon im Uhrzeigersinn ausgerichtet ist.

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.


Name

ST_ForceLHR — Erzwingt LHR Orientierung

Synopsis

geometry ST_ForceLHR(geometry geom);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).


Name

ST_MinkowskiSum — Berechnet die Minkowski-Summe

Synopsis

geometry ST_MinkowskiSum(geometry geom1, geometry geom2);

Beschreibung

Diese Funktion errechnet die Minkowski-Summe eines Punktes, einer Linie oder eines Polygons mit einem Polygon in 2D.

Die Minkowski-Summe zweier Geometrien A und B ist die Menge aller Punkte, die die Summe aller Punkte von A und B sind. Minkowski-Summen werden häufig zur Planung von Bewegungsabläufen und im CAD-Bereich eingesetzt. Weitere Einzelheiten finden Sie unter Wikipedia Minkowski addition.

Der erste Parameter kann irgendeine 2D-Geometrie (Punkt, Linienzug, Polygon) sein. Wenn eine 3D-Geometrie eingegeben wird, so wird diese in 2D umgewandelt, indem Z auf 0 gesetzt wird. Dies kann zu ungültigen Spezialfällen führen. Der zweite Parameter muss ein 2D-Polygon sein.

Die Umsetzung nützt CGAL 2D Minkowskisum.

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

Beispiele

Die Minkowski-Summe eines LineString's, der ein Kreispolygon schneidet

Vor dem Aufsummieren

Nach dem Aufsummieren

SELECT ST_MinkowskiSum(line, circle))
FROM (SELECT
    ST_MakeLine(ST_Point(10, 10),ST_Point(100, 100)) As line,
    ST_Buffer(ST_GeomFromText('POINT(50 50)'), 30) As circle) As foo;

-- wkt --
MULTIPOLYGON(((30 59.9999999999999,30.5764415879031 54.1472903395161,32.2836140246614 48.5194970290472,35.0559116309237 43.3328930094119,38.7867965644036 38.7867965644035,43.332893009412 35.0559116309236,48.5194970290474 32.2836140246614,54.1472903395162 30.5764415879031,60.0000000000001 30,65.8527096604839 30.5764415879031,71.4805029709527 32.2836140246614,76.6671069905881 35.0559116309237,81.2132034355964 38.7867965644036,171.213203435596 128.786796564404,174.944088369076 133.332893009412,177.716385975339 138.519497029047,179.423558412097 144.147290339516,180 150,179.423558412097 155.852709660484,177.716385975339 161.480502970953,174.944088369076 166.667106990588,171.213203435596 171.213203435596,166.667106990588 174.944088369076,
161.480502970953 177.716385975339,155.852709660484 179.423558412097,150 180,144.147290339516 179.423558412097,138.519497029047 177.716385975339,133.332893009412 174.944088369076,128.786796564403 171.213203435596,38.7867965644035 81.2132034355963,35.0559116309236 76.667106990588,32.2836140246614 71.4805029709526,30.5764415879031 65.8527096604838,30 59.9999999999999)))
            

Minkowski Summe von einem Polygon mit einem MultiPoint

Vor dem Aufsummieren

Nach der Aufsummierung: das Polygon ist dupliziert und in Punktlagen übersetzt

SELECT ST_MinkowskiSum(mp, poly)
FROM (SELECT 'MULTIPOINT(25 50,70 25)'::geometry As mp,
   'POLYGON((130 150, 20 40, 50 60, 125 100, 130 150))'::geometry As poly
    ) As foo


-- wkt --
MULTIPOLYGON(
    ((70 115,100 135,175 175,225 225,70 115)),
    ((120 65,150 85,225 125,275 175,120 65))
    )
            

Name

ST_ConstrainedDelaunayTriangles — Return a constrained Delaunay triangulation around the given input geometry.

Synopsis

geometry ST_Tesselate(geometry geom);

Beschreibung

Return a Constrained Delaunay triangulation around the vertices of the input geometry. Output is a TIN.

This method needs SFCGAL backend.

Verfügbarkeit: 2.1.0

This function supports 3d and will not drop the z-index.

Beispiele

ST_ConstrainedDelaunayTriangles of 2 polygons

select ST_ConstrainedDelaunayTriangles(
               ST_Union(
                       'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'::geometry,
                       ST_Buffer('POINT(110 170)'::geometry, 20)
                   )
           );
                                

ST_DelaunayTriangles of 2 polygons. Triangle edges cross polygon boundaries.

select ST_DelaunayTriangles(
               ST_Union(
                       'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'::geometry,
                       ST_Buffer('POINT(110 170)'::geometry, 20)
                   )
           );


Name

ST_3DIntersection — Führt eine Verschneidung in 3D aus

Synopsis

geometry ST_3DIntersection(geometry geom1, geometry geom2);

Beschreibung

Gibt die Schnittmenge von geom1 und geom2 als Geometrie zurück.

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Die 3D Bilder sind mit PostGIS ST_AsX3D erzeugt und das Rendern in HTML mit X3Dom HTML Javascript rendering library.

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;
                

Ursprüngliche 3D-Geometrien überlagert. geom2 wird halbtransparent angezeigt

SELECT ST_3DIntersection(geom1,geom2)
FROM ( SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2 ) As t;

Schnittmenge von geom1 und geom2

Linienzüge und Polygone in 3D

SELECT ST_AsText(ST_3DIntersection(linestring, polygon)) As wkt
FROM  ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS linestring
 CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;

              wkt
--------------------------------
 LINESTRING Z (1 1 8,0.5 0.5 8)
                

Würfel (geschlossene polyedrische Oberfläche) und Polygon Z

SELECT ST_AsText(ST_3DIntersection(
                ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
        ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
        ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
        ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'),
        'POLYGON Z ((0 0 0, 0 0 0.5, 0 0.5 0.5, 0 0.5 0, 0 0 0))'::geometry))
TIN Z (((0 0 0,0 0 0.5,0 0.5 0.5,0 0 0)),((0 0.5 0,0 0 0,0 0.5 0.5,0 0.5 0)))

Die Verschneidung von 2 Solids, die sich volumetrisch überschneiden, ist ebenfalls ein Solid (ST_Dimension liefert 3)

SELECT ST_AsText(ST_3DIntersection( ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),0,0,30),
 ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),2,0,10) ));
POLYHEDRALSURFACE Z (((13.3333333333333 13.3333333333333 10,20 20 0,20 20 10,13.3333333333333 13.3333333333333 10)),
        ((20 20 10,16.6666666666667 23.3333333333333 10,13.3333333333333 13.3333333333333 10,20 20 10)),
        ((20 20 0,16.6666666666667 23.3333333333333 10,20 20 10,20 20 0)),
        ((13.3333333333333 13.3333333333333 10,10 10 0,20 20 0,13.3333333333333 13.3333333333333 10)),
        ((16.6666666666667 23.3333333333333 10,12 28 10,13.3333333333333 13.3333333333333 10,16.6666666666667 23.3333333333333 10)),
        ((20 20 0,9.99999999999995 30 0,16.6666666666667 23.3333333333333 10,20 20 0)),
        ((10 10 0,9.99999999999995 30 0,20 20 0,10 10 0)),((13.3333333333333 13.3333333333333 10,12 12 10,10 10 0,13.3333333333333 13.3333333333333 10)),
        ((12 28 10,12 12 10,13.3333333333333 13.3333333333333 10,12 28 10)),
        ((16.6666666666667 23.3333333333333 10,9.99999999999995 30 0,12 28 10,16.6666666666667 23.3333333333333 10)),
        ((10 10 0,0 20 0,9.99999999999995 30 0,10 10 0)),
        ((12 12 10,11 11 10,10 10 0,12 12 10)),((12 28 10,11 11 10,12 12 10,12 28 10)),
        ((9.99999999999995 30 0,11 29 10,12 28 10,9.99999999999995 30 0)),((0 20 0,2 20 10,9.99999999999995 30 0,0 20 0)),
        ((10 10 0,2 20 10,0 20 0,10 10 0)),((11 11 10,2 20 10,10 10 0,11 11 10)),((12 28 10,11 29 10,11 11 10,12 28 10)),
        ((9.99999999999995 30 0,2 20 10,11 29 10,9.99999999999995 30 0)),((11 11 10,11 29 10,2 20 10,11 11 10)))

Name

ST_3DDifference — Errechnet die Differenzmenge in 3D

Synopsis

geometry ST_3DDifference(geometry geom1, geometry geom2);

Beschreibung

Gibt jenen Teil von geom1 zurück, der nicht Teil von geom2 ist.

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Die 3D Bilder sind mit PostGIS ST_AsX3D erzeugt und das Rendern in HTML mit X3Dom HTML Javascript rendering library.

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;
                

Ursprüngliche 3D-Geometrien überlagert. geom2 ist jener Teil der nicht entfernt wird.

SELECT ST_3DDifference(geom1,geom2)
FROM ( SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2 ) As t;

Was bleibt zurück nachdem geom2 entfernt wurde


Name

ST_3DUnion — Führt eine Vereinigung/Union in 3D aus

Synopsis

geometry ST_3DUnion(geometry geom1, geometry geom2);

Beschreibung

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Die 3D Bilder sind mit PostGIS ST_AsX3D erzeugt und das Rendern in HTML mit X3Dom HTML Javascript rendering library.

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;
                

Überlagerung der ursprünglichen Geometrien in 3D. geom2 ist transparent dargestellt.

SELECT ST_3DUnion(geom1,geom2)
FROM ( SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2 ) As t;

Vereinigung von geom1 und geom2


Name

ST_3DArea — Berechnet die Fläche von 3D-Oberflächengeometrien. Gibt 0 für Solids zurück.

Synopsis

floatST_3DArea(geometry geom1);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Anmerkung: Standardmäßig ist ein aus WKT erzeugtes PolyhedralSurface eine Oberflächengeometrie und kein Solid. Es hat daher eine Flächenausdehnung. In ein Solid umgewandelt, keine Fläche.

SELECT ST_3DArea(geom) As cube_surface_area,
        ST_3DArea(ST_MakeSolid(geom)) As solid_surface_area
  FROM (SELECT 'POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
    ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
    ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
    ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
    ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
    ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'::geometry) As f(geom);

 cube_surface_area | solid_surface_area
-------------------+--------------------
                 6 |                  0    

Name

ST_Tesselate — Erzeugt ein Oberflächen-Mosaik aus einem Polygon oder einer polyedrischen Oberfläche und gibt dieses als TIN oder als TIN-Kollektion zurück

Synopsis

geometry ST_Tesselate(geometry geom);

Beschreibung

Nimmt als Eingabe eine Fläche, wie ein Multi(Polygon) oder eine polyedrische Oberfläche, und gibt, mittels Mosaikierung in Dreiecke, eine TIN-Darstellung der Geometrie zurück.

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )');

Ursprünglicher Würfel

SELECT ST_Tesselate(ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
        ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
        ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
        ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));

ST_AsText Ausgabe:

TIN Z (((0 0 0,0 0 1,0 1 1,0 0 0)),((0 1 0,0 0 0,0 1 1,0 1 0)),
        ((0 0 0,0 1 0,1 1 0,0 0 0)),
        ((1 0 0,0 0 0,1 1 0,1 0 0)),((0 0 1,1 0 0,1 0 1,0 0 1)),
        ((0 0 1,0 0 0,1 0 0,0 0 1)),
        ((1 1 0,1 1 1,1 0 1,1 1 0)),((1 0 0,1 1 0,1 0 1,1 0 0)),
        ((0 1 0,0 1 1,1 1 1,0 1 0)),((1 1 0,0 1 0,1 1 1,1 1 0)),
        ((0 1 1,1 0 1,1 1 1,0 1 1)),((0 1 1,0 0 1,1 0 1,0 1 1)))

Mosaikierter Würfel mit eingefärbten Dreiecken

SELECT 'POLYGON (( 10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190 ))'::geometry;

Ursprüngliches Polygon

SELECT
        ST_Tesselate('POLYGON (( 10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190 ))'::geometry);

ST_AsText Ausgabe

TIN(((80 130,50 160,80 70,80 130)),((50 160,10 190,10 70,50 160)),
         ((80 70,50 160,10 70,80 70)),((120 160,120 190,50 160,120 160)),
 ((120 190,10 190,50 160,120 190)))

Mosaikiertes Polygon


Name

ST_Volume — Berechnet das Volumen eines 3D-Solids. Auf Oberflächengeometrien (auch auf geschlossene) angewandt wird 0 zurückgegeben.

Synopsis

float ST_Volume(geometry geom1);

Beschreibung

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiel

Wenn geschlossene Oberflächen über WKT erzeugt werden, so werden diese wie eine Flächen und nicht wie ein Solid behandelt. Um sie in ein Solid umzuwandeln, müssen Sie ST_MakeSolid verwenden. Flächeneometrien besitzen kein Volumen. Das folgende Beispiel demonstriert dies.

SELECT ST_Volume(geom) As cube_surface_vol,
        ST_Volume(ST_MakeSolid(geom)) As solid_surface_vol
  FROM (SELECT 'POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
    ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
    ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
    ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
    ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
    ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'::geometry) As f(geom);

 cube_surface_vol | solid_surface_vol
------------------+-------------------
                0 |                 1
              

Name

ST_MakeSolid — Wandelt die Geometrie in ein Solid um. Es wird keine Überprüfung durchgeführt. Um ein gültiges Solid zu erhalten muss die eingegebene Geometrie entweder eine geschlossene polyedrische Oberfläche oder ein geschlossenes TIN sein.

Synopsis

geometryST_MakeSolid(geometry geom1);

Beschreibung

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).


Name

ST_IsSolid — Überprüft ob die Geometrie ein Solid ist. Es wird keine Plausibilitätsprüfung durchgeführt.

Synopsis

booleanST_IsSolid(geometry geom1);

Beschreibung

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

8.11. Geometrieverarbeitung

Abstract

These functions compute geometric constructions, or alter geometry size or shape.

ST_Buffer — Computes a geometry covering all points within a given distance from a geometry.
ST_BuildArea — Erzeugt eine Flächengeometrie aus den einzelnen Linien einer gegebenen Geometrie
ST_Centroid — Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.
ST_ConcaveHull — Computes a possibly concave geometry that encloses all input geometry vertices
ST_ConvexHull — Computes the convex hull of a geometry.
ST_DelaunayTriangles — Gibt die Zellen des Voronoi Diagramms zurück, die aus den Knoten der Geometrie erzeugt wurden.
ST_FilterByM — Removes vertices based on their M value
ST_GeneratePoints — Generates random points contained in a Polygon or MultiPolygon.
ST_GeometricMedian — Returns the geometric median of a MultiPoint.
ST_MinimumBoundingCircle — Gibt das kleinstmögliche Kreispolygon zurück, welches eine Geometrie zur Gänze beinhaltet.
ST_MinimumBoundingCircle — Returns the smallest circle polygon that contains a geometry.
ST_MinimumBoundingRadius — Gibt den Mittelpunkt und den Radius des kleinstmöglichen Kreises zurück, der die gesamte Geometrie beinhaltet.
ST_OrientedEnvelope — Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.
ST_OffsetCurve — Gibt eine Linie zurück, die um eine gegebenen Entfernung und Seite von der Eingabelinie versetzt ist. Nützlich zur Berechnung von Linien, die zu einer Mittellinie parallel verlaufen
ST_PointOnSurface — Computes a point guaranteed to lie in a polygon, or on a geometry.
ST_Polygonize — Erzeugt eine Sammelgeometrie/GeometryCollection, welche Polygone enthält, die aus den einzelnen Linien einer Menge von Geometrien gebildet werden können.
ST_ReducePrecision — Returns a valid geometry with points rounded to a grid tolerance.
ST_SharedPaths — Gibt eine Sammelgeometrie zurück, welche die gemeinsamen Strecken der beiden eingegebenen LineStrings/MultiLinestrings enthält.
ST_Simplify — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Douglas-Peucker Algorithmus.
ST_SimplifyPreserveTopology — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Douglas-Peucker Algorithmus.
ST_SimplifyVW — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Visvalingam-Whyatt Algorithmus.
ST_ChaikinSmoothing — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Visvalingam-Whyatt Algorithmus.
ST_SetEffectiveArea — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Visvalingam-Whyatt Algorithmus.
ST_VoronoiLines — Gibt die Zellen des Voronoi Diagramms zurück, die aus den Knoten der Geometrie erzeugt wurden.
ST_VoronoiPolygons — Gibt die Zellen des Voronoi Diagramms zurück, die aus den Knoten der Geometrie erzeugt wurden.

Name

ST_Buffer — Computes a geometry covering all points within a given distance from a geometry.

Synopsis

geometry ST_Buffer(geometry g1, float radius_of_buffer);

geometry ST_Buffer(geometry g1, float radius_of_buffer, integer num_seg_quarter_circle);

geometry ST_Buffer(geometry g1, float radius_of_buffer, text buffer_style_parameters);

geography ST_Buffer(geography g1, float radius_of_buffer_in_meters);

geography ST_Buffer(geography g1, float radius_of_buffer, integer num_seg_quarter_circle);

geography ST_Buffer(geography g1, float radius_of_buffer, text buffer_style_parameters);

Beschreibung

Computes a a POLYGON or MULTIPOLYGON that represents all points whose distance from a geometry/geography is less than or equal to a given distance. A negative distance shrinks the geometry rather than expanding it. A negative distance may shrink a polygon completely, in which case POLYGON EMPTY is returned. For points and lines negative distances always return empty results.

For geometry, the distance is specified in the units of the Spatial Reference System of the geometry. For geography, the distance is specified in meters.

The optional third parameter controls the buffer accuracy and style. The accuracy of circular arcs in the buffer is specified as the number of line segments used to approximate a quarter circle (default is 8). The buffer style can be specifed by providing a list of blank-separated key=value pairs as follows:

  • 'quad_segs=#' : number of line segments used to approximate a quarter circle (default is 8).

  • 'endcap=round|flat|square' : endcap style (defaults to "round"). 'butt' is accepted as a synonym for 'flat'.

  • 'join=round|mitre|bevel' : join style (defaults to "round"). 'miter' is accepted as a synonym for 'mitre'.

  • 'mitre_limit=#.#' : mitre ratio limit (only affects mitered join style). 'miter_limit' is accepted as a synonym for 'mitre_limit'.

  • 'side=both|left|right' : 'left' or 'right' performs a single-sided buffer on the geometry, with the buffered side relative to the direction of the line. This is only applicable to LINESTRING geometry and does not affect POINT or POLYGON geometries. By default end caps are square.

[Note]

For geography, this is a wrapper around the geometry implementation. It determines a planar spatial reference system that best fits the bounding box of the geography object (trying UTM, Lambert Azimuthal Equal Area (LAEA) North/South pole, and finally Mercator ). The buffer is computed in the planar space, and then transformed back to WGS84. This may not produce the desired behaviour if the input object is much larger than a UTM zone or crosses the dateline

[Note]

Buffer output is always a valid polygonal geometry. Buffer can handle invalid inputs, so buffering by distance 0 is sometimes used as a way of repairing invalid polygons. ??? can also be used for this purpose.

[Note]

Buffering is sometimes used to perform a within-distance search. For this use case it is more efficient to use ???.

[Note]

This function ignores the Z dimension. It always gives a 2D result even when used on a 3D geometry.

Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right.

Verfügbarkeit: 1.5 - ST_Buffer wurde um die Unterstützung von Abschlusstücken/endcaps und Join-Typen erweitert. Diese können zum Beispiel dazu verwendet werden, um Linienzüge von Straßen in Straßenpolygone mit flachen oder rechtwinkeligen Abschlüssen anstatt mit runden Enden umzuwandeln. Ein schlanker Adapter für den geographischen Datentyp wurde hinzugefügt. - benötigt GEOS >= 3.2 um diese erweiterte geometrische Funktionalität auszunutzen.

Wird vom GEOS Modul ausgeführt

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.17

Beispiele

quad_segs=8 (Standardwert)

SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=8');
                

quad_segs=2 (lahme Ente)

SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2');
                

endcap=round join=round (Standardwert)

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'endcap=round join=round');
                

endcap=square

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'endcap=square join=round');
                

endcap=flat

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'endcap=flat join=round');
                

join=bevel

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                

join=mitre mitre_limit=5.0 (default mitre limit)

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=mitre mitre_limit=5.0');
                

join=mitre mitre_limit=1

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=mitre mitre_limit=1.0');
                

side=left

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                

side=right

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                

side=left join=mitre

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                

right-hand-winding, polygon boundary side=left

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                

right-hand-winding, polygon boundary side=right

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                

--A buffered point approximates a circle
-- A buffered point forcing approximation of (see diagram)
-- 2 points per quarter circle is poly with 8 sides (see diagram)
SELECT ST_NPoints(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50)) As promisingcircle_pcount,
ST_NPoints(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50, 2)) As lamecircle_pcount;

promisingcircle_pcount | lamecircle_pcount
------------------------+-------------------
             33 |                9

--A lighter but lamer circle
-- only 2 points per quarter circle is an octagon
--Below is a 100 meter octagon
-- Note coordinates are in NAD 83 long lat which we transform
to Mass state plane meter and then buffer to get measurements in meters;
SELECT ST_AsText(ST_Buffer(
ST_Transform(
ST_SetSRID(ST_Point(-71.063526, 42.35785),4269), 26986)
,100,2)) As octagon;
----------------------
POLYGON((236057.59057465 900908.759918696,236028.301252769 900838.049240578,235
957.59057465 900808.759918696,235886.879896532 900838.049240578,235857.59057465
900908.759918696,235886.879896532 900979.470596815,235957.59057465 901008.759918
696,236028.301252769 900979.470596815,236057.59057465 900908.759918696))
        

Name

ST_BuildArea — Erzeugt eine Flächengeometrie aus den einzelnen Linien einer gegebenen Geometrie

Synopsis

geometry ST_BuildArea(geometry A);

Beschreibung

Erzeugt eine Flächengeometrie aus den einzelnen Linien einer gegebenen Geometrie. Der zurückgegebene Datentyp ist, abhängig von der Eingabe, ein Polygon oder ein MultiPolygon. Wenn das Eingabe-Liniennetz keine Polygone bildet, wird NULL zurückgegeben. Die Eingabe können LineStrings, MultiLinestrings, Polygons, MultiPolygons und GeometryCollections sein.

Diese Funktion nimmt an, dass alle inneren Geometrien Lücken/Inseln darstellen.

[Note]

Damit diese Funktion korrekt arbeitet, müssen die Knoten des eingegebenen Liniennetzes richtig angeordnet sein

Verfügbarkeit: 1.5.0

Beispiele

Erzeugt einen Donut

SELECT ST_BuildArea(ST_Collect(smallc,bigc))
FROM (SELECT
        ST_Buffer(
          ST_GeomFromText('POINT(100 90)'), 25) As smallc,
        ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As bigc) As foo;
                

SELECT ST_BuildArea(ST_Collect(smallc,bigc))
FROM (SELECT
        ST_Buffer(
          ST_GeomFromText('POINT(100 90)'), 25) As smallc,
        ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As bigc) As foo;

Siehe auch

???, ST_MakePolygon, ???, ??? Adapter für diese Funktion mit der OGC-Standardschnittstelle


Name

ST_Centroid — Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.

Synopsis

geometry ST_Intersection( geometry geomA , geometry geomB );

geography ST_Intersection( geography geogA , geography geogB );

Beschreibung

Computes a point which is the geometric center of mass of a geometry. For [MULTI]POINTs, the centroid is the arithmetic mean of the input coordinates. For [MULTI]LINESTRINGs, the centroid is computed using the weighted length of each line segment. For [MULTI]POLYGONs, the centroid is computed in terms of area. If an empty geometry is supplied, an empty GEOMETRYCOLLECTION is returned. If NULL is supplied, NULL is returned. If CIRCULARSTRING or COMPOUNDCURVE are supplied, they are converted to linestring wtih CurveToLine first, then same than for LINESTRING

For mixed-dimension input, the result is equal to the centroid of the component Geometries of highest dimension (since the lower-dimension geometries contribute zero "weight" to the centroid).

Note that for polygonal geometries the centroid does not necessarily lie in the interior of the polygon. For example, see the diagram below of the centroid of a C-shaped polygon. To construct a point guaranteed to lie in the interior of a polygon use ST_PointOnSurface.

New in 2.3.0 : supports CIRCULARSTRING and COMPOUNDCURVE (using CurveToLine)

Verfügbarkeit: 1.5 die Unterstützung des geograpischen Datentyps wurde eingeführt

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.7

Beispiele

In the following illustrations the green dot is the centroid of the source geometry.

Centroid of a MULTIPOINT

Centroid of a LINESTRING

Centroid of a POLYGON

Bitte nicht mit einer GEOMETRYCOLLECTION als Parameter aufrufen

SELECT ST_AsText(ST_Centroid('MULTIPOINT ( -1 0, -1 2, -1 3, -1 4, -1 7, 0 1, 0 3, 1 1, 2 0, 6 0, 7 8, 9 8, 10 6 )'));
                st_astext
------------------------------------------
 POINT(2.30769230769231 3.30769230769231)
(1 row)

SELECT ST_AsText(ST_centroid(g))
FROM  ST_GeomFromText('CIRCULARSTRING(0 2, -1 1,0 0, 0.5 0, 1 0, 2 1, 1 2, 0.5 2, 0 2)')  AS g ;
------------------------------------------
POINT(0.5 1)


SELECT ST_AsText(ST_centroid(g))
FROM  ST_GeomFromText('COMPOUNDCURVE(CIRCULARSTRING(0 2, -1 1,0 0),(0 0, 0.5 0, 1 0),CIRCULARSTRING( 1 0, 2 1, 1 2),(1 2, 0.5 2, 0 2))' ) AS g;
------------------------------------------
POINT(0.5 1)


Name

ST_ConcaveHull — Computes a possibly concave geometry that encloses all input geometry vertices

Synopsis

geometry ST_ConcaveHull(geometry geomA, float target_percent, boolean allow_holes=false);

Beschreibung

Die konkave Hülle einer Geometrie stellt eine möglicherweise konkave Geometrie dar, welche alle Geometrien der Menge einschließt. Ob Polygone Lücken aufweisen dürfen ist standardmäßig auf FALSE gesetzt. Das Ergebnis ist niemals mehr als ein einzelnes Polygon.

Der Eingabeparameter "target_percent" ist der Flächenanteil der konvexen Hülle für den PostGIS eine Lösung annähert bevor es aufgibt oder beendet. Man kann sich eine konkave Hülle als eine Geometrie vorstellen, die man erhält wenn man einen Satz an Geometrien vakuumversiegelt. Ein target_percent von 1 führt zum selben Ergebnis wie die konvexe Hülle. Ein target_percent zwischen 0 und 0.99 ergibt eine kleinere Fläche als die konvexe Hülle. Dies unterscheidet sich von der konvexen Hülle, welche eher einem Gummiband entspricht, das den Satz an Geometrien umwickelt.

Wird üblicherweise auf Mehrfach/MULTI- und Sammelgeometrien/GeometryCollections angewandt. Obwohl es sich nicht um eine Aggregatfunktion handelt, können Sie es in Verbindung mit ST_Collect oder ST_Union verwenden um die konkave Hülle eines Satzes an Points/Linestrings/Polygons zu erhalten - ST_ConcaveHull(ST_Collect(somepointfield), 0.80).

It is slower to compute than the convex hull but generally has a smaller result area and represents a more natural bounds of the input geometry.

[Note]

Anmerkung - Wenn Sie es auf Punkte, Linienzüge oder Sammelgeometrien anwenden, werwenden Sie bitte ST_Collect. Bei Polygonen verwenden Sie bitte ST_Union, da es bei invaliden Geometrien fehlschlagen kann.

[Note]

Anmerkung - Umso kleiner Sie die target_percent ansetzen, desto länger dauert die Berechnung der konkaven Hülle und desto wahrscheinlicher ist es, das topologische Fehler auftreten. Dies gilt auch umso größer die Anzahl der Kommastellen und die Anzahl der Punkte ist. Versuchen Sie zuerst eine 0.99, dies ist üblicherweise sehr schnell, manchmal so schnell wie die Berechnung der konvexen Hülle und ergibt meist einen viel besseren Wert als 99% Schrumpfung, da es fast immer über das Ziel hinausschießt. Als nächstes versuchen Sie 0.98; üblicherweise verlangsamt sich die Berechnung quadratisch. Um die Präzision und Kommastellen zu verringern, verwenden Sie bitte ST_SimplifyPreserveTopology oderST_SnapToGrid nach ST_ConcaveHull. ST_SnapToGrid ist ein wenig schneller, kann allerdings zu invaliden Geometrien führen, während ST_SimplifyPreserveTopology meist die Validität der Geometrie erhält.

Ein konkreteres Beispiel und eine kurze Erklärung der Technik finden Sie unter http://www.bostongis.com/postgis_concavehull.snippet

Siehe auch Simon Greeners Artikel über ConcaveHull, die in Oracle 11G-R2 eingeführt wurde. http://www.spatialdbadvisor.com/oracle_spatial_tips_tricks/172/concave-hull-geometries-in-oracle-11gr2. Die Lösung, die wir mit 0.75 target_percent der konvexen Hülle erhalten ähnelt der Geometrieform, die Simon mit Oracle SDO_CONCAVEHULL_BOUNDARY erhält.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

Beispiele

--Abschätzung der infizierten Fläche aus Punktbeobachtungen
SELECT d.disease_type,
        ST_ConcaveHull(ST_Collect(d.pnt_geom), 0.99) As geom
        FROM disease_obs As d
        GROUP BY d.disease_type;

ST_ConcaveHull von 2 Polygonen die von einer konkaven Hülle mit 100% Schrumpfung umhüllt werden.

-- Geometrien mit konkaver Hülle überlagert
-- Ziel 100% Schrumpfung (dies entspricht der konvexen Hülle - keine Schrumpfung)
SELECT
        ST_ConcaveHull(
                ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                ), 1)
         As convexhull;
                

-- Geometrien überlagert mit der konkaven Hülle mit einem Zielwert von 90% der konvexen Hülle

-- Geometrien überlagert mit der konkaven Hülle, die einen Zielwert von 90% Schrumpfung hat
SELECT
        ST_ConcaveHull(
                ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                ), 0.9)
         As target_90;
                

Als L angeordnete Punkte mit der konvexen Hülle überlagert.

-- Erzeugt eine Tabelle mit 42 Punkten, die eine L-Form bilden
SELECT (ST_DumpPoints(ST_GeomFromText(
'MULTIPOINT(14 14,34 14,54 14,74 14,94 14,114 14,134 14,
150 14,154 14,154 6,134 6,114 6,94 6,74 6,54 6,34 6,
14 6,10 6,8 6,7 7,6 8,6 10,6 30,6 50,6 70,6 90,6 110,6 130,
6 150,6 170,6 190,6 194,14 194,14 174,14 154,14 134,14 114,
14 94,14 74,14 54,14 34,14 14)'))).geom
        INTO TABLE l_shape;

SELECT ST_ConvexHull(ST_Collect(geom))
FROM l_shape;
                

ST_ConcaveHull der als L angeordneten Punkte mit einem Zielwert von 99% der konvexen Hülle

SELECT ST_ConcaveHull(ST_Collect(geom), 0.99)
        FROM l_shape;
                

ST_ConcaveHull der als L angeordneten Punkte mit einem Zielwert von 80% der Fläche der konvexen Hülle

-- Konkave Hülle derals L angeordneten Punkte
        -- mit einem Zielwert von 80% der konvexen Hülle
        SELECT ST_ConcaveHull(ST_Collect(geom), 0.80)
        FROM l_shape;
    

MultiLinestring überlagert mit konvexer Hülle

MultiLineString überlagert mit der konkaven Hülle der LineStrings mit einem Zielwert von 99% - erster Versuch

SELECT ST_ConcaveHull(ST_GeomFromText('MULTILINESTRING((106 164,30 112,74 70,82 112,130 94,
        130 62,122 40,156 32,162 76,172 88),
(132 178,134 148,128 136,96 128,132 108,150 130,
170 142,174 110,156 96,158 90,158 88),
(22 64,66 28,94 38,94 68,114 76,112 30,
132 10,168 18,178 34,186 52,184 74,190 100,
190 122,182 148,178 170,176 184,156 164,146 178,
132 186,92 182,56 158,36 150,62 150,76 128,88 118))'),0.99)
    


Name

ST_ConvexHull — Computes the convex hull of a geometry.

Synopsis

geometry ST_ConvexHull(geometry geomA);

Beschreibung

Die konvexe Hülle einer Geometrie stell die kleinste konvexe Geometrie dar, welche den Satz von Geometrien umschließt.

In the general case the convex hull is a Polygon. The convex hull of two or more collinear points is a two-point LineString. The convex hull of one or more identical points is a Point.

Wird üblicherweise auf Mehrfach/MULTI- und Sammelgeometrien/GeometryCollections angewandt. Obwohl es sich nicht um eine Aggregatfunktion handelt, können Sie es in Verbindung mit ST_Collect verwenden um die konvexe Hülle einer Punktmenge zu erhalten. ST_ConvexHull(ST_Collect(somepointfield)).

Man kann sich die konvexe Hülle als eine Geometrie vorstellen, die man erhält wenn man ein elastisches Band um einen Satz von Geometrien wickelt. Dies unterscheidet sich von der konkaven Hülle, die analog dem Vakuumverpacken von Geometrien ist.

Wird vom GEOS Modul ausgeführt

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.16

This function supports 3d and will not drop the z-index.

Beispiele

Konvexe Hülle eines MultiLineString und eines MultiPoint gemeinsam mit dem MultiLineString und dem MultiPoint

SELECT ST_AsText(ST_ConvexHull(
        ST_Collect(
                ST_GeomFromText('MULTILINESTRING((100 190,10 8),(150 10, 20 30))'),
                        ST_GeomFromText('MULTIPOINT(50 5, 150 30, 50 10, 10 10)')
                        )) );
---st_astext--
POLYGON((50 5,10 8,10 10,100 190,150 30,150 10,50 5))
    

Using with ST_Collect to compute the convex hulls of geometry sets.

-- Abschätzung des infizierten Gebietes aus Punktbeobachtungen
SELECT d.disease_type,
        ST_ConvexHull(ST_Collect(d.the_geom)) As the_geom
        FROM disease_obs As d
        GROUP BY d.disease_type;

Name

ST_DelaunayTriangles — Gibt die Zellen des Voronoi Diagramms zurück, die aus den Knoten der Geometrie erzeugt wurden.

Synopsis

geometry ST_DelaunayTriangles(geometry g1, float tolerance, int4 flags);

Beschreibung

Gibt eine Delaunay-Triangulierung rund um die Knoten der Eingabegeometrie zurück. Die Ausgabe ist eine COLLECTION von Polygonen (flags=0), ein MultiLineString (flags=1) oder ein TIN (flags=2). Die Toleranz, sofern angegeben, wird zum Zusammenfangen von Knoten verwendet.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

This function supports 3d and will not drop the z-index.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

2D Beispiele

Ursprüngliche Polygone

-- Unsere ursprüngliche Geometrie --
        ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                )

ST_DelaunayTriangles von 2 Polygonen: delaunay triangulierte Polygone, jedes der Dreiecke ist in einer eigenen Farbe dargestellt

-- geometries overlaid multilinestring triangles
SELECT
        ST_DelaunayTriangles(
                ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                ))
         As  dtriag;
                

-- Delaunay-Dreiecke als MultiLinestring

SELECT
        ST_DelaunayTriangles(
                ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                ),0.001,1)
         As  dtriag;

-- Delaunay Dreiecke von 45 Punkten als 55 Dreieckspolygone

-- erzeugt eine Tabelle mit 42 Punkten die eine L-Form bilden
SELECT (ST_DumpPoints(ST_GeomFromText(
'MULTIPOINT(14 14,34 14,54 14,74 14,94 14,114 14,134 14,
150 14,154 14,154 6,134 6,114 6,94 6,74 6,54 6,34 6,
14 6,10 6,8 6,7 7,6 8,6 10,6 30,6 50,6 70,6 90,6 110,6 130,
6 150,6 170,6 190,6 194,14 194,14 174,14 154,14 134,14 114,
14 94,14 74,14 54,14 34,14 14)'))).geom
        INTO TABLE l_shape;
-- Ausgabe als einzelne Dreieckspolygone
SELECT ST_AsText((ST_Dump(geom)).geom) As wkt
FROM ( SELECT ST_DelaunayTriangles(ST_Collect(geom)) As geom
FROM l_shape) As foo;

---wkt ---
POLYGON((6 194,6 190,14 194,6 194))
POLYGON((14 194,6 190,14 174,14 194))
POLYGON((14 194,14 174,154 14,14 194))
POLYGON((154 14,14 174,14 154,154 14))
POLYGON((154 14,14 154,150 14,154 14))
POLYGON((154 14,150 14,154 6,154 14))
:
:

3D Beispiele

-- 3D-MULTIPOINT --
SELECT ST_AsText(ST_DelaunayTriangles(ST_GeomFromText(
'MULTIPOINT Z(14 14 10,
150 14 100,34 6 25, 20 10 150)'))) As wkt;

-----wkt----
GEOMETRYCOLLECTION Z (POLYGON Z ((14 14 10,20 10 150,34 6 25,14 14 10))
 ,POLYGON Z ((14 14 10,34 6 25,150 14 100,14 14 10)))

Name

ST_FilterByM — Removes vertices based on their M value

Synopsis

geometry ST_Simplify(geometry geomA, float tolerance, boolean preserveCollapsed);

Beschreibung

Filters out vertex points based on their M-value. Returns a geometry with only vertex points that have a M-value larger or equal to the min value and smaller or equal to the max value. If max-value argument is left out only min value is considered. If fourth argument is left out the m-value will not be in the resulting geometry. If resulting geometry have too few vertex points left for its geometry type an empty geometry will be returned. In a geometry collection geometries without enough points will just be left out silently.

This function is mainly intended to be used in conjunction with ST_SetEffectiveArea. ST_EffectiveArea sets the effective area of a vertex in its m-value. With ST_FilterByM it then is possible to get a simplified version of the geometry without any calculations, just by filtering

[Note]

There is a difference in what ST_SimplifyVW returns when not enough points meet the criteria compared to ST_FilterByM. ST_SimplifyVW returns the geometry with enough points while ST_FilterByM returns an empty geometry

[Note]

Note that the returned geometry might be invalid

[Note]

This function returns all dimensions, including the Z and M values

Verfügbarkeit: 2.0.0

Beispiele

A linestring is filtered

select ST_AsText(ST_SimplifyVW(geom,30)) simplified
FROM (SELECT  'LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry geom) As foo;
-result
 simplified
-----------+-------------------+
LINESTRING(5 2,7 25,10 10)
                

Name

ST_GeneratePoints — Generates random points contained in a Polygon or MultiPolygon.

Synopsis

geometry ST_Intersection( geometry geomA , geometry geomB );

geography ST_Intersection( geography geogA , geography geogB );

Beschreibung

ST_GeneratePoints erzeugt solange pseudomäßige Zufallspunkte, bis die angefragte Anzahl innerhalb der Eingabefläche gefunden wurde.

Verfügbarkeit: 2.3.0

Enhanced: 3.0.0, added seed parameter

Beispiele

Ursprüngliches Polygon

Ursprungspolygon mit 12 erzeugten Punkte überlagert

SELECT ST_GeneratePoints(
        ST_Buffer(
                ST_GeomFromText(
                'LINESTRING(50 50,150 150,150 50)'
                ), 10, 'endcap=round join=round'), 12);


Name

ST_GeometricMedian — Returns the geometric median of a MultiPoint.

Synopsis

geometry ST_DelaunayTriangles(geometry g1, float tolerance, int4 flags);

Beschreibung

Computes the approximate geometric median of a MultiPoint geometry using the Weiszfeld algorithm. The geometric median is the point minimizing the sum of distances to the input points. It provides a centrality measure that is less sensitive to outlier points than the centroid (center of mass).

The algorithm iterates until the distance change between successive iterations is less than the supplied tolerance parameter. If this condition has not been met after max_iterations iterations, the function produces an error and exits, unless fail_if_not_converged is set to false (the default).

If a tolerance argument is not provided, the tolerance value is calculated based on the extent of the input geometry.

If present, the input point M values are interpreted as their relative weights.

Verfügbarkeit: 2.3.0

Enhanced: 2.5.0 Added support for M as weight of points.

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

Beispiele

Comparison of the centroid (turquoise point) and geometric median (red point) of a four-point MultiPoint (yellow points).

WITH test AS (
SELECT 'MULTIPOINT((0 0), (1 1), (2 2), (200 200))'::geometry geom)
SELECT
  ST_AsText(ST_Centroid(geom)) centroid,
  ST_AsText(ST_GeometricMedian(geom)) median
FROM test;
      centroid      |                 median
--------------------+----------------------------------------
 POINT(50.75 50.75) | POINT(1.9761550281255 1.9761550281255)
(1 row)
      

Siehe auch

ST_Centroid


Name

ST_MinimumBoundingCircle — Gibt das kleinstmögliche Kreispolygon zurück, welches eine Geometrie zur Gänze beinhaltet.

Synopsis

(geometry, double precision) ST_MinimumBoundingRadius(geometry geom);

Beschreibung

Finds the largest circle that is fully contained within a geometry. Returns a record with the center point of the circle, a point on the geometry that is nearest to the center, and the radius of the circle.

For polygonal inputs, the circle is inscribed within the external ring, using the internal rings as boundaries. For linear and point inputs, the circle is inscribed within the convex hull of the input, using the input as further boundaries.

Verfügbarkeit: 2.1.0 - benötigt GEOS >= 3.4.0.

Beispiele

SELECT radius, ST_AsText(center) AS center, ST_AsText(nearest) AS nearest
    FROM ST_MaximumInscribedCircle('POLYGON ((50 50, 150 50, 150 150, 50 150, 50 50))')

 radius |     center     |    nearest
--------+----------------+---------------
     50 | POINT(100 100) | POINT(100 50)

Maximum inscribed circle of a triangle polygon. Center, nearest point, and radius are returned.

Maximum inscribed circle of a multi-linestring. Center, nearest point, and radius are returned.


Name

ST_MinimumBoundingCircle — Returns the smallest circle polygon that contains a geometry.

Synopsis

geometry ST_MinimumBoundingCircle(geometry geomA, integer num_segs_per_qt_circ=48);

Beschreibung

Returns the smallest circle polygon that contains a geometry.

[Note]

Der Kreis wird standardmäßig durch ein Polygon mit 48 Segmenten pro Viertelkreis angenähert. Da das Polygon eine Annäherung an den minimalen Umgebungskreis ist, können einige Punkte der Eingabegeometrie nicht in dem Polygon enthalten sein. Die Annäherung kann durch Erhöhung der Anzahl der Segmente mit geringen Einbußen bei der Rechenleistung verbessert werden. Bei Anwendungen wo eine polygonale Annäherung nicht ausreicht, kann ST_MinimumBoundingRadius verwendet werden.

Wird üblicherweise auf Mehrfach/MULTI- und Sammelgeometrien/GeometryCollections angewandt. Obwohl es sich nicht um eine Aggregatfunktion handelt, können Sie es in Verbindung mit ST_Collect verwenden um den kleinstmöglichen Umgebungskreis eines Satzes an Geometrien zu erhalten. ST_MinimumBoundingCircle(ST_Collect(somepointfield)).

Das Verhältnis zwischen der Fläche des Polygons und der Fläche ihres kleinstmöglichen Umgebungskreises wird öfter als Roeck Test bezeichnet.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 1.5.0

Beispiele

SELECT d.disease_type,
        ST_MinimumBoundingCircle(ST_Collect(d.the_geom)) As the_geom
        FROM disease_obs As d
        GROUP BY d.disease_type;

Minimaler Umgebungskreis eines Punktes und eines Linienzuges. Verwendet 8 Segmente um einen Viertelkreis anzunähern.

SELECT ST_AsText(ST_MinimumBoundingCircle(
                ST_Collect(
                        ST_GeomFromEWKT('LINESTRING(55 75,125 150)'),
                                ST_Point(20, 80)), 8
                                )) As wktmbc;
wktmbc
-----------
POLYGON((135.59714732062 115,134.384753327498 102.690357210921,130.79416296937 90.8537670908995,124.963360620072 79.9451031602111,117.116420743937 70.3835792560632,107.554896839789 62.5366393799277,96.6462329091006 56.70583703063,84.8096427890789 53.115246672502,72.5000000000001 51.9028526793802,60.1903572109213 53.1152466725019,48.3537670908996 56.7058370306299,37.4451031602112 62.5366393799276,27.8835792560632 70.383579256063,20.0366393799278 79.9451031602109,14.20583703063 90.8537670908993,10.615246672502 102.690357210921,9.40285267938019 115,10.6152466725019 127.309642789079,14.2058370306299 139.1462329091,20.0366393799275 150.054896839789,27.883579256063 159.616420743937,
37.4451031602108 167.463360620072,48.3537670908992 173.29416296937,60.190357210921 176.884753327498,
72.4999999999998 178.09714732062,84.8096427890786 176.884753327498,96.6462329091003 173.29416296937,107.554896839789