PostGIS ist eine Erweiterung des objektrelationalen Datenbanksystems PostgreSQL. Es ermöglicht die Speicherung von Geoobjekten eines GIS (Geoinformationssystem) in der Datenbank. PostGIS unterstützt räumliche, GIST-basierte R-Tree Indizes, sowie Funktionen zur Analyse und Bearbeitung von Geoobjekten.
Dieses Handbuch beschreibt die Version 3.3.8dev
Diese Arbeit ist unter der Creative Commons Attribution-Share Alike 3.0 License lizensiert. Sie können den Inhalt ungeniert nutzen, aber wir ersuchen Sie das PostGIS Projekt namentlich aufzuführen und wenn möglich einen Verweis auf http://postgis.net zu setzen.
PostGIS erweitert das relationale Datenbanksystem PostgreSQL zu einer Geodatenbank. PostGIS wurde im Rahmen eines Technologieforschungsprojektes zu Geodatenbanken von Refractions Research Inc gegründet. Refractions ist ein Beratungsunternehmen für GIS und Datenbanken in Viktoria, British Columbia, Kanada, spezialisiert auf Datenintegration und Entwicklung von Individualsoftware.
PostGIS ist ein Projekt der OSGeo Foundation. PostGIS wird von vielen FOSS4G-Entwicklern und Unternehmen auf der ganzen Welt laufend verbessert und finanziert. Diese profitieren ihrerseits von der Funktionsvielfalt und Einsatzflexibilität von PostGIS.
Die PostGIS Project Develpment Group beabsichtigt durch die Unterstützung und Weiterentwicklung von PostGIS eine hohe Funktionsvielfalt zu erreichen. Diese soll wichtige GIS-Funktionalitäten, Kompatibilität mit den spatialen Standards OpenGIS und SQL/MM, hochentwickelte topologische Konstrukte (Coverages, Oberflächen, Netzwerke), Datenquellen für Desktop Benutzeroberflächen zum Darstellen und Bearbeiten von GIS Daten, sowie Werkzeuge für den Zugriff via Internettechnologie beinhalten.
Das PostGIS Project Steering Committee (PSC) koordiniert die allgemeine Ausrichtung, den Releasezyklus, die Dokumentation und die Öffentlichkeitsarbeit des PostGIS Projektes. Zusätzlich bietet das PSC allgemeine Unterstützung für Anwender, übernimmt und prüft Patches aus der PostGIS Gemeinschaft und stimmt über sonstige Themen, wie Commit-Zugriff für Entwickler, neue PSC Mitglieder oder entscheidende Änderungen an der API, ab.
MVT support, Bug fixing, Performance and stability improvements, GitHub curation, alignment of PostGIS with PostgreSQL releases
Buildbot Wartung, Kompilierung produktiver und experimenteller Softwarepakete für Windows, Abgleich von PostGIS mit den PostgreSQL Releases, allgemeine Unterstützung von Anwendern auf der PostGIS Newsgroup, Mitarbeit an X3D, Tiger Geokodierer, an Funktionen zur Verwaltung von Geometrien; Smoke testing neuer Funktionalität und wichtige Änderungen am Code.
Index Optimierung, Bugfixes und Verbesserungen von Funktionen für den geometrischen/geographischer Datentyp, GitHub Verwalter und Wartung des Travis Bot.
Mitbegründer des PostGIS Projektes. Allgemeine Fehlerbehebung, geographische Unterstützung, Indizes zur Unterstützung von Geographie und Geometrie (2D, 3D, nD Index und jegliche räumliche Indizes), grundlegende interne geometrische Strukturen, PointCloud (in Entwicklung), Einbindung von GEOS Funktionalität und Abstimmung mit GEOS Releases, Abglech von PostGIS mit den PostgreSQL Releases, Loader/Dumper und die Shapefile Loader GUI.
Bugfixes, Wartung, Git Mirrors Management und Integration neuer GEOS-Funktionalitäten, sowie Abstimmung mit den GEOS Versionen, Topologieunterstützung, Raster Grundstruktur und Funktionen der Low-Level-API.
Verbesserung und Erweiterung von Distanzfunktionen (einschließlich 3D-Distanz und Funktionen zu räumlichen Beziehungen), Tiny WKB Ausgabeformat (TWKB) (in Entwicklung) und allgemeine Unterstützung von Anwendern.
SFCGAL enhancements and maintenance and ci support
Beiträge zu den geometrischen Clusterfunktionen, Verbesserung anderer geometrischer Alorithmen, GEOS Erweiterungen und allgemeine Unterstützung von Anwendern.
GEOS enhancements and documentation
MapBox Vector Tile und GeoBuf Funktionen. Gogs Tests und GitLab Experimente.
Geometry Processing, PostgreSQL gist, general bug fixing
Prior PSC Member. Raster development, integration with GDAL, raster loader, user support, general bug fixing, testing on various OS (Slackware, Mac, Windows, and more)
Koordiniert die Wartung und Fehlerbehebung, die Selektivität und die Anbindung von räumlichen Indizes, den Loader/Dumper und die Shapfile Loader GUI, die Einbindung von neuen Funktionen sowie die Verbesserung von neuen Funktionen.
Entwicklung von PostGIS Raster, GDAL-Treiberunterstützung, Lader/loader
Ein- und Ausgabefunktionen für XML (KML,GML)/GeoJSON, 3D Unterstützng und Bugfixes.
Ehemaliges PSC Mitglied. Allgemeine Entwicklungsarbeit, Wartung von Buildbot und Homepage, OSGeo Inkubationsmanagement.
CMake Unterstützung für PostGIS, Entwicklung des ursprünglichen Raster-Laders in Python und systemnahe Funktionen der Raster-API
Ehemaliges PSC Mitglied. Dokumentation und Werkzeuge zur Dokumentationsunterstützung, Buildbot Wartung, fortgeschrittene Anwenderunterstützung auf der PostGIS Newsgroup, Verbesserungen an den Funktionen zur Verwaltung von Geometrien.
Der ursprüngliche Entwickler und Mitbegründer von PostGIS. Dave schrieb die serverseitigen Bereiche, wie das Binden von Indizes und viele der serverseitiger analytischer Funktionen.
Ursprüngliche Entwicklung des Shapefile Loader/Dumper. Aktuell ist er Vertreter der PostGIS Projekt Inhaber.
Laufende Wartung und Entwicklung der Kernfunktionen. Erweiterte Unterstützung von Kurven. Shapefile Loader GUI.
Architect of PostGIS raster implementation. Raster overall architecture, prototyping, programming support
Entwickelt für Raster (in erster Linie analytische Funktionen in Map Algebra)
Alex Bodnaru | Gino Lucrezi | Matt Amos |
Alex Mayrhofer | Greg Troxel | Matt Bretl |
Andrea Peri | Guillaume Lelarge | Matthias Bay |
Andreas Forø Tollefsen | Giuseppe Broccolo | Maxime Guillaud |
Andreas Neumann | Han Wang | Maxime van Noppen |
Andrew Gierth | Haribabu Kommi | Michael Fuhr |
Anne Ghisla | Havard Tveite | Mike Toews |
Antoine Bajolet | IIDA Tetsushi | Nathan Wagner |
Arthur Lesuisse | Ingvild Nystuen | Nathaniel Clay |
Artur Zakirov | Jackie Leng | Nikita Shulga |
Barbara Phillipot | James Marca | Norman Vine |
Ben Jubb | Jan Katins | Patricia Tozer |
Bernhard Reiter | Jason Smith | Rafal Magda |
Björn Esser | Jeff Adams | Ralph Mason |
Brian Hamlin | Jelte Fennema | Rémi Cura |
Bruce Rindahl | Jim Jones | Richard Greenwood |
Bruno Wolff III | Joe Conway | Roger Crew |
Bryce L. Nordgren | Jonne Savolainen | Ron Mayer |
Carl Anderson | Jose Carlos Martinez Llari | Sebastiaan Couwenberg |
Charlie Savage | Jörg Habenicht | Sergei Shoulbakov |
Christoph Berg | Julien Rouhaud | Sergey Fedoseev |
Christoph Moench-Tegeder | Kashif Rasul | Shinichi Sugiyama |
Dane Springmeyer | Klaus Foerster | Shoaib Burq |
Dave Fuhry | Kris Jurka | Silvio Grosso |
David Zwarg | Laurenz Albe | Stefan Corneliu Petrea |
David Zwarg | Lars Roessiger | Steffen Macke |
David Zwarg | Leo Hsu | Stepan Kuzmin |
Dian M Fay | Loic Dachary | Stephen Frost |
Dmitry Vasilyev | Luca S. Percich | Steven Ottens |
Eduin Carrillo | Lucas C. Villa Real | Talha Rizwan |
Eugene Antimirov | Maria Arias de Reyna | Tom Glancy |
Even Rouault | Marc Ducobu | Tom van Tilburg |
Frank Warmerdam | Mark Sondheim | Vincent Mora |
George Silva | Markus Schaber | Vincent Picavet |
Gerald Fenoy | Markus Wanner | Volf Tomáš |
Dabei handelt es sich um Unternehmen, die Entwicklungszeit, Hosting, oder direkte finanzielle Förderungen, in das PostGIS Projekt eingebracht haben
Wir starten Crowdfunding Kampagnen, um dringend gewünschte und von vielen Anwendern benötigte Funktionalitäten zu finanzieren. Jede Kampagne konzentriert sich auf eine bestimmte Funktionalität oder eine Gruppe von Funktionen. Jeder Sponsor spendiert einen kleinen Teil des benötigten Geldes und wenn genug Menschen/Organisationen mitmachen, können wir die Arbeit bezahlen, von der dann viele etwas haben. Falls Sie eine Idee für eine Funktionalität haben, bei der Sie glauben, dass viele andere bereit sind diese mitzufinanzieren, dann schicken Sie bitte Ihre Überlegungen an die PostGIS newsgroup - gemeinsam wird es uns gelingen.
PostGIS 2.0.0 war die erste Version, mit der wir diese Strategie verfolgten. Wir benutzten PledgeBank und hatten zwei erfolgreiche Kampagnen.
postgistopology - mehr als 10 Sponsoren förderten mit jeweils $250 USD die Entwicklung von TopoGeometry Funktionen und das Aufmöbeln der Topologie-Unterstützung für 2.0.0.
postgis64windows - 20 Sponsoren förderten die Arbeit an den Problemen mit der 64-bit Version von PostGIS für Windows mit jeweils $100 USD. Es ist tatsächlich geschehen und nun steht eine 64-bit Version von PostGIS 2.0.1 als PostgreSQL Stack-Builder zur Verfügung.
The GEOS geometry operations library
The GDAL Geospatial Data Abstraction Library used to power much of the raster functionality introduced in PostGIS 2. In kind, improvements needed in GDAL to support PostGIS are contributed back to the GDAL project.
The PROJ cartographic projection library
Last but not least, PostgreSQL, the giant that PostGIS stands on. Much of the speed and flexibility of PostGIS would not be possible without the extensibility, great query planner, GIST index, and plethora of SQL features provided by PostgreSQL.
Dieses Kapitel erläutert die notwendigen Schritte zur Installation von PostGIS.
Zum Kompilieren müssen die Abhängigkeiten im Suchpfad eingetragen sein:
tar xvfz postgis-3.3.8dev.tar.gz cd postgis-3.3.8dev ./configure make make install
Nachdem PostGIS installiert ist, muss es in jeder Datenbank-Instanz, in der es verwendet werden soll, aktiviert werden.
Viele Betriebssysteme stellen heute bereits vorkompilierte Pakete für PostgreSQL/PostGIS zur Verfügung. Somit ist eine Kompilation nur notwendig, wenn man die aktuellsten Versionen benötigt oder für die Paketverwaltung zustänig ist. Dieser Abschnitt enthält die allgemeinen Installationsanweisungen. Für das Kompilieren unter Windows oder unter einem anderen Betriebssystem findet sich zusätzliche, detailliertere Hilfe unter PostGIS User contributed compile guides und PostGIS Dev Wiki. Vorkompilierte Pakete für unterschiedliche Betriebssysteme sind unter PostGIS Pre-built Packages aufgelistet. Wenn Sie ein Windowsbenutzer sind, können Sie stabile Kompilationen mittels Stackbuilder oder die PostGIS Windows download site erhalten. Es gibt auch very bleeding-edge windows experimental builds, die ein oder zweimal pro Woche, bzw. anlassweise kompiliert werden. Damit können Sie mit im Aufbau befindlichen PostGIS Releases experimentieren. |
The PostGIS module is an extension to the PostgreSQL backend server. As such, PostGIS 3.3.8dev requires full PostgreSQL server headers access in order to compile. It can be built against PostgreSQL versions 11 - 17. Earlier versions of PostgreSQL are not supported.
Beziehen Sie sich auf die PostgreSQL Installationshilfe, falls Sie PostgreSQL noch nicht installiert haben. http://www.postgresql.org .
Um die GEOS Funktionen nutzen zu können, muss bei der Installation von PostgreSQL explizit gegen die Standard C++ Bibliothek gelinkt werden: LDFLAGS=-lstdc++ ./configure [IHRE OPTIONEN] Dies dient als Abhilfe für C++ Fehler bei der Interaktion mit älteren Entwicklungswerkzeugen. Falls eigenartige Probleme auftreten (die Verbindung zum Backend bricht unerwartet ab oder ähnliches) versuchen Sie bitte diesen Trick. Dies verlangt natürlich die Kompilation von PostgreSQL von Grund auf. |
Die folgenden Schritte bescheiben die Konfiguration und Kompilation des PostGIS Quellcodes. Sie gelten für Linux Anwender und funktionieren nicht für Windows oder Mac.
Das PostGIS Quellarchiv kann von der Download Webseite http://postgis.net/stuff/postgis-3.3.8dev.tar.gz bezogen werden.
wget http://postgis.net/stuff/postgis-3.3.8dev.tar.gz tar -xvzf postgis-3.3.8dev.tar.gz cd postgis-3.3.8dev
Dadurch wird das Verzeichnis postgis-3.3.8dev
im aktuellen Arbeitsverzeichnis erzeugt.
Alternativ kann der Quellcode auch von svn repository http://svn.osgeo.org/postgis/trunk/ bezogen werden.
git clone https://git.osgeo.org/gitea/postgis/postgis.git postgis cd postgis sh autogen.sh
Um die Installation fortzusetzen ist in das neu erstellte Verzeichnis postgis-3.3.8dev
zu wechseln.
./configure
Zur Kompilation und Anwendung stellt PostGIS die folgenden Systemanforderungen:
Notwendige Systemvoraussetzungen
PostgreSQL 11 - 17. A complete installation of PostgreSQL (including server headers) is required. PostgreSQL is available from http://www.postgresql.org .
Welche PostgreSQL Version von welcher PostGIS Version unterstützt wird und welche PostGIS Version von welcher GEOS Version unterstützt wird findet sich unter http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
GNU C Compiler (gcc
). Es können auch andere ANSI C Compiler zur PostGIS Kompilation verwendet werden, aber die Kompilation mit gcc
macht die geringsten Probleme.
GNU Make (gmake
oder make
). Für viele Systeme ist GNU make
die Standardversion von make. Überprüfe die Version durch make -v
. Andere Versionen von make
können das PostGIS Makefile
nicht richtig ausführen.
Proj4 Projektionsbibliothek, Version 4.9.0 oder höher. Die Proj4 4.9 oder höher wird benötigt um Koordinatentransformationen in PostGIS zu ermöglichen. Proj4 kann von http://trac.osgeo.org/proj/ heruntergeladen werden.
GEOS geometry library, version 3.6 or greater, but GEOS 3.11+ is required to take full advantage of all the new functions and features. GEOS is available for download from https://libgeos.org/ .
LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports functions (ST_GeomFromGML and ST_GeomFromKML). LibXML2 is available for download from https://gitlab.gnome.org/GNOME/libxml2/-/releases.
JSON-C, Version 0.9 oder höher. JSON-C wird zurzeit benutzt um GeoJSON über die Funktion ST_GeomFromGeoJson zu importieren. JSON-C kann unter https://github.com/json-c/json-c/releases/ bezogen werden.
GDAL, version 2+ is required 3+ is preferred. This is required for raster support. https://gdal.org/download.html.
Wenn mit PostgreSQL+JIT kompiliert wird, ist die LLVM-Version >=6 erforderlich https://trac.osgeo.org/postgis/ticket/4125 .
Optionale Systemanforderungen
GDAL (pseudo optional) nur wenn Sie kein Rasterunterstützung möchten, können Sie es weglassen. Sorgen Sie außerdem dafür das Treiber, die Sie brauchen wie in Section 3.2, “Configuring raster support” beschrieben, aktiviert sind.
GTK (benötigt GTK+2.0, 2.8+) um den "shp2pgsql-gui shape file loader" zu kompilieren. http://www.gtk.org/ .
SFCGAL, version 1.3.1 (or higher), 1.4.1 or higher is recommended. SFCGAL can be used to provide additional 2D and 3D advanced analysis functions to PostGIS cf Section 8.20, “SFCGAL Functions”. And also allow to use SFCGAL rather than GEOS for some 2D functions provided by both backends (like ST_Intersection or ST_Area, for instance). A PostgreSQL configuration variable postgis.backend
allow end user to control which backend he want to use if SFCGAL is installed (GEOS by default). Nota: SFCGAL 1.2 require at least CGAL 4.3 and Boost 1.54 (cf: https://sfcgal.org) https://gitlab.com/sfcgal/SFCGAL/.
Um den Section 14.1, “Adressennormierer” zu kompilieren wird http://www.pcre.org benötigt (ist normalerweise auf Unix-Systemen bereits vorinstalliert). Regex::Assemble
perl CPAN package ist nur für eine Neukodierung der Daten in parseaddress-stcities.h
erforderlich. Section 14.1, “Adressennormierer” wird selbsttätig erzeugt, wenn eine PCRE Bibliothek gefunden wird, oder ein gültiger --with-pcre-dir=/path/to/pcre
im Konfigurationsschritt angegeben wird.
Um ST_AsMVT verwenden zu können, wird die protobuf-c Bibliothek (für die Anwendung) und der protoc-c Kompiler (für die Kompilation) benötigt. Weiters ist pgk-config erforderlich um die korrekte Minimumversion von protobuf-c zu bestimmen. Siehe protobuf-c.
CUnit (CUnit
). Wird für Regressionstest benötigt. http://cunit.sourceforge.net/
DocBook (xsltproc
) ist für die Kompilation der Dokumentation notwendig. Docbook steht unter http://www.docbook.org/ zur Verfügung.
DBLatex (dblatex
) ist zur Kompilation der Dokumentation im PDF-Format nötig. DBLatex liegt unter http://dblatex.sourceforge.net/ vor.
ImageMagick (convert
) wird zur Erzeugung von Bildern für die Dokumentation benötigt. ImageMagick kann von http://www.imagemagick.org/ bezogen werden.
Wie bei den meisten Installationen auf Linux besteht der erste Schritt in der Erstellung eines Makefiles, welches dann zur Kompilation des Quellcodes verwendet wird. Dies wird durch einen Aufruf des Shell Scripts erreicht.
./configure
Ohne zusätzliche Parameter legt dieser Befehl die Komponenten und Bibliotheken fest, welche für die Kompilation des PostGIS Quellcodes auf Ihrem System benötigt werden. Obwohl dies der häufigste Anwendungsfall von ./configure ist, akzeptiert das Skript eine Reihe von Parametern, falls sich die benötigten Bibliotheken und Programme nicht in den Standardverzeichnissen befinden.
Die folgende Liste weist nur die am häufigsten verwendeten Parameter auf. Für eine vollständige Liste benutzen Sie bitte --help oder --help=short .
Starting with PostGIS 3.0, the library files generated by default will no longer have the minor version as part of the file name. This means all PostGIS 3 libs will end in postgis-3
. This was done to make pg_upgrade easier, with downside that you can only install one version PostGIS 3 series in your server. To get the old behavior of file including the minor version: e.g. postgis-3.0
add this switch to your configure statement.
Das Verzeichnis, in dem die PostGIS Bibliotheken und SQL-Skripts installiert werden. Standardmäßig ist dies das Verzeichnis in dem auch PostgreSQL installatiert wurde.
Dieser Parameter ist zur Zeit defekt; somit kann PostGIS nur in das PostgreSQL Installationsverzeichnis installiert werden. Dieser Bug kann auf http://trac.osgeo.org/postgis/ticket/635 verfolgt werden. |
PostgreSQL stellt das Dienstprogramm pg_config zur Verfügung um Extensions wie PostGIS die Auffindung des PostgreSQL Installationsverzeichnisses zu ermöglichen. Benutzen Sie bitte diesen Parameter (--with-pgconfig=/path/to/pg_config) um eine bestmmte PostgreSQL Installation zu definieren, gegen die PostGIS kompiliert werden soll.
GDAL, eine erforderliche Bibliothek, welche die Funktionalität zur Rasterunterstützung liefert. gdal-config um Software Installationen die Auffindung des GDAL Installationsverzeichnis zu ermöglichen. Benutzen Sie bitte diesen Parameter (--with-gdalconfig=/path/to/gdal-config) um eine bestimmte GDAL Installation zu definieren, gegen die PostGIS kompiliert werden soll.
GEOS, eine erforderliche Geometriebibliothek, stellt geos-config zur Verfügung, um Software Installationen das Auffinden des GEOS Installationsverzeichnisses zu ermöglichen. Benutzen Sie bitte diesen Parameter (--with-geosconfig=/path/to/geos-config) um eine bestimmte GEOS Installation zu definieren, gegen die PostGIS kompiliert werden soll.
LibXML ist die Bibliothek, welche für die Prozesse GeomFromKML/GML benötigt wird. Falls Sie libxml installiert haben, wird sie üblicherweise gefunden. Falls nicht oder wenn Sie eine bestimmte Version verwenden wollen, müssen Sie PostGIS auf eine bestimmte Konfigurationsdatei xml2-config
verweisen, damit Softwareinstallationen das Installationsverzeichnis von LibXML finden können. Verwenden Sie bitte diesen Parameter (
>--with-xml2config=/path/to/xml2-config) um eine bestimmte LibXML Installation anzugeben, gegen die PostGIS kompiliert werden soll.
Proj4 ist eine Bibliothek, die von PostGIS zur Koordinatentransformation benötigt wird. Benutzen Sie bitte diesen Parameter (--with-projdir=/path/to/projdir) um ein bestimmtes Proj4 Installationsverzeichnis anzugeben, für das PostGIS kompiliert werden soll.
Das Verzeichnis in dem iconv installiert ist.
JSON-C ist eine MIT-lizensierte JSON Bibliothek, die von PostGIS für ST_GeomFromJSON benötigt wird. Benutzen Sie bitte diesen Parameter (--with-jsondir=/path/to/jsondir), um ein bestimmtes JSON-C Installationsverzeichnis anzugeben, für das PostGIS kompiliert werden soll.
PCRE ist eine BSD-lizensierte Perl compatible Bibliothek für reguläre Ausdrücke, die von der Erweiterung "address_standardizer" benötigt wird. Verwenden Sie diesen Parameter (--with-pcredir=/path/to/pcredir), um ein bestimmtes Installationsverzeichnis von PCRE anzugeben, gegen das PostGIS kompiliert werden soll.
Kompilieren Sie die Datenimport-GUI (benötigt GTK+2.0). Dies erzeugt die graphische Schnittstelle "shp2pgsql-gui" für shp2pgsql.
Ohne Rasterunterstützung kompilieren.
Ausschalten der Topologie Unterstützung. Es existiert keine entsprechende Bibliothek, da sich die gesamte benötigte Logik in der postgis-3.3.8dev Bibliothek befindet.
Standardmäßig versucht PostGIS gettext zu detektieren und kompiliert mit gettext Unterstützung. Wenn es allerdings zu Inkompatibilitätsproblemen kommt, die zu einem Zusammenbrechen des Loader führen, so können Sie das mit diesem Befehl zur Gänze deaktivieren. Siehe Ticket http://trac.osgeo.org/postgis/ticket/748 für ein Beispiel wie dieses Problem gelöst werden kann. Sie verpassen nicht viel, wenn Sie dies deaktivieren, da es für die internationale Hilfe zum GUI Loader/Label verwendet wird, welcher nicht dokumentiert und immer noch experimentell ist.
Ohne diesen Switch wird PostGIS ohne sfcgal Unterstützung installiert. PATH
ist ein optionaler Parameter, welcher einen alternativen Pfad zu sfcgal-config angibt.
Disable updating postgis_revision.h to match current HEAD of the git repository.
Wenn Sie PostGIS vom Code Repository bezogen haben, müssen Sie zu allererst das Skript ausführen ./autogen.sh Dieses Skript erzeugt das configure Skript, welches seinerseits zur Anpassung der Installation von PostGIS eingesetzt wird. Falls Sie stattdessen PostGIS als Tarball vorliegen haben, dann ist es nicht notwendig ./autogen.sh auszuführen, da configure bereits erzeugt wurde. |
Sobald das Makefile erzeugt wurde, ist der Build-Prozess für PostGIS so einfach wie
make
Die letzte Zeile der Ausgabe sollte "PostGIS was built successfully. Ready to install.
" enthalten
Seit PostGIS v1.4.0 haben alle Funktionen Kommentare, welche aus der Dokumentation erstellt werden. Wenn Sie diese Kommentare später in die räumliche Datenbank importieren wollen, können Sie den Befehl ausführen der "docbook" benötigt. Die Dateien "postgis_comments.sql", "raster_comments.sql" und "topology_comments.sql" sind im Ordner "doc" der "tar.gz"-Distribution mit paketiert, weshalb Sie bei einer Installation vom "tar ball" her, die Kommentare nicht selbst erstellen müssen. Die Kommentare werden auch als Teil der Installation "CREATE EXTENSION" angelegt.
make comments
Eingeführt in PostGIS 2.0. Erzeugt HTML-Spickzettel, die als schnelle Referenz oder als Handzettel für Studenten geeignet sind. Dies benötigt xsltproc zur Kompilation und erzeugt 4 Dateien in dem Ordner "doc": topology_cheatsheet.html
,tiger_geocoder_cheatsheet.html
, raster_cheatsheet.html
, postgis_cheatsheet.html
Einige bereits Vorgefertigte können von PostGIS / PostgreSQL Study Guides als HTML oder PDF heruntergeladen werden
make cheatsheets
Die PostGIS Erweiterungen/Extensions werden ab PostgreSQL 9.1+ automatisch kompiliert und installiert.
Wenn Sie aus dem Quell-Repository kompilieren, müssen Sie zuerst die Beschreibung der Funktionen kompilieren. Diese lassen sich kompilieren, wenn Sie docbook installiert haben. Sie können sie aber auch händisch mit folgender Anweisung kompilieren:
make comments
Sie müssen die Kommentare nicht kompilieren, wenn sie von einem Format "tar" weg kompilieren, da diese in der tar-Datei bereits vorkompilierten sind.
Wenn Sie gegen PostgreSQL 9.1 kompilieren, sollten die Erweiterungen automatisch als Teil des Prozesses "make install" kompilieren. Falls notwendig, können Sie auch vom Ordner mit den Erweiterungen aus kompilieren, oder die Dateien auf einen anderen Server kopieren.
cd extensions cd postgis make clean make export PGUSER=postgres #overwrite psql variables make check #to test before install make install # to test extensions make check RUNTESTFLAGS=--extension
|
Die Erweiterungsdateien sind für dieselbe Version von PostGIS immer ident, unabhängig vom Betriebssystem. Somit ist es in Ordnung, die Erweiterungsdateien von einem Betriebssystem auf ein anderes zu kopieren, solange die Binärdateien von PostGIS bereits installiert sind.
Falls Sie die Erweiterungen händisch auf einen anderen Server installieren wollen, müssen sie folgende Dateien aus dem Erweiterungsordner in den Ordner PostgreSQL / share / extension
Ihrer PostgreSQL Installation kopieren. Ebenso die benötigten Binärdateien für das reguläre PostGIS, falls sich PostGIS noch nicht auf dem Server befindet.
Dies sind die Kontrolldateien, welche Information wie die Version der zu installierenden Erweiterung anzeigen, wenn diese nicht angegben ist. postgis.control, postgis_topology.control
.
Alle Dateien in dem Ordner "/sql" der jeweiligen Erweiterung. Diese müssen in das Verzeichnis "share/extension" von PostgreSQL extensions/postgis/sql/*.sql
, extensions/postgis_topology/sql/*.sql
kopiert werden
Sobald Sie dies ausgeführt haben, sollten Sie postgis
, postgis_topology
als verfügbare Erweiterungen in PgAdmin -> extensions sehen.
Falls Sie psql verwenden, können Sie die installierten Erweiterungen folgendermaßen abfragen:
SELECT name, default_version,installed_version FROM pg_available_extensions WHERE name LIKE 'postgis%' or name LIKE 'address%'; name | default_version | installed_version ------------------------------+-----------------+------------------- address_standardizer | 3.3.8dev | 3.3.8dev address_standardizer_data_us | 3.3.8dev | 3.3.8dev postgis | 3.3.8dev | 3.3.8dev postgis_sfcgal | 3.3.8dev | postgis_tiger_geocoder | 3.3.8dev | 3.3.8dev postgis_topology | 3.3.8dev | (6 rows)
Wenn Sie in der Datenbank, die Sie abfragen, eine Erweiterung installiert haben, dann sehen Sie einen Hinweis in der Spalte installed_version
. Wenn Sie keine Datensätze zurückbekommen bedeutet dies, dass Sie überhaupt keine PostGIS Erweiterung auf dem Server installiert haben. PgAdmin III 1.14+ bietet diese Information ebenfalls in der Sparte extensions
im Navigationsbaum der Datenbankinstanz an und ermöglicht sogar ein Upgrade oder eine Deinstallation über einen Rechtsklick.
Wenn die Erweiterungen vorhanden sind, können Sie die PostGIS-Extension sowohl mit der erweiterten pgAdmin Oberfläche als auch mittels folgender SQL-Befehle in einer beliebigen Datenbank installieren:
CREATE EXTENSION postgis; CREATE EXTENSION postgis_sfcgal; CREATE EXTENSION fuzzystrmatch; --needed for postgis_tiger_geocoder --optional used by postgis_tiger_geocoder, or can be used standalone CREATE EXTENSION address_standardizer; CREATE EXTENSION address_standardizer_data_us; CREATE EXTENSION postgis_tiger_geocoder; CREATE EXTENSION postgis_topology;
Sie können psql verwenden, um sich die installierten Versionen und die Datenbankschemen in denen sie installiert sind, anzeigen zu lassen.
\connect mygisdb \x \dx postgis*
List of installed extensions -[ RECORD 1 ]------------------------------------------------- Name | postgis Version | 3.3.8dev Schema | public Description | PostGIS geometry, geography, and raster spat.. -[ RECORD 2 ]------------------------------------------------- Name | postgis_raster Version | 3.0.0dev Schema | public Description | PostGIS raster types and functions -[ RECORD 3 ]------------------------------------------------- Name | postgis_tiger_geocoder Version | 3.3.8dev Schema | tiger Description | PostGIS tiger geocoder and reverse geocoder -[ RECORD 4 ]------------------------------------------------- Name | postgis_topology Version | 3.3.8dev Schema | topology Description | PostGIS topology spatial types and functions
Die Erweiterungstabellen |
Wenn Sie 3.3.8dev ohne unser wunderbares Extension System installiert haben, können Sie auf erweiterungsbasiert wechseln, indem Sie folgende Befehle ausführen, welche die Funktionen in ihre entsprechenden Erweiterungen paketieren.
CREATE EXTENSION postgis FROM unpackaged; CREATE EXTENSION postgis_raster FROM unpackaged; CREATE EXTENSION postgis_topology FROM unpackaged; CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;
Wenn Sie die Kompilation von PostGIS überprüfen wollen:
make check
Obiger Befehl durchläuft mehere Überprüfungen und Regressionstests, indem er die angelegte Bibliothek in einer aktuellen PostgreSQL Datenbank ausführt.
Falls Sie PostGIS so konfiguriert haben, dass nicht die Standardverzeichnisse für PostgreSQL, GEOS oder Proj4 verwendet werden, kann es sein, dass Sie die Speicherstellen dieser Bibliotheken in der Umgebungsvariablen "LD_LIBRARY_PATH" eintragen müssen. |
Zurzeit beruht make check auf die Umgebungsvariablen |
If successful, make check will produce the output of almost 500 tests. The results will look similar to the following (numerous lines omitted below):
CUnit - A unit testing framework for C - Version 2.1-3 http://cunit.sourceforge.net/ . . . Run Summary: Type Total Ran Passed Failed Inactive suites 44 44 n/a 0 0 tests 300 300 300 0 0 asserts 4215 4215 4215 0 n/a Elapsed time = 0.229 seconds . . . Running tests . . . Run tests: 134 Failed: 0 -- if you build with SFCGAL . . . Running tests . . . Run tests: 13 Failed: 0 -- if you built with raster support . . . Run Summary: Type Total Ran Passed Failed Inactive suites 12 12 n/a 0 0 tests 65 65 65 0 0 asserts 45896 45896 45896 0 n/a . . . Running tests . . . Run tests: 101 Failed: 0 -- topology regress . . . Running tests . . . Run tests: 51 Failed: 0 -- if you built --with-gui, you should see this too CUnit - A unit testing framework for C - Version 2.1-2 http://cunit.sourceforge.net/ . . . Run Summary: Type Total Ran Passed Failed Inactive suites 2 2 n/a 0 0 tests 4 4 4 0 0 asserts 4 4 4 0 n/a
Die Erweiterungen postgis_tiger_geocoder
und address_standardizer
unterstützen zurzeit nur die standardmäßige Installationsüberprüfung von PostgreSQL. Um diese zu überprüfen siehe unterhalb. Anmerkung: "make install" ist nicht notwendig, wenn Sie bereits ein "make install" im Root des Ordners mit dem PostGIS Quellcode durchgeführt haben.
Für den address_standardizer:
cd extensions/address_standardizer make install make installcheck
Die Ausgabe sollte folgendermaßen aussehen:
============== dropping database "contrib_regression" ============== DROP DATABASE ============== creating database "contrib_regression" ============== CREATE DATABASE ALTER DATABASE ============== running regression test queries ============== test test-init-extensions ... ok test test-parseaddress ... ok test test-standardize_address_1 ... ok test test-standardize_address_2 ... ok ===================== All 4 tests passed. =====================
Für den Tiger Geokodierer müssen Sie die Erweiterungen "postgis" und "fuzzystrmatch" in Ihrer PostgreSQL Instanz haben. Die Überprüfungen des "address_standardizer" laufen ebenfalls an, wenn Sie postgis mit "address_standardizer" Unterstützung kompiliert haben:
cd extensions/postgis_tiger_geocoder make install make installcheck
Die Ausgabe sollte folgendermaßen aussehen:
============== dropping database "contrib_regression" ============== DROP DATABASE ============== creating database "contrib_regression" ============== CREATE DATABASE ALTER DATABASE ============== installing fuzzystrmatch ============== CREATE EXTENSION ============== installing postgis ============== CREATE EXTENSION ============== installing postgis_tiger_geocoder ============== CREATE EXTENSION ============== installing address_standardizer ============== CREATE EXTENSION ============== running regression test queries ============== test test-normalize_address ... ok test test-pagc_normalize_address ... ok ===================== All 2 tests passed. =====================
Um PostGIS zu installieren geben Sie bitte folgendes ein
make install
Dies kopiert die Installationsdateien von PostGIS in das entsprechende Unterverzeichnis, welches durch den Konfigurationsparameter --prefix bestimmt wird. Insbesondere:
Die Binärdateien vom Loader und Dumper sind unter [prefix]/bin
installiert.
Die SQL-Dateien, wie postgis.sql
sind unter [prefix]/share/contrib
installiert.
Die PostGIS Bibliotheken sind unter [prefix]/lib
installiert.
Falls Sie zuvor den Befehl make comments ausgeführt haben, um die Dateien postgis_comments.sql
und raster_comments.sql
anzulegen, können Sie die SQL-Dateien folgendermaßen installieren:
make comments-install
|
Die Erweiterung address_standardizer
musste als getrenntes Paket heruntergeladen werden. Ab PostGIS 2.2 ist es mitgebündelt. Für weitere Informationen zu dem address_standardizer, was er kann und wie man ihn für spezielle Bedürfnisse konfigurieren kann, siehe Section 14.1, “Adressennormierer”.
Dieser Adressennormierer kann in Verbindung mit der in PostGIS paketierten Erweiterung "tiger gecoder" als Ersatz für Normalize_Address verwendet werden. Um diesen als Ersatz zu nutzen, siehe Section 2.4.3, “Die Adressennormierer-Extension zusammen mit dem Tiger Geokodierer verwenden”. Sie können diesen auch als Baustein für Ihren eigenen Geokodierer verwenden oder für die Normierung von Adressen um diese leichter vergleichbar zu machen.
Der Adressennormierer benötigt PCRE, welches üblicherweise auf Nix-Systemen bereits installiert ist. Sie können die letzte Version aber auch von http://www.pcre.org herunterladen. Wenn PCRE während der Section 2.2.3, “Konfiguration” gefunden wird, dann wird die Erweiterung "address standardizer" automatisch kompiliert. Wenn Sie stattdessen eine benutzerdefinierte Installation von PCRE verwenden wollen, können Sie --with-pcredir=/path/to/pcre
an "configure" übergeben, wobei /path/to/pcre
der Root-Ordner Ihrer Verzeichnisse "include" und "lib" von PCRE ist.
Für Windows Benutzer ist ab PostGIS 2.1+ die Erweiterung "address_standardizer" bereits mitpaketiert. Somit besteht keine Notwendigkeit zu Kompilieren und es kann sofort der Schritt CREATE EXTENSION
ausgeführt werden.
Sobald die Installation beendet ist, können Sie sich mit Ihrer Datenbank verbinden und folgenden SQL-Befehl ausführen:
CREATE EXTENSION address_standardizer;
Der folgende Test benötigt keine rules-, gaz- oder lex-Tabellen
SELECT num, street, city, state, zip FROM parse_address('1 Devonshire Place PH301, Boston, MA 02109');
Die Ausgabe sollte wie folgt sein:
num | street | city | state | zip -----+------------------------+--------+-------+------- 1 | Devonshire Place PH301 | Boston | MA | 02109
Perl Regex:Assemble wird nicht länger für die Kompiation der Erweiterung "address_standardizer" benötigt, da die generierten Dateien jetzt Teil des Quellcodes sind. Wenn Sie allerdings usps-st-city-orig.txt
oder usps-st-city-orig.txt usps-st-city-adds.tx
editieren müssen, dann müssen Sie parseaddress-stcities.h
neu kompilieren, wozu Regex:Assemble benötigt wird.
cpan Regexp::Assemble
oder wenn Sie auf einer Ubuntu / Debian Distribution arbeiten, müssen Sie möglicherweise folgendes ausführen:
sudo perl -MCPAN -e "install Regexp::Assemble"
Extras wie den Tiger Geokodierer befinden sich möglicherweise nicht in Ihrer PostGIS Distribution. Wenn Sie die Erweiterung "Tiger Geokodierer" vermissen, oder eine neuere Version installieren wollen, dann können Sie die Dateien share/extension/postgis_tiger_geocoder.*
aus den Paketen des Abschnitts Windows Unreleased Versions für Ihre Version von PostgreSQL verwenden. Obwohl diese Pakete für Windows sind, funktionieren die Dateien der Erweiterung "postgis_tiger_geocoder" mit jedem Betriebssystem, da die Erweiterung eine reine SQL/plpgsql Anwendung ist.
Falls Sie PostgreSQL 9.1+ und PostGIS 2.1+ verwenden, können Sie Vorteil aus dem Extension-Modell ziehen, um den Tiger Geokodierer zu installieren. Um dies zu tun:
Besorgen Sie sich zuerst die Binärdateien für PostGIS 2.1+ oder kompilieren und installieren Sie diese wie üblich. Dies sollte alle notwendigen Extension-Dateien auch für den Tiger Geokodierer installieren.
Verbinden Sie sich zu Ihrer Datenbank über psql, pgAdmin oder ein anderes Werkzeug und führen Sie die folgenden SQL Befehle aus. Wenn Sie in eine Datenbank installieren, die bereits PostGIS beinhaltet, dann müssen Sie den ersten Schritt nicht ausführen. Wenn Sie auch die Erweiterung fuzzystrmatch
bereits installiert haben, so müssen Sie auch den zweiten Schritt nicht ausführen.
CREATE EXTENSION postgis; CREATE EXTENSION fuzzystrmatch; CREATE EXTENSION postgis_tiger_geocoder; --Optional wenn Sir den regelbasierten Adressennormierer verwenden (pagc_normalize_address) CREATE EXTENSION address_standardizer;
Wenn Sie bereits die postgis-tiger-geocoder Extension installiert haben und nur auf den letzten Stand updaten wollen:
ALTER EXTENSION postgis UPDATE; ALTER EXTENSION postgis_tiger_geocoder UPDATE;
Wenn benutzerdefinierte Einträge oder Änderungen an tiger.loader_platform
oder tiger.loader_variables
gemacht wurden, müssen diese aktualisiert werden.
Um die Richtigkeit der Installation festzustellen, führen Sie bitte folgenden SQL-Befehl in Ihrer Datenbank aus:
SELECT na.address, na.streetname,na.streettypeabbrev, na.zip FROM normalize_address('1 Devonshire Place, Boston, MA 02109') AS na;
Dies sollte folgendes ausgeben:
address | streetname | streettypeabbrev | zip ---------+------------+------------------+------- 1 | Devonshire | Pl | 02109
Erstellen Sie einen neuen Datensatz in der Tabelle tiger.loader_platform
, welcher die Pfade zu Ihren ausführbaren Dateien und zum Server beinhaltet.
Um zum Beispiel ein Profil mit dem Namen "debbie" anzulegen. welches der sh
Konvention folgt, können Sie folgendes tun:
INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psql, path_sep, loader, environ_set_command, county_process_command) SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psql, path_sep, loader, environ_set_command, county_process_command FROM tiger.loader_platform WHERE os = 'sh';
Anschließend ändern Sie die Pfade in der Spalte declare_sect, so dass diese mit den Speicherpfaden von Debbie's "pg", "nzip", "shp2pgsql", "psql", etc. übereinstimmen.
Wenn Sie die Tabelle loader_platform
nicht editieren, so beinhaltet diese lediglich die üblichen Ortsangaben und Sie müssen das erzeugte Skript editieren, nachdem es erzeugt wurde.
Ab PostGIS 2.4.1 wurde der Ladevorgang der "Zip code-5 digit tabulation area" zcta5
überarbeitet, um aktuelle zcta5 Daten zu laden und ist nun ein Teil von Loader_Generate_Nation_Script, falls aktiviert. Standardmäßig ausgeschaltet, da der Ladevorgang ziemlich viel Zeit benötigt (20 bis 60 Minuten), ziemlich viel Festplattenspeicher beansprucht wird und es nur selten verwendet wird.
Folgendermaßen können Sie deise aktivieren:
UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zcta520';
Falls vorhanden kann die Funktion Geocode diese verwenden, wenn die zips durch einen Boundary Filter begrenzt sind. Die Funktion Reverse_Geocode verwendet dies wenn eine zurückgegebene Adresse keinen zip-Code enthält, was oft bei der inversen Geokodierung von Highways auftritt.
Erstellen Sie einen Ordner mit der Bezeichnung gisdata
im Root des Servers oder auf Ihrem lokalen PC, wenn Sie eine schnelle Netzwerkverbindung zu dem Server haben. In diesen Ordner werden die Dateien von Tiger heruntergeladen und aufbereitet. Wenn Sie den Ordner nicht im Root des Servers haben wollen, oder für die Staging-Umgebung in eine anderen Ordner wechseln wollen, dann können Sie das Attribut staging_fold
in der Tabelle tiger.loader_variables
editieren.
Erstellen Sie einen Ordner "temp" in dem Ordner gisdata
oder wo immer Sie staging_fold
haben wollen. Dies wird der Ordner, in dem der Loader die heruntergeladenen Tigerdaten extrahiert.
Anschließend führen Sie die SQL Funktion Loader_Generate_Nation_Script aus, um sicherzustellen dass die Bezeichnung Ihres benutzerdefinierten Profils verwendet wird und kopieren das Skript in eine .sh oder .bat Datei. Um zum Beispiel das Skript zum Laden einer Nation zu erzeugen:
psql -c "SELECT Loader_Generate_Nation_Script('debbie')" -d geocoder -tA > /gisdata/nation_script_load.sh
Führen Sie die erzeugten Skripts zum Laden der Nation auf der Befehlszeile aus.
cd /gisdata sh nation_script_load.sh
Nachdem Sie das "Nation" Skript ausgeführt haben, sollten sich drei Tabellen in dem Schema tiger_data
befinden und mit Daten befüllt sein. Führen Sie die folgenden Abfragen in "psql" oder "pgAdmin" aus, um dies sicher zu stellen
SELECT count(*) FROM tiger_data.county_all;
count ------- 3233 (1 row)
SELECT count(*) FROM tiger_data.state_all;
count ------- 56 (1 row)
Standardmäßig werden die Tabellen, welche bg
, tract
und tabblock
entsprechen, nicht geladen. Diese Tabellen werden vom Geokodierer nicht verwendet, können aber für Bevölkerungsstatistiken genutzt werden. Wenn diese als Teil der Nation geladen werden sollen, können Sie die folgenden Anweisungen ausführen.
UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN('tract', 'bg', 'tabblock');
Alternativ können Sie diese Tabellen nach dem Laden der Länderdaten importieren, indem Sie das Loader_Generate_Census_Script verwenden
Für jeden Staat, für den Sie Daten laden wollen, müssen Sie ein Skript Loader_Generate_Script erstellen.
Erstellen Sie das Skript für die Bundesstaaten NICHT bevor die Daten zur Nation geladen wurden, da das Skript die Liste "county" verwendet, welche durch das "nation"-Skript geladen wird. |
psql -c "SELECT Loader_Generate_Script(ARRAY['MA'], 'debbie')" -d geocoder -tA > /gisdata/ma_load.sh
Die vorher erzeugten, befehlszeilenorientierten Skripts ausführen.
cd /gisdata sh ma_load.sh
Nachdem Sie mit dem Laden der Daten fertig sind, ist es eine gute Idee ein ANALYZE auf die Tigertabellen auszuführen, um die Datenbankstatistik (inklusive vererbter Statistik) zu aktualisieren
SELECT install_missing_indexes(); vacuum analyze verbose tiger.addr; vacuum analyze verbose tiger.edges; vacuum analyze verbose tiger.faces; vacuum analyze verbose tiger.featnames; vacuum analyze verbose tiger.place; vacuum analyze verbose tiger.cousub; vacuum analyze verbose tiger.county; vacuum analyze verbose tiger.state; vacuum analyze verbose tiger.zip_lookup_base; vacuum analyze verbose tiger.zip_state; vacuum analyze verbose tiger.zip_state_loc;
Falls Sie den Tiger Geokodierer ohne Extension Modell installiert haben, können Sie wie folgt auf das Extension-Modell wechseln:
Für ein Upgrade ohne Extension-Modell, folgen Sie bitte den Anweisungen unter Section 2.4.5, “Upgrade Ihrer Tiger Geokodierer Installation”.
Verbinden Sie sich über "psql" mit Ihrer Datenbank und führen Sie folgenden Befehl aus:
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;
Zuerst installieren Sie PostGIS entsprechend den vorherigen Anweisungen.
Wenn Sie keinen Ordner "extras" haben, können Sie http://postgis.net/stuff/postgis-3.3.8dev.tar.gz herunterladen
tar xvfz postgis-3.3.8dev.tar.gz
cd postgis-3.3.8dev/extras/tiger_geocoder
Editieren Sie die Datei tiger_loader_2015.sql
(oder die aktuellste Loader Datei die Sie finden, außer Sie wollen ein anderes Jahr laden) um die Pfade zu den ausführbaren Dateien, dem Server etc. richtigzustellen. Alternativ können Sie auch die Tabelle loader_platform
nach der Installation editieren. Wenn Sie diese Datei oder die Tabelle loader_platform
nicht editieren, dann enthält diese nur die üblichen Ortsangaben und Sie müssen das erzeugte Skript nachträglich bearbeiten, wenn Sie die SQL Funktionen Loader_Generate_Nation_Script und Loader_Generate_Script ausgeführt haben.
Wenn Sie den Tiger Geokodierer zum ersten Mal installieren, dann editierren Sie entweder das Skript create_geocode.bat
auf Windows oder create_geocode.sh
auf Linux/Unix/Mac OSX entsprechend Ihren spezifischen Einstellungen von PostgreSQL und führen das entsprechende Skript auf der Befehlszeile aus.
Überprüfen sie, ob Sie ein Schema tiger
in Ihrer Datenbank haben und sich das Schema in dem "search_path" Ihrer Datenbank befindet. Falls nicht, können Sie das Schema mit folgendem Befehl hinzufügen:
ALTER DATABASE geocoder SET search_path=public, tiger;
Die Funktionalität zur Standardisierung von Adressen funktioniert mehr oder weniger auch ohne Daten, mit Ausnahme von komplizierten Adressen. Führen Sie diese Tests durch und überprüfen Sie, ob das Ergebnis ähnlich wie dieses aussieht:
SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) As pretty_address; pretty_address --------------------------------------- 202 E Fremont St, Las Vegas, NV 89101
Eine von vielen Beschwerden betrifft die Funktion Normalize_Address des Adressennormierers, die eine Adresse vor der Geokodierung vorbereitend standardisiert. Der Normierer ist bei weitem nicht perfekt und der Versuch seine Unvollkommenheit auszubessern nimmt viele Ressourcen in Anspruch. Daher haben wir ein anderes Projekt integriert, welches eine wesentlich bessere Funktionseinheit für den Adressennormierer besitzt. Um diesen neuen Adressennormierer zu nutzen, können Sie die Erweiterung so wie unter Section 2.3, “Installation und Verwendung des Adressennormierers” beschrieben kompilieren und als Extension in Ihrer Datenbank installieren.
Sobald Sie diese Extension in der gleichen Datenbank installieren, in der Sie auch postgis_tiger_geocoder
installiert haben, dann können Sie Pagc_Normalize_Address anstatt Normalize_Address verwenden. Diese Erweiterung ist nicht auf Tiger beschränkt, wodurch sie auch mit anderen Datenquellen, wie internationalen Adressen, genutzt werden kann. Die Tiger Geokodierer Extension enthält eine eigenen Versionen von rules Tabelle (tiger.pagc_rules
), gaz Tabelle (tiger.pagc_gaz
) und lex Tabelle (tiger.pagc_lex
). Diese können Sie hinzufügen und aktualisieren, um die Normierung an die eigenen Bedürfnisse anzupassen.
Die Anweisungen zum Laden von Daten sind unter extras/tiger_geocoder/tiger_2011/README
detailliert beschrieben. Hier sind nur die allgemeinen Schritte berücksichtigt.
Der Ladeprozess lädt Daten von der Census Webseite für die jeweiligen Nationsdateien und die angeforderten Bundesstaaten herunter, extrahiert die Dateien und lädt anschließlich jeden Bundesstaat in einen eigenen Satz von Bundesstaattabellen. Jede Bundesstaattabelle erbt von den Tabellen im Schema tiger
, wodurch es ausreicht nur diese Tabellen abzufragen um auf alle Daten zugreifen zu können. Sie können auch jederzeit Bundesstaattabellen mit Drop_State_Tables_Generate_Script löschen, wenn Sie einen Bundesstaat neu laden müssen oder den Bundesstaat nicht mehr benötigen.
Um Daten laden zu können benötigen Sie folgende Werkzeuge:
Ein Werkzeug, um die Zip-Dateien der Census Webseite zu entpacken.
Auf UNIX-ähnlichen Systemen: Das Programm unzip
, das üblicherweise auf den meisten UNIX-ähnlichen Systemen bereits vorinstalliert ist.
Auf Windows 7-zip, ein freies Werkzeug zum komprimieren/entkomprimieren, das Sie von http://www.7-zip.org/ herunterladen können.
Das shp2pgsql
Kommandozeilenprogramm, welches standardmäßig mit PostGIS mitinstalliert wird.
wget
, ein Download-Manager, der üblicherweise auf den meisten UNIX/Linux Systemen vorinstalliert ist.
Für Windows können Sie vorkompilierte Binärdateien von http://gnuwin32.sourceforge.net/packages/wget.htm herunterladen
Wenn Sie von tiger_2010 her upgraden, müssen Sie zuerst das Skript Drop_Nation_Tables_Generate_Script generieren und ausführen. Bevor Sie irgendwelche Bundesstaatdaten laden, müssen Sie die nationsweiten Daten mit Loader_Generate_Nation_Script laden. Dies erstellt ein Skript zum Laden. Loader_Generate_Nation_Script ist ein einmaliger Schritt, der vor dem Upgrade (von 2010) und vor neuen Installationen aufsgeführt werden sollte.
Wie ein Skript zum Laden der Daten für Ihre Plattform und für die gewünschten Bundesstaaten generiert werden kann siehe Loader_Generate_Script. Sie können diese stückchenweise installieren. Sie müssen nicht alle benötigten Staaten auf einmal laden. Sie können sie laden wenn Sie diese benötigen.
Nachdem die gewünschten Bundesstaaten geladen wurden, führen Sie so wie unter Install_Missing_Indexes beschrieben
SELECT install_missing_indexes();
aus.
Um zu überprüfen, dass alles funktioniert wie es sollte, können Sie eine Geokodierung über eine Adresse Ihres Staates laufen lassen, indem Sie Geocode verwenden
Wenn Sie den Tiger Geokodierer der mit 2.0+ paketiert ist bereits installiert haben, können Sie die Funktionen jederzeit sogar mit einem vorläufigen Tarball aktualisieren, wenn Bugs fixiert wurden oder Sie es unbedingt benötigen. Dies funktioniert nur für einen Tiger Geokodierer, der nicht als Extension installiert wurde.
Wenn Sie keinen Ordner "extras" haben, können Sie http://postgis.net/stuff/postgis-3.3.8dev.tar.gz herunterladen
tar xvfz postgis-3.3.8dev.tar.gz
cd postgis-3.3.8dev/extras/tiger_geocoder/tiger_2011
Finden Sie das Skript upgrade_geocoder.bat
auf Windows, oder upgrade_geocoder.sh
unter Linux/Unix/Mac OSX. Editieren Sie die Datei um die Berechtigungsnachweise für Ihre PostGIS Datenbank zu erhalten.
Wenn Sie von 2010 oder 2011 her upgraden, sollten Sie die Loader-Skriptzeile auskommentieren, um das neueste Skript zum Laden der Daten von 2012 zu erhalten.
Dann führen Sie das dazugehörige Skript von der Befehlszeile aus.
Anschließend löschen Sie alle "nation"-Tabellen und laden die Neuen. Erstellen Sie ein "drop"-Skript mit den unter Drop_Nation_Tables_Generate_Script beschriebenen SQL-Anweisungen
SELECT drop_nation_tables_generate_script();
Führen Sie die erstellten SQL "drop"-Anweisungen aus.
Die untere SELECT Anweisung erstellt ein Skript zum Laden eines Staates. Details dazu finden Sie unter Loader_Generate_Nation_Script.
Auf Windows:
SELECT loader_generate_nation_script('windows');
Auf Unix/Linux:
SELECT loader_generate_nation_script('sh');
Siehe Section 2.4.4, “Tiger-Daten laden” für Anleitungen wie das "generate"-Skript auszuführen ist. Dies muss nur einmal ausgeführt werden.
Sie können eine Mischung aus Bundesstaattabellen von 2010/2011 haben und jeden Bundesstaat getrennt aktualisieren. Bevor Sie einen Bundesstaat auf 2011 aktualisieren, müssen Sie zuerst die Tabellen von 2010 für diesen Bundesstaat mit Drop_State_Tables_Generate_Script entfernen. |
Falls Ihre Installation/Upgrade nicht so verläuft wie erwartet, gibt es eine ganze Reihe von Dingen zu überprüfen.
Überprüfen Sie, ob Sie PostgreSQL 11 oder neuer installiert haben und dass die Version des PostgreSQL Quellcodes, gegen den Sie kompilieren, mit der Version der laufenden PostgreSQL Datenbank übereinstimmt. Ein Wirrwarr kann dann entstehen, wenn die Linux Distribution bereits PostgreSQL installiert hat, oder wenn Sie PostgreSQL in einem anderen Zusammenhang installiert und darauf vergessen haben. PostGIS funktioniert nur mit PostgreSQL 11 oder jünger und es kommt zu merkwürdigen, unerwarteten Fehlermeldungen, wenn Sie eine ältere Version verwenden. Um die Version Ihrer laufenden PostgreSQL Datenbank zu überprüfen, können Sie sich mittels psql zur Datenbank verbinden und folgende Anfrage ausführen:
SELECT version();
Falls Sie eine RPM-basierte Distribution am Laufen haben, können Sie nach vorinstallierten Paketen mit dem Befehl rpm suchen: rpm -qa | grep postgresql
Wenn das Upgrade schief geht, stellen Sie bitte sicher, dass PostGIS, in der Datenbank die Sie wiederherstellen wollen, installiert ist.
SELECT postgis_full_version();
Überprüfen Sie bitte auch, ob "configure" den korrekten Speicherort und die korrekte Version von PostgreSQL, sowie der Bibliotheken Proj4 und GEOS gefunden hat.
Die Ausgabe von configure wird verwendet, um die Datei postgis_config.h
zu erstellen. Überprüfen Sie bitte, ob die Variablen POSTGIS_PGSQL_VERSION
, POSTGIS_PROJ_VERSION
und POSTGIS_GEOS_VERSION
korrekt gesetzt sind.
Tuning for PostGIS performance is much like tuning for any PostgreSQL workload. The only additional consideration is that geometries and rasters are usually large, so memory-related optimizations generally have more of an impact on PostGIS than other types of PostgreSQL queries.
For general details about optimizing PostgreSQL, refer to Tuning your PostgreSQL Server.
For PostgreSQL 9.4+ configuration can be set at the server level without touching postgresql.conf
or postgresql.auto.conf
by using the ALTER SYSTEM
command.
ALTER SYSTEM SET work_mem = '256MB'; -- this forces non-startup configs to take effect for new connections SELECT pg_reload_conf(); -- show current setting value -- use SHOW ALL to see all settings SHOW work_mem;
In addition to the Postgres settings, PostGIS has some custom settings which are listed in Section 8.23, “PostGIS Grand Unified Custom Variables (GUCs)”.
These settings are configured in postgresql.conf
:
Default: partition
This is generally used for table partitioning. The default for this is set to "partition" which is ideal for PostgreSQL 8.4 and above since it will force the planner to only analyze tables for constraint consideration if they are in an inherited hierarchy and not pay the planner penalty otherwise.
Default: ~128MB in PostgreSQL 9.6
Set to about 25% to 40% of available RAM. On windows you may not be able to set as high.
max_worker_processes This setting is only available for PostgreSQL 9.4+. For PostgreSQL 9.6+ this setting has additional importance in that it controls the max number of processes you can have for parallel queries.
Default: 8
Sets the maximum number of background processes that the system can support. This parameter can only be set at server start.
work_mem - sets the size of memory used for sort operations and complex queries
Default: 1-4MB
Adjust up for large dbs, complex queries, lots of RAM
Adjust down for many concurrent users or low RAM.
If you have lots of RAM and few developers:
SET work_mem TO '256MB';
maintenance_work_mem - the memory size used for VACUUM, CREATE INDEX, etc.
Default: 16-64MB
Generally too low - ties up I/O, locks objects while swapping memory
Recommend 32MB to 1GB on production servers w/lots of RAM, but depends on the # of concurrent users. If you have lots of RAM and few developers:
SET maintenance_work_mem TO '1GB';
max_parallel_workers_per_gather
This setting is only available for PostgreSQL 9.6+ and will only affect PostGIS 2.3+, since only PostGIS 2.3+ supports parallel queries. If set to higher than 0, then some queries such as those involving relation functions like ST_Intersects
can use multiple processes and can run more than twice as fast when doing so. If you have a lot of processors to spare, you should change the value of this to as many processors as you have. Also make sure to bump up max_worker_processes
to at least as high as this number.
Default: 0
Sets the maximum number of workers that can be started by a single Gather
node. Parallel workers are taken from the pool of processes established by max_worker_processes
. Note that the requested number of workers may not actually be available at run time. If this occurs, the plan will run with fewer workers than expected, which may be inefficient. Setting this value to 0, which is the default, disables parallel query execution.
If you enabled raster support you may want to read below how to properly configure it.
As of PostGIS 2.1.3, out-of-db rasters and all raster drivers are disabled by default. In order to re-enable these, you need to set the following environment variables POSTGIS_GDAL_ENABLED_DRIVERS
and POSTGIS_ENABLE_OUTDB_RASTERS
in the server environment. For PostGIS 2.2, you can use the more cross-platform approach of setting the corresponding Section 8.23, “PostGIS Grand Unified Custom Variables (GUCs)”.
If you want to enable offline raster:
POSTGIS_ENABLE_OUTDB_RASTERS=1
Any other setting or no setting at all will disable out of db rasters.
In order to enable all GDAL drivers available in your GDAL install, set this environment variable as follows
POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL
If you want to only enable specific drivers, set your environment variable as follows:
POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"
If you are on windows, do not quote the driver list |
Setting environment variables varies depending on OS. For PostgreSQL installed on Ubuntu or Debian via apt-postgresql, the preferred way is to edit /etc/postgresql/
where 10 refers to version of PostgreSQL and main refers to the cluster.10
/main
/environment
On windows, if you are running as a service, you can set via System variables which for Windows 7 you can get to by right-clicking on Computer->Properties Advanced System Settings or in explorer navigating to Control Panel\All Control Panel Items\System
. Then clicking Advanced System Settings ->Advanced->Environment Variables and adding new system variables.
After you set the environment variables, you'll need to restart your PostgreSQL service for the changes to take effect.
If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/postgis modules, you can turn a database into a spatial one using the EXTENSION mechanism.
Core postgis extension includes geometry, geography, spatial_ref_sys and all the functions and comments. Raster and topology are packaged as a separate extension.
Run the following SQL snippet in the database you want to enable spatially:
CREATE EXTENSION IF NOT EXISTS plpgsql; CREATE EXTENSION postgis; CREATE EXTENSION postgis_raster; -- OPTIONAL CREATE EXTENSION postgis_topology; -- OPTIONAL
This is generally only needed if you cannot or don't want to get PostGIS installed in the PostgreSQL extension directory (for example during testing, development or in a restricted environment). |
Adding PostGIS objects and function definitions into your database is done by loading the various sql files located in [prefix]/share/contrib
as specified during the build phase.
The core PostGIS objects (geometry and geography types, and their support functions) are in the postgis.sql
script. Raster objects are in the rtpostgis.sql
script. Topology objects are in the topology.sql
script.
For a complete set of EPSG coordinate system definition identifiers, you can also load the spatial_ref_sys.sql
definitions file and populate the spatial_ref_sys
table. This will permit you to perform ST_Transform() operations on geometries.
If you wish to add comments to the PostGIS functions, you can find them in the postgis_comments.sql
script. Comments can be viewed by simply typing \dd [function_name] from a psql terminal window.
Run the following Shell commands in your terminal:
DB=[yourdatabase] SCRIPTSDIR=`pg_config --sharedir`/contrib/postgis-3.2/ # Core objects psql -d ${DB} -f ${SCRIPTSDIR}/postgis.sql psql -d ${DB} -f ${SCRIPTSDIR}/spatial_ref_sys.sql psql -d ${DB} -f ${SCRIPTSDIR}/postgis_comments.sql # OPTIONAL # Raster support (OPTIONAL) psql -d ${DB} -f ${SCRIPTSDIR}/rtpostgis.sql psql -d ${DB} -f ${SCRIPTSDIR}/raster_comments.sql # OPTIONAL # Topology support (OPTIONAL) psql -d ${DB} -f ${SCRIPTSDIR}/topology.sql psql -d ${DB} -f ${SCRIPTSDIR}/topology_comments.sql # OPTIONAL
Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >= 1.1.5) load the PostGIS functions into a template database called template_postgis
. If the template_postgis
database exists in your PostgreSQL installation then it is possible for users and/or applications to create spatially-enabled databases using a single command. Note that in both cases, the database user must have been granted the privilege to create new databases.
From the shell:
# createdb -T template_postgis my_spatial_db
From SQL:
postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis
Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions.
Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.
PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and a HARD UPGRADE procedure for major releases.
Before attempting to upgrade PostGIS, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will always be able to restore the dump with a HARD UPGRADE.
If you installed your database using extensions, you'll need to upgrade using the extension model as well. If you installed using the old sql script way, you are advised to switch your install to extensions because the script way is no longer supported.
If you originally installed PostGIS with extensions, then you need to upgrade using extensions as well. Doing a minor upgrade with extensions, is fairly painless.
If you are running PostGIS 3 or above, then you should use the PostGIS_Extensions_Upgrade function to upgrade to the latest version you have installed.
SELECT postgis_extensions_upgrade();
If you are running PostGIS 2.5 or lower, then do the following:
ALTER EXTENSION postgis UPDATE; SELECT postgis_extensions_upgrade(); -- This second call is needed to rebundle postgis_raster extension SELECT postgis_extensions_upgrade();
If you have multiple versions of PostGIS installed, and you don't want to upgrade to the latest, you can explicitly specify the version as follows:
ALTER EXTENSION postgis UPDATE TO "3.3.8dev"; ALTER EXTENSION postgis_topology UPDATE TO "3.3.8dev";
If you get an error notice something like:
No migration path defined for … to 3.3.8dev
Then you'll need to backup your database, create a fresh one as described in Section 3.3.1, “Spatially enable database using EXTENSION” and then restore your backup on top of this new database.
If you get a notice message like:
Version "3.3.8dev" of extension "postgis" is already installed
Then everything is already up to date and you can safely ignore it. UNLESS you're attempting to upgrade from an development version to the next (which doesn't get a new version number); in that case you can append "next" to the version string, and next time you'll need to drop the "next" suffix again:
ALTER EXTENSION postgis UPDATE TO "3.3.8devnext"; ALTER EXTENSION postgis_topology UPDATE TO "3.3.8devnext";
If you installed PostGIS originally without a version specified, you can often skip the reinstallation of postgis extension before restoring since the backup just has |
If you are upgrading PostGIS extension from a version prior to 3.0.0, you will have a new extension postgis_raster which you can safely drop, if you don't need raster support. You can drop as follows: DROP EXTENSION postgis_raster; |
This section applies only to those who installed PostGIS not using extensions. If you have extensions and try to upgrade with this approach you'll get messages like:
can't drop … because postgis extension depends on it
NOTE: if you are moving from PostGIS 1.* to PostGIS 2.* or from PostGIS 2.* prior to r7409, you cannot use this procedure but would rather need to do a HARD UPGRADE.
After compiling and installing (make install) you should find a set of *_upgrade.sql
files in the installation folders. You can list them all with:
ls `pg_config --sharedir`/contrib/postgis-3.3.8dev/*_upgrade.sql
Load them all in turn, starting from postgis_upgrade.sql
.
psql -f postgis_upgrade.sql -d your_spatial_database
The same procedure applies to raster, topology and sfcgal extensions, with upgrade files named rtpostgis_upgrade.sql
, topology_upgrade.sql
and sfcgal_upgrade.sql
respectively. If you need them:
psql -f rtpostgis_upgrade.sql -d your_spatial_database
psql -f topology_upgrade.sql -d your_spatial_database
psql -f sfcgal_upgrade.sql -d your_spatial_database
You are advised to switch to an extension based install by running
psql -c "SELECT postgis_extensions_upgrade();"
If you can't find the |
The PostGIS_Full_Version function should inform you about the need to run this kind of upgrade using a "procs need upgrade" message.
By HARD UPGRADE we mean full dump/reload of postgis-enabled databases. You need a HARD UPGRADE when PostGIS objects' internal storage changes or when SOFT UPGRADE is not possible. The Release Notes appendix reports for each version whether you need a dump/reload (HARD UPGRADE) to upgrade.
The dump/reload process is assisted by the postgis_restore.pl script which takes care of skipping from the dump all definitions which belong to PostGIS (including old ones), allowing you to restore your schemas and data into a database with PostGIS installed without getting duplicate symbol errors or bringing forward deprecated objects.
Supplementary instructions for windows users are available at Windows Hard upgrade.
The Procedure is as follows:
Create a "custom-format" dump of the database you want to upgrade (let's call it olddb
) include binary blobs (-b) and verbose (-v) output. The user can be the owner of the db, need not be postgres super account.
pg_dump -h localhost -p 5432 -U postgres -Fc -b -v -f "/somepath/olddb.backup" olddb
Do a fresh install of PostGIS in a new database -- we'll refer to this database as newdb
. Please refer to Section 3.3.2, “Spatially enable database without using EXTENSION (discouraged)” and Section 3.3.1, “Spatially enable database using EXTENSION” for instructions on how to do this.
The spatial_ref_sys entries found in your dump will be restored, but they will not override existing ones in spatial_ref_sys. This is to ensure that fixes in the official set will be properly propagated to restored databases. If for any reason you really want your own overrides of standard entries just don't load the spatial_ref_sys.sql file when creating the new db.
If your database is really old or you know you've been using long deprecated functions in your views and functions, you might need to load legacy.sql
for all your functions and views etc. to properly come back. Only do this if _really_ needed. Consider upgrading your views and functions before dumping instead, if possible. The deprecated functions can be later removed by loading uninstall_legacy.sql
.
Restore your backup into your fresh newdb
database using postgis_restore.pl. Unexpected errors, if any, will be printed to the standard error stream by psql. Keep a log of those.
perl utils/postgis_restore.pl "/somepath/olddb.backup" | psql -h localhost -p 5432 -U postgres newdb 2> errors.txt
Errors may arise in the following cases:
Some of your views or functions make use of deprecated PostGIS objects. In order to fix this you may try loading legacy.sql
script prior to restore or you'll have to restore to a version of PostGIS which still contains those objects and try a migration again after porting your code. If the legacy.sql
way works for you, don't forget to fix your code to stop using deprecated functions and drop them loading uninstall_legacy.sql
.
Some custom records of spatial_ref_sys in dump file have an invalid SRID value. Valid SRID values are bigger than 0 and smaller than 999000. Values in the 999000.999999 range are reserved for internal use while values > 999999 can't be used at all. All your custom records with invalid SRIDs will be retained, with those > 999999 moved into the reserved range, but the spatial_ref_sys table would lose a check constraint guarding for that invariant to hold and possibly also its primary key ( when multiple invalid SRIDS get converted to the same reserved SRID value ).
In order to fix this you should copy your custom SRS to a SRID with a valid value (maybe in the 910000..910999 range), convert all your tables to the new srid (see UpdateGeometrySRID), delete the invalid entry from spatial_ref_sys and re-construct the check(s) with:
ALTER TABLE spatial_ref_sys ADD CONSTRAINT spatial_ref_sys_srid_check check (srid > 0 AND srid < 999000 );
ALTER TABLE spatial_ref_sys ADD PRIMARY KEY(srid));
If you are upgrading an old database containing french IGN cartography, you will have probably SRIDs out of range and you will see, when importing your database, issues like this :
WARNING: SRID 310642222 converted to 999175 (in reserved zone)
In this case, you can try following steps : first throw out completely the IGN from the sql which is resulting from postgis_restore.pl. So, after having run :
perl utils/postgis_restore.pl "/somepath/olddb.backup" > olddb.sql
run this command :
grep -v IGNF olddb.sql > olddb-without-IGN.sql
Create then your newdb, activate the required Postgis extensions, and insert properly the french system IGN with : this script After these operations, import your data :
psql -h localhost -p 5432 -U postgres -d newdb -f olddb-without-IGN.sql 2> errors.txt
The Open Geospatial Consortium (OGC) developed the Simple Features Access standard (SFA) to provide a model for geospatial data. It defines the fundamental spatial type of Geometry, along with operations which manipulate and transform geometry values to perform spatial analysis tasks. PostGIS implements the OGC Geometry model as the PostgreSQL data types geometry and geography.
Geometry is an abstract type. Geometry values belong to one of its concrete subtypes which represent various kinds and dimensions of geometric shapes. These include the atomic types Point, LineString, LinearRing and Polygon, and the collection types MultiPoint, MultiLineString, MultiPolygon and GeometryCollection. The Simple Features Access - Part 1: Common architecture v1.2.1 adds subtypes for the structures PolyhedralSurface, Triangle and TIN.
Geometry models shapes in the 2-dimensional Cartesian plane. The PolyhedralSurface, Triangle, and TIN types can also represent shapes in 3-dimensional space. The size and location of shapes are specified by their coordinates. Each coordinate has a X and Y ordinate value determining its location in the plane. Shapes are constructed from points or line segments, with points specified by a single coordinate, and line segments by two coordinates.
Coordinates may contain optional Z and M ordinate values. The Z ordinate is often used to represent elevation. The M ordinate contains a measure value, which may represent time or distance. If Z or M values are present in a geometry value, they must be defined for each point in the geometry. If a geometry has Z or M ordinates the coordinate dimension is 3D; if it has both Z and M the coordinate dimension is 4D.
Geometry values are associated with a spatial reference system indicating the coordinate system in which it is embedded. The spatial reference system is identified by the geometry SRID number. The units of the X and Y axes are determined by the spatial reference system. In planar reference systems the X and Y coordinates typically represent easting and northing, while in geodetic systems they represent longitude and latitude. SRID 0 represents an infinite Cartesian plane with no units assigned to its axes. See Section 4.5, “Spatial Reference Systems”.
The geometry dimension is a property of geometry types. Point types have dimension 0, linear types have dimension 1, and polygonal types have dimension 2. Collections have the dimension of the maximum element dimension.
A geometry value may be empty. Empty values contain no vertices (for atomic geometry types) or no elements (for collections).
An important property of geometry values is their spatial extent or bounding box, which the OGC model calls envelope. This is the 2 or 3-dimensional box which encloses the coordinates of a geometry. It is an efficient way to represent a geometry's extent in coordinate space and to check whether two geometries interact.
The geometry model allows evaluating topological spatial relationships as described in Section 5.1.1, “Dimensionally Extended 9-Intersection Model”. To support this the concepts of interior, boundary and exterior are defined for each geometry type. Geometries are topologically closed, so they always contain their boundary. The boundary is a geometry of dimension one less than that of the geometry itself.
The OGC geometry model defines validity rules for each geometry type. These rules ensure that geometry values represents realistic situations (e.g. it is possible to specify a polygon with a hole lying outside the shell, but this makes no sense geometrically and is thus invalid). PostGIS also allows storing and manipulating invalid geometry values. This allows detecting and fixing them if needed. See Section 4.4, “Geometrievalidierung”
A Point is a 0-dimensional geometry that represents a single location in coordinate space.
POINT (1 2) POINT Z (1 2 3) POINT ZM (1 2 3 4)
A LineString is a 1-dimensional line formed by a contiguous sequence of line segments. Each line segment is defined by two points, with the end point of one segment forming the start point of the next segment. An OGC-valid LineString has either zero or two or more points, but PostGIS also allows single-point LineStrings. LineStrings may cross themselves (self-intersect). A LineString is closed if the start and end points are the same. A LineString is simple if it does not self-intersect.
LINESTRING (1 2, 3 4, 5 6)
A LinearRing is a LineString which is both closed and simple. The first and last points must be equal, and the line must not self-intersect.
LINEARRING (0 0 0, 4 0 0, 4 4 0, 0 4 0, 0 0 0)
A Polygon is a 2-dimensional planar region, delimited by an exterior boundary (the shell) and zero or more interior boundaries (holes). Each boundary is a LinearRing.
POLYGON ((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))
A MultiLineString is a collection of LineStrings. A MultiLineString is closed if each of its elements is closed.
MULTILINESTRING ( (0 0,1 1,1 2), (2 3,3 2,5 4) )
A MultiPolygon is a collection of non-overlapping, non-adjacent Polygons. Polygons in the collection may touch only at a finite number of points.
MULTIPOLYGON (((1 5, 5 5, 5 1, 1 1, 1 5)), ((6 5, 9 1, 6 1, 6 5)))
A GeometryCollection is a heterogeneous (mixed) collection of geometries.
GEOMETRYCOLLECTION ( POINT(2 3), LINESTRING(2 3, 3 4))
A PolyhedralSurface is a contiguous collection of patches or facets which share some edges. Each patch is a planar Polygon. If the Polygon coordinates have Z ordinates then the surface is 3-dimensional.
POLYHEDRALSURFACE Z ( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )
A Triangle is a polygon defined by three distinct non-collinear vertices. Because a Triangle is a polygon it is specified by four coordinates, with the first and fourth being equal.
TRIANGLE ((0 0, 0 9, 9 0, 0 0))
A TIN is a collection of non-overlapping Triangles representing a Triangulated Irregular Network.
TIN Z ( ((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 0 0 0)) )
The ISO/IEC 13249-3 SQL Multimedia - Spatial standard (SQL/MM) extends the OGC SFA to define Geometry subtypes containing curves with circular arcs. The SQL/MM types support 3DM, 3DZ and 4D coordinates.
Alle Gleitpunkt Vergleiche der SQL-MM Implementierung werden mit einer bestimmten Toleranz ausgeführt, zurzeit 1E-8. |
CircularString is the basic curve type, similar to a LineString in the linear world. A single arc segment is specified by three points: the start and end points (first and third) and some other point on the arc. To specify a closed circle the start and end points are the same and the middle point is the opposite point on the circle diameter (which is the center of the arc). In a sequence of arcs the end point of the previous arc is the start point of the next arc, just like the segments of a LineString. This means that a CircularString must have an odd number of points greater than 1.
CIRCULARSTRING(0 0, 1 1, 1 0) CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)
A CompoundCurve is a single continuous curve that may contain both circular arc segments and linear segments. That means that in addition to having well-formed components, the end point of every component (except the last) must be coincident with the start point of the following component.
COMPOUNDCURVE( CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))
A CurvePolygon is like a polygon, with an outer ring and zero or more inner rings. The difference is that a ring can be a CircularString or CompoundCurve as well as a LineString.
Ab PostGIS 1.4 werden zusammengesetzte Kurven/CompoundCurve in einem Kurvenpolygon/CurvePolygon unterstützt.
CURVEPOLYGON( CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0), (1 1, 3 3, 3 1, 1 1) )
Example: A CurvePolygon with the shell defined by a CompoundCurve containing a CircularString and a LineString, and a hole defined by a CircularString
CURVEPOLYGON( COMPOUNDCURVE( CIRCULARSTRING(0 0,2 0, 2 1, 2 3, 4 3), (4 3, 4 5, 1 4, 0 0)), CIRCULARSTRING(1.7 1, 1.4 0.4, 1.6 0.4, 1.6 0.5, 1.7 1) )
A MultiCurve is a collection of curves which can include LineStrings, CircularStrings or CompoundCurves.
MULTICURVE( (0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))
The OGC SFA specification defines two formats for representing geometry values for external use: Well-Known Text (WKT) and Well-Known Binary (WKB). Both WKT and WKB include information about the type of the object and the coordinates which define it.
Well-Known Text (WKT) provides a standard textual representation of spatial data. Examples of WKT representations of spatial objects are:
POINT(0 0)
POINT Z (0 0 0)
POINT ZM (0 0 0 0)
POINT EMPTY
LINESTRING(0 0,1 1,1 2)
LINESTRING EMPTY
POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))
MULTIPOINT((0 0),(1 2))
MULTIPOINT Z ((0 0 0),(1 2 3))
MULTIPOINT EMPTY
MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))
MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))
GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))
GEOMETRYCOLLECTION EMPTY
Input and output of WKT is provided by the functions ST_AsText and ST_GeomFromText:
text WKT = ST_AsText(geometry); geometry = ST_GeomFromText(text WKT, SRID);
For example, a statement to create and insert a spatial object from WKT and a SRID is:
INSERT INTO geotable ( geom, name ) VALUES ( ST_GeomFromText('POINT(-126.4 45.32)', 312), 'A Place');
Well-Known Binary (WKB) provides a portable, full-precision representation of spatial data as binary data (arrays of bytes). Examples of the WKB representations of spatial objects are:
WKT: POINT(1 1)
WKB: 0101000000000000000000F03F000000000000F03
WKT: LINESTRING (2 2, 9 9)
WKB: 0102000000020000000000000000000040000000000000004000000000000022400000000000002240
Input and output of WKB is provided by the functions ST_AsBinary and ST_GeomFromWKB:
bytea WKB = ST_AsBinary(geometry); geometry = ST_GeomFromWKB(bytea WKB, SRID);
For example, a statement to create and insert a spatial object from WKB is:
INSERT INTO geotable ( geom, name ) VALUES ( ST_GeomFromWKB('\x0101000000000000000000f03f000000000000f03f', 312), 'A Place');
PostGIS implements the OGC Simple Features model by defining a PostgreSQL data type called geometry
. It represents all of the geometry subtypes by using an internal type code (see GeometryType and ST_GeometryType). This allows modelling spatial features as rows of tables defined with a column of type geometry
.
The geometry
data type is opaque, which means that all access is done via invoking functions on geometry values. Functions allow creating geometry objects, accessing or updating all internal fields, and compute new geometry values. PostGIS supports all the functions specified in the OGC Simple feature access - Part 2: SQL option (SFS) specification, as well many others. See Chapter 8, Referenz PostGIS for the full list of functions.
PostGIS follows the SFA standard by prefixing spatial functions with "ST_". This was intended to stand for "Spatial and Temporal", but the temporal part of the standard was never developed. Instead it can be interpreted as "Spatial Type". |
The SFA standard specifies that spatial objects include a Spatial Reference System identifier (SRID). The SRID is required when creating spatial objects for insertion into the database (it may be defaulted to 0). See ST_SRID and Section 4.5, “Spatial Reference Systems”
To make querying geometry efficient PostGIS defines various kinds of spatial indexes, and spatial operators to use them. See Section 4.9, “Spatial Indexes” and Section 5.2, “Using Spatial Indexes” for details.
OGC SFA specifications initially supported only 2D geometries, and the geometry SRID is not included in the input/output representations. The OGC SFA specification 1.2.1 (which aligns with the ISO 19125 standard) adds support for 3D (ZYZ) and measured (XYM and XYZM) coordinates, but still does not include the SRID value.
Because of these limitations PostGIS defined extended EWKB and EWKT formats. They provide 3D (XYZ and XYM) and 4D (XYZM) coordinate support and include SRID information. Including all geometry information allows PostGIS to use EWKB as the format of record (e.g. in DUMP files).
EWKB and EWKT are used for the "canonical forms" of PostGIS data objects. For input, the canonical form for binary data is EWKB, and for text data either EWKB or EWKT is accepted. This allows geometry values to be created by casting a text value in either HEXEWKB or EWKT to a geometry value using ::geometry
. For output, the canonical form for binary is EWKB, and for text it is HEXEWKB (hex-encoded EWKB).
For example this statement creates a geometry by casting from an EWKT text value, and outputs it using the canonical form of HEXEWKB:
SELECT 'SRID=4;POINT(0 0)'::geometry; geometry ---------------------------------------------------- 01010000200400000000000000000000000000000000000000
PostGIS EWKT output has a few differences to OGC WKT:
For 3DZ geometries the Z qualifier is omitted:
OGC: POINT Z (1 2 3)
EWKT: POINT (1 2 3)
For 3DM geometries the M qualifier is included:
OGC: POINT M (1 2 3)
EWKT: POINTM (1 2 3)
For 4D geometries the ZM qualifier is omitted:
OGC: POINT ZM (1 2 3 4)
EWKT: POINT (1 2 3 4)
EWKT avoids over-specifying dimensionality and the inconsistencies that can occur with the OGC/ISO format, such as:
POINT ZM (1 1)
POINT ZM (1 1 1)
POINT (1 1 1 1)
PostGIS extended formats are currently a superset of the OGC ones, so that every valid OGC WKB/WKT is also valid EWKB/EWKT. However, this might vary in the future, if the OGC extends a format in a way that conflicts with the PosGIS definition. Thus you SHOULD NOT rely on this compatibility! |
Examples of the EWKT text representation of spatial objects are:
POINT(0 0 0) -- XYZ
SRID=32632;POINT(0 0) -- XY mit SRID
POINTM(0 0 0) -- XYM
POINT(0 0 0 0) -- XYZM
SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM mit SRID
MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4 1))
POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))
MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))
GEOMETRYCOLLECTIONM( POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5) )
MULTICURVE( (0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4) )
POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )
TRIANGLE ((0 0, 0 10, 10 0, 0 0))
TIN( ((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 0 0 0)) )
Input and output using these formats is available using the following functions:
bytea EWKB = ST_AsEWKB(geometry); text EWKT = ST_AsEWKT(geometry); geometry = ST_GeomFromEWKB(bytea EWKB); geometry = ST_GeomFromEWKT(text EWKT);
For example, a statement to create and insert a PostGIS spatial object using EWKT is:
INSERT INTO geotable ( geom, name ) VALUES ( ST_GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)'), 'A Place' )
The PostGIS geography
data type provides native support for spatial features represented on "geographic" coordinates (sometimes called "geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in angular units (degrees).
The basis for the PostGIS geometry data type is a plane. The shortest path between two points on the plane is a straight line. That means functions on geometries (areas, distances, lengths, intersections, etc) are calculated using straight line vectors and cartesian mathematics. This makes them simpler to implement and faster to execute, but also makes them inaccurate for data on the spheroidal surface of the earth.
The PostGIS geography data type is based on a spherical model. The shortest path between two points on the sphere is a great circle arc. Functions on geographies (areas, distances, lengths, intersections, etc) are calculated using arcs on the sphere. By taking the spheroidal shape of the world into account, the functions provide more accurate results.
Because the underlying mathematics is more complicated, there are fewer functions defined for the geography type than for the geometry type. Over time, as new algorithms are added the capabilities of the geography type will expand. As a workaround one can convert back and forth between geometry and geography types.
Like the geometry data type, geography data is associated with a spatial reference system via a spatial reference system identifier (SRID). Any geodetic (long/lat based) spatial reference system defined in the spatial_ref_sys
table can be used. (Prior to PostGIS 2.2, the geography type supported only WGS 84 geodetic (SRID:4326)). You can add your own custom geodetic spatial reference system as described in Section 4.5.2, “User-Defined Spatial Reference Systems”.
For all spatial reference systems the units returned by measurement functions (e.g. ST_Distance, ST_Length, ST_Perimeter, ST_Area) and for the distance argument of ST_DWithin are in meters.
You can create a table to store geography data using the CREATE TABLE SQL statement with a column of type geography
. The following example creates a table with a geography column storing 2D LineStrings in the WGS84 geodetic coordinate system (SRID 4326):
CREATE TABLE global_points ( id SERIAL PRIMARY KEY, name VARCHAR(64), location geography(POINT,4326) );
The geography type supports two optional type modifiers:
the spatial type modifier restricts the kind of shapes and dimensions allowed in the column. Values allowed for the spatial type are: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION. The geography type does not support curves, TINS, or POLYHEDRALSURFACEs. The modifier supports coordinate dimensionality restrictions by adding suffixes: Z, M and ZM. For example, a modifier of 'LINESTRINGM' only allows linestrings with three dimensions, and treats the third dimension as a measure. Similarly, 'POINTZM' requires four dimensional (XYZM) data.
the SRID modifier restricts the spatial reference system SRID to a particular number. If omitted, the SRID defaults to 4326 (WGS84 geodetic), and all calculations are performed using WGS84.
Examples of creating tables with geography columns:
Create a table with 2D POINT geography with the default SRID 4326 (WGS84 long/lat):
CREATE TABLE ptgeogwgs(gid serial PRIMARY KEY, geog geography(POINT) );
Create a table with 2D POINT geography in NAD83 longlat:
CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography(POINT,4269) );
Create a table with 3D (XYZ) POINTs and an explicit SRID of 4326:
CREATE TABLE ptzgeogwgs84(gid serial PRIMARY KEY, geog geography(POINTZ,4326) );
Create a table with 2D LINESTRING geography with the default SRID 4326:
CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography(LINESTRING) );
Create a table with 2D POLYGON geography with the SRID 4267 (NAD 1927 long lat):
CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography(POLYGON,4267) );
Geography fields are registered in the geography_columns
system view. You can query the geography_columns
view and see that the table is listed:
SELECT * FROM geography_columns;
Creating a spatial index works the same as for geometry columns. PostGIS will note that the column type is GEOGRAPHY and create an appropriate sphere-based index instead of the usual planar index used for GEOMETRY.
-- Index the test table with a spherical index CREATE INDEX global_points_gix ON global_points USING GIST ( location );
You can insert data into geography tables in the same way as geometry. Geometry data will autocast to the geography type if it has SRID 4326. The EWKT and EWKB formats can also be used to specify geography values.
-- Ein paar Daten in die Testtabelle einfügen INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)'); INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)'); INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT(0 49)');
Any geodetic (long/lat) spatial reference system listed in spatial_ref_sys
table may be specified as a geography SRID. Non-geodetic coordinate systems raise an error if used.
-- NAD 83 lon/lat SELECT 'SRID=4269;POINT(-123 34)'::geography; geography ---------------------------------------------------- 0101000020AD1000000000000000C05EC00000000000004140
-- NAD27 lon/lat SELECT 'SRID=4267;POINT(-123 34)'::geography; geography ---------------------------------------------------- 0101000020AB1000000000000000C05EC00000000000004140
-- NAD83 UTM zone meters - gives an error since it is a meter-based planar projection SELECT 'SRID=26910;POINT(-123 34)'::geography; ERROR: Only lon/lat coordinate systems are supported in geography.
Anfrage und Messfunktionen verwenden die Einheit Meter. Daher sollten Entfernungsparameter in Metern ausgedrückt werden und die Rückgabewerte sollten ebenfalls in Meter (oder Quadratmeter für Flächen) erwartet werden.
-- A distance query using a 1000km tolerance SELECT name FROM global_points WHERE ST_DWithin(location, 'SRID=4326;POINT(-110 29)'::geography, 1000000);
You can see the power of geography in action by calculating how close a plane flying a great circle route from Seattle to London (LINESTRING(-122.33 47.606, 0.0 51.5)) comes to Reykjavik (POINT(-21.96 64.15)) (map the route).
The geography type calculates the true shortest distance of 122.235 km over the sphere between Reykjavik and the great circle flight path between Seattle and London.
-- Distance calculation using GEOGRAPHY SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15)'::geography); st_distance ----------------- 122235.23815667
The geometry type calculates a meaningless cartesian distance between Reykjavik and the straight line path from Seattle to London plotted on a flat map of the world. The nominal units of the result is "degrees", but the result doesn't correspond to any true angular difference between the points, so even calling them "degrees" is inaccurate.
-- Distance calculation using GEOMETRY SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geometry, 'POINT(-21.96 64.15)'::geometry); st_distance -------------------- 13.342271221453624
The geography data type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions defined on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.
The data type you choose should be determined by the expected working area of the application you are building. Will your data span the globe or a large continental area, or is it local to a state, county or municipality?
Wenn sich Ihre Daten in einem kleinen Bereich befinden, werden Sie vermutlich eine passende Projektion wählen und den geometrischen Datentyp verwenden, da dies in Bezug auf die Rechenleistung und die verfügbare Funktionalität die bessere Lösung ist.
Wenn Ihre Daten global sind oder einen ganzen Kontinent bedecken, ermöglicht der geographische Datentyp ein System aufzubauen, bei dem Sie sich nicht um Projektionsdetails kümmern müssen. Sie speichern die Daten als Länge und Breite und verwenden dann jene Funktionen, die für den geographischen Datentyp definiert sind.
Wenn Sie keine Ahnung von Projektionen haben, sich nicht näher damit beschäftigen wollen und die Einschränkungen der verfügbaren Funktionalität für den geographischen Datentyp in Kauf nehmen können, ist es vermutlich einfacher für Sie, den geographischen anstatt des geometrischen Datentyps zu verwenden.
Für einen Vergleich, welche Funktionalität von Geography vs. Geometry unterstützt wird, siehe Section 15.11, “PostGIS Function Support Matrix”. Für eine kurze Liste mit der Beschreibung der geographischen Funktionen, siehe Section 15.4, “PostGIS Geography Support Functions”
4.3.4.1. | Werden die Berechnungen auf einer Kugel oder auf einem Rotationsellipsoid durchgeführt? |
Standardmäßig werden alle Entfernungs- und Flächenberechnungen auf dem Referenzellipsoid ausgeführt. Das Ergebnis der Berechnung sollte in lokalen Gebieten gut mit dem planaren Ergebnis zusammenpassen - eine gut gewählte lokale Projektion vorausgesetzt. Bei größeren Gebieten ist die Berechnung über das Referenzellipsoid genauer als eine Berechnung die auf der projizierten Ebene ausgeführt wird. Alle geographischen Funktionen verfügen über eine Option um die Berechnung auf einer Kugel durchzuführen. Dies erreicht man, indem der letzte boolesche Eingabewert auf 'FALSE' gesetzt wird. Dies beschleunigt die Berechnung einigermaßen, insbesondere wenn die Geometrie sehr einfach gestaltet ist. | |
4.3.4.2. | Wie schaut das mit der Datumsgrenze und den Polen aus? |
Alle diese Berechnungen wissen weder über Datumsgrenzen noch über Pole Bescheid. Da es sich um sphärische Koordinaten handelt (Länge und Breite), unterscheidet sich eine Geometrie, die eine Datumsgrenze überschreitet vom Gesichtspunkt der Berechnung her nicht von irgendeiner anderen Geometrie. | |
4.3.4.3. | Wie lang kann ein Bogen sein, damit er noch verarbeitet werden kann? |
Wir verwenden Großkreisbögen als "Interpolationslinie" zwischen zwei Punkten. Das bedeutet, dass es für den Join zwischen zwei Punkten zwei Möglichkeiten gibt, je nachdem, aus welcher Richtung man den Großkreis überquert. Unser gesamter Code setzt voraus, dass die Punkte von der "kürzeren" der beiden Strecken her durch den Großkreis verbunden werden. Als Konsequenz wird eine Geometrie, welche Bögen von mehr als 180 Grad aufweist nicht korrekt modelliert. | |
4.3.4.4. | Warum dauert es so lange, die Fläche von Europa / Russland / irgendeiner anderen großen geographischen Region zu berechnen? |
Weil das Polygon so verdammt groß ist! Große Flächen sind aus zwei Gründen schlecht: ihre Begrenzung ist riesig, wodurch der Index dazu tendiert, das Geoobjekt herauszuholen, egal wie Sie die Anfrage ausführen; die Anzahl der Knoten ist riesig, und Tests (wie ST_Distance, ST_Contains) müssen alle Knoten zumindest einmal, manchmal sogar n-mal durchlaufen (wobei N die Anzahl der Knoten im beteiligten Geoobjekt bezeichnet). Wenn es sich um sehr große Polygone handelt, die Abfragen aber nur in kleinen Gebieten stattfinden, empfehlen wir wie beim geometrischen Datentyp, dass Sie die Geometrie in kleinere Stücke "denormalisieren". Dadurch kann der Index effiziente Unterabfragen auf Teile des Geoobjekts ausführen, da eine Abfrage nicht jedesmal das gesamte Geoobjekt herausholen muss. Konsultieren Sie dazu bitte die Dokumentation der FunktionST_Subdivide. Nur weil Sie ganz Europa in einem Polygon speichern *können* heißt das nicht, dass Sie dies auch tun *sollten*. |
PostGIS is compliant with the Open Geospatial Consortium’s (OGC) Simple Features specification. That standard defines the concepts of geometry being simple and valid. These definitions allow the Simple Features geometry model to represent spatial objects in a consistent and unambiguous way that supports efficient computation. (Note: the OGC SF and SQL/MM have the same definitions for simple and valid.)
A simple geometry is one that has no anomalous geometric points, such as self intersection or self tangency.
A POINT
is inherently simple as a 0-dimensional geometry object.
MULTIPOINT
s sind simple, wenn sich keine zwei Koordinaten (POINT
s) decken (keine identischen Koordinatenpaare aufweisen).
A LINESTRING
is simple if it does not pass through the same point twice, except for the endpoints. If the endpoints of a simple LineString are identical it is called closed and referred to as a Linear Ring.
(a) and (c) are simple |
A MULTILINESTRING
is simple only if all of its elements are simple and the only intersection between any two elements occurs at points that are on the boundaries of both elements.
(e) and (f) are simple |
POLYGON
s are formed from linear rings, so valid polygonal geometry is always simple.
To test if a geometry is simple use the ST_IsSimple function:
SELECT ST_IsSimple('LINESTRING(0 0, 100 100)') AS straight, ST_IsSimple('LINESTRING(0 0, 100 100, 100 0, 0 100)') AS crossing; straight | crossing ----------+---------- t | f
Generally, PostGIS functions do not require geometric arguments to be simple. Simplicity is primarily used as a basis for defining geometric validity. It is also a requirement for some kinds of spatial data models (for example, linear networks often disallow lines that cross). Multipoint and linear geometry can be made simple using ST_UnaryUnion.
Geometry validity primarily applies to 2-dimensional geometries (POLYGON
s and MULTIPOLYGON
s) . Validity is defined by rules that allow polygonal geometry to model planar areas unambiguously.
A POLYGON
is valid if:
the polygon boundary rings (the exterior shell ring and interior hole rings) are simple (do not cross or self-touch). Because of this a polygon cannnot have cut lines, spikes or loops. This implies that polygon holes must be represented as interior rings, rather than by the exterior ring self-touching (a so-called "inverted hole").
boundary rings do not cross
boundary rings may touch at points but only as a tangent (i.e. not in a line)
interior rings are contained in the exterior ring
the polygon interior is simply connected (i.e. the rings must not touch in a way that splits the polygon into more than one part)
(h) and (i) are valid |
A MULTIPOLYGON
is valid if:
its element POLYGON
s are valid
elements do not overlap (i.e. their interiors must not intersect)
elements touch only at points (i.e. not along a line)
(n) is a valid |
These rules mean that valid polygonal geometry is also simple.
For linear geometry the only validity rule is that LINESTRING
s must have at least two points and have non-zero length (or equivalently, have at least two distinct points.) Note that non-simple (self-intersecting) lines are valid.
SELECT ST_IsValid('LINESTRING(0 0, 1 1)') AS len_nonzero, ST_IsValid('LINESTRING(0 0, 0 0, 0 0)') AS len_zero, ST_IsValid('LINESTRING(10 10, 150 150, 180 50, 20 130)') AS self_int; len_nonzero | len_zero | self_int -------------+----------+---------- t | f | t
POINT
and MULTIPOINT
geometries have no validity rules.
PostGIS allows creating and storing both valid and invalid Geometry. This allows invalid geometry to be detected and flagged or fixed. There are also situations where the OGC validity rules are stricter than desired (examples of this are zero-length linestrings and polygons with inverted holes.)
Many of the functions provided by PostGIS rely on the assumption that geometry arguments are valid. For example, it does not make sense to calculate the area of a polygon that has a hole defined outside of the polygon, or to construct a polygon from a non-simple boundary line. Assuming valid geometric inputs allows functions to operate more efficiently, since they do not need to check for topological correctness. (Notable exceptions are that zero-length lines and polygons with inversions are generally handled correctly.) Also, most PostGIS functions produce valid geometry output if the inputs are valid. This allows PostGIS functions to be chained together safely.
If you encounter unexpected error messages when calling PostGIS functions (such as "GEOS Intersection() threw an error!"), you should first confirm that the function arguments are valid. If they are not, then consider using one of the techniques below to ensure the data you are processing is valid.
If a function reports an error with valid inputs, then you may have found an error in either PostGIS or one of the libraries it uses, and you should report this to the PostGIS project. The same is true if a PostGIS function returns an invalid geometry for valid input. |
To test if a geometry is valid use the ST_IsValid function:
SELECT ST_IsValid('POLYGON ((20 180, 180 180, 180 20, 20 20, 20 180))'); ----------------- t
Information about the nature and location of an geometry invalidity are provided by the ST_IsValidDetail function:
SELECT valid, reason, ST_AsText(location) AS location FROM ST_IsValidDetail('POLYGON ((20 20, 120 190, 50 190, 170 50, 20 20))') AS t; valid | reason | location -------+-------------------+--------------------------------------------- f | Self-intersection | POINT(91.51162790697674 141.56976744186045)
In some situations it is desirable to correct invalid geometry automatically. Use the ST_MakeValid function to do this. (ST_MakeValid
is a case of a spatial function that does allow invalid input!)
By default, PostGIS does not check for validity when loading geometry, because validity testing can take a lot of CPU time for complex geometries. If you do not trust your data sources, you can enforce a validity check on your tables by adding a check constraint:
ALTER TABLE mytable ADD CONSTRAINT geometry_valid_check CHECK (ST_IsValid(geom));
A Spatial Reference System (SRS) (also called a Coordinate Reference System (CRS)) defines how geometry is referenced to locations on the Earth's surface. There are three types of SRS:
A geodetic SRS uses angular coordinates (longitude and latitude) which map directly to the surface of the earth.
A projected SRS uses a mathematical projection transformation to "flatten" the surface of the spheroidal earth onto a plane. It assigns location coordinates in a way that allows direct measurement of quantities such as distance, area, and angle. The coordinate system is Cartesian, which means it has a defined origin point and two perpendicular axes (usually oriented North and East). Each projected SRS uses a stated length unit (usually metres or feet). A projected SRS may be limited in its area of applicability to avoid distortion and fit within the defined coordinate bounds.
A local SRS is a Cartesian coordinate system which is not referenced to the earth's surface. In PostGIS this is specified by a SRID value of 0.
There are many different spatial reference systems in use. Common SRSes are standardized in the European Petroleum Survey Group EPSG database. For convenience PostGIS (and many other spatial systems) refers to SRS definitions using an integer identifier called a SRID.
A geometry is associated with a Spatial Reference System by its SRID value, which is accessed by ST_SRID. The SRID for a geometry can be assigned using ST_SetSRID. Some geometry constructor functions allow supplying a SRID (such as ST_Point and ST_MakeEnvelope). The EWKT format supports SRIDs with the SRID=n;
prefix.
Spatial functions processing pairs of geometries (such as overlay and relationship functions) require that the input geometries are in the same spatial reference system (have the same SRID). Geometry data can be transformed into a different spatial reference system using ST_Transform. Geometry returned from functions has the same SRS as the input geometries.
The SPATIAL_REF_SYS
table used by PostGIS is an OGC-compliant database table that defines the available spatial reference systems. It holds the numeric SRIDs and textual descriptions of the coordinate systems.
The spatial_ref_sys
table definition is:
CREATE TABLE spatial_ref_sys ( srid INTEGER NOT NULL PRIMARY KEY, auth_name VARCHAR(256), auth_srid INTEGER, srtext VARCHAR(2048), proj4text VARCHAR(2048) )
The columns are:
An integer code that uniquely identifies the Spatial Reference System (SRS) within the database.
The name of the standard or standards body that is being cited for this reference system. For example, "EPSG" is a valid auth_name
.
The ID of the Spatial Reference System as defined by the Authority cited in the auth_name
. In the case of EPSG, this is the EPSG code.
Die Well-Known-Text Darstellung des Koordinatenreferenzsystems. Ein Beispiel dazu:
PROJCS["NAD83 / UTM Zone 10N", GEOGCS["NAD83", DATUM["North_American_Datum_1983", SPHEROID["GRS 1980",6378137,298.257222101] ], PRIMEM["Greenwich",0], UNIT["degree",0.0174532925199433] ], PROJECTION["Transverse_Mercator"], PARAMETER["latitude_of_origin",0], PARAMETER["central_meridian",-123], PARAMETER["scale_factor",0.9996], PARAMETER["false_easting",500000], PARAMETER["false_northing",0], UNIT["metre",1] ]
For a discussion of SRS WKT, see the OGC standard Well-known text representation of coordinate reference systems.
PostGIS uses the PROJ library to provide coordinate transformation capabilities. The proj4text
column contains the PROJ coordinate definition string for a particular SRID. For example:
+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m
For more information see the PROJ web site. The spatial_ref_sys.sql
file contains both srtext
and proj4text
definitions for all EPSG projections.
When retrieving spatial reference system definitions for use in transformations, PostGIS uses fhe following strategy:
If auth_name
and auth_srid
are present (non-NULL) use the PROJ SRS based on those entries (if one exists).
If srtext
is present create a SRS using it, if possible.
If proj4text
is present create a SRS using it, if possible.
The PostGIS spatial_ref_sys
table contains over 3000 of the most common spatial reference system definitions that are handled by the PROJ projection library. But there are many coordinate systems that it does not contain. You can add SRS definitions to the table if you have the required information about the spatial reference system. Or, you can define your own custom spatial reference system if you are familiar with PROJ constructs. Keep in mind that most spatial reference systems are regional and have no meaning when used outside of the bounds they were intended for.
A resource for finding spatial reference systems not defined in the core set is http://spatialreference.org/
Some commonly used spatial reference systems are: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 - WGS 84 World Mercator, 2163 - US National Atlas Equal Area, and the 60 WGS84 UTM zones. UTM zones are one of the most ideal for measurement, but only cover 6-degree regions. (To determine which UTM zone to use for your area of interest, see the utmzone PostGIS plpgsql helper function.)
US states use State Plane spatial reference systems (meter or feet based) - usually one or 2 exists per state. Most of the meter-based ones are in the core set, but many of the feet-based ones or ESRI-created ones will need to be copied from spatialreference.org.
You can even define non-Earth-based coordinate systems, such as Mars 2000 This Mars coordinate system is non-planar (it's in degrees spheroidal), but you can use it with the geography
type to obtain length and proximity measurements in meters instead of degrees.
Here is an example of loading a custom coordinate system using an unassigned SRID and the PROJ definition for a US-centric Lambert Conformal projection:
INSERT INTO spatial_ref_sys (srid, proj4text) VALUES ( 990000, '+proj=lcc +lon_0=-95 +lat_0=25 +lat_1=25 +lat_2=25 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs' );
You can create a table to store geometry data using the CREATE TABLE SQL statement with a column of type geometry
. The following example creates a table with a geometry column storing 2D (XY) LineStrings in the BC-Albers coordinate system (SRID 3005):
CREATE TABLE roads ( id SERIAL PRIMARY KEY, name VARCHAR(64), geom geometry(LINESTRING,3005) );
The geometry
type supports two optional type modifiers:
the spatial type modifier restricts the kind of shapes and dimensions allowed in the column. The value can be any of the supported geometry subtypes (e.g. POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION, etc). The modifier supports coordinate dimensionality restrictions by adding suffixes: Z, M and ZM. For example, a modifier of 'LINESTRINGM' allows only linestrings with three dimensions, and treats the third dimension as a measure. Similarly, 'POINTZM' requires four dimensional (XYZM) data.
the SRID modifier restricts the spatial reference system SRID to a particular number. If omitted, the SRID defaults to 0.
Examples of creating tables with geometry columns:
Create a table holding any kind of geometry with the default SRID:
CREATE TABLE geoms(gid serial PRIMARY KEY, geom geometry );
Create a table with 2D POINT geometry with the default SRID:
CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry(POINT) );
Create a table with 3D (XYZ) POINTs and an explicit SRID of 3005:
CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry(POINTZ,3005) );
Create a table with 4D (XYZM) LINESTRING geometry with the default SRID:
CREATE TABLE lines(gid serial PRIMARY KEY, geom geometry(LINESTRINGZM) );
Create a table with 2D POLYGON geometry with the SRID 4267 (NAD 1927 long lat):
CREATE TABLE polys(gid serial PRIMARY KEY, geom geometry(POLYGON,4267) );
It is possible to have more than one geometry column in a table. This can be specified when the table is created, or a column can be added using the ALTER TABLE SQL statement. This example adds a column that can hold 3D LineStrings:
ALTER TABLE roads ADD COLUMN geom2 geometry(LINESTRINGZ,4326);
The OGC Simple Features Specification for SQL defines the GEOMETRY_COLUMNS
metadata table to describe geometry table structure. In PostGIS geometry_columns
is a view reading from database system catalog tables. This ensures that the spatial metadata information is always consistent with the currently defined tables and views. The view structure is:
\d geometry_columns
View "public.geometry_columns" Column | Type | Modifiers -------------------+------------------------+----------- f_table_catalog | character varying(256) | f_table_schema | character varying(256) | f_table_name | character varying(256) | f_geometry_column | character varying(256) | coord_dimension | integer | srid | integer | type | character varying(30) |
The columns are:
The fully qualified name of the feature table containing the geometry column. There is no PostgreSQL analogue of "catalog" so that column is left blank. For "schema" the PostgreSQL schema name is used (public
is the default).
Der Name der Geometriespalte in der Feature-Tabelle.
The coordinate dimension (2, 3 or 4) of the column.
The ID of the spatial reference system used for the coordinate geometry in this table. It is a foreign key reference to the spatial_ref_sys
table (see Section 4.5.1, “SPATIAL_REF_SYS Table”).
Der Datentyp des Geoobjekts. Um die räumliche Spalte auf einen einzelnen Datentyp zu beschränken, benutzen Sie bitte: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION oder die entsprechenden XYM Versionen POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM und GEOMETRYCOLLECTIONM. Für uneinheitliche Kollektionen (gemischete Datentypen) können Sie den Datentyp "GEOMETRY" verwenden.
Zwei Fälle bei denen Sie dies benötigen könnten sind SQL-Views und Masseninserts. Beim Fall von Masseninserts können Sie die Registrierung in der Tabelle "geometry_columns" korrigieren, indem Sie auf die Spalte einen CONSTRAINT setzen oder ein "ALTER TABLE" durchführen. Falls Ihre Spalte Typmod basiert ist, geschieht die Registrierung beim Erstellungsprozess auf korrekte Weise, so dass Sie hier nichts tun müssen. Auch Views, bei denen keine räumliche Funktion auf die Geometrie angewendet wird, werden auf gleiche Weise wie die Geometrie der zugrunde liegenden Tabelle registriert.
-- Angenommen Sie erstellen folgenden View CREATE VIEW public.vwmytablemercator AS SELECT gid, ST_Transform(geom,3395) As geom, f_name FROM public.mytable; -- Für eine korrekte Registrierung -- wird eine Typumwandlung der Geometrie benötigt -- DROP VIEW public.vwmytablemercator; CREATE VIEW public.vwmytablemercator AS SELECT gid, ST_Transform(geom,3395)::geometry(Geometry, 3395) As geom, f_name FROM public.mytable; -- Wenn Sie sicher sind, das es sich bei der Geometrie um ein 2D-Polygon handelt, können Sie folgendes tun DROP VIEW public.vwmytablemercator; CREATE VIEW public.vwmytablemercator AS SELECT gid, ST_Transform(geom,3395)::geometry(Polygon, 3395) As geom, f_name FROM public.mytable;
-- Angenommen Sie haben eine abgeleitete Tabelle über ein Masseninsert erzeugt SELECT poi.gid, poi.geom, citybounds.city_name INTO myschema.my_special_pois FROM poi INNER JOIN citybounds ON ST_Intersects(citybounds.geom, poi.geom); -- Einen 2D Index auf die neue Tabelle legen CREATE INDEX idx_myschema_myspecialpois_geom_gist ON myschema.my_special_pois USING gist(geom); -- Falls Ihre Punkte 3D-Punkte oder 3M-Punkte sind, -- können Sie einen ND-Index anstatt eines 2D-Indexes erstellen CREATE INDEX my_special_pois_geom_gist_nd ON my_special_pois USING gist(geom gist_geometry_ops_nd); -- Um die Geometriespalte der neuen Tabelle in geometry_columns händisch zu registrieren. -- Beachten Sie bitte, dass dies auch die zugrundeliegende Struktur der Tabelle ändert, -- um die Spalte Typmod basiert zu machen. SELECT populate_geometry_columns('myschema.my_special_pois'::regclass); -- Wenn Sie PostGIS 2.0 verwenden und aus welchem Grund auch immer -- das alte Verhalten mit auf CONSTRAINTs basierender Definition benötigen -- (wie im Fall von vererbten Tabellen bei denen nicht alle Kindtabellen denselben Datentyp und dieselbe SRID aufweisen), -- setzen Sie das optionale Argument "use_typmod" auf FALSE SELECT populate_geometry_columns('myschema.my_special_pois'::regclass, false);
Obwohl die alte auf CONSTRAINTs basierte Methode immer noch unterstützt wird, wird eine auf Constraints basierende Geometriespalte, die direkt in einem View verwendet wird, nicht korrekt in geometry_columns registriert. Eine Typmod basierte wird korrekt registriert. Im folgenden Beispiel definieren wir eine Spalte mit Typmod und eine andere mit Constraints.
CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry(POINT,4326)); SELECT AddGeometryColumn('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);
In psql:
\d pois_ny;
Wir sehen, das diese Spalten unterschiedlich definiert sind -- eine mittels Typmodifizierer, eine nutzt einen Constraint
Table "public.pois_ny" Column | Type | Modifiers -----------+-----------------------+------------------------------------------------------ gid | integer | not null default nextval('pois_ny_gid_seq'::regclass) poi_name | text | cat | character varying(20) | geom | geometry(Point,4326) | geom_2160 | geometry | Indexes: "pois_ny_pkey" PRIMARY KEY, btree (gid) Check constraints: "enforce_dims_geom_2160" CHECK (st_ndims(geom_2160) = 2) "enforce_geotype_geom_2160" CHECK (geometrytype(geom_2160) = 'POINT'::text OR geom_2160 IS NULL) "enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)
Beide registrieren sich korrekt in "geometry_columns"
SELECT f_table_name, f_geometry_column, srid, type FROM geometry_columns WHERE f_table_name = 'pois_ny';
f_table_name | f_geometry_column | srid | type -------------+-------------------+------+------- pois_ny | geom | 4326 | POINT pois_ny | geom_2160 | 2160 | POINT
Jedoch -- wenn wir einen View auf die folgende Weise erstellen
CREATE VIEW vw_pois_ny_parks AS SELECT * FROM pois_ny WHERE cat='park'; SELECT f_table_name, f_geometry_column, srid, type FROM geometry_columns WHERE f_table_name = 'vw_pois_ny_parks';
Die Typmod basierte geometrische Spalte eines View registriert sich korrekt, die auf Constraint basierende nicht.
f_table_name | f_geometry_column | srid | type ------------------+-------------------+------+---------- vw_pois_ny_parks | geom | 4326 | POINT vw_pois_ny_parks | geom_2160 | 0 | GEOMETRY
This may change in future versions of PostGIS, but for now to force the constraint-based view column to register correctly, you need to do this:
DROP VIEW vw_pois_ny_parks; CREATE VIEW vw_pois_ny_parks AS SELECT gid, poi_name, cat, geom, geom_2160::geometry(POINT,2160) As geom_2160 FROM pois_ny WHERE cat = 'park'; SELECT f_table_name, f_geometry_column, srid, type FROM geometry_columns WHERE f_table_name = 'vw_pois_ny_parks';
f_table_name | f_geometry_column | srid | type ------------------+-------------------+------+------- vw_pois_ny_parks | geom | 4326 | POINT vw_pois_ny_parks | geom_2160 | 2160 | POINT
Once you have created a spatial table, you are ready to upload spatial data to the database. There are two built-in ways to get spatial data into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shapefile loader.
If spatial data can be converted to a text representation (as either WKT or WKB), then using SQL might be the easiest way to get data into PostGIS. Data can be bulk-loaded into PostGIS/PostgreSQL by loading a text file of SQL INSERT
statements using the psql
SQL utility.
A SQL load file (roads.sql
for example) might look like this:
BEGIN; INSERT INTO roads (road_id, roads_geom, road_name) VALUES (1,'LINESTRING(191232 243118,191108 243242)','Jeff Rd'); INSERT INTO roads (road_id, roads_geom, road_name) VALUES (2,'LINESTRING(189141 244158,189265 244817)','Geordie Rd'); INSERT INTO roads (road_id, roads_geom, road_name) VALUES (3,'LINESTRING(192783 228138,192612 229814)','Paul St'); INSERT INTO roads (road_id, roads_geom, road_name) VALUES (4,'LINESTRING(189412 252431,189631 259122)','Graeme Ave'); INSERT INTO roads (road_id, roads_geom, road_name) VALUES (5,'LINESTRING(190131 224148,190871 228134)','Phil Tce'); INSERT INTO roads (road_id, roads_geom, road_name) VALUES (6,'LINESTRING(198231 263418,198213 268322)','Dave Cres'); COMMIT;
The SQL file can be loaded into PostgreSQL using psql
:
psql -d [database] -f roads.sql
The shp2pgsql
data loader converts Shapefiles into SQL suitable for insertion into a PostGIS/PostgreSQL database either in geometry or geography format. The loader has several operating modes selected by command line flags.
There is also a shp2pgsql-gui
graphical interface with most of the options as the command-line loader. This may be easier to use for one-off non-scripted loading or if you are new to PostGIS. It can also be configured as a plugin to PgAdminIII.
Creates a new table and populates it from the Shapefile. This is the default mode.
Appends data from the Shapefile into the database table. Note that to use this option to load multiple files, the files must have the same attributes and same data types.
Drops the database table before creating a new table with the data in the Shapefile.
Erzeugt nur den SQL-Code zur Erstellung der Tabelle, ohne irgendwelche Daten hinzuzufügen. Kann verwendet werden, um die Erstellung und das Laden einer Tabelle vollständig zu trennen.
Zeigt die Hilfe an.
Verwendung des PostgreSQL "dump" Formats für die Datenausgabe. Kann mit -a, -c und -d kombiniert werden. Ist wesentlich schneller als das standardmäßige SQL "insert" Format. Verwenden Sie diese Option wenn Sie sehr große Datensätze haben.
Erstellt und befüllt die Geometrietabelle mit der angegebenen SRID. Optional kann für das Shapefile eine FROM_SRID angegeben werden, worauf dann die Geometrie in die Ziel-SRID projiziert wird.
Erhält die Groß- und Kleinschreibung (Spalte, Schema und Attribute). Beachten Sie bitte, dass die Attributnamen in Shapedateien immer Großbuchstaben haben.
Wandeln Sie alle Ganzzahlen in standard 32-bit Integer um, erzeugen Sie keine 64-bit BigInteger, auch nicht dann wenn der DBF-Header dies unterstellt.
Einen GIST Index auf die Geometriespalte anlegen.
-m a_file_name
bestimmt eine Datei, in welcher die Abbildungen der (langen) Spaltennamen in die 10 Zeichen langen DBF Spaltennamen festgelegt sind. Der Inhalt der Datei besteht aus einer oder mehreren Zeilen die jeweils zwei, durch Leerzeichen getrennte Namen enthalten, aber weder vorne noch hinten mit Leerzeichen versehen werden dürfen. Zum Beispiel:
COLUMNNAME DBFFIELD1 AVERYLONGCOLUMNNAME DBFFIELD2
Erzeugt eine Einzel- anstatt einer Mehrfachgeometrie. Ist nur erfolgversprechend, wenn die Geometrie auch tatsächlich eine Einzelgeometrie ist (insbesondere gilt das für ein Mehrfachpolygon/MULTIPOLYGON, dass nur aus einer einzelnen Begrenzung besteht, oder für einen Mehrfachpunkt/MULTIPOINT, der nur einen einzigen Knoten aufweist).
Zwingt die Ausgabegeometrie eine bestimmte Dimension anzunehmen. Sie können die folgenden Zeichenfolgen verwenden, um die Dimensionalität anzugeben: 2D, 3DZ, 3DM, 4D.
Wenn die Eingabe weniger Dimensionen aufweist als angegeben, dann werden diese Dimensionen bei der Ausgabe mit Nullen gefüllt. Wenn die Eingabe mehr Dimensionen als angegeben aufweist werden diese abgestreift.
Ausgabe im Format WKT anstatt WKB. Beachten Sie bitte, dass es hierbei zu Koordinatenverschiebungen infolge von Genauigkeitsverlusten kommen kann.
Jede Anweisung einzeln und nicht in einer Transaktion ausführen. Dies erlaubt den Großteil auch dann zu laden, also die guten Daten, wenn eine Geometrie dabei ist die Fehler verursacht. Beachten Sie bitte das dies nicht gemeinsam mit der -D Flag angegeben werden kann, da das "dump" Format immer eine Transaktion verwendet.
Gibt die Codierung der Eingabedaten (dbf-Datei) an. Wird die Option verwendet, so werden alle Attribute der dbf-Datei von der angegebenen Codierung nach UTF8 konvertiert. Die resultierende SQL-Ausgabe enthält dann den Befehl SET CLIENT_ENCODING to UTF8
, damit das Back-end wiederum die Möglichkeit hat, von UTF8 in die, für die interne Nutzung konfigurierte Datenbankcodierung zu decodieren.
Umgang mit NULL-Geometrien (insert*, skip, abort)
-n Es wird nur die *.dbf-Datei importiert. Wenn das Shapefile nicht Ihren Daten entspricht, wird automatisch auf diesen Modus geschaltet und nur die *.dbf-Datei geladen. Daher müssen Sie diese Flag nur dann setzen, wenn sie einen vollständigen Shapefile-Satz haben und lediglich die Attributdaten, und nicht die Geometrie, laden wollen.
Verwendung des geographischen Datentyps in WGS84 (SRID=4326), anstelle des geometrischen Datentyps (benötigt Längen- und Breitenangaben).
Den Tablespace für die neue Tabelle festlegen. Solange der -X Parameter nicht angegeben wird, benutzen die Indizes weiterhin den standardmäßig festgelegten Tablespace. Die PostgreSQL Dokumentation beinhaltet eine gute Beschreibung, wann es sinnvoll ist, eigene Tablespaces zu verwenden.
Den Tablespace bestimmen, in dem die neuen Tabellenindizes angelegt werden sollen. Gilt für den Primärschlüsselindex und wenn "-l" verwendet wird, auch für den räumlichen GIST-Index.
When used, this flag will prevent the generation of ANALYZE
statements. Without the -Z flag (default behavior), the ANALYZE
statements will be generated.
An example session using the loader to create an input file and loading it might look like this:
# shp2pgsql -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sql # psql -d roadsdb -f roads.sql
A conversion and load can be done in one step using UNIX pipes:
# shp2pgsql shaperoads.shp myschema.roadstable | psql -d roadsdb
Spatial data can be extracted from the database using either SQL or the Shapefile dumper. The section on SQL presents some of the functions available to do comparisons and queries on spatial tables.
The most straightforward way of extracting spatial data out of the database is to use a SQL SELECT
query to define the data set to be extracted and dump the resulting columns into a parsable text file:
db=# SELECT road_id, ST_AsText(road_geom) AS geom, road_name FROM roads; road_id | geom | road_name --------+-----------------------------------------+----------- 1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd 2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd 3 | LINESTRING(192783 228138,192612 229814) | Paul St 4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave 5 | LINESTRING(190131 224148,190871 228134) | Phil Tce 6 | LINESTRING(198231 263418,198213 268322) | Dave Cres 7 | LINESTRING(218421 284121,224123 241231) | Chris Way (6 rows)
There will be times when some kind of restriction is necessary to cut down the number of records returned. In the case of attribute-based restrictions, use the same SQL syntax as used with a non-spatial table. In the case of spatial restrictions, the following functions are useful:
Diese Funktion bestimmt ob sich zwei geometrische Objekte einen gemeinsamen Raum teilen
Überprüft, ob zwei Geoobjekte geometrisch ident sind. Zum Beispiel, ob 'POLYGON((0 0,1 1,1 0,0 0))' ident mit 'POLYGON((0 0,1 1,1 0,0 0))' ist (ist es).
Außerdem können Sie diese Operatoren in Anfragen verwenden. Beachten Sie bitte, wenn Sie eine Geometrie oder eine Box auf der SQL-Befehlszeile eingeben, dass Sie die Zeichensatzdarstellung explizit in eine Geometrie umwandeln müssen. 312 ist ein fiktives Koordinatenreferenzsystem das zu unseren Daten passt. Also, zum Beispiel:
SELECT road_id, road_name FROM roads WHERE roads_geom='SRID=312;LINESTRING(191232 243118,191108 243242)'::geometry;
Die obere Abfrage würde einen einzelnen Datensatz aus der Tabelle "ROADS_GEOM" zurückgeben, in dem die Geometrie gleich dem angegebenen Wert ist.
Überprüfung ob einige der Strassen in die Polygonfläche hineinreichen:
SELECT road_id, road_name FROM roads WHERE ST_Intersects(roads_geom, 'SRID=312;POLYGON((...))');
Die häufigsten räumlichen Abfragen werden vermutlich in einem bestimmten Ausschnitt ausgeführt. Insbesondere von Client-Software, wie Datenbrowsern und Kartendiensten, die auf diese Weise die Daten für die Darstellung eines "Kartenausschnitts" erfassen.
Der Operator "&&" kann entweder mit einer BOX3D oder mit einer Geometrie verwendet werden. Allerdings wird auch bei einer Geometrie nur das Umgebungsrechteck für den Vergleich herangezogen.
Die Abfrage zur Verwendung des "BOX3D" Objekts für einen solchen Ausschnitt sieht folgendermaßen aus:
SELECT ST_AsText(roads_geom) AS geom FROM roads WHERE roads_geom && ST_MakeEnvelope(191232, 243117,191232, 243119,312);
Achten Sie auf die Verwendung von SRID=312, welche die Projektion Einhüllenden/Enveloppe bestimmt.
The pgsql2shp
table dumper connects to the database and converts a table (possibly defined by a query) into a shape file. The basic syntax is:
pgsql2shp [<options>] <database> [<schema>.]<table>
pgsql2shp [<options>] <database> <query>
Optionen auf der Befehlszeile:
Ausgabe in eine bestimmte Datei.
Der Datenbankserver, mit dem eine Verbindung aufgebaut werden soll.
Der Port über den der Verbindungsaufbau mit dem Datenbank Server hergestellt werden soll.
Das Passwort, das zum Verbindungsaufbau mit der Datenbank verwendet werden soll.
Das Benutzername, der zum Verbindungsaufbau mit der Datenbank verwendet werden soll.
Bei Tabellen mit mehreren Geometriespalten jene Geometriespalte, die ins Shapefile geschrieben werden soll.
Die Verwendung eines binären Cursors macht die Berechnung schneller; funktioniert aber nur, wenn alle nicht-geometrischen Attribute in den Datentyp "text" umgewandelt werden können.
RAW-Modus. Das Attribut gid
wird nicht verworfen und Spaltennamen werden nicht maskiert.
filename
Bildet die Identifikatoren in Namen mit 10 Zeichen ab. Der Inhalt der Datei besteht aus Zeilen von jeweils zwei durch Leerzeichen getrennten Symbolen, jedoch ohne vor- oder nachgestellte Leerzeichen: VERYLONGSYMBOL SHORTONE ANOTHERVERYLONGSYMBOL SHORTER etc.
Spatial indexes make using a spatial database for large data sets possible. Without indexing, a search for features requires a sequential scan of every record in the database. Indexing speeds up searching by organizing the data into a structure which can be quickly traversed to find matching records.
The B-tree index method commonly used for attribute data is not very useful for spatial data, since it only supports storing and querying data in a single dimension. Data such as geometry (which has 2 or more dimensions) requires an index method that supports range query across all the data dimensions. One of the key advantages of PostgreSQL for spatial data handling is that it offers several kinds of index methods which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.
GiST (Generalized Search Tree) indexes break up data into "things to one side", "things which overlap", "things which are inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree index implemented on top of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method, and offers very good query performance.
BRIN (Block Range Index) indexes operate by summarizing the spatial extent of ranges of table records. Search is done via a scan of the ranges. BRIN is only appropriate for use for some kinds of data (spatially sorted, with infrequent or no update). But it provides much faster index create time, and much smaller index size.
SP-GiST (Space-Partitioned Generalized Search Tree) is a generic index method that supports partitioned search trees such as quad-trees, k-d trees, and radix trees (tries).
Spatial indexes store only the bounding box of geometries. Spatial queries use the index as a primary filter to quickly determine a set of geometries potentially matching the query condition. Most spatial queries require a secondary filter that uses a spatial predicate function to test a more specific spatial condition. For more information on queying with spatial predicates see Section 5.2, “Using Spatial Indexes”.
See also the PostGIS Workshop section on spatial indexes, and the PostgreSQL manual.
GiST stands for "Generalized Search Tree" and is a generic form of indexing for multi-dimensional data. PostGIS uses an R-Tree index implemented on top of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method, and offers very good query performance. Other implementations of GiST are used to speed up searches on all kinds of irregular data structures (integer arrays, spectral data, etc) which are not amenable to normal B-Tree indexing. For more information see the PostgreSQL manual.
Once a spatial data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data (unless all your searches are based on attributes, in which case you'll want to build a normal index on the attribute fields).
Die Syntax, mit der ein GIST-Index auf eine Geometriespalte gelegt wird, lautet:
CREATE INDEX [indexname] ON [tablename] USING GIST ( [geometryfield] );
Die obere Syntax erzeugt immer einen 2D-Index. Um einen n-dimensionalen Index für den geometrischen Datentyp zu erhalten, können Sie die folgende Syntax verwenden:
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);
Die Erstellung eines räumlichen Indizes ist eine rechenintensive Aufgabe. Während der Erstellung wird auch der Schreibzugriff auf die Tabelle blockiert. Bei produktiven Systemen empfiehlt sich daher die langsamere Option CONCURRENTLY:
CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ( [geometryfield] );
Nachdem ein Index aufgebaut wurde sollte PostgreSQL gezwungen werden die Tabellenstatistik zu sammeln, da diese zur Optmierung der Auswertungspläne verwendet wird:
VACUUM ANALYZE [table_name] [(column_name)];
BRIN stands for "Block Range Index". It is a general-purpose index method introduced in PostgreSQL 9.5. BRIN is a lossy index method, meaning that a secondary check is required to confirm that a record matches a given search condition (which is the case for all provided spatial indexes). It provides much faster index creation and much smaller index size, with reasonable read performance. Its primary purpose is to support indexing very large tables on columns which have a correlation with their physical location within the table. In addition to spatial indexing, BRIN can speed up searches on various kinds of attribute data structures (integer, arrays etc). For more information see the PostgreSQL manual.
Once a spatial table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data. GiST indexes are very performant as long as their size doesn't exceed the amount of RAM available for the database, and as long as you can afford the index storage size, and the cost of index update on write. Otherwise, for very large tables BRIN index can be considered as an alternative.
A BRIN index stores the bounding box enclosing all the geometries contained in the rows in a contiguous set of table blocks, called a block range. When executing a query using the index the block ranges are scanned to find the ones that intersect the query extent. This is efficient only if the data is physically ordered so that the bounding boxes for block ranges have minimal overlap (and ideally are mutually exclusive). The resulting index is very small in size, but is typically less performant for read than a GiST index over the same data.
Building a BRIN index is much less CPU-intensive than building a GiST index. It's common to find that a BRIN index is ten times faster to build than a GiST index over the same data. And because a BRIN index stores only one bounding box for each range of table blocks, it's common to use up to a thousand times less disk space than a GiST index.
You can choose the number of blocks to summarize in a range. If you decrease this number, the index will be bigger but will probably provide better performance.
For BRIN to be effective, the table data should be stored in a physical order which minimizes the amount of block extent overlap. It may be that the data is already sorted appropriately (for instance, if it is loaded from another dataset that is already sorted in spatial order). Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key. One way to do this is to create a new table sorted by the geometry values (which in recent PostGIS versions uses an efficient Hilbert curve ordering):
CREATE TABLE table_sorted AS SELECT * FROM table ORDER BY geom;
Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index, and clustering on that index:
CREATE INDEX idx_temp_geohash ON table USING btree (ST_GeoHash( ST_Transform( geom, 4326 ), 20)); CLUSTER table USING idx_temp_geohash;
The syntax for building a BRIN index on a geometry
column is:
CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geome_col] );
The above syntax builds a 2D index. To build a 3D-dimensional index, use this syntax:
CREATE INDEX [indexname] ON [tablename] USING BRIN ([geome_col] brin_geometry_inclusion_ops_3d);
You can also get a 4D-dimensional index using the 4D operator class:
CREATE INDEX [indexname] ON [tablename] USING BRIN ([geome_col] brin_geometry_inclusion_ops_4d);
The above commands use the default number of blocks in a range, which is 128. To specify the number of blocks to summarise in a range, use this syntax
CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geome_col] ) WITH (pages_per_range = [number]);
Keep in mind that a BRIN index only stores one index entry for a large number of rows. If your table stores geometries with a mixed number of dimensions, it's likely that the resulting index will have poor performance. You can avoid this performance penalty by choosing the operator class with the least number of dimensions of the stored geometries
The geography
datatype is supported for BRIN indexing. The syntax for building a BRIN index on a geography column is:
CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geog_col] );
The above syntax builds a 2D-index for geospatial objects on the spheroid.
Currently, only "inclusion support" is provided, meaning that just the &&
, ~
and @
operators can be used for the 2D cases (for both geometry
and geography
), and just the &&&
operator for 3D geometries. There is currently no support for kNN searches.
An important difference between BRIN and other index types is that the database does not maintain the index dynamically. Changes to spatial data in the table are simply appended to the end of the index. This will cause index search performance to degrade over time. The index can be updated by performing a VACUUM
, or by using a special function brin_summarize_new_values(regclass)
. For this reason BRIN may be most appropriate for use with data that is read-only, or only rarely changing. For more information refer to the manual.
To summarize using BRIN for spatial data:
Index build time is very fast, and index size is very small.
Index query time is slower than GiST, but can still be very acceptable.
Requires table data to be sorted in a spatial ordering.
Requires manual index maintenance.
Most appropriate for very large tables, with low or no overlap (e.g. points), which are static or change infrequently.
More effective for queries which return relatively large numbers of data records.
SP-GiST stands for "Space-Partitioned Generalized Search Tree" and is a generic form of indexing for multi-dimensional data types that supports partitioned search trees, such as quad-trees, k-d trees, and radix trees (tries). The common feature of these data structures is that they repeatedly divide the search space into partitions that need not be of equal size. In addition to spatial indexing, SP-GiST is used to speed up searches on many kinds of data, such as phone routing, ip routing, substring search, etc. For more information see the PostgreSQL manual.
As it is the case for GiST indexes, SP-GiST indexes are lossy, in the sense that they store the bounding box enclosing spatial objects. SP-GiST indexes can be considered as an alternative to GiST indexes.
Sobald eine Geodatentabelle einige tausend Zeilen überschreitet, kann es sinnvoll sein einen SP-GIST Index zu erzeugen, um die räumlichen Abfragen auf die Daten zu beschleunigen. Die Syntax zur Erstellung eines SP-GIST Index auf eine "Geometriespalte" lautet:
CREATE INDEX [indexname] ON [tablename] USING SPGIST ( [geometryfield] );
Die obere Syntax erzeugt einen 2D-Index. Ein 3-dimensionaler Index für den geometrischen Datentyp können Sie mit der 3D Operatorklasse erstellen:
CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] spgist_geometry_ops_3d);
Die Erstellung eines räumlichen Indizes ist eine rechenintensive Aufgabe. Während der Erstellung wird auch der Schreibzugriff auf die Tabelle blockiert. Bei produktiven Systemen empfiehlt sich daher die langsamere Option CONCURRENTLY:
CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ( [geometryfield] );
Nachdem ein Index aufgebaut wurde sollte PostgreSQL gezwungen werden die Tabellenstatistik zu sammeln, da diese zur Optmierung der Auswertungspläne verwendet wird:
VACUUM ANALYZE [table_name] [(column_name)];
Ein SP-GiST Index kann Abfragen mit folgenden Operatoren beschleunigen:
<<, &<, &>, >>, <<|, &<|, |&>, |>>, &&, @>, <@, and ~=, für 2-dimensionale Iindices,
&/&, ~==, @>>, and <<@, für 3-dimensionale Indices.
kNN Suche wird zurzeit nicht unterstützt.
Ordinarily, indexes invisibly speed up data access: once an index is built, the PostgreSQL query planner automatically decides when to use it to improve query performance. But there are some situations where the planner does not choose to use existing indexes, so queries end up using slow sequential scans instead of a spatial index.
If you find your spatial indexes are not being used, there are a few things you can do:
Examine the query plan and check your query actually computes the thing you need. An erroneous JOIN, either forgotten or to the wrong table, can unexpectedly retrieve table records multiple times. To get the query plan, execute with EXPLAIN
in front of the query.
Make sure statistics are gathered about the number and distributions of values in a table, to provide the query planner with better information to make decisions around index usage. VACUUM ANALYZE will compute both.
You should regularly vacuum your databases anyways. Many PostgreSQL DBAs run VACUUM as an off-peak cron job on a regular basis.
If vacuuming does not help, you can temporarily force the planner to use the index information by using the command SET ENABLE_SEQSCAN TO OFF;. This way you can check whether the planner is at all able to generate an index-accelerated query plan for your query. You should only use this command for debugging; generally speaking, the planner knows better than you do about when to use indexes. Once you have run your query, do not forget to run SET ENABLE_SEQSCAN TO ON; so that the planner will operate normally for other queries.
If SET ENABLE_SEQSCAN TO OFF; helps your query to run faster, your Postgres is likely not tuned for your hardware. If you find the planner wrong about the cost of sequential versus index scans try reducing the value of RANDOM_PAGE_COST
in postgresql.conf
, or use SET RANDOM_PAGE_COST TO 1.1;. The default value for RANDOM_PAGE_COST
is 4.0. Try setting it to 1.1 (for SSD) or 2.0 (for fast magnetic disks). Decreasing the value makes the planner more likely to use index scans.
If SET ENABLE_SEQSCAN TO OFF; does not help your query, the query may be using a SQL construct that the Postgres planner is not yet able to optimize. It may be possible to rewrite the query in a way that the planner is able to handle. For example, a subquery with an inline SELECT may not produce an efficient plan, but could possibly be rewritten using a LATERAL JOIN.
For more information see the Postgres manual section on Query Planning.
Der Sinn von räumlichen Datenbanken liegt darin Abfragen in der Datenbank ausführen zu können, die normalerweise Desktop-GIS-Funktionionalität verlangen würden. Um PostGIS effektiv verwenden zu können muss man die verfügbaren räumlichen Funktionen kennen, wissen wie sie in Abfragen verwendet werden und sicherstellen, dass für gute Performanz die passenden Indizes vorhanden sind.
Räumliche Beziehungen geben an wie zwei Geometrien miteinander interagieren. Sie sind die fundamentale Fähigkeit zum Abfragen von Geometrie.
According to the OpenGIS Simple Features Implementation Specification for SQL, "the basic approach to comparing two geometries is to make pair-wise tests of the intersections between the Interiors, Boundaries and Exteriors of the two geometries and to classify the relationship between the two geometries based on the entries in the resulting 'intersection' matrix."
In the theory of point-set topology, the points in a geometry embedded in 2-dimensional space are categorized into three sets:
The boundary of a geometry is the set of geometries of the next lower dimension. For POINT
s, which have a dimension of 0, the boundary is the empty set. The boundary of a LINESTRING
is the two endpoints. For POLYGON
s, the boundary is the linework of the exterior and interior rings.
The interior of a geometry are those points of a geometry that are not in the boundary. For POINT
s, the interior is the point itself. The interior of a LINESTRING
is the set of points between the endpoints. For POLYGON
s, the interior is the areal surface inside the polygon.
The exterior of a geometry is the rest of the space in which the geometry is embedded; in other words, all points not in the interior or on the boundary of the geometry. It is a 2-dimensional non-closed surface.
The Dimensionally Extended 9-Intersection Model (DE-9IM) describes the spatial relationship between two geometries by specifying the dimensions of the 9 intersections between the above sets for each geometry. The intersection dimensions can be formally represented in a 3x3 intersection matrix.
For a geometry g the Interior, Boundary, and Exterior are denoted using the notation I(g), B(g), and E(g). Also, dim(s) denotes the dimension of a set s with the domain of {0,1,2,F}
:
0
=> point
1
=> line
2
=> area
F
=> empty set
Using this notation, the intersection matrix for two geometries a and b is:
Interior | Boundary | Exterior | |
---|---|---|---|
Interior | dim( I(a) ∩ I(b) ) | dim( I(a) ∩ B(b) ) | dim( I(a) ∩ E(b) ) |
Boundary | dim( B(a) ∩ I(b) ) | dim( B(a) ∩ B(b) ) | dim( B(a) ∩ E(b) ) |
Exterior | dim( E(a) ∩ I(b) ) | dim( E(a) ∩ B(b) ) | dim( E(a) ∩ E(b) ) |
Visually, for two overlapping polygonal geometries, this looks like:
|
Reading from left to right and top to bottom, the intersection matrix is represented as the text string '212101212'.
For more information, refer to:
To make it easy to determine common spatial relationships, the OGC SFS defines a set of named spatial relationship predicates. PostGIS provides these as the functions ST_Contains, ST_Crosses, ST_Disjoint, ST_Equals, ST_Intersects, ST_Overlaps, ST_Touches, ST_Within. It also defines the non-standard relationship predicates ST_Covers, ST_CoveredBy, and ST_ContainsProperly.
Spatial predicates are usually used as conditions in SQL WHERE
or JOIN
clauses. The named spatial predicates automatically use a spatial index if one is available, so there is no need to use the bounding box operator &&
as well. For example:
SELECT city.name, state.name, city.geom FROM city JOIN state ON ST_Intersects(city.geom, state.geom);
For more details and illustrations, see the PostGIS Workshop.
In some cases the named spatial relationships are insufficient to provide a desired spatial filter condition.
For example, consider a linear dataset representing a road network. It may be required to identify all road segments that cross each other, not at a point, but in a line (perhaps to validate some business rule). In this case ST_Crosses does not provide the necessary spatial filter, since for linear features it returns A two-step solution would be to first compute the actual intersection (ST_Intersection) of pairs of road lines that spatially intersect (ST_Intersects), and then check if the intersection's ST_GeometryType is ' Clearly, a simpler and faster solution is desirable. |
A second example is locating wharves that intersect a lake's boundary on a line and where one end of the wharf is up on shore. In other words, where a wharf is within but not completely contained by a lake, intersects the boundary of a lake on a line, and where exactly one of the wharf's endpoints is within or on the boundary of the lake. It is possible to use a combination of spatial predicates to find the required features:
|
These requirements can be met by computing the full DE-9IM intersection matrix. PostGIS provides the ST_Relate function to do this:
SELECT ST_Relate( 'LINESTRING (1 1, 5 5)', 'POLYGON ((3 3, 3 7, 7 7, 7 3, 3 3))' ); st_relate ----------- 1010F0212
To test a particular spatial relationship, an intersection matrix pattern is used. This is the matrix representation augmented with the additional symbols {T,*}
:
T
=> intersection dimension is non-empty; i.e. is in {0,1,2}
*
=> don't care
Using intersection matrix patterns, specific spatial relationships can be evaluated in a more succinct way. The ST_Relate and the ST_RelateMatch functions can be used to test intersection matrix patterns. For the first example above, the intersection matrix pattern specifying two lines intersecting in a line is '1*1***1**':
-- Find road segments that intersect in a line SELECT a.id FROM roads a, roads b WHERE a.id != b.id AND a.geom && b.geom AND ST_Relate(a.geom, b.geom, '1*1***1**');
For the second example, the intersection matrix pattern specifying a line partly inside and partly outside a polygon is '102101FF2':
-- Find wharves partly on a lake's shoreline SELECT a.lake_id, b.wharf_id FROM lakes a, wharfs b WHERE a.geom && b.geom AND ST_Relate(a.geom, b.geom, '102101FF2');
When constructing queries using spatial conditions, for best performance it is important to ensure that a spatial index is used, if one exists (see Section 4.9, “Spatial Indexes”). To do this, a spatial operator or index-aware function must be used in a WHERE
or ON
clause of the query.
Spatial operators include the bounding box operators (of which the most commonly used is &&; see Section 8.10.1, “Bounding Box Operators” for the full list) and the distance operators used in nearest-neighbor queries (the most common being <->; see Section 8.10.2, “Operatoren” for the full list.)
Index-aware functions automatically add a bounding box operator to the spatial condition. Index-aware functions include the named spatial relationship predicates ST_Contains, ST_ContainsProperly, ST_CoveredBy, ST_Covers, ST_Crosses, ST_Intersects, ST_Overlaps, ST_Touches, ST_Within, ST_Within, and ST_3DIntersects, and the distance predicates ST_DWithin, ST_DFullyWithin, ST_3DDFullyWithin, and ST_3DDWithin .)
Functions such as ST_Distance do not use indexes to optimize their operation. For example, the following query would be quite slow on a large table:
SELECT geom FROM geom_table WHERE ST_Distance( geom, 'SRID=312;POINT(100000 200000)' ) < 100
This query selects all the geometries in geom_table
which are within 100 units of the point (100000, 200000). It will be slow because it is calculating the distance between each point in the table and the specified point, ie. one ST_Distance()
calculation is computed for every row in the table.
The number of rows processed can be reduced substantially by using the index-aware function ST_DWithin:
SELECT geom FROM geom_table WHERE ST_DWithin( geom, 'SRID=312;POINT(100000 200000)', 100 )
This query selects the same geometries, but it does it in a more efficient way. This is enabled by ST_DWithin()
using the &&
operator internally on an expanded bounding box of the query geometry. If there is a spatial index on geom
, the query planner will recognize that it can use the index to reduce the number of rows scanned before calculating the distance. The spatial index allows retrieving only records with geometries whose bounding boxes overlap the expanded extent and hence which might be within the required distance. The actual distance is then computed to confirm whether to include the record in the result set.
For more information and examples see the PostGIS Workshop.
The examples in this section make use of a table of linear roads, and a table of polygonal municipality boundaries. The definition of the bc_roads
table is:
Column | Type | Description ----------+-------------------+------------------- gid | integer | Unique ID name | character varying | Road Name geom | geometry | Location Geometry (Linestring)
The definition of the bc_municipality
table is:
Column | Type | Description ---------+-------------------+------------------- gid | integer | Unique ID code | integer | Unique ID name | character varying | City / Town Name geom | geometry | Location Geometry (Polygon)
Aktuelle PostgreSQL Versionen (inklusive 9.6) haben eine Schwäche des Optimizers in Bezug auf TOAST Tabellen. TOAST Tabellen bieten eine Art "Erweiterungsraum", der benutzt wird um große Werte (im Sinne der Datengröße), welche nicht in die üblichen Datenspeicherseiten passen (wie lange Texte, Bilder oder eine komplexe Geometrie mit vielen Stützpunkten) auszulagern, siehe the PostgreSQL Documentation for TOAST für mehr Information).
Das Problem tritt bei Tabellen mit relativ großen Geometrien, aber wenigen Zeilen auf (z.B. eine Tabelle welche die europäischen Ländergrenzen in hoher Auflösung beinhaltet). Dann ist die Tabelle selbst klein, aber sie benützt eine Menge an TOAST Speicherplatz. In unserem Beispiel hat die Tabelle um die 80 Zeilen und nutzt dafür nur 3 Speicherseiten, während die TOAST Tabelle 8225 Speicherseiten benützt.
Stellen Sie sich nun eine Abfrage vor, die den geometrischen Operator && verwendet, um ein Umgebungsrechteck mit nur wenigen Zeilen zu ermitteln. Der Abfrageoptimierer stellt fest, dass die Tabelle nur 3 Speicherseiten und 80 Zeilen aufweist. Er nimmt an, das ein sequentieller Scan bei einer derart kleinen Tabelle wesentlich schneller abläuft als die Verwendung eines Indizes. Und so entscheidet er den GIST Index zu ignorieren. Normalerweise stimmt diese Annahme. Aber in unserem Fall, muss der && Operator die gesamte Geometrie von der Festplatte lesen um den BoundingBox-Vergleich durchführen zu können, wodurch auch alle TOAST-Speicherseiten gelesen werden.
Um zu sehen, ob dieses Problem auftritt, können Sie den "EXPLAIN ANALYZE" Befehl von PostgreSQL anwenden. Mehr Information und die technischen Feinheiten entnehmen Sie bitte dem Thread auf der Postgres Performance Mailing List: http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
und einem neueren Thread über PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html
Die PostgreSQL Entwickler versuchen das Problem zu lösen, indem sie die Abschätzung der Abfragen TOAST-gewahr machen. Zur Überbrückung zwei Workarounds:
Der erste Workaround besteht darin den Query Planer zu zwingen, den Index zu nutzen. Setzen Sie "SET enable_seqscan TO off;" am Server bevor Sie die Abfrage ausführen. Dies zwingt den Query Planer grundsätzlich dazu sequentielle Scans, wann immer möglich, zu vermeiden. Womit der GIST Index wie üblich verwendet wird. Aber dieser Parameter muss bei jeder Verbindung neu gesetzt werden, und er verursacht das der Query Planer Fehleinschätzungen in anderen Fällen macht. Daher sollte "SET enable_seqscan TO on;" nach der Abfrage ausgeführt werden.
Der zweite Workaround besteht darin, den sequentiellen Scan so schnell zu machen wie der Query Planer annimmt. Dies kann durch eine zusätzliche Spalte, welche die BBOX "zwischenspeichert" und über die abgefragt wird, erreicht werden. In Unserem Beispiel sehen die Befehle dazu folgendermaßen aus:
SELECT AddGeometryColumn('myschema','mytable','bbox','4326','GEOMETRY','2'); UPDATE mytable SET bbox = ST_Envelope(ST_Force2D(the_geom));
Nun ändern Sie bitte Ihre Abfrage so, das der && Operator gegen die bbox anstelle der geom_column benutzt wird:
SELECT geom_column FROM mytable WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);
Selbstverständlich muss man die BBOX synchron halten. Die transparenteste Möglichkeit dies zu erreichen wäre über Trigger. Sie können Ihre Anwendung derart abändern, das die BBOX Spalte aktuell bleibt oder ein UPDATE nach jeder Änderung durchführen.
Für Tabelle die hauptsächlich read-only sind und bei denen ein einzelner Index für die Mehrheit der Abfragen verwendet wird, bietet PostgreSQL den CLUSTER Befehl. Dieser Befehl ordnet alle Datenzeilen in derselben Reihenfolge an wie die Kriterien bei der Indexerstellung, was zu zwei Performance Vorteilen führt: Erstens wird für die Index Range Scans die Anzahl der Suchabfragen über die Datentabelle stark reduziert. Zweitens, wenn sich der Arbeitsbereich auf einige kleine Intervale des Index beschränkt ist das Caching effektiver, da die Datenzeilen über weniger data pages verteilt sind. (Sie dürfen sich nun eingeladen fühlen, die Dokumentation über den CLUSTER Befehl in der PostgreSQL Hilfe nachzulesen.)
Die aktuelle PostgreSQL Version erlaubt allerdings kein clustern an Hand von PostGIS GIST Indizes, da GIST Indizes NULL Werte einfach ignorieren. Sie erhalten eine Fehlermeldung wie:
lwgeom=# CLUSTER my_geom_index ON my_table; ERROR: cannot cluster when index access method does not handle null values HINT: You may be able to work around this by marking column "the_geom" NOT NULL.
Wie die HINT Meldung mitteilt, kann man diesen Mangel umgehen indem man eine "NOT NULL" Bedingung auf die Tabelle setzt:
lwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null; ALTER TABLE
Dies funktioniert natürlich nicht, wenn Sie tatsächlich NULL Werte in Ihrer Geometriespalte benötigen. Außerdem müssen Sie die obere Methode zum Hinzufügen der Bedingung verwenden. Die Verwendung einer CHECK Bedingung wie "ALTER TABLE blubb ADD CHECK (geometry is not null);" wird nicht klappen.
Manchmal kann es vorkommen, das Sie 3D- oder 4D-Daten in Ihrer Tabelle haben, aber immer mit den OpenGIS compliant ST_AsText() oder ST_AsBinary() Funktionen, die lediglich 2D Geometrien ausgeben, zugreifen. Dies geschieht indem intern die ST_Force2D() Funktion aufgerufen wird, welche einen wesentlichen Overhead für große Geometrien aufweist. Um diesen Overhead zu vermeiden kann es praktikabel sein diese zusätzlichen Dimensionen ein für alle mal im Voraus zu löschen:
UPDATE mytable SET the_geom = ST_Force2D(the_geom); VACUUM FULL ANALYZE mytable;
Beachten Sie bitte, falls Sie die Geometriespalte über AddGeometryColumn() hinzugefügt haben, das dadurch eine Bedingung auf die Dimension der Geometrie gesetzt ist. Um dies zu Überbrücken löschen Sie die Bedingung. Vergessen Sie bitte nicht den Eintrag in die geometry_columns Tabelle zu erneuern und die Bedingung anschließend erneut zu erzeugen.
Bei großen Tabellen kann es vernünftig sein, diese UPDATE in mehrere kleinere Portionen aufzuteilen, indem man das UPDATE mittels WHERE Klausel und eines Primärschlüssels, oder eines anderen passenden Kriteriums, beschränkt und ein einfaches "VACUUM;" zwischen den UPDATEs aufruft. Dies verringert den Bedarf an temporären Festplattenspeicher drastisch. Außerdem, falls die Datenbank gemischte Dimensionen der Geometrie aufweist, kann eine Einschränkung des UPDATES mittels "WHERE dimension(the_geom)>2" das wiederholte Schreiben von Geometrien, welche bereits in 2D sind, vermeiden.
Der Minnesota MapServer ist ein Kartendienstserver für das Internet, der die "OpenGIS Web Map Service (WMS) Implementation Specification" erfüllt.
Die MapServer Homepage finden Sie unter http://mapserver.org.
Die OpenGIS Web Map Spezifikation finden Sie unter http://www.opengeospatial.org/standards/wms.
Um PostGIS mit MapServer zu verwenden müssen Sie wissen, wie Sie MapServer konfigurieren, da dies den Rahmens dieser Dokumentation sprengen würde. Dieser Abschnitt deckt PostGIS-spezifische Themen und Konfigurationsdetails ab.
Um PostGIS mit MapServer zu verwenden, benötigen Sie:
Die PostGIS Version 0.6, oder höher.
Die MapServer Version 3.5, oder höher.
MapServer greift auf die PostGIS/PostgreSQL-Daten, so wie jeder andere PostgreSQL-Client, über die libpq
Schnittstelle zu. Dies bedeutet, dass MapServer auf jedem Server, der Netzwerkzugriff auf den PostgreSQL Server hat, installiert werden kann und PostGIS als Datenquelle nutzen kann. Je schneller die Verbindung zwischen den beiden Systemen, desto besser.
Es spielt keine Rolle, mit welchen Optionen Sie MapServer kompilieren, solange sie bei der Konfiguration die "--with-postgis"-Option angeben.
Fügen Sie einen PostGIS Layer zu der MapServer *.map Datei hinzu. Zum Beispiel:
LAYER CONNECTIONTYPE postgis NAME "widehighways" # Verbindung zu einer remote Geodatenbank CONNECTION "user=dbuser dbname=gisdatabase host=bigserver" PROCESSING "CLOSE_CONNECTION=DEFER" # Um die Zeilen der 'geom'-Spalte aus der 'roads'-Tabelle zu erhalten DATA "geom from roads using srid=4326 using unique gid" STATUS ON TYPE LINE # Von den im Ausschnitt vorhandenen Linien nur die breiten Hauptstraßen/Highways FILTER "type = 'highway' and numlanes >= 4" CLASS # Autobahnen heller und 2Pixel stark machen EXPRESSION ([numlanes] >= 6) STYLE COLOR 255 22 22 WIDTH 2 END END CLASS # Der ganze Rest ist dunkler und nur 1 Pixel stark EXPRESSION ([numlanes] < 6) STYLE COLOR 205 92 82 END END END
Im oberen Beispiel werden folgende PostGIS-spezifische Anweisungen verwendet:
Für PostGIS Layer ist dies immer "postgis".
Die Datenbankverbindung wird durch einen "Connection String" bestimmt, welcher aus einer standardisierten Menge von Schlüsseln und Werten zusammengesetzt ist (Standardwerte zwischen <>):
user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>
Ein leerer "Connection String" ist ebenfalls gültig, sodass jedes Key/Value Paar weggelassen werden kann. Üblicherweise wird man zumindest den Datenbanknamen und den Benutzernamen, mit dem man sich verbinden will, angeben.
Dieser Parameter hat die Form "<geocolumn> from <tablename> using srid=<srid> using unique <primary key>", wobei "geocolumn" dem räumlichen Attribut entspricht, mit dem die Bildsynthese/rendern durchgeführt werden soll. "srid" entspricht der SRID des räumlichen Attributs und "primary key" ist der Primärschlüssel der Tabelle (oder ein anderes eindeutiges Attribut mit einem Index).
Sie können sowohl "using srid" als auch "using unique" weglassen. Wenn möglich, bestimmt MapServer die korrekten Werte dann automatisch, allerdings zu den Kosten einiger zusätzlichen serverseitigen Abfragen, die bei jedem Kartenaufruf ausgeführt werden.
Wenn Sie mehrere Layer darstellen wollen, fügen Sie CLOSE_CONNECTION=DEFER ein, dadurch wird eine bestehende Verbindung wiederverwendet anstatt geschlossen. Dies erhöht die Geschwindigkeit. Unter MapServer PostGIS Performance Tips findet sich eine detailierte Erklärung.
Der Filter muss ein gültiger SQL-Text sein, welcher der Logik, die normalerweise dem "WHERE" Schlüsselwort in der SQL-Abfrage folgt, entspricht. Z.B.: um nur die Straßen mit 6 oder mehr Spuren zu rendern, können Sie den Filter "num_lanes >= 6" verwenden.
Stellen Sie bitte sicher, das für alle zu zeichnenden Layer, ein räumlicher Index (GIST) in der Geodatenbank angelegt ist.
CREATE INDEX [indexname] ON [tabellenname] USING GIST ( [geometry_spalte] );
Wenn Sie Ihre Layer über MapServer abfragen wollen, benötigen Sie auch die "using unique" Klausel in Ihrer "DATA" Anweisung.
MapServer benötigt für jeden räumlichen Datensatz, der abgefragt werden soll, eindeutige Identifikatoren. Das PostGIS Modul von MapServer benützt den von Ihnen festgelegten, eindeutigen Wert, um diese eindeutige Identifikatoren zur Verfügung zu stellen. Den Primärschlüssel zu verwenden gilt als Erfolgsrezept.
Die SQL-Pseudoklausel USING
wird verwendet, um MapServer zusätzliche Information über komplexere Abfragen zukommen zu lassen. Genauer gesagt, wenn entweder ein View oder ein Subselect als Ursprungstabelle verwendet wird (der Ausdruck rechts von "FROM" bei einer DATA
Definition) ist es für MapServer schwieriger einen eindeutigen Identifikator für jede Zeile und die SRID der Tabelle automatisch zu bestimmen. Die USING
Klausel kann MapServer die Information über diese beiden Teile wie folgt zukommen lassen:
DATA "geom FROM ( SELECT table1.geom AS geom, table1.gid AS gid, table2.data AS data FROM table1 LEFT JOIN table2 ON table1.id = table2.id ) AS new_table USING UNIQUE gid USING SRID=4326"
MapServer benötigt eine eindeutige ID für jede Zeile um die Zeile bei Kartenabfragen identifizieren zu können. Normalerweise wird der Primärschlüssel aus den Systemtabellen ermittelt. Views und Subselects haben jedoch nicht automatisch eine bekannte eindeutige Spalte. Wenn Sie MapServer's Abfragefunktionalität nutzen wollen, müssen Sie sicherstellen, dass Ihr View oder Subselect eine mit eindeutigen Werten versehene Spalte enthält und diese mit USING UNIQUE
gekennzeichnet ist. Zum Beispiel können Sie hierfür die Werte des Primärschlüssels verwenden, oder irgendeine andere Spalte bei der sichergestellt ist dass sie eindeutige Werte für die Ergebnismenge aufweist.
"eine Karte abfragen" ist jene Aktion, bei der man auf die Karte klickt und nach Information über Kartenfeatures an dieser Stelle fragt. Verwechseln Sie bitte nicht "Kartenabfragen" mit der SQL Abfrage in der |
PostGIS muss wissen, welches Koordinatenreferenzsystem von der Geometrie verwendet wird, um korrekte Daten an MapServer zurückzugeben. Üblicherweise kann man diese Information in der Tabelle "geometry_columns" in der PostGIS Datenbank finden. Dies ist jedoch nicht möglich bei Tabellen die On-the-fly erzeugt wurden, wo wie bei Subselects oder Views. Hierfür erlaubt die Option USING SRID=
die Festlegung der richtigen SRID in der DATA
Definition.
Beginnen wir mit einem einfachen Beispiel und arbeiten uns dann langsam vor. Betrachten Sie die nachfolgende MapServer Layerdefinition:
LAYER CONNECTIONTYPE postgis NAME "roads" CONNECTION "user=theuser password=thepass dbname=thedb host=theserver" DATA "geom from roads" STATUS ON TYPE LINE CLASS STYLE COLOR 0 0 0 END END END
Dieser Layer stellt alle Straßengeometrien der "roads"-Tabelle schwarz dar.
Angenommen, wir wollen bis zu einem Maßstab von 1:100000 nur die Autobahnen anzeigen - die nächsten zwei Layer erreichen diesen Effekt:
LAYER CONNECTIONTYPE postgis CONNECTION "user=theuser password=thepass dbname=thedb host=theserver" PROCESSING "CLOSE_CONNECTION=DEFER" DATA "geom from roads" MINSCALE 100000 STATUS ON TYPE LINE FILTER "road_type = 'highway'" CLASS COLOR 0 0 0 END END LAYER CONNECTIONTYPE postgis CONNECTION "user=theuser password=thepass dbname=thedb host=theserver" PROCESSING "CLOSE_CONNECTION=DEFER" DATA "geom from roads" MAXSCALE 100000 STATUS ON TYPE LINE CLASSITEM road_type CLASS EXPRESSION "highway" STYLE WIDTH 2 COLOR 255 0 0 END END CLASS STYLE COLOR 0 0 0 END END END
Der erste Layer wird verwendet, wenn der Maßstab größer als 1:100000 ist und es werden nur die Straßen vom Typ "highway"/Autobahn als schwarze Linien dargestellt. Die Option FILTER
bedingt, dass nur Straßen vom Typ "highway" angezeigt werden.
Der zweite Layer wird angezeigt, wenn der Maßstab kleiner als 1:100000 ist. Er zeigt die Autobahnen als doppelt so dicke rote Linien an, die anderen Straßen als normale schwarze Linien.
Wir haben eine Reihe von interessanten Aufgaben lediglich mit der von MapServer zur Verfügung gestellten Funktionalität durchgeführt, und unsere SQL-Anweisung unter DATA
ist trotzdem einfach geblieben. Angenommen, die Namen der Straßen sind in einer anderen Tabelle gespeichert (wieso auch immer) und wir müssen einen Join ausführen, um sie für die Straßenbeschriftung verwenden zu können.
LAYER CONNECTIONTYPE postgis CONNECTION "user=theuser password=thepass dbname=thedb host=theserver" DATA "geom FROM (SELECT roads.gid AS gid, roads.geom AS geom, road_names.name as name FROM roads LEFT JOIN road_names ON roads.road_name_id = road_names.road_name_id) AS named_roads USING UNIQUE gid USING SRID=4326" MAXSCALE 20000 STATUS ON TYPE ANNOTATION LABELITEM name CLASS LABEL ANGLE auto SIZE 8 COLOR 0 192 0 TYPE truetype FONT arial END END END
Dieser Beschriftungslayer fügt grüne Beschriftungen zu allen Straßen hinzu, wenn der Maßstab 1:20000 oder weniger wird. Es zeigt auch wie man einen SQL-Join in einer DATA
Definition verwenden kann.
Java Clients können auf die PostGIS Geoobjekte in der PostgreSQL Datenbank entweder direkt über die Textdarstellung zugreifen oder über die Objekte der JDBC Erweiterung, die mit PostGIS gebündelt sind. Um die Objekte der Erweiterung zu nutzen, muss sich die Datei "postgis.jar" zusammen mit dem JDBC Treiberpaket "postgresql.jar" in Ihrem CLASSPATH befinden.
import java.sql.*; import java.util.*; import java.lang.*; import org.postgis.*; public class JavaGIS { public static void main(String[] args) { java.sql.Connection conn; try { /* * Den JDBC Treiber laden und eine Verbindung herstellen. */ Class.forName("org.postgresql.Driver"); String url = "jdbc:postgresql://localhost:5432/database"; conn = DriverManager.getConnection(url, "postgres", ""); /* * Die geometrischen Datentypen zu der Verbindung hinzufügen. Beachten Sie bitte, * dass Sie die Verbindung in eine pgsql-specifische Verbindung umwandeln * bevor Sie die Methode addDataType() aufrufen. */ ((org.postgresql.PGConnection)conn).addDataType("geometry",Class.forName("org.postgis.PGgeometry")); ((org.postgresql.PGConnection)conn).addDataType("box3d",Class.forName("org.postgis.PGbox3d")); /* * Eine Anweisung erzeugen und eine Select Abfrage ausführen. */ Statement s = conn.createStatement(); ResultSet r = s.executeQuery("select geom,id from geomtable"); while( r.next() ) { /* * Die Geometrie als Objekt abrufen und es in einen geometrischen Datentyp umwandeln. * Ausdrucken. */ PGgeometry geom = (PGgeometry)r.getObject(1); int id = r.getInt(2); System.out.println("Row " + id + ":"); System.out.println(geom.toString()); } s.close(); conn.close(); } catch( Exception e ) { e.printStackTrace(); } } }
Das Objekt "PGgeometry" ist ein Adapter, der abhängig vom Datentyp ein bestimmtes topologisches Geoobjekt (Unterklassen der abstrakten Klasse "Geometry") enthält: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon.
PGgeometry geom = (PGgeometry)r.getObject(1); if( geom.getType() == Geometry.POLYGON ) { Polygon pl = (Polygon)geom.getGeometry(); for( int r = 0; r < pl.numRings(); r++) { LinearRing rng = pl.getRing(r); System.out.println("Ring: " + r); for( int p = 0; p < rng.numPoints(); p++ ) { Point pt = rng.getPoint(p); System.out.println("Point: " + p); System.out.println(pt.toString()); } } }
Das JavaDoc der Erweiterung liefert eine Referenz für die verschiedenen Zugriffsfunktionen auf die Geoobjekte.
...
Nachfolgend sind jene Funktionen aufgeführt, die ein PostGIS Anwender am ehesten benötigt. Es gibt weitere Funktionen, die jedoch keinen Nutzen für den allgemeinen Anwender haben, da es sich um Hilfsfunktionen für PostGIS Objekte handelt.
PostGIS hat begonnen die bestehende Namenskonvention in eine SQL-MM orientierte Konvention zu ändern. Daher wurden die meisten Funktionen, die Sie kennen und lieben gelernt haben, mit dem Standardpräfix (ST) für spatiale Datentypen umbenannt. Vorhergegangene Funktionen sind noch verfügbar; wenn es aber entsprechende aktualisierte Funktionen gibt, dann werden sie in diesem Dokument nicht mehr aufgeführt. Wenn Funktionen kein ST_ Präfix aufweisen und in dieser Dokumentation nicht mehr angeführt sind, dann gelten sie als überholt und werden in einer zukünftigen Release entfernt. Benutzten Sie diese daher BITTE NICHT MEHR. |
Dieser Abschnitt listet die von PostGIS installierten PostgreSQL-Datentypen auf. Beachten Sie bitte die hier beschriebene Verhaltensweise bei der Typumwandlung. Diese ist insbesondere dann sehr wesentlich, wenn Sie Ihre eigenen Funktionen entwerfen.
Each data type describes its type casting behavior. A type cast converts values of one data type into another type. PostgreSQL allows defining casting behavior for custom types, along with the functions used to convert type values. Casts can have automatic behavior, which allows automatic conversion of a function argument to a type supported by the function.
Some casts have explicit behavior, which means the cast must be specified using the syntax CAST(myval As sometype)
or myval::sometype
. Explicit casting avoids the issue of ambiguous casts, which can occur when using an overloaded function which does not support a given type. For example, a function may accept a box2d or a box3d, but not a geometry. Since geometry has an automatic cast to both box types, this produces an "ambiguous function" error. To prevent the error use an explicit cast to the desired box type.
All data types can be cast to text
, so this does not need to be specified explicitly.
box2d — The type representing a 2-dimensional bounding box.
Box3D ist ein geometrischer Datentyp, der den umschreibenden Quader einer oder mehrerer geometrischer Objekte abbildet. ST_3DExtent gibt ein Box3D-Objekt zurück.
The representation contains the values xmin, ymin, xmax, ymax
. These are the minimum and maximum values of the X and Y extents.
box2d
objects have a text representation which looks like BOX(1 2,5 6)
.
box3d — The type representing a 3-dimensional bounding box.
Box3D ist ein geometrischer Datentyp, der den umschreibenden Quader einer oder mehrerer geometrischer Objekte abbildet. ST_3DExtent gibt ein Box3D-Objekt zurück.
The representation contains the values xmin, ymin, zmin, xmax, ymax, zmax
. These are the minimum and maxium values of the X, Y and Z extents.
box3d
objects have a text representation which looks like BOX3D(1 2 3,5 6 5)
.
geometry — Der geographische Datentyp "Geography" wird zur Abbildung eines Geoobjektes im geographischen Kugelkoordinatensystem verwendet.
Der Datentyp "geometry" ist der elementare räumliche Datentyp von PostGIS zur Abbildung eines Geoobjektes in das kartesische Koordinatensystem.
Alle räumlichen Operationen an einer Geometrie verwenden die Einheiten des Koordinatenreferenzsystems in dem die Geometrie vorliegt.
geometry_dump — A composite type used to describe the parts of complex geometry.
geometry_dump
is a composite data type containing the fields:
geom
- a geometry representing a component of the dumped geometry. The geometry type depends on the originating function.
path[]
- an integer array that defines the navigation path within the dumped geometry to the geom
component. The path array is 1-based (i.e. path[1]
is the first element.)
It is used by the ST_Dump*
family of functions as an output type to explode a complex geometry into its constituent parts.
geography — The type representing spatial features with geodetic (ellipsoidal) coordinate systems.
Der geographische Datentyp "Geography" wird zur Abbildung eines Geoobjektes im geographischen Kugelkoordinatensystem verwendet.
Spatial operations on the geography type provide more accurate results by taking the ellipsoidal model into account.
AddGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
text AddGeometryColumn(
varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true)
;
text AddGeometryColumn(
varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true)
;
text AddGeometryColumn(
varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true)
;
Fügt eine Geometriespalte zu den Attributen einer bestehende Tabelle hinzu. Der schema_name
ist der Name des Schemas, in dem sich die Tabelle befindet. Bei der srid
handelt es sich um eine Ganzzahl, welche auf einen entsprechenden Eintrag in der SPATIAL_REF_SYS Tabelle verweist. Beim type
handelt es sich um eine Zeichenkette, welche dem Geometrietyp entsprechen muss, z.B.: 'POLYGON' oder 'MULTILINESTRING'. Falls der Name des Schemas nicht existiert (oder im aktuellen search_path nicht sichtbar ist), oder die angegebene SRID, der Geometrietyp, oder die Dimension ungültig sind, wird ein Fehler angezeigt.
Änderung: 2.0.0 Diese Funktion aktualisiert die geometry_columns Tabelle nicht mehr, da geometry_columns jetzt ein View ist, welcher den Systemkatalog ausliest. Standardmäßig werden auch keine Bedingungen/constraints erzeugt, sondern es wird der in PostgreSQL integrierte Typmodifikaor verwendet. So entspricht zum Beispiel die Erzeugung einer wgs84 POINT Spalte mit dieser Funktion: Änderung: 2.0.0 Falls Sie das alte Verhalten mit Constraints wünschen, setzen Sie bitte |
Änderung: 2.0.0 Views können nicht mehr händisch in "geometry_columns" registriert werden. Views auf eine Geometrie in Typmod-Tabellen, bei denen keine Adapterfunktion verwendet wird, registrieren sich selbst auf korrekte Weise, da sie die Typmod-Verhaltensweise von der Spalte der Stammtabelle erben. Views die ein geometrische Funktion ausführen die eine andere Geometrie ausgibt, benötigen die Umwandlung in eine Typmod-Geometrie, damit die Geometrie des Views korrekt in "geometry_columns" registriert wird. Siehe Section 4.6.3, “Manually Registering Geometry Columns”. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
Verbesserung: 2.0.0 use_typmod Argument eingeführt. Standardmäßig wird eine typmod Geometrie anstelle einer Constraint-basierten Geometrie erzeugt.
-- Ein Schema für die Daten erzeugen CREATE SCHEMA my_schema; -- Eine neue einfache PostgreSQL Tabelle ersellen CREATE TABLE my_schema.my_spatial_table (id serial); -- Die Beschreibung der Tabelle zeigt eine einfache Tabelle mit einer einzigen "id" Spalte Describing the table shows a simple table with a single "id" column. postgis=# \d my_schema.my_spatial_table Table "my_schema.my_spatial_table" Column | Type | Modifiers --------+---------+------------------------------------------------------------------------- id | integer | not null default nextval('my_schema.my_spatial_table_id_seq'::regclass) -- Fügt eine Geometriespalte an die Tabelle an SELECT AddGeometryColumn ('my_schema','my_spatial_table','geom',4326,'POINT',2); -- Hinzufügen einer Punktgeometrie mit dem alten, auf Bedingungen basierten Verhalten/old constraint behavior SELECT AddGeometryColumn ('my_schema','my_spatial_table','geom_c',4326,'POINT',2, false); --Hinzufügen eines Kurvenpolygons/curvepolygon mittels old constraint behavior SELECT AddGeometryColumn ('my_schema','my_spatial_table','geomcp_c',4326,'CURVEPOLYGON',2, false); -- Die neuerliche Beschreibung der Tabelle zeigt die hinzugefügten Geometriespalten an. \d my_schema.my_spatial_table addgeometrycolumn ------------------------------------------------------------------------- my_schema.my_spatial_table.geomcp_c SRID:4326 TYPE:CURVEPOLYGON DIMS:2 (1 row) Table "my_schema.my_spatial_table" Column | Type | Modifiers ----------+----------------------+------------------------------------------------------------------------- id | integer | not null default nextval('my_schema.my_spatial_table_id_seq'::regclass) geom | geometry(Point,4326) | geom_c | geometry | geomcp_c | geometry | Check constraints: "enforce_dims_geom_c" CHECK (st_ndims(geom_c) = 2) "enforce_dims_geomcp_c" CHECK (st_ndims(geomcp_c) = 2) "enforce_geotype_geom_c" CHECK (geometrytype(geom_c) = 'POINT'::text OR geom_c IS NULL) "enforce_geotype_geomcp_c" CHECK (geometrytype(geomcp_c) = 'CURVEPOLYGON'::text OR geomcp_c IS NULL) "enforce_srid_geom_c" CHECK (st_srid(geom_c) = 4326) "enforce_srid_geomcp_c" CHECK (st_srid(geomcp_c) = 4326) -- Der geometry_columns View registriert die neuen Spalten -- SELECT f_geometry_column As col_name, type, srid, coord_dimension As ndims FROM geometry_columns WHERE f_table_name = 'my_spatial_table' AND f_table_schema = 'my_schema'; col_name | type | srid | ndims ----------+--------------+------+------- geom | Point | 4326 | 2 geom_c | Point | 4326 | 2 geomcp_c | CurvePolygon | 4326 | 2
DropGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
text DropGeometryColumn(
varchar table_name, varchar column_name)
;
text DropGeometryColumn(
varchar schema_name, varchar table_name, varchar column_name)
;
text DropGeometryColumn(
varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name)
;
Entfernt eine geometrische Spalte aus der Geometrietabelle. Der "schema_name" muss mit dem Feld "f_table_schema" in der Tabelle "geometry_columns" übereinstimmen.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
Änderung: 2.0.0 Diese Funktion wurde zwecks Abwärtskompatibilität eingeführt. Seit geometry_columns ein View auf den Systemkatalog ist, können Sie die Geometriespalte, so wie jede andere Tabellenspalte, mit |
SELECT DropGeometryColumn ('my_schema','my_spatial_table','geom'); ----RESULT output --- dropgeometrycolumn ------------------------------------------------------ my_schema.my_spatial_table.geom effectively removed. -- In PostGIS 2.0+ entspricht das oben angeführte Aufruf ebenfalls dem Standard -- Der standardmäßige ALTER TABLE Aufruf. Beide Aufrufe entfernen die Tabelle aus dem geometry_columns Register. ALTER TABLE my_schema.my_spatial_table DROP column geom;
DropGeometryTable — Löscht eine Tabelle und alle Referenzen in dem geometry_columns View.
boolean DropGeometryTable(
varchar table_name)
;
boolean DropGeometryTable(
varchar schema_name, varchar table_name)
;
boolean DropGeometryTable(
varchar catalog_name, varchar schema_name, varchar table_name)
;
Löscht eine Tabelle und deren Verweise in "geometry_columns". Anmerkung: verwendet current_schema() wenn kein Schema angegeben wird, eine Schema erkennende pgsql Installation vorausgesetzt.
Änderung: 2.0.0 Diese Funktion wurde zwecks Abwärtskompatibilität eingeführt. Seit geometry_columns ein View auf den Systemkatalog ist, können Sie eine Tabelle mit einer Geometriespalte, so wie jede andere Tabelle, mit |
Find_SRID — Returns the SRID defined for a geometry column.
integer Find_SRID(
varchar a_schema_name, varchar a_table_name, varchar a_geomfield_name)
;
Returns the integer SRID of the specified geometry column by searching through the GEOMETRY_COLUMNS table. If the geometry column has not been properly added (e.g. with the AddGeometryColumn function), this function will not work.
Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.
text Populate_Geometry_Columns(
boolean use_typmod=true)
;
int Populate_Geometry_Columns(
oid relation_oid, boolean use_typmod=true)
;
Sorgt dafür, dass die Geometriespalten mit Typmodifikatoren oder mit passenden räumlichen Constraints versehen sind. Dadurch wird die korrekte Registrierung im View geometry_columns
sichergestellt. Standardmäßig werden alle Geometriespalten, die keinen Typmodifikator aufweisen, mit Typmodifikatoren versehen. Für die alte Verhaltensweise setzen Sie bitte use_typmod=false
Aus Gründen der Abwärtskompatibilität und für räumliche Anwendungen, wie eine Tabellenvererbung bei denen jede Kindtabelle einen anderen geometrischen Datentyp aufweist, wird die alte Verhaltensweise mit Check-Constraints weiter unterstützt. Wenn Sie diese alte Verhaltensweise benötigen, können Sie den neuen Übergabewert auf FALSE setzen - use_typmod=false
. Wenn Sie dies tun, so werden die Geometriespalten anstelle von Typmodifikatoren mit 3 Constraints erstellt. Insbesondere bedeutet dies, dass jede Geometriespalte, die zu einer Tabelle gehört, mindestens drei Constraints aufweist:
enforce_dims_the_geom
- stellt sicher, dass jede Geometrie dieselbe Dimension hat (siehe ST_NDims)
enforce_geotype_the_geom
- stellt sicher, dass jede Geometrie vom selben Datentyp ist (siehe GeometryType)
enforce_srid_the_geom
- stellt sicher, dass jede Geometrie die selbe Projektion hat (siehe ST_SRID)
Wenn die oid
einer Tabelle übergeben wird, so versucht diese Funktion, die SRID, die Dimension und den Datentyp der Geometrie in der Tabelle zu bestimmen und fügt, falls notwendig, Constraints hinzu. Bei Erfolg wird eine entsprechende Spalte in die Tabelle "geometry_columns" eingefügt, andernfalls wird der Fehler abgefangen und eine Fehlermeldung ausgegeben, die das Problem beschreibt.
Wenn die oid
eines Views übergeben wird, so versucht diese Funktion, die SRID, die Dimension und den Datentyp der Geometrie in dem View zu bestimmen und die entsprechenden Einträge in die Tabelle geometry_columns
vorzunehmen. Constraints werden allerdings nicht erzwungen.
Die parameterlose Variante ist ein einfacher Adapter für die parametrisierte Variante, welche die Tabelle "geometry_columns" zuerst entleert und dann für jede räumliche Tabelle oder View in der Datenbank wiederbefüllt. Wo es passend ist, werden räumliche Constraints auf die Tabellen gelegt. Es wird die Anzahl der in der Datenbank gefundenen Geometriespalten und die Anzahl der in die Tabelle geometry_columns
eingefügten Zeilen ausgegeben. Die parametrisierte Version gibt lediglich die Anzahl der Zeilen aus, die in die Tabelle geometry_columns
eingefügt wurden.
Verfügbarkeit: 1.4.0
Änderung: 2.0.0 Standardmäßig werden nun Typmodifikatoren anstelle von Check-Constraints für die Beschränkung des Geometrietyps verwendet. Sie können nach wie vor stattdessen die Verhaltensweise mit Check-Constraints verwenden, indem Sie die neu eingeführte Variable use_typmod
auf FALSE setzen.
Erweiterung: 2.0.0 Der optionale Übergabewert use_typmod
wurde eingeführt, um bestimmen zu können, ob die Spalten mit Typmodifikatoren oder mit Check-Constraints erstellt werden sollen.
CREATE TABLE public.myspatial_table(gid serial, geom geometry); INSERT INTO myspatial_table(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326) ); -- Hier werden nun Typmodifikatoren verwendet. Damit dies funktioniert, müssen Daten vorhanden sein SELECT Populate_Geometry_Columns('public.myspatial_table'::regclass); populate_geometry_columns -------------------------- 1 \d myspatial_table Table "public.myspatial_table" Column | Type | Modifiers --------+---------------------------+--------------------------------------------------------------- gid | integer | not null default nextval('myspatial_table_gid_seq'::regclass) geom | geometry(LineString,4326) |
-- Dies stellt die Geometriespalten auf die Verwendung von Constraints um. Allerdings nur, wenn sie sich nicht in typmod befinden oder nicht bereits Constraints aufweisen. -- Damit dies funktioniert müssen Daten vorhanden sein CREATE TABLE public.myspatial_table_cs(gid serial, geom geometry); INSERT INTO myspatial_table_cs(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326) ); SELECT Populate_Geometry_Columns('public.myspatial_table_cs'::regclass, false); populate_geometry_columns -------------------------- 1 \d myspatial_table_cs Table "public.myspatial_table_cs" Column | Type | Modifiers --------+----------+------------------------------------------------------------------ gid | integer | not null default nextval('myspatial_table_cs_gid_seq'::regclass) geom | geometry | Check constraints: "enforce_dims_geom" CHECK (st_ndims(geom) = 2) "enforce_geotype_geom" CHECK (geometrytype(geom) = 'LINESTRING'::text OR geom IS NULL) "enforce_srid_geom" CHECK (st_srid(geom) = 4326)
UpdateGeometrySRID — Updates the SRID of all features in a geometry column, and the table metadata.
text UpdateGeometrySRID(
varchar table_name, varchar column_name, integer srid)
;
text UpdateGeometrySRID(
varchar schema_name, varchar table_name, varchar column_name, integer srid)
;
text UpdateGeometrySRID(
varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer srid)
;
Erneuert die SRID aller Features in einer Geometriespalte; erneuert die Constraints und die Referenz in "geometry_columns". Anmerkung: verwendet current_schema() wenn kein Schema angegeben wird, eine Schema erkennende pgsql Installation vorausgesetzt.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
Insert geometries into roads table with a SRID set already using EWKT format:
COPY roads (geom) FROM STDIN; SRID=4326;LINESTRING(0 0, 10 10) SRID=4326;LINESTRING(10 10, 15 0) \.
Ändert die SRID der Straßentabelle auf 4326
SELECT UpdateGeometrySRID('roads','geom',4326);
Das vorhergegangene Beispiel ist gleichbedeutend mit diesr DDL Anweisung
ALTER TABLE roads ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 4326) USING ST_SetSRID(geom,4326);
Falls Sie sich in der Projektion geirrt haben (oder sie als "unknown" importiert haben) und sie in einem Aufwaschen in die Web Mercator Projektion transformieren wollen, so können Sie dies mit DDL bewerkstelligen. Es gibt jedoch keine äquivalente PostGIS Managementfunktion, die dies in einem Schritt bewerkstelligen könnte.
ALTER TABLE roads ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 3857) USING ST_Transform(ST_SetSRID(geom,4326),3857) ;
ST_GeomCollFromText — Creates a GeometryCollection or Multi* geometry from a set of geometries.
geometry ST_GeomFromGeoJSON(
text geomjson)
;
geometry ST_GeomFromGeoJSON(
json geomjson)
;
geometry ST_GeomFromGeoJSON(
jsonb geomjson)
;
Collects geometries into a geometry collection. The result is either a Multi* or a GeometryCollection, depending on whether the input geometries have the same or different types (homogeneous or heterogeneous). The input geometries are left unchanged within the collection.
Variant 1: accepts two input geometries
Variant 2: accepts an array of geometries
Variant 3: aggregate function accepting a rowset of geometries.
If any of the input geometries are collections (Multi* or GeometryCollection) ST_Collect returns a GeometryCollection (since that is the only type which can contain nested collections). To prevent this, use ST_Dump in a subquery to expand the input collections to their atomic elements (see example below). |
ST_Collect and ST_Union appear similar, but in fact operate quite differently. ST_Collect aggregates geometries into a collection without changing them in any way. ST_Union geometrically merges geometries where they overlap, and splits linestrings at intersections. It may return single geometries when it dissolves boundaries. |
Verfügbarkeit: 1.4.0 - ST_MakeLine(geomarray) wurde eingeführt. ST_MakeLine Aggregatfunktion wurde verbessert, um mehr Punkte schneller handhaben zu können.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
Collect 2D points.
SELECT ST_AsText( ST_Collect( ST_GeomFromText('POINT(1 2)'), ST_GeomFromText('POINT(-2 3)') )); st_astext ---------- MULTIPOINT((1 2),(-2 3))
Collect 3D points.
SELECT ST_AsEWKT( ST_Collect( ST_GeomFromEWKT('POINT(1 2 3)'), ST_GeomFromEWKT('POINT(1 2 4)') ) ); st_asewkt ------------------------- MULTIPOINT(1 2 3,1 2 4)
Collect curves.
SELECT ST_AsText( ST_Collect( 'CIRCULARSTRING(220268 150415,220227 150505,220227 150406)', 'CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)')); st_astext ------------------------------------------------------------------------------------ MULTICURVE(CIRCULARSTRING(220268 150415,220227 150505,220227 150406), CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))
Using an array constructor for a subquery.
SELECT ST_Collect( ARRAY( SELECT geom FROM sometable ) );
Using an array constructor for values.
SELECT ST_AsText( ST_Collect( ARRAY[ ST_GeomFromText('LINESTRING(1 2, 3 4)'), ST_GeomFromText('LINESTRING(3 4, 4 5)') ] )) As wktcollect; --wkt collect -- MULTILINESTRING((1 2,3 4),(3 4,4 5))
ST_LineFromMultiPoint — Erzeugt einen LineString aus einer MultiPoint Geometrie.
geometry ST_LineFromMultiPoint(
geometry aMultiPoint)
;
Erzeugt einen LineString aus einer MultiPoint Geometrie.
Für Punkt mit X-, Y- und M-Koordinaten verwenden Sie bitte ST_MakePointM .
This function supports 3d and will not drop the z-index.
ST_MakeEnvelope — Erzeugt ein rechteckiges Polygon aus den gegebenen Minimum- und Maximumwerten. Die Eingabewerte müssen in dem Koordinatenreferenzsystem sein, welches durch die SRID angegeben wird.
geometry ST_MakeEnvelope(
double precision xmin, double precision ymin, double precision xmax, double precision ymax, integer srid=unknown)
;
Erzeugt ein rechteckiges Polygon das durch die Minima und Maxima angegeben wird. durch die gegebene Hülle. Die Eingabewerte müssen in dem Koordinatenreferenzsystem sein, welches durch die SRID angegeben wird. Wenn keine SRID angegeben ist, so wird das Koordinatenreferenzsystem "unknown" angenommen
Verfügbarkeit: 1.5
Erweiterung: 2.0: es wurde die Möglichkeit eingeführt, eine Einhüllende/Envelope festzulegen, ohne dass die SRID spezifiziert ist.
ST_MakeLine — Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.
geometry ST_MakeLine(
geometry set geoms)
;
geometry ST_MakeLine(
geometry geom1, geometry geom2)
;
geometry ST_MakeLine(
geometry[] geoms_array)
;
Creates a LineString containing the points of Point, MultiPoint, or LineString geometries. Other geometry types cause an error.
Variant 1: accepts two input geometries
Variant 2: accepts an array of geometries
Variant 3: aggregate function accepting a rowset of geometries. To ensure the order of the input geometries use ORDER BY
in the function call, or a subquery with an ORDER BY
clause.
Repeated nodes at the beginning of input LineStrings are collapsed to a single point. Repeated points in Point and MultiPoint inputs are not collapsed. ST_RemoveRepeatedPoints can be used to collapse repeated points from the output LineString.
This function supports 3d and will not drop the z-index.
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung zur Eingabe von MultiPoint Elementen eingeführt
Verfügbarkeit: 2.0.0 - Unterstützung zur Eingabe von LineString Elementen eingeführt
Verfügbarkeit: 1.4.0 - ST_MakeLine(geomarray) wurde eingeführt. ST_MakeLine Aggregatfunktion wurde verbessert, um mehr Punkte schneller handhaben zu können.
Create a line composed of two points.
SELECT ST_MakeLine(ARRAY(SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY visit_time)); --Making a 3d line with 3 3-d points SELECT ST_AsEWKT(ST_MakeLine(ARRAY[ST_MakePoint(1,2,3), ST_MakePoint(3,4,5), ST_MakePoint(6,6,6)])); st_asewkt ------------------------- LINESTRING(1 2 3,3 4 5,6 6 6)
Erzeugt eine BOX3D, die durch 2 geometrische 3D-Punkte definiert wird.
SELECT ST_AsEWKT( ST_MakeLine(ST_MakePoint(1,2,3), ST_MakePoint(3,4,5) )); st_asewkt ------------------------- LINESTRING(1 2 3,3 4 5)
Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.
select ST_AsText( ST_MakeLine( 'LINESTRING(0 0, 1 1)', 'LINESTRING(2 2, 3 3)' ) ); st_astext ----------------------------- LINESTRING(0 0,1 1,2 2,3 3)
Create a line from an array formed by a subquery with ordering.
SELECT ST_MakeLine( ARRAY( SELECT ST_Centroid(geom) FROM visit_locations ORDER BY visit_time) );
Create a 3D line from an array of 3D points
SELECT ST_MakeLine(ARRAY(SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY visit_time)); --Making a 3d line with 3 3-d points SELECT ST_AsEWKT(ST_MakeLine(ARRAY[ST_MakePoint(1,2,3), ST_MakePoint(3,4,5), ST_MakePoint(6,6,6)])); st_asewkt ------------------------- LINESTRING(1 2 3,3 4 5,6 6 6)
Diese Beispiel nimmt eine Abfolge von GPS Punkten entgegen und erzeugt einen Datensatz für jeden GPS Pfad, wobei das Geometriefeld ein Linienzug ist, welcher in der Reihenfolge der Aufnahmeroute aus den GPS Punkten zusammengesetzt wird.
Using aggregate ORDER BY
provides a correctly-ordered LineString.
SELECT gps.track_id, ST_MakeLine(gps.geom ORDER BY gps_time) As geom FROM gps_points As gps GROUP BY track_id;
Prior to PostgreSQL 9, ordering in a subquery can be used. However, sometimes the query plan may not respect the order of the subquery.
-- Bei Vorgängerversionen von PostgreSQL 9.0 funktioniert dies üblicherweise, -- allerdings kann es der Anfrageoptimierer gelegentlich vorziehen, die Reihenfolge der Unterabfrage zu missachten. SELECT gps.gps_track, ST_MakeLine(gps.the_geom) As newgeom FROM (SELECT gps_track,gps_time, the_geom FROM gps_points ORDER BY gps_track, gps_time) As gps GROUP BY gps.gps_track;
ST_MakePoint — Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie.
geometry ST_Point(
float x_lon, float y_lat)
;
geometry ST_MakePointM(
float x, float y, float m)
;
geometry ST_MakePoint(
double precision x, double precision y, double precision z, double precision m)
;
Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie.
Für Punkt mit X-, Y- und M-Koordinaten verwenden Sie bitte ST_MakePointM .
Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie (Geometrie mit Kilometrierung). ST_MakePoint
ist zwar nicht OGC-konform, ist aber im Allgemeinen schneller und genauer als ST_GeomFromText oderST_PointFromText und auch leichter anzuwenden wenn Sie mit rohen Koordinaten anstatt mit WKT arbeiten.
For geodetic coordinates, |
This function supports 3d and will not drop the z-index.
--Gibt einen Punkt mit unbekannter SRID aus SELECT ST_MakePoint(-71.1043443253471, 42.3150676015829); --Gibt einen Punkt in geographischer Länge und Breite im WGS84 aus SELECT ST_SetSRID(ST_MakePoint(-71.1043443253471, 42.3150676015829),4326); --Gibt einen 3D-Punkt zurück (z.B.: wenn der Punkt eine Höhe aufweist) SELECT ST_MakePoint(1, 2,1.5); --Gibt die Z-Koordinate des Punktes zurück SELECT ST_Z(ST_MakePoint(1, 2,1.5)); result ------- 1.5
ST_MakePointM — Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.
geometry ST_MakePointM(
float x, float y, float m)
;
Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.
Für Punkt mit X-, Y- und M-Koordinaten verwenden Sie bitte ST_MakePointM .
For geodetic coordinates, |
Create point with unknown SRID.
SELECT ST_AsEWKT( ST_MakePointM(-71.1043443253471, 42.3150676015829, 10) ); st_asewkt ----------------------------------------------- POINTM(-71.1043443253471 42.3150676015829 10)
Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.
SELECT ST_AsEWKT( ST_SetSRID( ST_MakePointM(-71.104, 42.315, 10), 4326)); st_asewkt --------------------------------------------------------- SRID=4326;POINTM(-71.104 42.315 10)
Get measure of created point.
SELECT ST_M( ST_MakePointM(-71.104, 42.315, 10) ); result ------- 10
ST_MakePolygon — Creates a Polygon from a shell and optional list of holes.
geometry ST_MakePolygon(
geometry linestring)
;
geometry ST_MakePolygon(
geometry outerlinestring, geometry[] interiorlinestrings)
;
Erzeugt ein Polygon, das durch die gegebene Hülle gebildet wird. Die Eingabegeometrie muss aus geschlossenen Linienzügen bestehen.
Variant 1: Accepts one shell LineString.
Variant 2: Accepts a shell LineString and an array of inner (hole) LineStrings. A geometry array can be constructed using the PostgreSQL array_agg(), ARRAY[] or ARRAY() constructs.
Diese Funktion akzeptiert keine MULTILINESTRINGs. Verwenden Sie bitte ST_LineMerge oder ST_Dump um Linienzüge zu erzeugen. |
This function supports 3d and will not drop the z-index.
Erzeugt einen LineString aus einem codierten Linienzug.
SELECT ST_MLineFromText('MULTILINESTRING((1 2, 3 4), (4 5, 6 7))');
Create a Polygon from an open LineString, using ST_StartPoint and ST_AddPoint to close it.
SELECT ST_MakePolygon( ST_AddPoint(foo.open_line, ST_StartPoint(foo.open_line)) ) FROM ( SELECT ST_GeomFromText('LINESTRING(75 29,77 29,77 29, 75 29)') As open_line) As foo;
Erzeugt einen LineString aus einem codierten Linienzug.
SELECT ST_AsEWKT( ST_MakePolygon( 'LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, 75.15 29.53 1)')); st_asewkt ----------- POLYGON((75.15 29.53 1,77 29 1,77.6 29.5 1,75.15 29.53 1))
Create a Polygon from a LineString with measures
SELECT ST_AsEWKT( ST_MakePolygon( 'LINESTRINGM(75.15 29.53 1,77 29 1,77.6 29.5 2, 75.15 29.53 2)' )); st_asewkt ---------- POLYGONM((75.15 29.53 1,77 29 1,77.6 29.5 2,75.15 29.53 2))
Erzeugung eines Donuts mit einem Ameisenloch
SELECT ST_MakePolygon( ST_ExteriorRing(ST_Buffer(foo.line,10)), ARRAY[ST_Translate(foo.line,1,1), ST_ExteriorRing(ST_Buffer(ST_MakePoint(20,20),1)) ] ) FROM (SELECT ST_ExteriorRing(ST_Buffer(ST_MakePoint(10,10),10,10)) As line ) As foo;
Create a set of province boundaries with holes representing lakes. The input is a table of province Polygons/MultiPolygons and a table of water linestrings. Lines forming lakes are determined by using ST_IsClosed. The province linework is extracted by using ST_Boundary. As required by ST_MakePolygon
, the boundary is forced to be a single LineString by using ST_LineMerge. (However, note that if a province has more than one region or has islands this will produce an invalid polygon.) Using a LEFT JOIN ensures all provinces are included even if they have no lakes.
Das Konstrukt mit CASE wird verwendet, da die Übergabe eines NULL-Feldes an ST_MakePolygon NULL ergibt. |
SELECT p.gid, p.province_name, CASE WHEN array_agg(w.geom) IS NULL THEN p.geom ELSE ST_MakePolygon( ST_LineMerge(ST_Boundary(p.geom)), array_agg(w.geom)) END FROM provinces p LEFT JOIN waterlines w ON (ST_Within(w.geom, p.geom) AND ST_IsClosed(w.geom)) GROUP BY p.gid, p.province_name, p.geom;
Another technique is to utilize a correlated subquery and the ARRAY() constructor that converts a row set to an array.
SELECT p.gid, p.province_name, CASE WHEN EXISTS( SELECT w.geom FROM waterlines w WHERE ST_Within(w.geom, p.geom) AND ST_IsClosed(w.geom)) THEN ST_MakePolygon( ST_LineMerge(ST_Boundary(p.geom)), ARRAY( SELECT w.geom FROM waterlines w WHERE ST_Within(w.geom, p.geom) AND ST_IsClosed(w.geom))) ELSE p.geom END AS geom FROM provinces p;
ST_Point — Creates a Point with X, Y and SRID values.
geometry ST_Point(
float x_lon, float y_lat)
;
geometry ST_MakePointM(
float x, float y, float m)
;
Returns a Point with the given X and Y coordinate values. This is the SQL-MM equivalent for ST_MakePoint that takes just X and Y.
For geodetic coordinates, |
Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry.
This method implements the SQL/MM specification. SQL-MM 3: 6.1.2
SELECT ST_Point( -71.104, 42.315);
SELECT ST_SetSRID(ST_Point( -71.104, 42.315),4326);
New in 3.2.0: With SRID specified
SELECT ST_Point( -71.104, 42.315, 4326);
Pre-PostGIS 3.2 syntax
SELECT CAST( ST_SetSRID(ST_Point( -71.104, 42.315), 4326) AS geography);
3.2 and on you can include the srid
SELECT CAST( ST_Point( -71.104, 42.315, 4326) AS geography);
PostgreSQL also provides the ::
short-hand for casting
SELECT ST_Point( -71.104, 42.315, 4326)::geography;
If the point coordinates are not in a geodetic coordinate system (such as WGS84), then they must be reprojected before casting to a geography. In this example a point in Pennsylvania State Plane feet (SRID 2273) is projected to WGS84 (SRID 4326).
SELECT CAST(ST_SetSRID(ST_Point(-71.1043443253471, 42.3150676015829),4326) As geography);
ST_Point — Creates a Point with X, Y, Z and SRID values.
geometry ST_MakePoint(
double precision x, double precision y, double precision z, double precision m)
;
Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein OGC-Alias für ST_MakePoint.
Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry.
ST_Point — Creates a Point with X, Y, M and SRID values.
geometry ST_PointM(
float x, float y, float m, integer srid=unknown)
;
Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein OGC-Alias für ST_MakePoint.
Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry.
ST_Point — Creates a Point with X, Y, Z, M and SRID values.
geometry ST_MakeEnvelope(
double precision xmin, double precision ymin, double precision xmax, double precision ymax, integer srid=unknown)
;
Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein OGC-Alias für ST_MakePoint.
Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry.
ST_Polygon — Creates a Polygon from a LineString with a specified SRID.
geometry ST_Polygon(
geometry aLineString, integer srid)
;
Returns a polygon built from the given LineString and sets the spatial reference system from the srid
.
ST_Polygon is similar to ST_MakePolygon Variant 1 with the addition of setting the SRID.
Diese Funktion akzeptiert keine MULTILINESTRINGs. Verwenden Sie bitte ST_LineMerge oder ST_Dump um Linienzüge zu erzeugen. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 8.3.2
This function supports 3d and will not drop the z-index.
Create a 2D polygon.
SELECT ST_AsText( ST_Polygon('LINESTRING(75 29, 77 29, 77 29, 75 29)'::geometry, 4326) ); -- result -- POLYGON((75 29, 77 29, 77 29, 75 29))
Create a 3D polygon.
SELECT ST_AsEWKT( ST_Polygon( ST_GeomFromEWKT('LINESTRING(75 29 1, 77 29 2, 77 29 3, 75 29 1)'), 4326) ); -- result -- SRID=4326;POLYGON((75 29 1, 77 29 2, 77 29 3, 75 29 1))
ST_MakeEnvelope — Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.
geometry ST_MakePoint(
double precision x, double precision y, double precision z, double precision m)
;
Creates a rectangular Polygon giving the extent of a tile in the XYZ tile system. The tile is specifed by the zoom level Z and the XY index of the tile in the grid at that level. Can be used to define the tile bounds required by ST_AsMVTGeom to convert geometry into the MVT tile coordinate space.
By default, the tile envelope is in the Web Mercator coordinate system (SRID:3857) using the standard range of the Web Mercator system (-20037508.342789, 20037508.342789). This is the most common coordinate system used for MVT tiles. The optional bounds
parameter can be used to generate tiles in any coordinate system. It is a geometry that has the SRID and extent of the "Zoom Level zero" square within which the XYZ tile system is inscribed.
The optional margin
parameter can be used to expand a tile by the given percentage. E.g. margin=0.125
expands the tile by 12.5%, which is equivalent to buffer=512 when the tile extent size is 4096, as used in ST_AsMVTGeom. This is useful to create a tile buffer to include data lying outside of the tile's visible area, but whose existence affects the tile rendering. For example, a city name (a point) could be near an edge of a tile, so its label should be rendered on two tiles, even though the point is located in the visible area of just one tile. Using expanded tiles in a query will include the city point in both tiles. Use a negative value to shrink the tile instead. Values less than -0.5 are prohibited because that would eliminate the tile completely. Do not specify a margin when using with ST_AsMVTGeom
. See the example for ST_AsMVT.
Erweiterung: 2.0.0 Standardwert für den optionalen Parameter SRID eingefügt.
Verfügbarkeit: 2.1.0
SELECT ST_AsText( ST_TileEnvelope(2, 1, 1) ); st_astext ------------------------------ POLYGON((-10018754.1713945 0,-10018754.1713945 10018754.1713945,0 10018754.1713945,0 0,-10018754.1713945 0)) SELECT ST_AsText( ST_TileEnvelope(3, 1, 1, ST_MakeEnvelope(-180, -90, 180, 90, 4326) ) ); st_astext ------------------------------------------------------ POLYGON((-135 45,-135 67.5,-90 67.5,-90 45,-135 45))
ST_HexagonGrid — Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.
geometry ST_Point(
float x_lon, float y_lat)
;
Starts with the concept of a hexagon tiling of the plane. (Not a hexagon tiling of the globe, this is not the H3 tiling scheme.) For a given planar SRS, and a given edge size, starting at the origin of the SRS, there is one unique hexagonal tiling of the plane, Tiling(SRS, Size). This function answers the question: what hexagons in a given Tiling(SRS, Size) overlap with a given bounds.
The SRS for the output hexagons is the SRS provided by the bounds geometry.
Doubling or tripling the edge size of the hexagon generates a new parent tiling that fits with the origin tiling. Unfortunately, it is not possible to generate parent hexagon tilings that the child tiles perfectly fit inside.
Verfügbarkeit: 2.1.0
To do a point summary against a hexagonal tiling, generate a hexagon grid using the extent of the points as the bounds, then spatially join to that grid.
SELECT COUNT(*), hexes.geom FROM ST_HexagonGrid( 10000, ST_SetSRID(ST_EstimatedExtent('pointtable', 'geom'), 3857) ) AS hexes INNER JOIN pointtable AS pts ON ST_Intersects(pts.geom, hexes.geom) GROUP BY hexes.geom;
If we generate a set of hexagons for each polygon boundary and filter out those that do not intersect their hexagons, we end up with a tiling for each polygon.
Tiling states results in a hexagon coverage of each state, and multiple hexagons overlapping at the borders between states.
The LATERAL keyword is implied for set-returning functions when referring to a prior table in the FROM list. So CROSS JOIN LATERAL, CROSS JOIN, or just plain , are equivalent constructs for this example. |
SELECT admin1.gid, hex.geom FROM admin1 CROSS JOIN ST_HexagonGrid(100000, admin1.geom) AS hex WHERE adm0_a3 = 'USA' AND ST_Intersects(admin1.geom, hex.geom)
ST_Hexagon — Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.
geometry ST_MakePoint(
double precision x, double precision y, double precision z, double precision m)
;
Uses the same hexagon tiling concept as ST_HexagonGrid, but generates just one hexagon at the desired cell coordinate. Optionally, can adjust origin coordinate of the tiling, the default origin is at 0,0.
Hexagons are generated with no SRID set, so use ST_SetSRID to set the SRID to the one you expect.
Verfügbarkeit: 2.1.0
ST_SquareGrid — Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.
geometry ST_Point(
float x_lon, float y_lat)
;
Starts with the concept of a square tiling of the plane. For a given planar SRS, and a given edge size, starting at the origin of the SRS, there is one unique square tiling of the plane, Tiling(SRS, Size). This function answers the question: what grids in a given Tiling(SRS, Size) overlap with a given bounds.
The SRS for the output squares is the SRS provided by the bounds geometry.
Doubling or edge size of the square generates a new parent tiling that perfectly fits with the original tiling. Standard web map tilings in mercator are just powers-of-two square grids in the mercator plane.
Verfügbarkeit: 2.1.0
The grid will fill the whole bounds of the country, so if you want just squares that touch the country you will have to filter afterwards with ST_Intersects.
WITH grid AS ( SELECT (ST_SquareGrid(1, ST_Transform(geom,4326))).* FROM admin0 WHERE name = 'Canada' ) SELEcT ST_AsText(geom) FROM grid
To do a point summary against a square tiling, generate a square grid using the extent of the points as the bounds, then spatially join to that grid. Note the estimated extent might be off from actual extent, so be cautious and at very least make sure you've analyzed your table.
SELECT COUNT(*), squares.geom FROM pointtable AS pts INNER JOIN ST_SquareGrid( 1000, ST_SetSRID(ST_EstimatedExtent('pointtable', 'geom'), 3857) ) AS squares ON ST_Intersects(pts.geom, squares.geom) GROUP BY squares.geom
This yields the same result as the first example but will be slower for a large number of points
SELECT COUNT(*), squares.geom FROM pointtable AS pts INNER JOIN ST_SquareGrid( 1000, pts.geom ) AS squares ON ST_Intersects(pts.geom, squares.geom) GROUP BY squares.geom
ST_Square — Returns a single square, using the provided edge size and cell coordinate within the square grid space.
geometry ST_MakePoint(
double precision x, double precision y, double precision z, double precision m)
;
Uses the same square tiling concept as ST_SquareGrid, but generates just one square at the desired cell coordinate. Optionally, can adjust origin coordinate of the tiling, the default origin is at 0,0.
Squares are generated with no SRID set, so use ST_SetSRID to set the SRID to the one you expect.
Verfügbarkeit: 2.1.0
ST_Letters — Returns the input letters rendered as geometry with a default start position at the origin and default text height of 100.
geometry ST_Letters(
text letters, json font)
;
Uses a built-in font to render out a string as a multipolygon geometry. The default text height is 100.0, the distance from the bottom of a descender to the top of a capital. The default start position places the start of the baseline at the origin. Over-riding the font involves passing in a json map, with a character as the key, and base64 encoded TWKB for the font shape, with the fonts having a height of 1000 units from the bottom of the descenders to the tops of the capitals.
The text is generated at the origin by default, so to reposition and resize the text, first apply the ST_Scale
function and then apply the ST_Translate
function.
Verfügbarkeit: 2.1.0
geometry_dump
rows for the components of a geometry.geometry_dump
rows for the exterior and interior rings of a Polygon.TRUE
zurück, wenn die Anfangs- und Endpunkte des LINESTRING
's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind. GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
text GeometryType(
geometry geomA)
;
Gibt den Geometrietyp als Zeichenkette zurück. z.B.: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.
OGC SPEC s2.1.1.1 - Gibt den Namen des instanziierbaren Subtyps der Geometrie zurück, von dem die geometrische Instanz ein Mitglied ist. Der Name des instanziierbaren Subtyps der Geometrie wird als Zeichenkette ausgegeben.
Die Funktion zeigt auch an ob die Geometrie eine Maßzahl aufweist, indem eine Zeichenkette wie 'POINTM' zurückgegeben wird. |
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method supports Circular Strings and Curves
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
SELECT GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)')); geometrytype -------------- LINESTRING
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')); --result POLYHEDRALSURFACE
SELECT GeometryType(geom) as result FROM (SELECT ST_GeomFromEWKT('TIN ((( 0 0 0, 0 0 1, 0 1 0, 0 0 0 )), (( 0 0 0, 0 1 0, 1 1 0, 0 0 0 )) )') AS geom ) AS g; result -------- TIN
ST_Boundary — Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück.
geometry ST_Boundary(
geometry geomA)
;
Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück. Die Definition der kombinierte Begrenzung ist in Abschnitt 3.12.3.2 der OGC SPEC beschrieben. Da das Ergebnis dieser Funktion eine abgeschlossene Hülle und daher topologisch geschlossen ist, kann die resultierende Begrenzung durch geometrische Primitive, wie in Abschnitt 3.12.2. der OGC SPEC erörtert, dargestellt werden.
Wird durch das GEOS Modul ausgeführt
Vor 2.0.0 meldete diese Funktion einen Fehler, falls sie auf eine |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. OGC SPEC s2.1.1.1
This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 5.1.17
This function supports 3d and will not drop the z-index.
Erweiterung: mit 2.1.0 wurde die Unterstützung von Dreiecken eingeführt
Changed: 3.2.0 support for TIN, does not use geos, does not linearize curves
SELECT ST_Boundary(geom) FROM (SELECT 'LINESTRING(100 150,50 60, 70 80, 160 170)'::geometry As geom) As f;
-- ST_AsText output MULTIPOINT((100 150),(160 170))
|
SELECT ST_Boundary(geom) FROM (SELECT 'POLYGON (( 10 130, 50 190, 110 190, 140 150, 150 80, 100 10, 20 40, 10 130 ), ( 70 40, 100 50, 120 80, 80 110, 50 90, 70 40 ))'::geometry As geom) As f;
-- Ausgabe als ST_AsText MULTILINESTRING((10 130,50 190,110 190,140 150,150 80,100 10,20 40,10 130), (70 40,100 50,120 80,80 110,50 90,70 40))
|
SELECT ST_AsText(ST_Boundary(ST_GeomFromText('LINESTRING(1 1,0 0, -1 1)'))); st_astext ----------- MULTIPOINT((1 1),(-1 1)) SELECT ST_AsText(ST_Boundary(ST_GeomFromText('POLYGON((1 1,0 0, -1 1, 1 1))'))); st_astext ---------- LINESTRING(1 1,0 0,-1 1,1 1) --Using a 3d polygon SELECT ST_AsEWKT(ST_Boundary(ST_GeomFromEWKT('POLYGON((1 1 1,0 0 1, -1 1 1, 1 1 1))'))); st_asewkt ----------------------------------- LINESTRING(1 1 1,0 0 1,-1 1 1,1 1 1) --Using a 3d multilinestring SELECT ST_AsEWKT(ST_Boundary(ST_GeomFromEWKT('MULTILINESTRING((1 1 1,0 0 0.5, -1 1 1),(1 1 0.5,0 0 0.5, -1 1 0.5, 1 1 0.5) )'))); st_asewkt ---------- MULTIPOINT((-1 1 1),(1 1 0.75))
ST_BoundingDiagonal — Gibt die Diagonale des Umgebungsdreiecks der angegebenen Geometrie zurück.
geometry ST_BoundingDiagonal(
geometry geom, boolean fits=false)
;
Gibt für eine angegebenen Geometrie die Diagonale des Umgebungsrechtecks als Linienzug zurück. Wenn die Geometrie leer ist, so ist auch die Diagonale Linie leer. Anderenfalls wird ein Linienzug aus 2 Punkten mit den kleinsten xy-Werten am Anfangspunkt und den größten xy-Werten am Endpunkt ausgegeben.
Der fits
Parameter bestimmt ob die bestmögliche Anpassung notwendig ist. Wenn er FALSE ist, so kann auch die Diagonale eines etwas größeren Umgebungsrechtecks akzeptiert werden (dies ist für Geometrien mit vielen Knoten schneller). Auf jeden Fall wird immer die gesamte Eingabegeometrie durch das von der Diagonale bestimmten Umgebungsrechtecks abgedeckt.
Die zurückgegebene Linienzug-Geometrie beinhaltet immer die SRID und die Dimensionalität (Anwesenheit von Z und M) der eingegebenen Geometrie.
Bei Spezialfällen (ein einzelner Knoten als Eingabewert) ist der zurückgegebene Linienzug topologisch ungültig (kein Inneres/Interior). Das Ergebnis ist dadurch jedoch nicht semantisch ungültig. |
Verfügbarkeit: 2.2.0
This function supports 3d and will not drop the z-index.
This function supports M coordinates.
ST_CoordDim — Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
integer ST_CoordDim(
geometry geomA)
;
Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
Dies ist der MM konforme Alias für ST_NDims
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.3
This method supports Circular Strings and Curves
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
ST_Dimension — Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
integer ST_Dimension(
geometry g)
;
Die inhärente Dimension eines geometrischen Objektes, welche kleiner oder gleich der Dimension der Koordinaten sein muss. Nach OGC SPEC s2.1.1.1 wird 0 für POINT
, 1 für LINESTRING
, 2 for POLYGON
, und die größte Dimension der Teile einer GEOMETRYCOLLECTION
zurückgegeben. Wenn die Dimension nicht bekannt ist (leereGEOMETRYCOLLECTION
) wird 0 zurückgegeben.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.2
Erweiterung: 2.0.0 - Unterstützung für polyedrische Oberflächen und TIN eingeführt.
Vor 2.0.0 meldete diese Funktion einen Fehler, falls sie auf eine leere Geometrie angewandt wurde. |
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
ST_Dump — Returns a set of geometry_dump
rows for the components of a geometry.
geometry ST_Envelope(
geometry g1)
;
A set-returning function (SRF) that extracts the components of a geometry. It returns a set of geometry_dump rows, each containing a geometry (geom
field) and an array of integers (path
field).
For an atomic geometry type (POINT,LINESTRING,POLYGON) a single record is returned with an empty path
array and the input geometry as geom
. For a collection or multi-geometry a record is returned for each of the collection components, and the path
denotes the position of the component inside the collection.
ST_Dump is useful for expanding geometries. It is the inverse of a ST_GeomCollFromText / GROUP BY, in that it creates new rows. For example it can be use to expand MULTIPOLYGONS into POLYGONS.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.
Availability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.
Vor 1.3.4 ist diese Funktion abgestürzt, wenn die Geometrien CURVES enthalten. Dies wurde mit 1.3.4+ behoben |
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports 3d and will not drop the z-index.
SELECT sometable.field1, sometable.field1, (ST_Dump(sometable.geom)).geom AS geom FROM sometable; -- Break a compound curve into its constituent linestrings and circularstrings SELECT ST_AsEWKT(a.geom), ST_HasArc(a.geom) FROM ( SELECT (ST_Dump(p_geom)).geom AS geom FROM (SELECT ST_GeomFromEWKT('COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))') AS p_geom) AS b ) AS a; st_asewkt | st_hasarc -----------------------------+---------- CIRCULARSTRING(0 0,1 1,1 0) | t LINESTRING(1 0,0 1) | f (2 rows)
-- Beispiel für eine polyedrische Oberfläche -- Auftrennung einer polyedrischen Oberfläche in Teilflächen/Faces SELECT ST_AsEWKT(ST_GeometryN(p_geom,3)) As geom_ewkt FROM (SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )') AS p_geom ) AS a; geom_ewkt ------------------------------------------ POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0))
-- TIN -- SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt FROM (SELECT ST_GeomFromEWKT('TIN ((( 0 0 0, 0 0 1, 0 1 0, 0 0 0 )), (( 0 0 0, 0 1 0, 1 1 0, 0 0 0 )) )') AS geom ) AS g; -- result -- wkt ------------------------------------- TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
ST_NumPoints — Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.
geometry ST_Points(
geometry geom )
;
A set-returning function (SRF) that extracts the coordinates (vertices) of a geometry. It returns a set of geometry_dump rows, each containing a geometry (geom
field) and an array of integers (path
field).
the geom
field POINT
s represent the coordinates of the supplied geometry.
the path
field (an integer[]
) is an index enumerating the coordinate positions in the elements of the supplied geometry. The indices are 1-based. For example, for a LINESTRING
the paths are {i}
where i
is the nth
coordinate in the LINESTRING
. For a POLYGON
the paths are {i,j}
where i
is the ring number (1 is outer; inner rings follow) and j
is the coordinate position in the ring.
To obtain a single geometry containing the coordinates use ST_Points.
Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.
Verfügbarkeit: 1.2.2
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports 3d and will not drop the z-index.
SELECT edge_id, (dp).path[1] As index, ST_AsText((dp).geom) As wktnode FROM (SELECT 1 As edge_id , ST_DumpPoints(ST_GeomFromText('LINESTRING(1 2, 3 4, 10 10)')) AS dp UNION ALL SELECT 2 As edge_id , ST_DumpPoints(ST_GeomFromText('LINESTRING(3 5, 5 6, 9 10)')) AS dp ) As foo; edge_id | index | wktnode ---------+-------+-------------- 1 | 1 | POINT(1 2) 1 | 2 | POINT(3 4) 1 | 3 | POINT(10 10) 2 | 1 | POINT(3 5) 2 | 2 | POINT(5 6) 2 | 3 | POINT(9 10)
SELECT path, ST_AsText(geom) FROM ( SELECT (ST_DumpPoints(g.geom)).* FROM (SELECT 'GEOMETRYCOLLECTION( POINT ( 0 1 ), LINESTRING ( 0 3, 3 4 ), POLYGON (( 2 0, 2 3, 0 2, 2 0 )), POLYGON (( 3 0, 3 3, 6 3, 6 0, 3 0 ), ( 5 1, 4 2, 5 2, 5 1 )), MULTIPOLYGON ( (( 0 5, 0 8, 4 8, 4 5, 0 5 ), ( 1 6, 3 6, 2 7, 1 6 )), (( 5 4, 5 8, 6 7, 5 4 )) ) )'::geometry AS geom ) AS g ) j; path | st_astext -----------+------------ {1,1} | POINT(0 1) {2,1} | POINT(0 3) {2,2} | POINT(3 4) {3,1,1} | POINT(2 0) {3,1,2} | POINT(2 3) {3,1,3} | POINT(0 2) {3,1,4} | POINT(2 0) {4,1,1} | POINT(3 0) {4,1,2} | POINT(3 3) {4,1,3} | POINT(6 3) {4,1,4} | POINT(6 0) {4,1,5} | POINT(3 0) {4,2,1} | POINT(5 1) {4,2,2} | POINT(4 2) {4,2,3} | POINT(5 2) {4,2,4} | POINT(5 1) {5,1,1,1} | POINT(0 5) {5,1,1,2} | POINT(0 8) {5,1,1,3} | POINT(4 8) {5,1,1,4} | POINT(4 5) {5,1,1,5} | POINT(0 5) {5,1,2,1} | POINT(1 6) {5,1,2,2} | POINT(3 6) {5,1,2,3} | POINT(2 7) {5,1,2,4} | POINT(1 6) {5,2,1,1} | POINT(5 4) {5,2,1,2} | POINT(5 8) {5,2,1,3} | POINT(6 7) {5,2,1,4} | POINT(5 4) (29 rows)
-- Polyhedral surface cube -- SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt FROM (SELECT ST_DumpPoints(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )') ) AS gdump ) AS g; -- result -- path | wkt ---------+-------------- {1,1,1} | POINT(0 0 0) {1,1,2} | POINT(0 0 1) {1,1,3} | POINT(0 1 1) {1,1,4} | POINT(0 1 0) {1,1,5} | POINT(0 0 0) {2,1,1} | POINT(0 0 0) {2,1,2} | POINT(0 1 0) {2,1,3} | POINT(1 1 0) {2,1,4} | POINT(1 0 0) {2,1,5} | POINT(0 0 0) {3,1,1} | POINT(0 0 0) {3,1,2} | POINT(1 0 0) {3,1,3} | POINT(1 0 1) {3,1,4} | POINT(0 0 1) {3,1,5} | POINT(0 0 0) {4,1,1} | POINT(1 1 0) {4,1,2} | POINT(1 1 1) {4,1,3} | POINT(1 0 1) {4,1,4} | POINT(1 0 0) {4,1,5} | POINT(1 1 0) {5,1,1} | POINT(0 1 0) {5,1,2} | POINT(0 1 1) {5,1,3} | POINT(1 1 1) {5,1,4} | POINT(1 1 0) {5,1,5} | POINT(0 1 0) {6,1,1} | POINT(0 0 1) {6,1,2} | POINT(1 0 1) {6,1,3} | POINT(1 1 1) {6,1,4} | POINT(0 1 1) {6,1,5} | POINT(0 0 1) (30 rows)
-- TIN -- SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt FROM (SELECT ST_GeomFromEWKT('TIN ((( 0 0 0, 0 0 1, 0 1 0, 0 0 0 )), (( 0 0 0, 0 1 0, 1 1 0, 0 0 0 )) )') AS geom ) AS g; -- result -- wkt ------------------------------------- TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
-- TIN -- SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt FROM (SELECT ST_GeomFromEWKT('TIN ((( 0 0 0, 0 0 1, 0 1 0, 0 0 0 )), (( 0 0 0, 0 1 0, 1 1 0, 0 0 0 )) )') AS geom ) AS g; -- result -- wkt ------------------------------------- TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
ST_NumPoints — Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.
geometry ST_Points(
geometry geom )
;
A set-returning function (SRF) that extracts the segments of a geometry. It returns a set of geometry_dump rows, each containing a geometry (geom
field) and an array of integers (path
field).
Gibt den Wert TRUE
zurück, wenn der LINESTRING
geschlossen ist und der Simple Feature Spezifikation entspricht.
the path
field (an integer[]
) is an index enumerating the segment start point positions in the elements of the supplied geometry. The indices are 1-based. For example, for a LINESTRING
the paths are {i}
where i
is the nth
segment start point in the LINESTRING
. For a POLYGON
the paths are {i,j}
where i
is the ring number (1 is outer; inner rings follow) and j
is the segment start point position in the ring.
Verfügbarkeit: 2.2.0
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports 3d and will not drop the z-index.
SELECT path, ST_AsText(geom) FROM ( SELECT (ST_DumpSegments(g.geom)).* FROM (SELECT 'GEOMETRYCOLLECTION( LINESTRING(1 1, 3 3, 4 4), POLYGON((5 5, 6 6, 7 7, 5 5)) )'::geometry AS geom ) AS g ) j; path │ st_astext --------------------------------- {1,1} │ LINESTRING(1 1,3 3) {1,2} │ LINESTRING(3 3,4 4) {2,1,1} │ LINESTRING(5 5,6 6) {2,1,2} │ LINESTRING(6 6,7 7) {2,1,3} │ LINESTRING(7 7,5 5) (5 rows)
-- TIN -- SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt FROM (SELECT ST_GeomFromEWKT('TIN ((( 0 0 0, 0 0 1, 0 1 0, 0 0 0 )), (( 0 0 0, 0 1 0, 1 1 0, 0 0 0 )) )') AS geom ) AS g; -- result -- wkt ------------------------------------- TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
-- TIN -- SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt FROM (SELECT ST_GeomFromEWKT('TIN ((( 0 0 0, 0 0 1, 0 1 0, 0 0 0 )), (( 0 0 0, 0 1 0, 1 1 0, 0 0 0 )) )') AS geom ) AS g; -- result -- wkt ------------------------------------- TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
ST_NRings — Returns a set of geometry_dump
rows for the exterior and interior rings of a Polygon.
geometry ST_ExteriorRing(
geometry a_polygon)
;
A set-returning function (SRF) that extracts the rings of a polygon. It returns a set of geometry_dump rows, each containing a geometry (geom
field) and an array of integers (path
field).
The geom
field contains each ring as a POLYGON. The path
field is an integer array of length 1 containing the polygon ring index. The exterior ring (shell) has index 0. The interior rings (holes) have indices of 1 and higher.
Dies funktioniert nicht mit MULTIPOLYGONen. Verwenden Sie die Funktion bitte in Zusammenhang mit ST_Dump um sie auf MULTIPOLYGONe anzuwenden. |
Availability: PostGIS 1.1.3. Requires PostgreSQL 7.3 or higher.
This function supports 3d and will not drop the z-index.
General form of query.
SELECT polyTable.field1, polyTable.field1, (ST_DumpRings(polyTable.geom)).geom As geom FROM polyTable;
A polygon with a single hole.
SELECT path, ST_AsEWKT(geom) As geom FROM ST_DumpRings( ST_GeomFromEWKT('POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 1,-8148958 5132508 1,-8148941 5132466 1,-8148924 5132394 1, -8148903 5132210 1,-8148930 5131967 1,-8148992 5131978 1,-8149237 5132093 1,-8149404 5132211 1,-8149647 5132310 1,-8149757 5132394 1, -8150305 5132788 1,-8149064 5133092 1), (-8149362 5132394 1,-8149446 5132501 1,-8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))') ) as foo; path | geom ---------------------------------------------------------------------------------------------------------------- {0} | POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 1,-8148958 5132508 1, | -8148941 5132466 1,-8148924 5132394 1, | -8148903 5132210 1,-8148930 5131967 1, | -8148992 5131978 1,-8149237 5132093 1, | -8149404 5132211 1,-8149647 5132310 1,-8149757 5132394 1,-8150305 5132788 1,-8149064 5133092 1)) {1} | POLYGON((-8149362 5132394 1,-8149446 5132501 1, | -8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))
ST_EndPoint — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
geometry ST_Points(
geometry geom )
;
Gibt den Anfangspunkt einer LINESTRING
oder CIRCULARLINESTRING
Geometrie als POINT
oder NULL
zurück, falls es sich beim Eingabewert nicht um einen LINESTRING
oder CIRCULARLINESTRING
handelt.
This method implements the SQL/MM specification. SQL-MM 3: 7.1.4
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
Änderung: 2.0.0 unterstützt die Verarbeitung von MultiLinestring's die nur aus einer einzelnen Geometrie bestehen, nicht mehr. In früheren Versionen von PostGIS gab die Funktion bei einem aus einer einzelnen Linie bestehender MultiLinestring den Anfangspunkt zurück. Ab 2.0.0 gibt sie nur NULL zurück, so wie bei jedem anderen MultiLinestring. Die alte Verhaltensweise war undokumentiert, aber Anwender, die annahmen, dass Sie Ihre Daten als LINESTRING vorliegen haben, könnten in 2.0 dieses zurückgegebene NULL bemerken. |
Einhüllende von Punkt und Linienzug.
postgis=# SELECT ST_AsText(ST_EndPoint('LINESTRING(1 1, 2 2, 3 3)'::geometry)); st_astext ------------ POINT(3 3)
End point of a non-LineString is NULL
SELECT ST_EndPoint('POINT(1 1)'::geometry) IS NULL AS is_null; is_null ---------- t
Einhüllende von Punkt und Linienzug.
--3d endpoint SELECT ST_AsEWKT(ST_EndPoint('LINESTRING(1 1 2, 1 2 3, 0 0 5)')); st_asewkt -------------- POINT(0 0 5)
Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
SELECT ST_AsText(ST_EndPoint('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 6 3)'::geometry)); st_astext ------------ POINT(6 3)
ST_Envelope — Gibt eine Geometrie in doppelter Genauigkeit (float8) zurück, welche das Umgebungsrechteck der beigestellten Geometrie darstellt.
geometry ST_Envelope(
geometry g1)
;
Gibt das kleinstmögliche Umgebungsrechteck der bereitgestellten Geometrie als Geometrie im Float8-Format zurück. Das Polygon wird durch die Eckpunkte des Umgebungsrechteckes beschrieben ((MINX
, MINY
), (MINX
, MAXY
), (MAXX
, MAXY
), (MAXX
, MINY
), (MINX
, MINY
)). (PostGIS fügt auch die ZMIN
/ZMAX
Koordinaten hinzu).
Spezialfälle (vertikale Linien, Punkte) geben eine Geometrie geringerer Dimension zurück als POLYGON
, insbesondere POINT
oder LINESTRING
.
Verfügbarkeit: 1.5.0 Änderung der Verhaltensweise insofern, das die Ausgabe in Double Precision anstelle von Float4 erfolgt
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
This method implements the SQL/MM specification. SQL-MM 3: 5.1.19
SELECT ST_AsText(ST_Envelope('POINT(1 3)'::geometry)); st_astext ------------ POINT(1 3) (1 row) SELECT ST_AsText(ST_Envelope('LINESTRING(0 0, 1 3)'::geometry)); st_astext -------------------------------- POLYGON((0 0,0 3,1 3,1 0,0 0)) (1 row) SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000001 1, 1.0000001 0, 0 0))'::geometry)); st_astext -------------------------------------------------------------- POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0)) (1 row) SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000000001 1, 1.0000000001 0, 0 0))'::geometry)); st_astext -------------------------------------------------------------- POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0)) (1 row) SELECT Box3D(geom), Box2D(geom), ST_AsText(ST_Envelope(geom)) As envelopewkt FROM (SELECT 'POLYGON((0 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, 0 0))'::geometry As geom) As foo;
SELECT ST_AsText(ST_Envelope( ST_Collect( ST_GeomFromText('LINESTRING(55 75,125 150)'), ST_Point(20, 80)) )) As wktenv; wktenv ----------- POLYGON((20 75,20 150,125 150,125 75,20 75))
ST_ExteriorRing — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
geometry ST_ExteriorRing(
geometry a_polygon)
;
Gibt einen Linienzug zurück, welcher den äußeren Ring der POLYGON
Geometrie darstellt. Gibt NULL zurück wenn es sich bei der Geometrie um kein Polygon handelt.
Dies funktioniert nicht mit MULTIPOLYGONen. Verwenden Sie die Funktion bitte in Zusammenhang mit ST_Dump um sie auf MULTIPOLYGONe anzuwenden. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 2.1.5.1
This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3
This function supports 3d and will not drop the z-index.
--Wenn Sie eine Tabelle mit Polygonen haben SELECT gid, ST_ExteriorRing(the_geom) AS ering FROM sometable; --Wenn Sie eine Tabelle mit MULTIPOLYGONen haben --und Sie wollen als Ergebnis einen MULTILINESTRING der aus Außenringen der Polygone zusammengesetzt ist SELECT gid, ST_Collect(ST_ExteriorRing(the_geom)) AS erings FROM (SELECT gid, (ST_Dump(the_geom)).geom As the_geom FROM sometable) As foo GROUP BY gid; --3D Beispiel SELECT ST_AsEWKT( ST_ExteriorRing( ST_GeomFromEWKT('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))') ) ); st_asewkt --------- LINESTRING(0 0 1,1 1 1,1 2 1,1 1 1,0 0 1)
ST_GeometryN — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
geometry ST_GeometryN(
geometry geomA, integer n)
;
Gibt die auf 1-basierende n-te Geometrie zurück, wenn es sich bei der Geometrie um eine GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE oder (MULTI)POLYGON, POLYHEDRALSURFACE handelt. Anderenfalls wird NULL zurückgegeben.
Seit Version 0.8.0 basiert der Index auf 1, so wie in der OGC Spezifikation. Vorhergegangene Versionen waren 0-basiert. |
Falls Sie alle Geometrien einer Geometrie entnehmen wollen, so ist ST_Dump wesentlich leistungsfähiger und es funktioniert auch mit Einzelgeometrien. |
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.
Änderung: 2.0.0 Vorangegangene Versionen geben bei Einzelgeometrien NULL zurück. Dies wurde geändert um die Geometrie für den ST_GeometrieN(..,1) Fall zurückzugeben.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 9.1.5
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
--Extracting a subset of points from a 3d multipoint SELECT n, ST_AsEWKT(ST_GeometryN(geom, n)) As geomewkt FROM ( VALUES (ST_GeomFromEWKT('MULTIPOINT((1 2 7), (3 4 7), (5 6 7), (8 9 10))') ), ( ST_GeomFromEWKT('MULTICURVE(CIRCULARSTRING(2.5 2.5,4.5 2.5, 3.5 3.5), (10 11, 12 11))') ) )As foo(geom) CROSS JOIN generate_series(1,100) n WHERE n <= ST_NumGeometries(geom); n | geomewkt ---+----------------------------------------- 1 | POINT(1 2 7) 2 | POINT(3 4 7) 3 | POINT(5 6 7) 4 | POINT(8 9 10) 1 | CIRCULARSTRING(2.5 2.5,4.5 2.5,3.5 3.5) 2 | LINESTRING(10 11,12 11) --Extracting all geometries (useful when you want to assign an id) SELECT gid, n, ST_GeometryN(geom, n) FROM sometable CROSS JOIN generate_series(1,100) n WHERE n <= ST_NumGeometries(geom);
-- Beispiel für eine polyedrische Oberfläche -- Auftrennung einer polyedrischen Oberfläche in Teilflächen/Faces SELECT ST_AsEWKT(ST_GeometryN(p_geom,3)) As geom_ewkt FROM (SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )') AS p_geom ) AS a; geom_ewkt ------------------------------------------ POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0))
-- TIN -- SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt FROM (SELECT ST_GeomFromEWKT('TIN ((( 0 0 0, 0 0 1, 0 1 0, 0 0 0 )), (( 0 0 0, 0 1 0, 1 1 0, 0 0 0 )) )') AS geom ) AS g; -- result -- wkt ------------------------------------- TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
ST_GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
text ST_GeometryType(
geometry g1)
;
Gibt den Geometrietyp als Zeichenkette zurück. Z.B.: 'ST_LineString', 'ST_Polygon','ST_MultiPolygon' etc. Diese Funktion unterscheidet sich von GeometryType(geometry) durch den Präfix ST_ und dadurch, das nicht angezeigt wird, ob die Geometrie eine Maßzahl besitzt.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.4
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
SELECT ST_GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)')); --result ST_LineString
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')); --result ST_PolyhedralSurface
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')); --result ST_PolyhedralSurface
SELECT ST_GeometryType(geom) as result FROM (SELECT ST_GeomFromEWKT('TIN ((( 0 0 0, 0 0 1, 0 1 0, 0 0 0 )), (( 0 0 0, 0 1 0, 1 1 0, 0 0 0 )) )') AS geom ) AS g; result -------- ST_Tin
ST_HasArc — Tests if a geometry contains a circular arc
boolean ST_IsEmpty(
geometry geomA)
;
Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.
Verfügbarkeit: 1.2.2
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
ST_InteriorRingN — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
geometry ST_InteriorRingN(
geometry a_polygon, integer n)
;
Gibt den Nten innenliegenden Linienzug des Ringes der Polygongeometrie zurück. Gibt NULL zurück, falls es sich bei der Geometrie nicht um ein Polygon handelt, oder sich das angegebene N außerhalb des zulässigen Bereiches befindet.
Dies funktioniert nicht mit MULTIPOLYGONen. Verwenden Sie die Funktion bitte in Zusammenhang mit ST_Dump um sie auf MULTIPOLYGONe anzuwenden. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5
This function supports 3d and will not drop the z-index.
ST_IsClosed — Gibt den Wert TRUE
zurück, wenn die Anfangs- und Endpunkte des LINESTRING
's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind.
boolean ST_IsClosed(
geometry g)
;
Gibt den Wert TRUE
zurück, wenn die Anfangs- und Endpunkte des LINESTRING
's zusammenfallen. Bei polyedrischen Oberflächen wird angezeigt, ob die Oberfläche eine Fläche (offen) oder ein Volumen (geschlossen) beschreibt.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 7.1.5, 9.3.3
SQL-MM gibt vor, daß das Ergebnis von |
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.
This function supports Polyhedral surfaces.
postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 1 1)'::geometry); st_isclosed ------------- f (1 row) postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 0 1, 1 1, 0 0)'::geometry); st_isclosed ------------- t (1 row) postgis=# SELECT ST_IsClosed('MULTILINESTRING((0 0, 0 1, 1 1, 0 0),(0 0, 1 1))'::geometry); st_isclosed ------------- f (1 row) postgis=# SELECT ST_IsClosed('POINT(0 0)'::geometry); st_isclosed ------------- t (1 row) postgis=# SELECT ST_IsClosed('MULTIPOINT((0 0), (1 1))'::geometry); st_isclosed ------------- t (1 row)
-- Ein Würfel -- SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')); st_isclosed ------------- t -- Ein Würfel, bei dem eine Seite fehlt -- SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)) )')); st_isclosed ------------- f
ST_IsCollection — Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.
boolean ST_IsCollection(
geometry g)
;
Gibt den Wert TRUE
zurück, wenn der Geometrietyp einer der folgenden Gemetrietypen entspricht:
GEOMETRYCOLLECTION
MULTI{POINT,POLYGON,LINESTRING,CURVE,SURFACE}
COMPOUNDCURVE
Diese Funktion wertet den Geometrietyp aus. D.h.: sie gibt den Wert |
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
postgis=# SELECT ST_IsCollection('LINESTRING(0 0, 1 1)'::geometry); st_iscollection ------------- f (1 row) postgis=# SELECT ST_IsCollection('MULTIPOINT EMPTY'::geometry); st_iscollection ------------- t (1 row) postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0))'::geometry); st_iscollection ------------- t (1 row) postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0), (42 42))'::geometry); st_iscollection ------------- t (1 row) postgis=# SELECT ST_IsCollection('GEOMETRYCOLLECTION(POINT(0 0))'::geometry); st_iscollection ------------- t (1 row)
ST_IsEmpty — Tests if a geometry is empty.
boolean ST_IsEmpty(
geometry geomA)
;
Gibt den Wert TRUE zurück, wenn es sich um eine leere Geometrie handelt. Falls TRUE, dann repräsentiert diese Geometrie eine leere GeometryCollection, Polygon, Point etc.
SQL-MM gibt vor, daß das Ergebnis von ST_IsEmpty(NULL) der Wert 0 ist, während PostGIS den Wert NULL zurückgibt. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
This method implements the SQL/MM specification. SQL-MM 3: 5.1.7
This method supports Circular Strings and Curves
Änderung: 2.0.0 - In Vorgängerversionen von PostGIS war ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') erlaubt. Um eine bessere Übereinstimmung mit der SQL/MM Norm zu erreichen, ist dies nun nicht mehr gestattet. |
SELECT ST_IsEmpty(ST_GeomFromText('GEOMETRYCOLLECTION EMPTY')); st_isempty ------------ t (1 row) SELECT ST_IsEmpty(ST_GeomFromText('POLYGON EMPTY')); st_isempty ------------ t (1 row) SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))')); st_isempty ------------ f (1 row) SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))')) = false; ?column? ---------- t (1 row) SELECT ST_IsEmpty(ST_GeomFromText('CIRCULARSTRING EMPTY')); st_isempty ------------ t (1 row)
ST_IsPolygonCCW — Gibt TRUE zurück, wenn alle äußeren Ringe gegen den Uhrzeigersinn orientiert sind und alle inneren Ringe im Uhrzeigersinn ausgerichtet sind.
boolean ST_IsPolygonCCW (
geometry geom )
;
Gibt TRUE zurück, wenn für alle Bestandteile der angegebenen Geometrie gilt: die äußeren Ringe sind gegen den Uhrzeigersinn und die inneren Ringe im Uhrzeigersinn ausgerichtet.
Gibt TRUE zurück, wenn die Geometrie keine Polygonbestandteile aufweist.
Da geschlossene Linienzüge nicht als Polygonbestandteile betrachtet werden, erhalten Sie auch dann TRUE, wenn Sie einen einzelnen geschlossenen Linienzug eingeben und zwar unabhängig von dessen Ausrichtung. |
Wenn bei einer Polygongeometrie die inneren Ringe nicht entgegengesetzt orientiert sind (insbesondere, wenn einer oder mehrere innere Ringe die selbe Ausrichtung wie die äußeren Ringe haben), dann geben sowohl ST_IsPolygonCW als auch ST_IsPolygonCCW den Wert FALSE zurück. |
Verfügbarkeit: 2.2.0
This function supports 3d and will not drop the z-index.
This function supports M coordinates.
ST_IsPolygonCW — Gibt den Wert TRUE zurück, wenn alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn ausgerichtet sind.
boolean ST_IsPolygonCW (
geometry geom )
;
Gibt den Wert TRUE zurück, wenn für alle Polygonbestandteile der eingegebenen Geometrie gilt: die äußeren Ringe sind im Uhrzeigersinn orientiert, die inneren Ringe entgegen dem Uhrzeigersinn.
Gibt TRUE zurück, wenn die Geometrie keine Polygonbestandteile aufweist.
Da geschlossene Linienzüge nicht als Polygonbestandteile betrachtet werden, erhalten Sie auch dann TRUE, wenn Sie einen einzelnen geschlossenen Linienzug eingeben und zwar unabhängig von dessen Ausrichtung. |
Wenn bei einer Polygongeometrie die inneren Ringe nicht entgegengesetzt orientiert sind (insbesondere, wenn einer oder mehrere innere Ringe die selbe Ausrichtung wie die äußeren Ringe haben), dann geben sowohl ST_IsPolygonCW als auch ST_IsPolygonCCW den Wert FALSE zurück. |
Verfügbarkeit: 2.2.0
This function supports 3d and will not drop the z-index.
This function supports M coordinates.
ST_IsRing — Tests if a LineString is closed and simple.
boolean ST_IsRing(
geometry g)
;
Gibt den Wert TRUE
zurück, wenn der LINESTRING
sowohl ST_IsClosed (ST_StartPoint(
g
)~=
ST_Endpoint(
) als auch ST_IsSimple (sich nicht selbst überschneidet) ist.g
)
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 2.1.5.1
This method implements the SQL/MM specification. SQL-MM 3: 7.1.6
SQL-MM gibt vor, daß das Ergebnis von |
SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom) FROM (SELECT 'LINESTRING(0 0, 0 1, 1 1, 1 0, 0 0)'::geometry AS the_geom) AS foo; st_isring | st_isclosed | st_issimple -----------+-------------+------------- t | t | t (1 row) SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom) FROM (SELECT 'LINESTRING(0 0, 0 1, 1 0, 1 1, 0 0)'::geometry AS the_geom) AS foo; st_isring | st_isclosed | st_issimple -----------+-------------+------------- f | t | f (1 row)
ST_IsSimple — Gibt den Wert (TRUE) zurück, wenn die Geometrie keine irregulären Stellen, wie Selbstüberschneidungen oder Selbstberührungen, aufweist.
boolean ST_IsSimple(
geometry geomA)
;
Gibt TRUE zurück, wenn keine regelwidrigen geometrischen Merkmale, wie Geometrien die sich selbst kreuzen oder berühren, auftreten. Für weiterführende Information zur OGC-Definition von Simplizität und Gültigkeit von Geometrien, siehe "Ensuring OpenGIS compliancy of geometries"
SQL-MM definiert das Ergebnis von ST_IsSimple(NULL) als 0, während PostGIS NULL zurückgibt. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
This method implements the SQL/MM specification. SQL-MM 3: 5.1.8
This function supports 3d and will not drop the z-index.
ST_M — Returns the M coordinate of a Point.
float ST_M(
geometry a_point)
;
Gibt die M-Koordinate des Punktes zurück, oder NULL wenn keine vorhanden ist. Der Einabewert muss ein Punkt sein.
Dies ist (noch) kein Teil der OGC Spezifikation, wird aber hier aufgeführt um die Liste von Funktionen zum Auslesen von Punktkoordinaten zu vervollständigen. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification.
This function supports 3d and will not drop the z-index.
ST_MemSize — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
integer ST_NRings(
geometry geomA)
;
Gibt den Geometrietyp des ST_Geometry Wertes zurück.
This complements the PostgreSQL built-in database object functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size.
pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables. pg_total_relation_size - includes, the table, the toasted tables, and the indexes. pg_column_size returns how much space a geometry would take in a column considering compression, so may be lower than ST_MemSize |
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Changed: 2.2.0 name changed to ST_MemSize to follow naming convention.
--Return how much byte space Boston takes up in our Mass data set SELECT pg_size_pretty(SUM(ST_MemSize(geom))) as totgeomsum, pg_size_pretty(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(geom) ELSE 0 END)) As bossum, CAST(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(geom) ELSE 0 END)*1.00 / SUM(ST_MemSize(geom))*100 As numeric(10,2)) As perbos FROM towns; totgeomsum bossum perbos ---------- ------ ------ 1522 kB 30 kB 1.99 SELECT ST_MemSize(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)')); --- 73 --What percentage of our table is taken up by just the geometry SELECT pg_total_relation_size('public.neighborhoods') As fulltable_size, sum(ST_MemSize(geom)) As geomsize, sum(ST_MemSize(geom))*1.00/pg_total_relation_size('public.neighborhoods')*100 As pergeom FROM neighborhoods; fulltable_size geomsize pergeom ------------------------------------------------ 262144 96238 36.71188354492187500000
ST_NDims — Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
integer ST_NDims(
geometry g1)
;
Gibt die Koordinatendimension der Geometrie zurück. PostGIS unterstützt 2- (x,y), 3- (x,y,z) oder 2D mit Kilometrierung - x,y,m, und 4- dimensionalen Raum - 3D mit Kilometrierung x,y,z,m .
This function supports 3d and will not drop the z-index.
ST_NPoints — Gibt die Anzahl der Punkte (Knoten) einer Geometrie zurück.
integer ST_NPoints(
geometry g1)
;
Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.
Vor 1.3.4 ist diese Funktion abgestürzt, wenn die Geometrien CURVES enthalten. Dies wurde mit 1.3.4+ behoben |
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
ST_NRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
integer ST_NRings(
geometry geomA)
;
Wenn es sich bei der Geometrie um ein Polygon oder um ein MultiPolygon handelt, wird die Anzahl der Ringe zurückgegeben. Anders als NumInteriorRings werden auch die äußeren Ringe gezählt.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
ST_NumGeometries — Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.
integer ST_NumGeometries(
geometry geom)
;
Gibt die Anzahl an Geometrien aus. Wenn es sich bei der Geometrie um eine GEOMETRYCOLLECTION (oder MULTI*) handelt, wird die Anzahl der Geometrien zurückgegeben, bei Einzelgeometrien wird 1, ansonsten NULL zurückgegeben.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.
Änderung: 2.0.0 Bei früheren Versionen wurde NULL zurückgegeben, wenn die Geometrie nicht vom Typ GEOMETRYCOLLECTION/MULTI war. 2.0.0+ gibt nun 1 für Einzelgeometrien, wie POLYGON, LINESTRING, POINT zurück.
This method implements the SQL/MM specification. SQL-MM 3: 9.1.4
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
--Prior versions would have returned NULL for this -- in 2.0.0 this returns 1 SELECT ST_NumGeometries(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)')); --result 1 --Geometry Collection Example - multis count as one geom in a collection SELECT ST_NumGeometries(ST_GeomFromEWKT('GEOMETRYCOLLECTION(MULTIPOINT((-2 3),(-2 2)), LINESTRING(5 5 ,10 10), POLYGON((-7 4.2,-7.1 5,-7.1 4.3,-7 4.2)))')); --result 3
ST_NumInteriorRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
integer ST_NumInteriorRings(
geometry a_polygon)
;
Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus. Gibt NULL zurück, wenn die Geometrie kein Polygon ist.
This method implements the SQL/MM specification. SQL-MM 3: 8.2.5
Änderung: 2.0.0 - In füheren Versionen war ein MULTIPOLYGON als Eingabe erlaubt, wobei die Anzahl der inneren Ringe des ersten Polygons ausgegeben wurde.
--Falls Sie ein normales Polygon haben SELECT gid, field1, field2, ST_NumInteriorRings(the_geom) AS numholes FROM sometable; --Falls Sie Multipolygone haben --und die Gesamtzahl der inneren Ringe im MULTIPOLYGON wissen wollen SELECT gid, field1, field2, SUM(ST_NumInteriorRings(the_geom)) AS numholes FROM (SELECT gid, field1, field2, (ST_Dump(the_geom)).geom As the_geom FROM sometable) As foo GROUP BY gid, field1,field2;
ST_NumInteriorRing — Gibt die Anzahl der inneren Ringe eines Polygons in der Geometrie aus. Ist ein Synonym für ST_NumInteriorRings.
integer ST_NumInteriorRing(
geometry a_polygon)
;
ST_NumPatches — Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich nicht um polyedrische Geometrien handelt.
integer ST_NumPatches(
geometry g1)
;
Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich um keine polyedrische Geometrie handelt. Ist ein Synonym für ST_NumGeometries zur Unterstützung der MM Namensgebung. Wenn Ihnen die MM-Konvention egal ist, so ist die Verwendung von ST_NumGeometries schneller.
Verfügbarkeit: 2.0.0
This function supports 3d and will not drop the z-index.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM ISO/IEC 13249-3: 8.5
This function supports Polyhedral surfaces.
SELECT ST_NumPatches(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')); --result 6
ST_NumPoints — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
integer ST_NumPoints(
geometry g1)
;
Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück. Vor 1.4 funktionierte dies nur mit ST_LineString, wie von der Spezifikation festgelegt. Ab 1.4 aufwärts handelt es sich um einen Alias für ST_NPoints, das die Anzahl der Knoten nicht nur für Linienzüge ausgibt. Erwägen Sie stattdessen die Verwendung von ST_NPoints, das vielseitig ist und mit vielen Geometrietypen funktioniert.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 7.2.4
ST_PatchN — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
geometry ST_PatchN(
geometry geomA, integer n)
;
>Gibt die auf 1-basierende n-te Geometrie (Masche) zurück, wenn es sich bei der Geometrie um ein POLYHEDRALSURFACE, oder ein POLYHEDRALSURFACEM handelt. Anderenfalls wird NULL zurückgegeben. Gibt bei polyedrischen Oberflächen das selbe Ergebnis wie ST_GeometryN. Die Verwendung von ST_GeometryN ist schneller.
Der Index ist auf 1 basiert. |
Falls Sie alle Geometrien einer Geometrie entnehmen wollen, so ist ST_Dump wesentlich leistungsfähiger. |
Verfügbarkeit: 2.0.0
This method implements the SQL/MM specification. SQL-MM ISO/IEC 13249-3: 8.5
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
--Entnimmt die 2te Fläche einer polyedrischen Oberfläche SELECT ST_AsEWKT(ST_PatchN(geom, 2)) As geomewkt FROM ( VALUES (ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')) ) As foo(geom); geomewkt ---+----------------------------------------- POLYGON((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0))
ST_PointN — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
geometry ST_PointN(
geometry a_linestring, integer n)
;
Gibt den n-ten Punkt des ersten LineString's oder des kreisförmigen LineStrings's einer Geometrie zurück. Negative Werte werden rückwärts, vom Ende des LineString's her gezählt, sodass -1 der Endpunkt ist. Gibt NULL aus, wenn die Geometrie keinen LineString enthält.
Seit Version 0.8.0 ist der Index 1-basiert, so wie in der OGC Spezifikation. Rückwärtiges Indizieren (negativer Index) findet sich nicht in der OGC Spezifikation. Vorhergegangene Versionen waren 0-basiert. |
Falls Sie den n-ten Punkt eines jeden LineString's in einem MultiLinestring wollen, nutzen Sie diese Funktion gemeinsam mit ST_Dump. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 7.2.5, 7.3.5
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
Änderung: 2.0.0 arbeitet nicht mehr mit MultiLinestring's, die nur eine einzelne Geometrie enthalten. In früheren Versionen von PostGIS gab die Funktion bei einem, aus einer einzelnen Linie bestehender MultiLinestring, den Anfangspunkt zurück. Ab 2.0.0 wird, so wie bei jedem anderen MultiLinestring auch, NULL zurückgegeben. Änderung: 2.3.0 : negatives Indizieren verfügbar (-1 entspricht dem Endpunkt) |
-- Entnimmt alle POINTs eines LINESTRINGs SELECT ST_AsText( ST_PointN( column1, generate_series(1, ST_NPoints(column1)) )) FROM ( VALUES ('LINESTRING(0 0, 1 1, 2 2)'::geometry) ) AS foo; st_astext ------------ POINT(0 0) POINT(1 1) POINT(2 2) (3 rows) --Beispiel für einen Kreisbogen SELECT ST_AsText(ST_PointN(ST_GeomFromText('CIRCULARSTRING(1 2, 3 2, 1 2)'),2)); st_astext ---------- POINT(3 2) SELECT st_astext(f) FROM ST_GeometryFromtext('LINESTRING(0 0 0, 1 1 1, 2 2 2)') as g ,ST_PointN(g, -2) AS f -- 1 based index st_astext ---------- "POINT Z (1 1 1)"
ST_Points — Gibt einen MultiPoint zurück, welcher alle Koordinaten einer Geometrie enthält.
geometry ST_Points(
geometry geom )
;
Returns a MultiPoint containing all the coordinates of a geometry. Duplicate points are preserved, including the start and end points of ring geometries. (If desired, duplicate points can be removed by calling ST_RemoveRepeatedPoints on the result).
To obtain information about the position of each coordinate in the parent geometry use ST_NumPoints.
M and Z coordinates are preserved if present.
This method supports Circular Strings and Curves
This function supports 3d and will not drop the z-index.
Verfügbarkeit: 2.3.0
ST_StartPoint — Returns the first point of a LineString.
geometry ST_StartPoint(
geometry geomA)
;
Gibt den Anfangspunkt einer LINESTRING
oder CIRCULARLINESTRING
Geometrie als POINT
oder NULL
zurück, falls es sich beim Eingabewert nicht um einen LINESTRING
oder CIRCULARLINESTRING
handelt.
This method implements the SQL/MM specification. SQL-MM 3: 7.1.3
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
Enhanced: 3.2.0 returns a point for all geometries. Prior behavior returns NULLs if input was not a LineString. Änderung: 2.0.0 unterstützt die Verarbeitung von MultiLinestring's die nur aus einer einzelnen Geometrie bestehen, nicht mehr. In früheren Versionen von PostGIS gab die Funktion bei einem aus einer einzelnen Linie bestehender MultiLinestring den Anfangspunkt zurück. Ab 2.0.0 gibt sie nur NULL zurück, so wie bei jedem anderen MultiLinestring. Die alte Verhaltensweise war undokumentiert, aber Anwender, die annahmen, dass Sie Ihre Daten als LINESTRING vorliegen haben, könnten in 2.0 dieses zurückgegebene NULL bemerken. |
Start point of a LineString
SELECT ST_AsText(ST_StartPoint('LINESTRING(0 1, 0 2)'::geometry)); st_astext ------------ POINT(0 1)
Start point of a non-LineString is NULL
SELECT ST_StartPoint('POINT(0 1)'::geometry) IS NULL AS is_null; is_null ---------- t
Start point of a 3D LineString
SELECT ST_AsEWKT(ST_StartPoint('LINESTRING(0 1 1, 0 2 2)'::geometry)); st_asewkt ------------ POINT(0 1 1)
Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
SELECT ST_AsText(ST_StartPoint('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 6 3)'::geometry)); st_astext ------------ POINT(5 2)
ST_Summary — Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.
text ST_Summary(
geometry g)
;
text ST_Summary(
geography g)
;
Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.
Die Bedeutung der Flags, welche in eckigen Klammern hinter dem Geometrietyp angezeigt werden, ist wie folgt:
M: besitzt eine M-Ordinate
Z: besitzt eine Z-Ordinate
B: besitzt ein zwischengespeichertes Umgebungsrechteck
G: ist geodätisch (Geographie)
S: besitzt ein räumliches Koordinatenreferenzsystem
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Verfügbarkeit: 1.2.2
Erweiterung: 2.0.0 Unterstützung für geographische Koordinaten hinzugefügt
Erweiterung: 2.1.0 S-Flag, diese zeigt an ob das Koordinatenreferenzsystem bekannt ist
Erweiterung: 2.2.0 Unterstützung für TIN und Kurven
=# SELECT ST_Summary(ST_GeomFromText('LINESTRING(0 0, 1 1)')) as geom, ST_Summary(ST_GeogFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) geog; geom | geog -----------------------------+-------------------------- LineString[B] with 2 points | Polygon[BGS] with 1 rings | ring 0 has 5 points : (1 row) =# SELECT ST_Summary(ST_GeogFromText('LINESTRING(0 0 1, 1 1 1)')) As geog_line, ST_Summary(ST_GeomFromText('SRID=4326;POLYGON((0 0 1, 1 1 2, 1 2 3, 1 1 1, 0 0 1))')) As geom_poly; ; geog_line | geom_poly -------------------------------- +-------------------------- LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings : ring 0 has 5 points : (1 row)
ST_X — Returns the X coordinate of a Point.
float ST_X(
geometry a_point)
;
Gibt die X-Koordinate eines Punktes, oder NULL wenn diese nicht vorhanden ist, zurück. Die Eingabe muss ein Punkt sein.
To get the minimum and maximum X value of geometry coordinates use the functions ST_XMin and ST_XMax. |
This method implements the SQL/MM specification. SQL-MM 3: 6.1.3
This function supports 3d and will not drop the z-index.
ST_Y — Returns the Y coordinate of a Point.
float ST_Y(
geometry a_point)
;
Gibt die Y-Koordinate eines Punktes, oder NULL wenn diese nicht vorhanden ist, zurück. Die Eingabe muss ein Punkt sein.
To get the minimum and maximum Y value of geometry coordinates use the functions ST_YMin and ST_YMax. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 6.1.4
This function supports 3d and will not drop the z-index.
ST_Z — Returns the Z coordinate of a Point.
float ST_Z(
geometry a_point)
;
Gibt die Z-Koordinate eines Punktes, oder NULL wenn diese nicht vorhanden ist, zurück. Die Eingabe muss ein Punkt sein.
To get the minimum and maximum Z value of geometry coordinates use the functions ST_ZMin and ST_ZMax. |
This method implements the SQL/MM specification.
This function supports 3d and will not drop the z-index.
ST_Zmflag — Gibt die Dimension der Koordinaten von ST_Geometry zurück.
smallint ST_Zmflag(
geometry geomA)
;
Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
Values are: 0 = 2D, 1 = 3D-M, 2 = 3D-Z, 3 = 4D.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRING(1 2, 3 4)')); st_zmflag ----------- 0 SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRINGM(1 2 3, 3 4 3)')); st_zmflag ----------- 1 SELECT ST_Zmflag(ST_GeomFromEWKT('CIRCULARSTRING(1 2 3, 3 4 3, 5 6 3)')); st_zmflag ----------- 2 SELECT ST_Zmflag(ST_GeomFromEWKT('POINT(1 2 3 4)')); st_zmflag ----------- 3
ST_AddPoint — Fügt einem Linienzug einen Punkt hinzu.
geometry ST_AddPoint(
geometry linestring, geometry point)
;
geometry ST_AddPoint(
geometry linestring, geometry point, integer position = -1)
;
Adds a point to a LineString before the index position
(using a 0-based index). If the position
parameter is omitted or is -1 the point is appended to the end of the LineString.
Verfügbarkeit: 1.1.0
This function supports 3d and will not drop the z-index.
Add a point to the end of a 3D line
SELECT ST_AsEWKT(ST_AddPoint('LINESTRING(0 0 1, 1 1 1)', ST_MakePoint(1, 2, 3))); st_asewkt ---------- LINESTRING(0 0 1,1 1 1,1 2 3)
Guarantee all lines in a table are closed by adding the start point of each line to the end of the line only for those that are not closed.
UPDATE sometable SET geom = ST_AddPoint(geom, ST_StartPoint(geom)) FROM sometable WHERE ST_IsClosed(geom) = false;
ST_CollectionExtract — Given a geometry collection, returns a multi-geometry containing only elements of a specified type.
geometry ST_CollectionExtract(
geometry collection)
;
geometry ST_CollectionExtract(
geometry collection, integer type)
;
Given a geometry collection, returns a homogeneous multi-geometry.
If the type
is not specified, returns a multi-geometry containing only geometries of the highest dimension. So polygons are preferred over lines, which are preferred over points.
If the type
is specified, returns a multi-geometry containing only that type. If there are no sub-geometries of the right type, an EMPTY geometry is returned. Only points, lines and polygons are supported. The type numbers are:
1 == POINT
2 == LINESTRING
3 == POLYGON
For atomic geometry inputs, the geometry is retured unchanged if the input type matches the requested type. Otherwise, the result is an EMPTY geometry of the specified type. If required, these can be converted to multi-geometries using ST_Multi.
MultiPolygon results are not checked for validity. If the polygon components are adjacent or overlapping the result will be invalid. (For example, this can occur when applying this function to an ST_Split result.) This situation can be checked with ST_IsValid and repaired with ST_MakeValid. |
Verfügbarkeit: 1.5.0
Prior to 1.5.3 this function returned atomic inputs unchanged, no matter type. In 1.5.3 non-matching single geometries returned a NULL result. In 2.0.0 non-matching single geometries return an EMPTY result of the requested type. |
Extract highest-dimension type:
SELECT ST_AsText(ST_CollectionExtract( 'GEOMETRYCOLLECTION( POINT(0 0), LINESTRING(1 1, 2 2) )')); st_astext --------------- MULTILINESTRING((1 1, 2 2))
Extract points (type 1 == POINT):
SELECT ST_AsText(ST_CollectionExtract( 'GEOMETRYCOLLECTION(GEOMETRYCOLLECTION(POINT(0 0)))', 1 )); st_astext --------------- MULTIPOINT((0 0))
Extract lines (type 2 == LINESTRING):
SELECT ST_AsText(ST_CollectionExtract( 'GEOMETRYCOLLECTION(GEOMETRYCOLLECTION(LINESTRING(0 0, 1 1)),LINESTRING(2 2, 3 3))', 2 )); st_astext --------------- MULTILINESTRING((0 0, 1 1), (2 2, 3 3))
ST_CollectionHomogenize — Returns the simplest representation of a geometry collection.
geometry ST_CollectionHomogenize(
geometry collection)
;
Given a geometry collection, returns the "simplest" representation of the contents.
Homogeneous (uniform) collections are returned as the appropriate multi-geometry.
Heterogeneous (mixed) collections are flattened into a single GeometryCollection.
Collections containing a single atomic element are returned as that element.
Atomic geometries are returned unchanged. If required, these can be converted to a multi-geometry using ST_Multi.
This function does not ensure that the result is valid. In particular, a collection containing adjacent or overlapping Polygons will create an invalid MultiPolygon. This situation can be checked with ST_IsValid and repaired with ST_MakeValid. |
Verfügbarkeit: 2.0.0
Single-element collection converted to an atomic geometry
SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0))')); st_astext ------------ POINT(0 0)
Nested single-element collection converted to an atomic geometry:
SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(MULTIPOINT((0 0)))')); st_astext ------------ POINT(0 0)
Collection converted to a multi-geometry:
SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0),POINT(1 1))')); st_astext --------------------- MULTIPOINT((0 0),(1 1))
Nested heterogeneous collection flattened to a GeometryCollection:
SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0), GEOMETRYCOLLECTION( LINESTRING(1 1, 2 2)))')); st_astext --------------------- GEOMETRYCOLLECTION(POINT(0 0),LINESTRING(1 1,2 2))
Collection of Polygons converted to an (invalid) MultiPolygon:
SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION (POLYGON ((10 50, 50 50, 50 10, 10 10, 10 50)), POLYGON ((90 50, 90 10, 50 10, 50 50, 90 50)))')); st_astext --------------------- MULTIPOLYGON(((10 50,50 50,50 10,10 10,10 50)),((90 50,90 10,50 10,50 50,90 50)))
ST_CurveToLine — Converts a geometry containing curves to a linear geometry.
geometry ST_CurveToLine(
geometry curveGeom, float tolerance, integer tolerance_type, integer flags)
;
Konvertiert einen CIRCULAR STRING in einen normalen LINESTRING, ein CURVEPOLYGON in ein POLYGON und ein MULTISURFACE in ein MULTIPOLYGON. Ist nützlich zur Ausgabe an Geräten, die keine Kreisbögen unterstützen.
Wandelt eine gegebene Geometrie in eine lineare Geometrie um. Jede Kurvengeometrie und jedes Kurvensegment wird in linearer Näherung mit der gegebenen Toleranz und Optionen konvertiert ( Standardmäßig 32 Segmenten pro Viertelkreis und keine Optionen).
Der Übergabewert 'tolerance_type' gibt den Toleranztyp an. Er kann die folgenden Werte annehmen:
0 (default): die Toleranz wird über die maximale Anzahl der Segmente pro Viertelkreis angegeben.
1: Die Toleranz wird als maximale Abweichung der Linie von der Kurve in der Einheit der Herkunftsdaten angegeben.
2: Die Toleranz entspricht dem maximalen Winkel zwischen zwei erzeugten Radien.
Der Parameter 'flags' ist ein Bitfeld mit dem Standardwert 0. Es werden folgende Bits unterstützt:
1: Symmetrische (orientierungsunabhängige) Ausgabe.
2: Erhält den Winkel, vermeidet die Winkel (Segmentlängen) bei der symmetrischen Ausgabe zu reduzieren. Hat keine Auswirkung, wenn die Symmetrie-Flag nicht aktiviert ist.
Verfügbarkeit: 1.3.0
Erweiterung: ab 2.4.0 kann die Toleranz über die 'maximale Abweichung' und den 'maximalen Winkel' angegeben werden. Die symmetrische Ausgabe wurde hinzugefügt.
Erweiterung: 3.0.0 führte eine minimale Anzahl an Segmenten pro linearisierten Bogen ein, um einem topologischen Kollaps vorzubeugen.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 7.1.7
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'))); --Result -- LINESTRING(220268 150415,220269.95064912 150416.539364228,220271.823415575 150418.17258804,220273.613787707 150419.895736857, 220275.317452352 150421.704659462,220276.930305234 150423.594998003,220278.448460847 150425.562198489, 220279.868261823 150427.60152176,220281.186287736 150429.708054909,220282.399363347 150431.876723113, 220283.50456625 150434.10230186,220284.499233914 150436.379429536,220285.380970099 150438.702620341,220286.147650624 150441.066277505, 220286.797428488 150443.464706771,220287.328738321 150445.892130112,220287.740300149 150448.342699654, 220288.031122486 150450.810511759,220288.200504713 150453.289621251,220288.248038775 150455.77405574, 220288.173610157 150458.257830005,220287.977398166 150460.734960415,220287.659875492 150463.199479347, 220287.221807076 150465.64544956,220286.664248262 150468.066978495,220285.988542259 150470.458232479,220285.196316903 150472.81345077, 220284.289480732 150475.126959442,220283.270218395 150477.39318505,220282.140985384 150479.606668057, 220280.90450212 150481.762075989,220279.5637474 150483.85421628,220278.12195122 150485.87804878, 220276.582586992 150487.828697901,220274.949363179 150489.701464356,220273.226214362 150491.491836488, 220271.417291757 150493.195501133,220269.526953216 150494.808354014,220267.559752731 150496.326509628, 220265.520429459 150497.746310603,220263.41389631 150499.064336517,220261.245228106 150500.277412127, 220259.019649359 150501.38261503,220256.742521683 150502.377282695,220254.419330878 150503.259018879, 220252.055673714 150504.025699404,220249.657244448 150504.675477269,220247.229821107 150505.206787101, 220244.779251566 150505.61834893,220242.311439461 150505.909171266,220239.832329968 150506.078553494, 220237.347895479 150506.126087555,220234.864121215 150506.051658938,220232.386990804 150505.855446946, 220229.922471872 150505.537924272,220227.47650166 150505.099855856,220225.054972724 150504.542297043, 220222.663718741 150503.86659104,220220.308500449 150503.074365683, 220217.994991777 150502.167529512,220215.72876617 150501.148267175, 220213.515283163 150500.019034164,220211.35987523 150498.7825509, 220209.267734939 150497.441796181,220207.243902439 150496, 220205.293253319 150494.460635772,220203.420486864 150492.82741196,220201.630114732 150491.104263143, 220199.926450087 150489.295340538,220198.313597205 150487.405001997,220196.795441592 150485.437801511, 220195.375640616 150483.39847824,220194.057614703 150481.291945091,220192.844539092 150479.123276887,220191.739336189 150476.89769814, 220190.744668525 150474.620570464,220189.86293234 150472.297379659,220189.096251815 150469.933722495, 220188.446473951 150467.535293229,220187.915164118 150465.107869888,220187.50360229 150462.657300346, 220187.212779953 150460.189488241,220187.043397726 150457.710378749,220186.995863664 150455.22594426, 220187.070292282 150452.742169995,220187.266504273 150450.265039585,220187.584026947 150447.800520653, 220188.022095363 150445.35455044,220188.579654177 150442.933021505,220189.25536018 150440.541767521, 220190.047585536 150438.18654923,220190.954421707 150435.873040558,220191.973684044 150433.60681495, 220193.102917055 150431.393331943,220194.339400319 150429.237924011,220195.680155039 150427.14578372,220197.12195122 150425.12195122, 220198.661315447 150423.171302099,220200.29453926 150421.298535644,220202.017688077 150419.508163512,220203.826610682 150417.804498867, 220205.716949223 150416.191645986,220207.684149708 150414.673490372,220209.72347298 150413.253689397,220211.830006129 150411.935663483, 220213.998674333 150410.722587873,220216.22425308 150409.61738497,220218.501380756 150408.622717305,220220.824571561 150407.740981121, 220223.188228725 150406.974300596,220225.586657991 150406.324522731,220227 150406) --3d example SELECT ST_AsEWKT(ST_CurveToLine(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'))); Output ------ LINESTRING(220268 150415 1,220269.95064912 150416.539364228 1.0181172856673, 220271.823415575 150418.17258804 1.03623457133459,220273.613787707 150419.895736857 1.05435185700189,....AD INFINITUM .... 220225.586657991 150406.324522731 1.32611114201132,220227 150406 3) --use only 2 segments to approximate quarter circle SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'),2)); st_astext ------------------------------ LINESTRING(220268 150415,220287.740300149 150448.342699654,220278.12195122 150485.87804878, 220244.779251566 150505.61834893,220207.243902439 150496,220187.50360229 150462.657300346, 220197.12195122 150425.12195122,220227 150406) -- Ensure approximated line is no further than 20 units away from -- original curve, and make the result direction-neutral SELECT ST_AsText(ST_CurveToLine( 'CIRCULARSTRING(0 0,100 -100,200 0)'::geometry, 20, -- Tolerance 1, -- Above is max distance between curve and line 1 -- Symmetric flag )); st_astext ------------------------------------------------------------------------------------------- LINESTRING(0 0,50 -86.6025403784438,150 -86.6025403784439,200 -1.1331077795296e-13,200 0)
ST_Scroll — Change start point of a closed LineString.
geometry ST_Scroll(
geometry linestring, geometry point)
;
Changes the start/end point of a closed LineString to the given vertex point
.
Availability: 3.2.0
This function supports 3d and will not drop the z-index.
This function supports M coordinates.
ST_FlipCoordinates — Returns a version of a geometry with X and Y axis flipped.
geometry ST_FlipCoordinates(
geometry geom)
;
Returns a version of the given geometry with X and Y axis flipped. Useful for fixing geometries which contain coordinates expressed as latitude/longitude (Y,X).
Verfügbarkeit: 2.0.0
This method supports Circular Strings and Curves
This function supports 3d and will not drop the z-index.
This function supports M coordinates.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
ST_Force2D — Die Geometrien in einen "2-dimensionalen Modus" zwingen.
geometry ST_Force2D(
geometry geomA)
;
Zwingt die Geometrien in einen "2-dimensionalen Modus", sodass in der Ausgabe nur die X- und Y-Koordinaten dargestellt werden. Nützlich um eine OGC-konforme Ausgabe zu erhalten (da OGC nur 2-D Geometrien spezifiziert).
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.
Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_2D bezeichnet.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports 3d and will not drop the z-index.
SELECT ST_AsEWKT(ST_Force2D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)'))); st_asewkt ------------------------------------- CIRCULARSTRING(1 1,2 3,4 5,6 7,5 6) SELECT ST_AsEWKT(ST_Force2D('POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))')); st_asewkt ---------------------------------------------- POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))
ST_Force3D — Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ.
geometry ST_Force3D(
geometry geomA, float Zvalue = 0.0)
;
Forces the geometries into XYZ mode. This is an alias for ST_Force3DZ. If a geometry has no Z component, then a Zvalue
Z coordinate is tacked on.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.
Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_3D bezeichnet.
Changed: 3.1.0. Added support for supplying a non-zero Z value.
This function supports Polyhedral surfaces.
This method supports Circular Strings and Curves
This function supports 3d and will not drop the z-index.
--Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts SELECT ST_AsEWKT(ST_Force3D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)'))); st_asewkt ----------------------------------------------- CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2) SELECT ST_AsEWKT(ST_Force3D('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))')); st_asewkt -------------------------------------------------------------- POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
ST_Force3DZ — Zwingt die Geometrien in einen XYZ Modus.
geometry ST_Force3DZ(
geometry geomA, float Zvalue = 0.0)
;
Forces the geometries into XYZ mode. If a geometry has no Z component, then a Zvalue
Z coordinate is tacked on.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.
Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_3DZ bezeichnet.
Changed: 3.1.0. Added support for supplying a non-zero Z value.
This function supports Polyhedral surfaces.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
--Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts SELECT ST_AsEWKT(ST_Force3DZ(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)'))); st_asewkt ----------------------------------------------- CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2) SELECT ST_AsEWKT(ST_Force3DZ('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))')); st_asewkt -------------------------------------------------------------- POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
ST_Force3DM — Zwingt die Geometrien in einen XYM Modus.
geometry ST_Force3DM(
geometry geomA, float Mvalue = 0.0)
;
Forces the geometries into XYM mode. If a geometry has no M component, then a Mvalue
M coordinate is tacked on. If it has a Z component, then Z is removed
Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_3DM bezeichnet.
Changed: 3.1.0. Added support for supplying a non-zero M value.
This method supports Circular Strings and Curves
----Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts SELECT ST_AsEWKT(ST_Force3DM(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)'))); st_asewkt ------------------------------------------------ CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0) SELECT ST_AsEWKT(ST_Force3DM('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))')); st_asewkt --------------------------------------------------------------- POLYGONM((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
ST_Force4D — Zwingt die Geometrien in einen XYZM Modus.
geometry ST_Force4D(
geometry geomA, float Zvalue = 0.0, float Mvalue = 0.0)
;
Forces the geometries into XYZM mode. Zvalue
and Mvalue
is tacked on for missing Z and M dimensions, respectively.
Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_4D bezeichnet.
Changed: 3.1.0. Added support for supplying non-zero Z and M values.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
--Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts SELECT ST_AsEWKT(ST_Force4D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)'))); st_asewkt --------------------------------------------------------- CIRCULARSTRING(1 1 2 0,2 3 2 0,4 5 2 0,6 7 2 0,5 6 2 0) SELECT ST_AsEWKT(ST_Force4D('MULTILINESTRINGM((0 0 1,0 5 2,5 0 3,0 0 4),(1 1 1,3 1 1,1 3 1,1 1 1))')); st_asewkt -------------------------------------------------------------------------------------- MULTILINESTRING((0 0 0 1,0 5 0 2,5 0 0 3,0 0 0 4),(1 1 0 1,3 1 0 1,1 3 0 1,1 1 0 1))
ST_ForcePolygonCCW — Richtet alle äußeren Ringe gegen den Uhrzeigersinn und alle inneren Ringe mit dem Uhrzeigersinn aus.
geometry ST_ForcePolygonCCW (
geometry geom )
;
Zwingt (Multi)Polygone, den äusseren Ring gegen den Uhrzeigersinn und die inneren Ringe im Uhrzeigersinn zu orientieren. Andere Geometrien werden unverändert zurückgegeben.
Verfügbarkeit: 2.4.0
This function supports 3d and will not drop the z-index.
This function supports M coordinates.
ST_ForceCollection — Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um.
geometry ST_ForceCollection(
geometry geomA)
;
Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um. Nützlich um eine WKB-Darstellung zu vereinfachen.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.
Verfügbarkeit: 1.2.2, Vor 1.3.4 ist diese Funktion bei CURVES abgestürzt. Dies wurde mit 1.3.4+ behoben
Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_Collection bezeichnet.
This function supports Polyhedral surfaces.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
SELECT ST_AsEWKT(ST_ForceCollection('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))')); st_asewkt ---------------------------------------------------------------------------------- GEOMETRYCOLLECTION(POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))) SELECT ST_AsText(ST_ForceCollection('CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)')); st_astext -------------------------------------------------------------------------------- GEOMETRYCOLLECTION(CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)) (1 row)
-- Beispiel für eine polyedrische Oberfläche -- SELECT ST_AsEWKT(ST_ForceCollection('POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)), ((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)), ((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)), ((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)), ((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)), ((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)))')) st_asewkt ---------------------------------------------------------------------------------- GEOMETRYCOLLECTION( POLYGON((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)), POLYGON((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)), POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)), POLYGON((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)), POLYGON((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)), POLYGON((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)) )
ST_ForcePolygonCW — Richtet alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn aus.
geometry ST_ForcePolygonCW (
geometry geom )
;
Zwingt (Multi)Polygone, den äusseren Ring im Uhrzeigersinn und die inneren Ringe gegen den Uhrzeigersinn zu orientieren. Andere Geometrien werden unverändert zurückgegeben.
Verfügbarkeit: 2.4.0
This function supports 3d and will not drop the z-index.
This function supports M coordinates.
ST_ForceSFS — Erzwingt, dass Geometrien nur vom Typ SFS 1.1 sind.
geometry ST_ForceSFS(
geometry geomA)
;
geometry ST_ForceSFS(
geometry geomA, text version)
;
ST_ForceRHR — Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen.
geometry ST_ForceRHR(
geometry g)
;
Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen. Dadurch kommt die durch das Polygon begrenzte Fläche auf der rechten Seite der Begrenzung zu liegen. Insbesondere sind der äussere Ring im Uhrzeigersinn und die inneren Ringe gegen den Uhrzeigersinn orientiert. Diese Funktion ist ein Synonym für ST_ForcePolygonCW
Die obere Definition mit der Drei-Finger-Regel widerspricht den Definitionen, die in anderen Zusammenhängen verwendet werden. Um Verwirrung zu vermeiden, wird die Verwendung von ST_ForcePolygonCW empfohlen. |
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
SELECT ST_AsEWKT( ST_ForceRHR( 'POLYGON((0 0 2, 5 0 2, 0 5 2, 0 0 2),(1 1 2, 1 3 2, 3 1 2, 1 1 2))' ) ); st_asewkt -------------------------------------------------------------- POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2)) (1 row)
ST_ForcePolygonCCW , ST_ForcePolygonCW , ST_IsPolygonCCW , ST_IsPolygonCW , ST_BuildArea, ST_Polygonize, ST_Reverse
ST_ForceCurve — Wandelt einen geometrischen in einen Kurven Datentyp um, soweit anwendbar.
geometry ST_ForceCurve(
geometry g)
;
Wandelt eine Geometrie in eine Kurvendarstellung um, soweit anwendbar: Linien werden CompundCurves, MultiLines werden MultiCurves, Polygone werden zu CurvePolygons, Multipolygons werden MultiSurfaces. Wenn die Geometrie bereits in Kurvendarstellung vorliegt, wird sie unverändert zurückgegeben.
Verfügbarkeit: 2.2.0
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
ST_LineToCurve — Converts a linear geometry to a curved geometry.
geometry ST_LineToCurve(
geometry geomANoncircular)
;
Wandelt einen einfachen LineString/Polygon in Kreisbögen/CIRCULARSTRINGs und Kurvenpolygone um. Beachten Sie, dass wesentlich weniger Punkte zur Beschreibung des Kurvenäquivalents benötigt werden.
Wenn der gegebene LINESTRING/POLYGON nicht genug gekrümmt ist um eine deutliche Kurve zu repräsentieren, wird die Geometrie von der Funktion unverändert zurückgegeben. |
Verfügbarkeit: 1.3.0
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
-- 2D Example SELECT ST_AsText(ST_LineToCurve(foo.geom)) As curvedastext,ST_AsText(foo.geom) As non_curvedastext FROM (SELECT ST_Buffer('POINT(1 3)'::geometry, 3) As geom) As foo; curvedatext non_curvedastext --------------------------------------------------------------------|----------------------------------------------------------------- CURVEPOLYGON(CIRCULARSTRING(4 3,3.12132034355964 0.878679656440359, | POLYGON((4 3,3.94235584120969 2.41472903395162,3.77163859753386 1.85194970290473, 1 0,-1.12132034355965 5.12132034355963,4 3)) | 3.49440883690764 1.33328930094119,3.12132034355964 0.878679656440359, | 2.66671069905881 0.505591163092366,2.14805029709527 0.228361402466141, | 1.58527096604839 0.0576441587903094,1 0, | 0.414729033951621 0.0576441587903077,-0.148050297095264 0.228361402466137, | -0.666710699058802 0.505591163092361,-1.12132034355964 0.878679656440353, | -1.49440883690763 1.33328930094119,-1.77163859753386 1.85194970290472 | --ETC-- ,3.94235584120969 3.58527096604839,4 3)) --3D example SELECT ST_AsText(ST_LineToCurve(geom)) As curved, ST_AsText(geom) AS not_curved FROM (SELECT ST_Translate(ST_Force3D(ST_Boundary(ST_Buffer(ST_Point(1,3), 2,2))),0,0,3) AS geom) AS foo; curved | not_curved ------------------------------------------------------+--------------------------------------------------------------------- CIRCULARSTRING Z (3 3 3,-1 2.99999999999999 3,3 3 3) | LINESTRING Z (3 3 3,2.4142135623731 1.58578643762691 3,1 1 3, | -0.414213562373092 1.5857864376269 3,-1 2.99999999999999 3, | -0.414213562373101 4.41421356237309 3, | 0.999999999999991 5 3,2.41421356237309 4.4142135623731 3,3 3 3) (1 row)
ST_Multi — Gibt die Geometrie als MULTI* Geometrie zurück.
geometry ST_Multi(
geometry geom)
;
Returns the geometry as a MULTI* geometry collection. If the geometry is already a collection, it is returned unchanged.
ST_Normalize — Gibt die Geometrie in Normalform zurück.
geometry ST_Normalize(
geometry geom)
;
Gibt die Geometrie in Normalform aus. Möglicherweise werden die Knoten der Polygonringe, die Ringe eines Polygons oder die Elemente eines Komplexes von Mehrfachgeometrien neu gereiht.
Hauptsächlich für Testzwecke sinnvoll (zum Vergleich von erwarteten und erhaltenen Ergebnissen).
Verfügbarkeit: 2.3.0
SELECT ST_AsText(ST_Normalize(ST_GeomFromText( 'GEOMETRYCOLLECTION( POINT(2 3), MULTILINESTRING((0 0, 1 1),(2 2, 3 3)), POLYGON( (0 10,0 0,10 0,10 10,0 10), (4 2,2 2,2 4,4 4,4 2), (6 8,8 8,8 6,6 6,6 8) ) )' ))); st_astext ---------------------------------------------------------------------------------------------------------------------------------------------------- GEOMETRYCOLLECTION(POLYGON((0 0,0 10,10 10,10 0,0 0),(6 6,8 6,8 8,6 8,6 6),(2 2,4 2,4 4,2 4,2 2)),MULTILINESTRING((2 2,3 3),(0 0,1 1)),POINT(2 3)) (1 row)
ST_QuantizeCoordinates — Setzt die niedrigwertigsten Bits der Koordinaten auf Null
geometry ST_QuantizeCoordinates (
geometry g , int prec_x , int prec_y , int prec_z , int prec_m )
;
ST_QuantizeCoordinates
determines the number of bits (N
) required to represent a coordinate value with a specified number of digits after the decimal point, and then sets all but the N
most significant bits to zero. The resulting coordinate value will still round to the original value, but will have improved compressiblity. This can result in a significant disk usage reduction provided that the geometry column is using a compressible storage type. The function allows specification of a different number of digits after the decimal point in each dimension; unspecified dimensions are assumed to have the precision of the x
dimension. Negative digits are interpreted to refer digits to the left of the decimal point, (i.e., prec_x=-2
will preserve coordinate values to the nearest 100.
Die von ST_QuantizeCoordinates
erzeugten Koordinaten sind unabhängig von der Geometrie, die diese Koordinaten und die relative Position dieser Koordinaten in der Geometrie enthält. Daher sind vorhandene topologische Beziehungen zwischen Geometrien durch die Verwendung dieser Funktion nicht betroffen. Die Funktion erzeugt möglicherweise ungültige Geometrie, wenn sie mit einer Anzahl von Stellen aufgerufen wird, die Koordinaten innerhalb der Geometrie zusammenfallen lassen.
Verfügbarkeit: 2.5.0
PostGIS speichert alle Koordinatenwerte als Gleitkommazahlen mit doppelter Genauigkeit, die 15 signifikante Stellen zuverlässig darstellen können. PostGIS kann jedoch verwendet werden, um Daten zu verwalten, die weniger als 15 signifikante Ziffern enthalten. Ein Beispiel sind TIGER-Daten, die als geografische Koordinaten mit sechs Nachkommastellen zur Verfügung gestellt werden (so dass nur neun signifikante Ziffern des Längengrads und acht signifikante Breitengrade erforderlich sind).
Wenn 15 signifikante Ziffern verfügbar sind, gibt es viele mögliche Darstellungen einer Zahl mit 9 signifikanten Ziffern. Eine Gleitkommazahl mit doppelter Genauigkeit verwendet 52 explizite Bits, um den Mantisse der Koordinate darzustellen. Nur 30 Bits werden benötigt, um eine Mantisse mit 9 signifikanten Ziffern darzustellen, wobei 22 unbedeutende Bits übrig bleiben; Wir können ihren Wert auf alles setzen, was wir wollen, und erhalten trotzdem eine zum Eingabewert passende Zahl. Beispielsweise kann der Wert 100.123456 durch die nächstliegenden Zahlen 100.123456000000, 100.123456000001 und 100.123456432199 dargestellt werden. Alle sind gleichermaßen gültig, da ST_AsText (geom, 6)
bei allen dieser Eingaben das gleiche Ergebnis liefert. Da wir diese Bits auf einen beliebigen Wert setzen können, setzt ST_QuantizeCoordinates
die 22 nicht signifikanten Bits auf Null. Für eine lange Koordinatensequenz wird dadurch ein Muster aus Blöcken von aufeinanderfolgenden Nullen erzeugt, das von PostgreSQL effizienter komprimiert wird.
Von |
SELECT ST_AsText(ST_QuantizeCoordinates('POINT (100.123456 0)'::geometry, 4)); st_astext ------------------------- POINT(100.123455047607 0)
WITH test AS (SELECT 'POINT (123.456789123456 123.456789123456)'::geometry AS geom) SELECT digits, encode(ST_QuantizeCoordinates(geom, digits), 'hex'), ST_AsText(ST_QuantizeCoordinates(geom, digits)) FROM test, generate_series(15, -15, -1) AS digits; digits | encode | st_astext --------+--------------------------------------------+------------------------------------------ 15 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 14 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 13 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 12 | 01010000005c9a72083cdd5e405c9a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 11 | 0101000000409a72083cdd5e40409a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 10 | 0101000000009a72083cdd5e40009a72083cdd5e40 | POINT(123.456789123455 123.456789123455) 9 | 0101000000009072083cdd5e40009072083cdd5e40 | POINT(123.456789123418 123.456789123418) 8 | 0101000000008072083cdd5e40008072083cdd5e40 | POINT(123.45678912336 123.45678912336) 7 | 0101000000000070083cdd5e40000070083cdd5e40 | POINT(123.456789121032 123.456789121032) 6 | 0101000000000040083cdd5e40000040083cdd5e40 | POINT(123.456789076328 123.456789076328) 5 | 0101000000000000083cdd5e40000000083cdd5e40 | POINT(123.456789016724 123.456789016724) 4 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375) 3 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375) 2 | 01010000000000000038dd5e400000000038dd5e40 | POINT(123.45654296875 123.45654296875) 1 | 01010000000000000000dd5e400000000000dd5e40 | POINT(123.453125 123.453125) 0 | 01010000000000000000dc5e400000000000dc5e40 | POINT(123.4375 123.4375) -1 | 01010000000000000000c05e400000000000c05e40 | POINT(123 123) -2 | 01010000000000000000005e400000000000005e40 | POINT(120 120) -3 | 010100000000000000000058400000000000005840 | POINT(96 96) -4 | 010100000000000000000058400000000000005840 | POINT(96 96) -5 | 010100000000000000000058400000000000005840 | POINT(96 96) -6 | 010100000000000000000058400000000000005840 | POINT(96 96) -7 | 010100000000000000000058400000000000005840 | POINT(96 96) -8 | 010100000000000000000058400000000000005840 | POINT(96 96) -9 | 010100000000000000000058400000000000005840 | POINT(96 96) -10 | 010100000000000000000058400000000000005840 | POINT(96 96) -11 | 010100000000000000000058400000000000005840 | POINT(96 96) -12 | 010100000000000000000058400000000000005840 | POINT(96 96) -13 | 010100000000000000000058400000000000005840 | POINT(96 96) -14 | 010100000000000000000058400000000000005840 | POINT(96 96) -15 | 010100000000000000000058400000000000005840 | POINT(96 96)
ST_RemovePoint — Remove a point from a linestring.
geometry ST_RemovePoint(
geometry linestring, integer offset)
;
Removes a point from a LineString, given its index (0-based). Useful for turning a closed line (ring) into an open linestring.
Enhanced: 3.2.0
Verfügbarkeit: 1.1.0
This function supports 3d and will not drop the z-index.
ST_RemoveRepeatedPoints — Returns a version of a geometry with duplicate points removed.
geometry ST_RemoveRepeatedPoints(
geometry geom, float8 tolerance)
;
Returns a version of the given geometry with duplicate consecutive points removed. The function processes only (Multi)LineStrings, (Multi)Polygons and MultiPoints but it can be called with any kind of geometry. Elements of GeometryCollections are processed individually. The endpoints of LineStrings are preserved.
If the tolerance
parameter is provided, vertices within the tolerance distance of one another are considered to be duplicates.
Enhanced: 3.2.0
Verfügbarkeit: 2.2.0
This function supports Polyhedral surfaces.
This function supports 3d and will not drop the z-index.
SELECT ST_AsText( ST_RemoveRepeatedPoints( 'MULTIPOINT ((1 1), (2 2), (3 3), (2 2))')); ------------------------- MULTIPOINT(1 1,2 2,3 3)
SELECT ST_AsText( ST_RemoveRepeatedPoints( 'LINESTRING (0 0, 0 0, 1 1, 0 0, 1 1, 2 2)')); --------------------------------- LINESTRING(0 0,1 1,0 0,1 1,2 2)
Example: Collection elements are processed individually.
SELECT ST_AsText( ST_RemoveRepeatedPoints( 'GEOMETRYCOLLECTION (LINESTRING (1 1, 2 2, 2 2, 3 3), POINT (4 4), POINT (4 4), POINT (5 5))')); ------------------------------------------------------------------------------ GEOMETRYCOLLECTION(LINESTRING(1 1,2 2,3 3),POINT(4 4),POINT(4 4),POINT(5 5))
Example: Repeated point removal with a distance tolerance.
SELECT ST_AsText( ST_RemoveRepeatedPoints( 'LINESTRING (0 0, 0 0, 1 1, 5 5, 1 1, 2 2)', 2)); ------------------------- LINESTRING(0 0,5 5,2 2)
ST_Reverse — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
geometry ST_Reverse(
geometry g1)
;
ST_Segmentize — Gibt eine veränderte Geometrie/Geographie zurück, bei der kein Sement länger als der gegebene Abstand ist.
geometry ST_Segmentize(
geometry geom, float max_segment_length)
;
geography ST_Segmentize(
geography geog, float max_segment_length)
;
Gibt eine veränderte Geometrie/Geographie zurück, bei der kein Sement länger als die gegebene max_segment_length
ist. Die Entfernungsberechnung wird nur in 2D ausgeführt. Beim geometrischen Datentyp ist die Längeneinheit die Einheit des Koordinatenreferenzsystems. Beim geographischen Datentyp ist die Einheit Meter.
Verfügbarkeit: 1.2.2
Erweiterung: 3.0.0 - Das Segmentieren des geometrischen Datentyps ergibt nun Segmente gleicher Länge
Erweiterung: 2.3.0 - Das Segmentieren des geographischen Datentyps ergibt nun Segmente gleicher Länge
Erweiterung: mit 2.1.0 wurde die Unterstützung des geographischen Datentyps eingeführt.
Änderung: 2.1.0 Als Ergebnis der eingeführten Unterstützung für den geographischen Datentyp: Das Konstrukt SELECT ST_Segmentize('LINESTRING(1 2, 3 4)',0.5);
resultiert in einen Funktionsfehler aufgrund von Mehrdeutigkeit. Sie benötigen korrekt typisierte Geoobjekte; Verwenden Sie z.B. ST_GeomFromText, ST_GeogFromText oder SELECT ST_Segmentize('LINESTRING(1 2, 3 4)'::geometry,0.5);
für Ihre Geometrie-/Geographiespalte.
Segmente werden lediglich verlängert. Die Länge von Segmenten, die kürzer als max_segment_length sind, wird nicht verändert. |
SELECT ST_AsText(ST_Segmentize( ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45 -33,-46 -32))') ,5) ); st_astext -------------------------------------------------------------------------------------------------- MULTILINESTRING((-29 -27,-30 -29.7,-34.886615700134 -30.758766735029,-36 -31, -40.8809353009198 -32.0846522890933,-45 -33), (-45 -33,-46 -32)) (1 row) SELECT ST_AsText(ST_Segmentize(ST_GeomFromText('POLYGON((-29 28, -30 40, -29 28))'),10)); st_astext ----------------------- POLYGON((-29 28,-29.8304547985374 37.9654575824488,-30 40,-29.1695452014626 30.0345424175512,-29 28)) (1 row)
ST_SetPoint — Einen Punkt eines Linienzuges durch einen gegebenen Punkt ersetzen.
geometry ST_SetPoint(
geometry linestring, integer zerobasedposition, geometry point)
;
Ersetzt den Punkt N eines Linienzuges mit dem gegebenen Punkt. Der Index beginnt mit 0. Negative Indizes werden rückwärts gezählt, sodasss -1 der letzte Punkt ist. Dies findet insbesondere bei Triggern verwendung, wenn man die Beziehung zwischen den Verbindungsstücken beim Verschieben von Knoten erhalten will
Verfügbarkeit: 1.1.0
Änderung: 2.3.0 : negatives Indizieren
This function supports 3d and will not drop the z-index.
--Change first point in line string from -1 3 to -1 1 SELECT ST_AsText(ST_SetPoint('LINESTRING(-1 2,-1 3)', 0, 'POINT(-1 1)')); st_astext ----------------------- LINESTRING(-1 1,-1 3) ---Change last point in a line string (lets play with 3d linestring this time) SELECT ST_AsEWKT(ST_SetPoint(foo.geom, ST_NumPoints(foo.geom) - 1, ST_GeomFromEWKT('POINT(-1 1 3)'))) FROM (SELECT ST_GeomFromEWKT('LINESTRING(-1 2 3,-1 3 4, 5 6 7)') As geom) As foo; st_asewkt ----------------------- LINESTRING(-1 2 3,-1 3 4,-1 1 3) SELECT ST_AsText(ST_SetPoint(g, -3, p)) FROM ST_GEomFromText('LINESTRING(0 0, 1 1, 2 2, 3 3, 4 4)') AS g , ST_PointN(g,1) as p; st_astext ----------------------- LINESTRING(0 0,1 1,0 0,3 3,4 4)
ST_ShiftLongitude — Shifts the longitude coordinates of a geometry between -180..180 and 0..360.
geometry ST_ShiftLongitude(
geometry geom)
;
Reads every point/vertex in a geometry, and shifts its longitude coordinate from -180..0 to 180..360 and vice versa if between these ranges. This function is symmetrical so the result is a 0..360 representation of a -180..180 data and a -180..180 representation of a 0..360 data.
This is only useful for data with coordinates in longitude/latitude; e.g. SRID 4326 (WGS 84 geographic) |
Pre-1.3.4 Aufgrund eines Bugs funktionierte dies für MULTIPOINT nicht. Mit 1.3.4+ funktioniert es auch mit MULTIPOINT. |
This function supports 3d and will not drop the z-index.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen und TIN eingeführt.
Anmerkung: Vor 2.2.0 hieß diese Funktion "ST_Shift_Longitude"
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
--single point forward transformation SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;POINT(270 0)'::geometry)) st_astext ---------- POINT(-90 0) --single point reverse transformation SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;POINT(-90 0)'::geometry)) st_astext ---------- POINT(270 0) --for linestrings the functions affects only to the sufficient coordinates SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;LINESTRING(174 12, 182 13)'::geometry)) st_astext ---------- LINESTRING(174 12,-178 13)
ST_WrapX — Versammelt eine Geometrie um einen X-Wert
geometry ST_WrapX(
geometry geom, float8 wrap, float8 move)
;
This function splits the input geometries and then moves every resulting component falling on the right (for negative 'move') or on the left (for positive 'move') of given 'wrap' line in the direction specified by the 'move' parameter, finally re-unioning the pieces together.
Nützlich, um eine Eingabe in Länge und Breite neu zu zentrieren, damit die wesentlichen Geoobjekte nicht von einer Seite bis zur anderen abgebildet werden. |
Availability: 2.3.0 requires GEOS
This function supports 3d and will not drop the z-index.
-- Move all components of the given geometries whose bounding box -- falls completely on the left of x=0 to +360 select ST_WrapX(geom, 0, 360); -- Move all components of the given geometries whose bounding box -- falls completely on the left of x=-30 to +360 select ST_WrapX(geom, -30, 360);
ST_SnapToGrid — Fängt alle Punkte der Eingabegeometrie auf einem regelmäßigen Gitter.
geometry ST_SnapToGrid(
geometry geomA, float originX, float originY, float sizeX, float sizeY)
;
geometry ST_SnapToGrid(
geometry geomA, float sizeX, float sizeY)
;
geometry ST_SnapToGrid(
geometry geomA, float size)
;
geometry ST_SnapToGrid(
geometry geomA, geometry pointOrigin, float sizeX, float sizeY, float sizeZ, float sizeM)
;
Variante 1, 2 und 3: Fängt alle Punkte der Eingabegeometrie auf den Gitterpunkten, die durch Ursprung und Gitterkästchengröße festgelegt sind. Aufeinanderfolgende Punkte, die in dasselbe Gitterkästchen fallen, werden gelöscht, wobei NULL zurückgegeben wird, wenn nicht mehr genug Punkte für den jeweiligen geometrischen Datentyp vorhanden sind. Collapsed geometries in a collection are stripped from it. Kollabierte Geometrien einer Kollektion werden von dieser entfernt. Nützlich um die Genauigkeit zu verringern.
Variante 4: wurde mit 1.1.0 eingeführt - Fängt alle Punkte der Eingabegeometrie auf den Gitterpunkten, welche durch den Ursprung des Gitters (der zweite Übergabewert muss ein Punkt sein) und die Gitterkästchengröße bestimmt sind. Geben Sie 0 als Größe für jene Dimension an, die nicht auf den Gitterpunkten gefangen werden soll.
Die zurückgegebene Geometrie kann ihre Simplizität verlieren (siehe ST_IsSimple). |
Vor Release 1.1.0 gab diese Funktion immer eine 2D-Geometrie zurück. Ab 1.1.0 hat die zurückgegebene Geometrie dieselbe Dimensionalität wie die Eingabegemetrie, wobei höhere Dimensionen unangetastet bleiben. Verwenden Sie die Version, welche einen zweiten geometrischen Übergabewert annimmt, um sämtliche Grid-Dimensionen zu bestimmen. |
Verfügbarkeit: 1.0.0RC1
Verfügbarkeit: 1.1.0, Unterstützung für Z und M
This function supports 3d and will not drop the z-index.
--Snap your geometries to a precision grid of 10^-3 UPDATE mytable SET geom = ST_SnapToGrid(geom, 0.001); SELECT ST_AsText(ST_SnapToGrid( ST_GeomFromText('LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667)'), 0.001) ); st_astext ------------------------------------- LINESTRING(1.112 2.123,4.111 3.237) --Snap a 4d geometry SELECT ST_AsEWKT(ST_SnapToGrid( ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 2.3456 1.11111, 4.111111 3.2374897 3.1234 1.1111, -1.11111112 2.123 2.3456 1.1111112)'), ST_GeomFromEWKT('POINT(1.12 2.22 3.2 4.4444)'), 0.1, 0.1, 0.1, 0.01) ); st_asewkt ------------------------------------------------------------------------------ LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144) --With a 4d geometry - the ST_SnapToGrid(geom,size) only touches x and y coords but keeps m and z the same SELECT ST_AsEWKT(ST_SnapToGrid(ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 3 2.3456, 4.111111 3.2374897 3.1234 1.1111)'), 0.01) ); st_asewkt --------------------------------------------------------- LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)
ST_Snap — Fängt die Segmente und Knoten einer Eingabegeometrie an den Knoten einer Referenzgeometrie.
geometry ST_Snap(
geometry input, geometry reference, float tolerance)
;
Fängt die Knoten und Segmente einer Geometrie an den Knoten einer anderen Geometrie. Eine Entfernungstoleranz bestimmt, wo das Fangen durchgeführt wird. Die Ergebnisgeometrie ist die Eingabegeometrie mit gefangenen Knoten. Wenn kein Fangen auftritt, wird die Eingabegeometrie unverändert ausgegeben..
Eine Geometrie an einer anderen zu fangen, kann die Robustheit von Überlagerungs-Operationen verbessern, indem nahe zusammenfallende Kanten beseitigt werden (diese verursachen Probleme bei der Knoten- und Verschneidungsberechnung).
Übermäßiges Fangen kann zu einer invaliden Topologie führen. Die Anzahl und der Ort an dem Knoten sicher gefangen werden können wird mittels Heuristik bestimmt. Dies kann allerdings dazu führen, dass einige potentielle Knoten nicht gefangen werden.
Die zurückgegebene Geometrie kann ihre Simplizität (see ST_IsSimple) und Valididät (see ST_IsValid) verlieren. |
Wird vom GEOS Modul ausgeführt
Verfügbarkeit: 2.0.0
SELECT ST_AsText(ST_Snap(poly,line, ST_Distance(poly,line)*1.01)) AS polysnapped FROM (SELECT ST_GeomFromText('MULTIPOLYGON( ((26 125, 26 200, 126 200, 126 125, 26 125 ), ( 51 150, 101 150, 76 175, 51 150 )), (( 151 100, 151 200, 176 175, 151 100 )))') As poly, ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line ) As foo; polysnapped --------------------------------------------------------------------- MULTIPOLYGON(((26 125,26 200,126 200,126 125,101 100,26 125), (51 150,101 150,76 175,51 150)),((151 100,151 200,176 175,151 100))) |
SELECT ST_AsText( ST_Snap(poly,line, ST_Distance(poly,line)*1.25) ) AS polysnapped FROM (SELECT ST_GeomFromText('MULTIPOLYGON( (( 26 125, 26 200, 126 200, 126 125, 26 125 ), ( 51 150, 101 150, 76 175, 51 150 )), (( 151 100, 151 200, 176 175, 151 100 )))') As poly, ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line ) As foo; polysnapped --------------------------------------------------------------------- MULTIPOLYGON(((5 107,26 200,126 200,126 125,101 100,54 84,5 107), (51 150,101 150,76 175,51 150)),((151 100,151 200,176 175,151 100))) |
SELECT ST_AsText( ST_Snap(line, poly, ST_Distance(poly,line)*1.01) ) AS linesnapped FROM (SELECT ST_GeomFromText('MULTIPOLYGON( ((26 125, 26 200, 126 200, 126 125, 26 125), (51 150, 101 150, 76 175, 51 150 )), ((151 100, 151 200, 176 175, 151 100)))') As poly, ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line ) As foo; linesnapped ---------------------------------------- LINESTRING(5 107,26 125,54 84,101 100)
|
SELECT ST_AsText( ST_Snap(line, poly, ST_Distance(poly,line)*1.25) ) AS linesnapped FROM (SELECT ST_GeomFromText('MULTIPOLYGON( (( 26 125, 26 200, 126 200, 126 125, 26 125 ), (51 150, 101 150, 76 175, 51 150 )), ((151 100, 151 200, 176 175, 151 100 )))') As poly, ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line ) As foo; linesnapped --------------------------------------- LINESTRING(26 125,54 84,101 100) |
ST_SwapOrdinates — Gibt eine Version der Ausgangsgeometrie zurück, in der die angegebenen Ordinatenwerte ausgetauscht werden.
geometry ST_SwapOrdinates(
geometry geom, cstring ords)
;
Gibt eine Version der Ausgangsgeometrie zurück, in der die angegebenen Ordinaten ausgetauscht werden.
Der ords
Parameter ist eine Zeichenkette aus 2 Zeichen, welche die Ordinate benennt die getauscht werden soll. Gültige Bezeichnungen sind: x,y,z und m.
Verfügbarkeit: 2.2.0
This method supports Circular Strings and Curves
This function supports 3d and will not drop the z-index.
This function supports M coordinates.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
valid_detail
row stating if a geometry is valid or if not a reason and a location.ST_IsValid — Tests if a geometry is well-formed in 2D.
boolean ST_IsValid(
geometry g)
;
boolean ST_IsValid(
geometry g, integer flags)
;
Tests if an ST_Geometry value is well-formed and valid in 2D according to the OGC rules. For geometries with 3 and 4 dimensions, the validity is still only tested in 2 dimensions. For geometries that are invalid, a PostgreSQL NOTICE is emitted providing details of why it is not valid.
For the version with the flags
parameter, supported values are documented in ST_IsValidDetail This version does not print a NOTICE explaining invalidity.
For more information on the definition of geometry validity, refer to Section 4.4, “Geometrievalidierung”
SQL-MM defines the result of ST_IsValid(NULL) to be 0, while PostGIS returns NULL. |
Performed by the GEOS module.
The version accepting flags is available starting with 2.0.0.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.9
Neither OGC-SFS nor SQL-MM specifications include a flag argument for ST_IsValid. The flag is a PostGIS extension. |
ST_IsValidDetail — Returns a valid_detail
row stating if a geometry is valid or if not a reason and a location.
valid_detail ST_IsValidDetail(
geometry geom, integer flags)
;
Returns a valid_detail
row, containing a boolean (valid
) stating if a geometry is valid, a varchar (reason
) stating a reason why it is invalid and a geometry (location
) pointing out where it is invalid.
Useful to improve on the combination of ST_IsValid and ST_IsValidReason to generate a detailed report of invalid geometries.
The optional flags
parameter is a bitfield. It can have the following values:
0: Use usual OGC SFS validity semantics.
1: Consider certain kinds of self-touching rings (inverted shells and exverted holes) as valid. This is also known as "the ESRI flag", since this is the validity model used by those tools. Note that this is invalid under the OGC model.
Performed by the GEOS module.
Verfügbarkeit: 2.0.0
--First 3 Rejects from a successful quintuplet experiment SELECT gid, reason(ST_IsValidDetail(geom)), ST_AsText(location(ST_IsValidDetail(geom))) as location FROM (SELECT ST_MakePolygon(ST_ExteriorRing(e.buff), array_agg(f.line)) As geom, gid FROM (SELECT ST_Buffer(ST_Point(x1*10,y1), z1) As buff, x1*10 + y1*100 + z1*1000 As gid FROM generate_series(-4,6) x1 CROSS JOIN generate_series(2,5) y1 CROSS JOIN generate_series(1,8) z1 WHERE x1 > y1*0.5 AND z1 < x1*y1) As e INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer(ST_Point(x1*10,y1), z1)),y1*1, z1*2) As line FROM generate_series(-3,6) x1 CROSS JOIN generate_series(2,5) y1 CROSS JOIN generate_series(1,10) z1 WHERE x1 > y1*0.75 AND z1 < x1*y1) As f ON (ST_Area(e.buff) > 78 AND ST_Contains(e.buff, f.line)) GROUP BY gid, e.buff) As quintuplet_experiment WHERE ST_IsValid(geom) = false ORDER BY gid LIMIT 3; gid | reason | location ------+-------------------+------------- 5330 | Self-intersection | POINT(32 5) 5340 | Self-intersection | POINT(42 5) 5350 | Self-intersection | POINT(52 5) --simple example SELECT * FROM ST_IsValidDetail('LINESTRING(220227 150406,2220227 150407,222020 150410)'); valid | reason | location -------+--------+---------- t | |
ST_IsValidReason — Returns text stating if a geometry is valid, or a reason for invalidity.
text ST_IsValidReason(
geometry geomA)
;
text ST_IsValidReason(
geometry geomA, integer flags)
;
Returns text stating if a geometry is valid, or if invalid a reason why.
Useful in combination with ST_IsValid to generate a detailed report of invalid geometries and reasons.
Allowed flags
are documented in ST_IsValidDetail.
Performed by the GEOS module.
Availability: 1.4
Availability: 2.0 version taking flags.
-- invalid bow-tie polygon SELECT ST_IsValidReason( 'POLYGON ((100 200, 100 100, 200 200, 200 100, 100 200))'::geometry) as validity_info; validity_info -------------------------- Self-intersection[150 150]
--First 3 Rejects from a successful quintuplet experiment SELECT gid, ST_IsValidReason(geom) as validity_info FROM (SELECT ST_MakePolygon(ST_ExteriorRing(e.buff), array_agg(f.line)) As geom, gid FROM (SELECT ST_Buffer(ST_Point(x1*10,y1), z1) As buff, x1*10 + y1*100 + z1*1000 As gid FROM generate_series(-4,6) x1 CROSS JOIN generate_series(2,5) y1 CROSS JOIN generate_series(1,8) z1 WHERE x1 > y1*0.5 AND z1 < x1*y1) As e INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer(ST_Point(x1*10,y1), z1)),y1*1, z1*2) As line FROM generate_series(-3,6) x1 CROSS JOIN generate_series(2,5) y1 CROSS JOIN generate_series(1,10) z1 WHERE x1 > y1*0.75 AND z1 < x1*y1) As f ON (ST_Area(e.buff) > 78 AND ST_Contains(e.buff, f.line)) GROUP BY gid, e.buff) As quintuplet_experiment WHERE ST_IsValid(geom) = false ORDER BY gid LIMIT 3; gid | validity_info ------+-------------------------- 5330 | Self-intersection [32 5] 5340 | Self-intersection [42 5] 5350 | Self-intersection [52 5] --simple example SELECT ST_IsValidReason('LINESTRING(220227 150406,2220227 150407,222020 150410)'); st_isvalidreason ------------------ Valid Geometry
ST_MakeValid — Attempts to make an invalid geometry valid without losing vertices.
geometry ST_MakeValid(
geometry input)
;
geometry ST_MakeValid(
geometry input, text params)
;
The function attempts to create a valid representation of a given invalid geometry without losing any of the input vertices. Valid geometries are returned unchanged.
Supported inputs are: POINTS, MULTIPOINTS, LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS and GEOMETRYCOLLECTIONS containing any mix of them.
In case of full or partial dimensional collapses, the output geometry may be a collection of lower-to-equal dimension geometries, or a geometry of lower dimension.
Single polygons may become multi-geometries in case of self-intersections.
The params
argument can be used to supply an options string to select the method to use for building valid geometry. The options string is in the format "method=linework|structure keepcollapsed=true|false".
The "method" key has two values.
"linework" is the original algorithm, and builds valid geometries by first extracting all lines, noding that linework together, then building a value output from the linework.
"structure" is an algorithm that distinguishes between interior and exterior rings, building new geometry by unioning exterior rings, and then differencing all interior rings.
The "keepcollapsed" key is only valid for the "structure" algorithm, and takes a value of "true" or "false". When set to "false", geometry components that collapse to a lower dimensionality, for example a one-point linestring would be dropped.
Performed by the GEOS module.
Verfügbarkeit: 2.0.0
Enhanced: 2.0.1, speed improvements
Enhanced: 2.1.0, added support for GEOMETRYCOLLECTION and MULTIPOINT.
Enhanced: 3.1.0, added removal of Coordinates with NaN values.
Enhanced: 3.2.0, added algorithm options, 'linework' and 'structure' which requires GEOS >= 3.10.0.
This function supports 3d and will not drop the z-index.
SELECT f.geom AS before_geom, ST_MakeValid(f.geom) AS after_geom, ST_MakeValid(f.geom, 'method=structure') AS after_geom_structure FROM (SELECT 'MULTIPOLYGON(((186 194,187 194,188 195,189 195,190 195, 191 195,192 195,193 194,194 194,194 193,195 192,195 191, 195 190,195 189,195 188,194 187,194 186,14 6,13 6,12 5,11 5, 10 5,9 5,8 5,7 6,6 6,6 7,5 8,5 9,5 10,5 11,5 12,6 13,6 14,186 194)), ((150 90,149 80,146 71,142 62,135 55,128 48,119 44,110 41,100 40, 90 41,81 44,72 48,65 55,58 62,54 71,51 80,50 90,51 100, 54 109,58 118,65 125,72 132,81 136,90 139,100 140,110 139, 119 136,128 132,135 125,142 118,146 109,149 100,150 90)))'::geometry AS geom) AS f;
|
SELECT c.geom AS before_geom, ST_MakeValid(c.geom) AS after_geom, ST_MakeValid(c.geom, 'method=structure') AS after_geom_structure FROM (SELECT 'MULTIPOLYGON(((91 50,79 22,51 10,23 22,11 50,23 78,51 90,79 78,91 50)), ((91 100,79 72,51 60,23 72,11 100,23 128,51 140,79 128,91 100)), ((91 150,79 122,51 110,23 122,11 150,23 178,51 190,79 178,91 150)), ((141 50,129 22,101 10,73 22,61 50,73 78,101 90,129 78,141 50)), ((141 100,129 72,101 60,73 72,61 100,73 128,101 140,129 128,141 100)), ((141 150,129 122,101 110,73 122,61 150,73 178,101 190,129 178,141 150)))'::geometry AS geom) AS c;
|
ST_SetSRID — Set the SRID on a geometry.
geometry ST_SetSRID(
geometry geom, integer srid)
;
Sets the SRID on a geometry to a particular integer value. Useful in constructing bounding boxes for queries.
This function does not transform the geometry coordinates in any way - it simply sets the meta data defining the spatial reference system the geometry is assumed to be in. Use ST_Transform if you want to transform the geometry into a new projection. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method supports Circular Strings and Curves
-- Mark a point as WGS 84 long lat --
SELECT ST_SetSRID(ST_Point(-123.365556, 48.428611),4326) As wgs84long_lat; -- the ewkt representation (wrap with ST_AsEWKT) - SRID=4326;POINT(-123.365556 48.428611)
-- Mark a point as WGS 84 long lat and then transform to web mercator (Spherical Mercator) --
SELECT ST_Transform(ST_SetSRID(ST_Point(-123.365556, 48.428611),4326),3785) As spere_merc; -- the ewkt representation (wrap with ST_AsEWKT) - SRID=3785;POINT(-13732990.8753491 6178458.96425423)
ST_SRID — Returns the spatial reference identifier for a geometry.
integer ST_SRID(
geometry g1)
;
Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table. Section 4.5, “Spatial Reference Systems”
spatial_ref_sys table is a table that catalogs all spatial reference systems known to PostGIS and is used for transformations from one spatial reference system to another. So verifying you have the right spatial reference system identifier is important if you plan to ever transform your geometries. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
This method implements the SQL/MM specification. SQL-MM 3: 5.1.5
This method supports Circular Strings and Curves
ST_Transform — Return a new geometry with coordinates transformed to a different spatial reference system.
geometry ST_Transform(
geometry g1, integer srid)
;
geometry ST_Transform(
geometry geom, text to_proj)
;
geometry ST_Transform(
geometry geom, text from_proj, text to_proj)
;
geometry ST_Transform(
geometry geom, text from_proj, integer to_srid)
;
Returns a new geometry with its coordinates transformed to a different spatial reference system. The destination spatial reference to_srid
may be identified by a valid SRID integer parameter (i.e. it must exist in the spatial_ref_sys
table). Alternatively, a spatial reference defined as a PROJ.4 string can be used for to_proj
and/or from_proj
, however these methods are not optimized. If the destination spatial reference system is expressed with a PROJ.4 string instead of an SRID, the SRID of the output geometry will be set to zero. With the exception of functions with from_proj
, input geometries must have a defined SRID.
ST_Transform is often confused with ST_SetSRID. ST_Transform actually changes the coordinates of a geometry from one spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the geometry.
Requires PostGIS be compiled with PROJ support. Use PostGIS_Full_Version to confirm you have PROJ support compiled in. |
If using more than one transformation, it is useful to have a functional index on the commonly used transformations to take advantage of index usage. |
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+ |
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Enhanced: 2.3.0 support for direct PROJ.4 text was introduced.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.6
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
Change Massachusetts state plane US feet geometry to WGS 84 long lat
SELECT ST_AsText(ST_Transform(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450, 743265 2967450,743265.625 2967416,743238 2967416))',2249),4326)) As wgs_geom; wgs_geom --------------------------- POLYGON((-71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009, -71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.177684 8522251 42.3902896512902)); (1 row) --3D Circular String example SELECT ST_AsEWKT(ST_Transform(ST_GeomFromEWKT('SRID=2249;CIRCULARSTRING(743238 2967416 1,743238 2967450 2,743265 2967450 3,743265.625 2967416 3,743238 2967416 4)'),4326)); st_asewkt -------------------------------------------------------------------------------------- SRID=4326;CIRCULARSTRING(-71.1776848522251 42.3902896512902 1,-71.1776843766326 42.3903829478009 2, -71.1775844305465 42.3903826677917 3, -71.1775825927231 42.3902893647987 3,-71.1776848522251 42.3902896512902 4)
Example of creating a partial functional index. For tables where you are not sure all the geometries will be filled in, its best to use a partial index that leaves out null geometries which will both conserve space and make your index smaller and more efficient.
CREATE INDEX idx_geom_26986_parcels ON parcels USING gist (ST_Transform(geom, 26986)) WHERE geom IS NOT NULL;
Examples of using PROJ.4 text to transform with custom spatial references.
-- Find intersection of two polygons near the North pole, using a custom Gnomic projection -- See http://boundlessgeo.com/2012/02/flattening-the-peel/ WITH data AS ( SELECT ST_GeomFromText('POLYGON((170 50,170 72,-130 72,-130 50,170 50))', 4326) AS p1, ST_GeomFromText('POLYGON((-170 68,-170 90,-141 90,-141 68,-170 68))', 4326) AS p2, '+proj=gnom +ellps=WGS84 +lat_0=70 +lon_0=-160 +no_defs'::text AS gnom ) SELECT ST_AsText( ST_Transform( ST_Intersection(ST_Transform(p1, gnom), ST_Transform(p2, gnom)), gnom, 4326)) FROM data; st_astext -------------------------------------------------------------------------------- POLYGON((-170 74.053793645338,-141 73.4268621378904,-141 68,-170 68,-170 74.053793645338))
Sometimes coordinate transformation involving a grid-shift can fail, for example if PROJ.4 has not been built with grid-shift files or the coordinate does not lie within the range for which the grid shift is defined. By default, PostGIS will throw an error if a grid shift file is not present, but this behavior can be configured on a per-SRID basis either by testing different to_proj
values of PROJ.4 text, or altering the proj4text
value within the spatial_ref_sys
table.
For example, the proj4text parameter +datum=NAD87 is a shorthand form for the following +nadgrids parameter:
+nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat
The @ prefix means no error is reported if the files are not present, but if the end of the list is reached with no file having been appropriate (ie. found and overlapping) then an error is issued.
If, conversely, you wanted to ensure that at least the standard files were present, but that if all files were scanned without a hit a null transformation is applied you could use:
+nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat,null
The null grid shift file is a valid grid shift file covering the whole world and applying no shift. So for a complete example, if you wanted to alter PostGIS so that transformations to SRID 4267 that didn't lie within the correct range did not throw an ERROR, you would use the following:
UPDATE spatial_ref_sys SET proj4text = '+proj=longlat +ellps=clrk66 +nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat,null +no_defs' WHERE srid = 4267;
ST_BdPolyFromText — Konstruiert ein Polygon aus einer beliebigen Ansammlung von geschlossenen Linienzügen, welche als MultiLineString in der Well-Known Text Darstellung vorliegen müssen.
geometry ST_BdPolyFromText(
text WKT, integer srid)
;
Konstruiert ein Polygon aus einer beliebigen Ansammlung von geschlossenen Linienzügen, welche als MultiLineString in der Well-Known Text Darstellung vorliegen müssen.
Meldet einen Fehler, wenn es sich bei dem WKT nicht um einen MULTILINESTRING handelt. Meldet einen Fehler, wenn die Ausgabe ein MULTIPOLYGON ist; in diesem Fall verwenden Sie bitte ST_BdMPolyFromText, oder vergleichen ST_BuildArea() für einen PostGIS orientierten Ansatz. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
Wird vom GEOS Modul ausgeführt
Verfügbarkeit: 1.1.0
ST_BdMPolyFromText — Konstruiert ein MultiPolygon aus einer beliebigen Ansammlung von geschlossenen Linienzügen, welche als MultiLineString in der Well-Known Text Darstellung vorliegen müssen.
geometry ST_BdMPolyFromText(
text WKT, integer srid)
;
Konstruiert ein Polygon aus einer beliebigen Ansammlung von geschlossenen Linienzügen, Polygonen und MultiLineStrings, welche in der Well-Known Text Darstellung vorliegen müssen.
Meldet einen Fehler wenn der WKT kein MULTILINESTRING ist. Erzwingt die MULTIPOLYGON Ausgabe sogar dann, wenn das Ergebnis nur aus einem einzelnen POLYGON besteht; verwenden Sie bitte ST_BdPolyFromText , wenn Sie sicher sind, daß nur ein einzelnes POLYGON entsteht, oder vegleichen Sie ST_BuildArea() für einen PostGIS orientierten Ansatz. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
Wird vom GEOS Modul ausgeführt
Verfügbarkeit: 1.1.0
ST_GeogFromText — Gibt einen geographischen Datentyp aus einer Well-known-Text (WKT), oder einer erweiterten WKT (EWKT), Darstellung zurück.
geography ST_GeogFromText(
text EWKT)
;
Gibt ein geographisches Objekt in der Well-known-Text oder in der erweiterten Well-known-Text Darstellung zurück. Falls nicht angegeben, wird die SRID 4326 angenommen. Dies ist ein Alias für ST_GeographyFromText. Punkte werden immer in Form von Länge und Breite ausgedrückt.
--- Umwandlung von Länge Breite Koordinaten in Geographie ALTER TABLE sometable ADD COLUMN geog geography(POINT,4326); UPDATE sometable SET geog = ST_GeogFromText('SRID=4326;POINT(' || lon || ' ' || lat || ')'); --- Definition eines geographischen Punktes mit EPSG:4267, NAD27 SELECT ST_AsEWKT(ST_GeogFromText('SRID=4267;POINT(-77.0092 38.889588)'));
ST_GeographyFromText — Gibt einen geographischen Datentyp aus einer Well-known-Text (WKT), oder einer erweiterten WKT (EWKT), Darstellung zurück.
geography ST_GeographyFromText(
text EWKT)
;
ST_GeomCollFromText — Erzeugt eine Sammelgeometrie mit der gegebenen SRID aus einer WKT-Kollektion. Wenn keine SRID angegeben ist, wird diese standardmäßig auf 0 gesetzt.
geometry ST_GeomCollFromText(
text WKT, integer srid)
;
geometry ST_GeomCollFromText(
text WKT)
;
Erzeugt eine Sammelgeometrie mit der gegebenen SRID aus einer Well-known-Text (WKT) Darstellung. Wenn keine SRID angegeben ist, wird diese standardmäßig auf 0 gesetzt.
OGC SPEC 3.2.6.2 - Die Option SRID stammt aus dem Konformitätstest
Gibt NULL zurück, wenn der WKT keine GEOMETRYCOLLECTION ist
Verwenden Sie diese Funktion nicht, wenn Sie sich vollkommen sicher sind, dass ihre WKT Geometrie eine Sammelgeometrie ist. Sie ist langsamer als ST_GeomFromText, da sie einen zusätzlicher Validierungsschritt ausführt. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
This method implements the SQL/MM specification.
ST_GeomFromEWKT — Gibt einen spezifizierten ST_Geometry-Wert von einer erweiterten Well-known-Text Darstellung (EWKT) zurück.
geometry ST_GeomFromEWKT(
text EWKT)
;
Erzeugt ein PostGIS ST_Geometry Objekt aus der erweiterten OGC Well-known-Text (EWKT) Darstellung.
EWKT ist kein Format des OGC Standards, sondern ein PostGIS eigenes Format, welches den Identifikator (SRID) des räumlichen Koordinatenreferenzsystem mit einbindet |
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen und TIN eingeführt.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
SELECT ST_GeomFromEWKT('SRID=4269;LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)'); SELECT ST_GeomFromEWKT('SRID=4269;MULTILINESTRING((-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932))'); SELECT ST_GeomFromEWKT('SRID=4269;POINT(-71.064544 42.28787)'); SELECT ST_GeomFromEWKT('SRID=4269;POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239, -71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))'); SELECT ST_GeomFromEWKT('SRID=4269;MULTIPOLYGON(((-71.1031880899493 42.3152774590236, -71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307, -71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248, -71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797, -71.103113945163 42.3142739188902,-71.10324876416 42.31402489987, -71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772, -71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029, -71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058, -71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118, -71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681, -71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055, -71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936, -71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569, -71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809, -71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048, -71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859, -71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338, -71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985, -71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544, -71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219, -71.1031880899493 42.3152774590236)), ((-71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857, -71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 42.315113108546)))');
--3D Kreisbogen SELECT ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)');
--Beispiel für eine polyedrische Oberfläche SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )');
ST_GeomFromMARC21 — Takes MARC21/XML geographic data as input and returns a PostGIS geometry object.
geometry ST_GeomFromMARC21 (
text marcxml )
;
This function creates a PostGIS geometry from a MARC21/XML record, which can contain a POINT
or a POLYGON
. In case of multiple geographic data entries in the same MARC21/XML record, a MULTIPOINT
or MULTIPOLYGON
will be returned. If the record contains mixed geometry types, a GEOMETRYCOLLECTION
will be returned. It returns NULL if the MARC21/XML record does not contain any geographic data (datafield:034).
LOC MARC21/XML versions supported:
Availability: 3.3.0, requires libxml2 2.6+
The MARC21/XML Coded Cartographic Mathematical Data currently does not provide any means to describe the Spatial Reference System of the encoded coordinates, so this function will always return a geometry with |
Returned |
Converting MARC21/XML geographic data containing a single POINT
encoded as hddd.dddddd
SELECT ST_AsText( ST_GeomFromMARC21(' <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nz a2200000nc 4500</leader> <controlfield tag="001">040277569</controlfield> <datafield tag="034" ind1=" " ind2=" "> <subfield code="d">W004.500000</subfield> <subfield code="e">W004.500000</subfield> <subfield code="f">N054.250000</subfield> <subfield code="g">N054.250000</subfield> </datafield> </record>')); st_astext ------------------- POINT(-4.5 54.25) (1 row)
Converting MARC21/XML geographic data containing a single POLYGON
encoded as hdddmmss
SELECT ST_AsText( ST_GeomFromMARC21(' <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>01062cem a2200241 a 4500</leader> <controlfield tag="001"> 84696781 </controlfield> <datafield tag="034" ind1="1" ind2=" "> <subfield code="a">a</subfield> <subfield code="b">50000</subfield> <subfield code="d">E0130600</subfield> <subfield code="e">E0133100</subfield> <subfield code="f">N0523900</subfield> <subfield code="g">N0522300</subfield> </datafield> </record>')); st_astext ----------------------------------------------------------------------------------------------------------------------- POLYGON((13.1 52.65,13.516666666666667 52.65,13.516666666666667 52.38333333333333,13.1 52.38333333333333,13.1 52.65)) (1 row)
Converting MARC21/XML geographic data containing a POLYGON
and a POINT
:
SELECT ST_AsText( ST_GeomFromMARC21(' <record xmlns="http://www.loc.gov/MARC21/slim"> <datafield tag="034" ind1="1" ind2=" "> <subfield code="a">a</subfield> <subfield code="b">50000</subfield> <subfield code="d">E0130600</subfield> <subfield code="e">E0133100</subfield> <subfield code="f">N0523900</subfield> <subfield code="g">N0522300</subfield> </datafield> <datafield tag="034" ind1=" " ind2=" "> <subfield code="d">W004.500000</subfield> <subfield code="e">W004.500000</subfield> <subfield code="f">N054.250000</subfield> <subfield code="g">N054.250000</subfield> </datafield> </record>')); st_astext ------------------------------------------------------------------------------------------------------------------------------------------------------------- GEOMETRYCOLLECTION(POLYGON((13.1 52.65,13.516666666666667 52.65,13.516666666666667 52.38333333333333,13.1 52.38333333333333,13.1 52.65)),POINT(-4.5 54.25)) (1 row)
ST_GeometryFromText — Gibt einen spezifizierten ST_Geometry-Wert von einer Well-known-Text Darstellung (WKT) zurück. Die Bezeichnung ist ein Alias für ST_GeomFromText
geometry ST_GeometryFromText(
text WKT)
;
geometry ST_GeometryFromText(
text WKT, integer srid)
;
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.40
ST_GeomFromText — Gibt einen spezifizierten ST_Geometry Wert aus einer Well-known-Text Darstellung (WKT) zurück.
geometry ST_GeomFromText(
text WKT)
;
geometry ST_GeomFromText(
text WKT, integer srid)
;
Erzeugt ein PostGIS ST_Geometry Objekt aus der OGC Well-known-Text Darstellung.
Die Funktion ST_GeomFromText hat zwei Varianten. Die erste Variante nimmt keine SRID entgegen und gibt eine Geometrie ohne ein bestimmtes Koordinatenreferenzsystem aus (SRID=0) . Die zweite Variante nimmt eine SRID als zweiten Übergabewert entgegen und gibt eine Geometrie zurück, die diese SRID als Teil ihrer Metadaten beinhaltet. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2 - die Option SRID ist vom Konformitätstest.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.40
This method supports Circular Strings and Curves
While not OGC-compliant, ST_MakePoint is faster than ST_GeomFromText and ST_PointFromText. It is also easier to use for numeric coordinate values. ST_Point is another option similar in speed to ST_MakePoint and is OGC-compliant, but doesn't support anything but 2D points. |
Änderung: 2.0.0 - In Vorgängerversionen von PostGIS war ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') erlaubt. Um eine bessere Übereinstimmung mit der SQL/MM Norm zu erreichen, ist dies in PostGIS 2.0.0 nun nicht mehr gestattet. Hier sollte nun ST_GeomFromText('GEOMETRYCOLLECTION EMPTY') geschrieben werden. |
SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)'); SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)',4269); SELECT ST_GeomFromText('MULTILINESTRING((-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932))'); SELECT ST_GeomFromText('POINT(-71.064544 42.28787)'); SELECT ST_GeomFromText('POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239, -71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))'); SELECT ST_GeomFromText('MULTIPOLYGON(((-71.1031880899493 42.3152774590236, -71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307, -71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248, -71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797, -71.103113945163 42.3142739188902,-71.10324876416 42.31402489987, -71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772, -71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029, -71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058, -71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118, -71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681, -71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055, -71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936, -71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569, -71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809, -71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048, -71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859, -71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338, -71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985, -71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544, -71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219, -71.1031880899493 42.3152774590236)), ((-71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857, -71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 42.315113108546)))',4326); SELECT ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)');
ST_LineFromText — Erzeugt eine Geometrie aus einer WKT Darstellung mit der angegebenen SRID. Wenn keine SRID angegeben wird, wird diese standardmäßig auf 0 gesetzt.
geometry ST_LineFromText(
text WKT)
;
geometry ST_LineFromText(
text WKT, integer srid)
;
Erzeugt eine Geometrie aus einer WKT Darstellung mit der angegebenen SRID. Wenn keine SRID angegeben wird, wird diese standardmäßig auf 0 gesetzt. Wenn das übergebene WKT kein LineString ist, wird NULL zurückgegeben.
OGC SPEC 3.2.6.2 - die Option SRID ist vom Konformitätstest. |
Wenn Sie wissen, dass die Geometrie nur aus LINESTRINGs besteht, ist es effizienter einfach ST_GeomFromText zu verwenden. Diese Funktion ruft auch nur ST_GeomFromText auf und fügt die Information hinzu, dass es sich um einen Linienzug handelt. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
This method implements the SQL/MM specification. SQL-MM 3: 7.2.8
ST_MLineFromText — Liest einen festgelegten ST_MultiLineString Wert von einer WKT-Darstellung aus.
geometry ST_MLineFromText(
text WKT, integer srid)
;
geometry ST_MLineFromText(
text WKT)
;
Erzeugt eine Geometrie aus einer Well-known-Text (WKT) Darstellung mit der angegebenen SRID. Wenn keine SRID angegeben wird, wird diese standardmäßig auf 0 gesetzt.
OGC SPEC 3.2.6.2 - Die Option SRID stammt aus dem Konformitätstest
Gibt NULL zurück wenn der WKT kein MULTILINESTRING ist.
Verwenden Sie diese Funktion nicht, wenn Sie sich vollkommen sicher sind, dass ihre WKT Geometrie nur aus Punkten besteht. Sie ist langsamer als ST_GeomFromText, da sie einen zusätzlichen Validierungsschritt hinzufügt. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
This method implements the SQL/MM specification.SQL-MM 3: 9.4.4
ST_MPointFromText — Erzeugt eine Geometrie aus WKT mit der angegebenen SRID. Wenn keine SRID angegeben wird, wird diese standardmäßig auf 0 gesetzt.
geometry ST_MPointFromText(
text WKT, integer srid)
;
geometry ST_MPointFromText(
text WKT)
;
Erzeugt eine Geometrie aus WKT mit der angegebenen SRID. Wenn SRID nicht angegeben ist, wird sie standardmäßig auf 0 gesetzt.
OGC SPEC 3.2.6.2 - Die Option SRID stammt aus dem Konformitätstest
Gibt NULL zurück, wenn der WKT kein MULTIPOINT ist.
Verwenden Sie diese Funktion nicht, wenn Sie sich vollkommen sicher sind, dass ihre WKT Geometrie nur aus Punkten besteht. Sie ist langsamer als ST_GeomFromText, da sie einen zusätzlichen Validierungsschritt hinzufügt. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 3.2.6.2
This method implements the SQL/MM specification. SQL-MM 3: 9.2.4
ST_MPolyFromText — Erzeugt eine MultiPolygon Geometrie aus WKT mit der angegebenen SRID. Wenn SRID nicht angegeben ist, wird sie standardmäßig auf 0 gesetzt.
geometry ST_MPolyFromText(
text WKT, integer srid)
;
geometry ST_MPolyFromText(
text WKT)
;
Erzeugt ein MultiPolygon von WKT mit der gegebenen SRID. Wenn SRID nicht angegeben ist, wird sie standardmäßig auf 0 gesetzt.
OGC SPEC 3.2.6.2 - Die Option SRID stammt aus dem Konformitätstest
Meldet einen Fehler, wenn der WKT kein MULTIPOLYGON ist.
Verwenden Sie diese Funktion nicht, wenn Sie sich vollkommen sicher sind, dass ihre WKT Geometrie nur aus MultiPolygonen besteht. Sie ist langsamer als ST_GeomFromText, da sie einen zusätzlichen Validierungsschritt hinzufügt. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
This method implements the SQL/MM specification. SQL-MM 3: 9.6.4
SELECT ST_MPolyFromText('MULTIPOLYGON(((0 0 1,20 0 1,20 20 1,0 20 1,0 0 1),(5 5 3,5 7 3,7 7 3,7 5 3,5 5 3)))'); SELECt ST_MPolyFromText('MULTIPOLYGON(((-70.916 42.1002,-70.9468 42.0946,-70.9765 42.0872,-70.9754 42.0875,-70.9749 42.0879,-70.9752 42.0881,-70.9754 42.0891,-70.9758 42.0894,-70.9759 42.0897,-70.9759 42.0899,-70.9754 42.0902,-70.9756 42.0906,-70.9753 42.0907,-70.9753 42.0917,-70.9757 42.0924,-70.9755 42.0928,-70.9755 42.0942,-70.9751 42.0948,-70.9755 42.0953,-70.9751 42.0958,-70.9751 42.0962,-70.9759 42.0983,-70.9767 42.0987,-70.9768 42.0991,-70.9771 42.0997,-70.9771 42.1003,-70.9768 42.1005,-70.977 42.1011,-70.9766 42.1019,-70.9768 42.1026,-70.9769 42.1033,-70.9775 42.1042,-70.9773 42.1043,-70.9776 42.1043,-70.9778 42.1048,-70.9773 42.1058,-70.9774 42.1061,-70.9779 42.1065,-70.9782 42.1078,-70.9788 42.1085,-70.9798 42.1087,-70.9806 42.109,-70.9807 42.1093,-70.9806 42.1099,-70.9809 42.1109,-70.9808 42.1112,-70.9798 42.1116,-70.9792 42.1127,-70.979 42.1129,-70.9787 42.1134,-70.979 42.1139,-70.9791 42.1141,-70.9987 42.1116,-71.0022 42.1273, -70.9408 42.1513,-70.9315 42.1165,-70.916 42.1002)))',4326);
ST_PointFromText — Erzeugt eine Punktgeometrie mit gegebener SRID von WKT. Wenn SRID nicht angegeben ist, wird sie standardmäßig auf 0 gesetzt.
geometry ST_PointFromText(
text WKT)
;
geometry ST_PointFromText(
text WKT, integer srid)
;
Erzeugt ein PostGIS ST_Geometrie Punktobjekt von der OGC Well-known-Text Darstellung. Wenn die SRID nicht angegeben ist, wird sie standardmäßig auf "unknown" (zurzeit 0) gesetzt. Falls die Geometrie nicht in der WKT Punktdarstellung vorliegt, wird NULL zurückgegeben. Bei einer invaliden WKT Darstellung wird eine Fehlermeldung angezeigt.
Die Funktion ST_PointFromText hat zwei Varianten. Die erste Variante nimmt keine SRID entgegen und gibt eine Geometrie ohne ein bestimmtes Koordinatenreferenzsystem aus. Die zweite Variante nimmt eine SRID als zweiten Übergabewert entgegen und gibt eine Geometrie zurück, die diese SRID als Teil ihrer Metadaten beinhaltet. Die SRID muss in der Tabelle "spatial_ref_sys" definiert sein. |
Verwenden Sie diese Funktion nicht, wenn Sie sich vollkommen sicher sind, dass ihre WKT Geometrie nur aus Punkten besteht. Sie ist langsamer als ST_GeomFromText, da sie einen zusätzlichen Validierungsschritt hinzufügt. Wenn Sie Punkte aus Koordinaten in Länge und Breite erstellen und mehr auf Rechenleistung und Genauigkeit wertlegen als auf OGC-Konformität, so verwenden Sie bitte ST_MakePoint oder den OGC-konformen Alias ST_Point. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2 - die Option SRID ist vom Konformitätstest.
This method implements the SQL/MM specification. SQL-MM 3: 6.1.8
ST_PolygonFromText — Erzeugt eine Geometrie aus WKT mit der angegebenen SRID. Wenn keine SRID angegeben wird, wird diese standardmäßig auf 0 gesetzt.
geometry ST_PolygonFromText(
text WKT)
;
geometry ST_PolygonFromText(
text WKT, integer srid)
;
Erzeugt eine Geometrie mit gegebener SRID von WKT. Wenn SRID nicht angegeben ist, wird sie standardmäßig auf 0 gesetzt. Gibt NULL zurück, wenn WKT kein Polygon ist.
OGC SPEC 3.2.6.2 - Die Option SRID stammt aus dem Konformitätstest
Verwenden Sie diese Funktion nicht, wenn Sie sich vollkommen sicher sind, dass ihre WKT Geometrie nur aus Polygonen besteht. Sie ist langsamer als ST_GeomFromText, da sie einen zusätzlichen Validierungsschritt hinzufügt. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
This method implements the SQL/MM specification. SQL-MM 3: 8.3.6
SELECT ST_PolygonFromText('POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239, -71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))'); st_polygonfromtext ------------------ 010300000001000000050000006... SELECT ST_PolygonFromText('POINT(1 2)') IS NULL as point_is_notpoly; point_is_not_poly ---------- t
LINESTRING
mit gegebener SRID aus einer WKB-DarstellungST_GeogFromWKB — Erzeugt ein geographisches Objekt aus der Well-known-Binary (WKB) oder der erweiterten Well-known-Binary (EWKB) Darstellung.
geography ST_GeogFromWKB(
bytea wkb)
;
Die Funktion ST_GeogFromWKB
empfängt eine Well-known-Binary (WKB) oder eine erweiterte PostGIS WKB (EWKB) Darstellung einer Geometrie und erzeugt eine Instanz des entsprechenden geographischen Datentyps. Diese Funktion übernimmt die Rolle der Geometrie-Factory/Fabrik in SQL.
Wenn die SRID nicht festgelegt ist, wird 4326 (WGS 84) angenommen.
This method supports Circular Strings and Curves
--Obwohl die BYTEA Darstellung einzelne "\" enthält, müssen diese beim Einfügen in eine Tabelle maskiert werden SELECT ST_AsText( ST_GeogFromWKB(E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q\\270~\\\\\\300\\323Mb\\020X\\231C@\\020X9\\264\\310~\\\\\\300)\\\\\\217\\302\\365\\230C@') ); st_astext ------------------------------------------------------ LINESTRING(-113.98 39.198,-113.981 39.195) (1 row)
ST_GeomFromEWKB — Gibt einen geometrischen Datentyp (ST_Geometry) aus einer Well-known-Binary (WKB) Darstellung zurück.
geometry ST_GeomFromEWKB(
bytea EWKB)
;
Erzeugt ein PostGIS ST_Geometry Objekt aus der erweiterten OGC Well-known-Text (EWKT) Darstellung.
EWKB ist kein Format des OGC Standards, sondern ein PostGIS eigenes Format, welches den Identifikator (SRID) des räumlichen Koordinatenreferenzsystem mit einbindet |
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen und TIN eingeführt.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Binärdarstellung des Linienzuges LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932) in NAD 83 (4269).
ANMERKUNG: Obwohl die Bytefelder durch \ getrennt sind und auch ' aufweisen können, müssen wir beides mit \ maskieren; wenn "standard_conforming_strings" ausgeschaltet ist mit ''. Somit sieht diese Darstellung nicht genauso wie die AsEWKB Darstellung aus. |
SELECT ST_GeomFromEWKB(E'\\001\\002\\000\\000 \\255\\020\\000\\000\\003\\000\\000\\000\\344J= \\013B\\312Q\\300n\\303(\\010\\036!E@''\\277E''K \\312Q\\300\\366{b\\235*!E@\\225|\\354.P\\312Q \\300p\\231\\323e1!E@');
Ab PostgreSQL 9.1 - ist standard_conforming_strings standardmäßig auf "on" gesetzt. Bei Vorgängerversionen war es "off". Sie können die Standardvorgaben für eine einzelne Abfrage ändern oder auf Datenbank- oder Serverebene setzen. Unterhalb steht, wie Sie dies mit standard_conforming_strings = on umsetzten können. In diesem Fall maskieren wir das ' mit dem ANSI Zeichen ', aber Schrägstriche werden nicht maskiert |
set standard_conforming_strings = on; SELECT ST_GeomFromEWKB('\001\002\000\000 \255\020\000\000\003\000\000\000\344J=\012\013B \312Q\300n\303(\010\036!E@''\277E''K\012\312Q\300\366{b\235*!E@\225|\354.P\312Q\012\300p\231\323e1')
ST_GeomFromWKB — Erzeugt ein geometrisches Objekt aus der Well-known-Binary (WKB) Darstellung und einer optionalen SRID.
geometry ST_GeomFromWKB(
bytea geom)
;
geometry ST_GeomFromWKB(
bytea geom, integer srid)
;
Die Funktion ST_GeogFromWKB
nimmt eine Well-known-Binary (WKB) Darstellung und eine Id für das Koordinatenreferenzsystem (SRID
) entgegen und erzeugt eine Instanz des entsprechenden geometrischen Datentyps. Diese Funktion übernimmt die Rolle der Geometrie-Factory in SQL. Ist eine alternative Bezeichnung für ST_WKBToSQL.
Wenn die SRID nicht festgelegt ist, wird sie standardmäßig auf 0 (Unknown) gesetzt.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.7.2 - die optionale SRID kommt vom Konformitätstest.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.41
This method supports Circular Strings and Curves
--Obwohl die BYTEA Darstellung einzelne "\" enthält, müssen diese beim Einfügen in eine Tabelle maskiert werden -- ausgenommen standard_conforming_strings ist auf "on" gesetzt. SELECT ST_AsEWKT( ST_GeomFromWKB(E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q\\270~\\\\\\300\\323Mb\\020X\\231C@\\020X9\\264\\310~\\\\\\300)\\\\\\217\\302\\365\\230C@',4326) ); st_asewkt ------------------------------------------------------ SRID=4326;LINESTRING(-113.98 39.198,-113.981 39.195) (1 row) SELECT ST_AsText( ST_GeomFromWKB( ST_AsEWKB('POINT(2 5)'::geometry) ) ); st_astext ------------ POINT(2 5) (1 row)
ST_LineFromWKB — Erzeugt einen LINESTRING
mit gegebener SRID aus einer WKB-Darstellung
geometry ST_LineFromWKB(
bytea WKB)
;
geometry ST_LineFromWKB(
bytea WKB, integer srid)
;
Die Funktion ST_GeogFromWKB
nimmt eine Well-known-Binary Darstellung der Geometrie und eine Id für das Koordinatenreferenzsystem (SRID
) entgegen und erzeugt eine Instanz des entsprechenden geometrischen Datentyps - in diesem Fall eine Geometrie vom Typ LineString
. Diese Funktion übernimmt die Rolle der Geometrie-Factory in SQL.
Wenn keine SRID angegeben ist, wird diese auf 0 gesetzt. NULL
wird zurückgegeben, wenn die Eingabe bytea
keinen LINESTRING
darstellt.
OGC SPEC 3.2.6.2 - die Option SRID ist vom Konformitätstest. |
Wenn Sie wissen, dass Ihre Geometrie nur aus |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
This method implements the SQL/MM specification. SQL-MM 3: 7.2.9
ST_LinestringFromWKB — Erzeugt eine Geometrie mit gegebener SRID aus einer WKB-Darstellung.
geometry ST_LinestringFromWKB(
bytea WKB)
;
geometry ST_LinestringFromWKB(
bytea WKB, integer srid)
;
Die Funktion ST_LinestringFromWKB
nimmt eine Well-known-Binary Darstellung der Geometrie und eine Id für das Koordinatenreferenzsystem (SRID
) entgegen und erzeugt eine Instanz des entsprechenden geometrischen Datentyps - in diesem Fall eine Geometrie vom Typ LineString
. Diese Funktion übernimmt die Rolle der Geometrie-Factory in SQL.
Wenn keine SRID angegeben ist, wird diese standardmäßig auf 0 gesetzt. NULL
wird zurückgegeben, wenn die Eingabe bytea
keinen LINESTRING
darstellt. Ist ein Alias für ST_LineFromWKB.
OGC SPEC 3.2.6.2 - optionale SRID ist vom Konformitätstest. |
Wenn Sie wissen, dass Ihre Geometrie nur aus |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
This method implements the SQL/MM specification. SQL-MM 3: 7.2.9
SELECT ST_LineStringFromWKB( ST_AsBinary(ST_GeomFromText('LINESTRING(1 2, 3 4)')) ) AS aline, ST_LinestringFromWKB( ST_AsBinary(ST_GeomFromText('POINT(1 2)')) ) IS NULL AS null_return; aline | null_return ------------------------------------------------ 010200000002000000000000000000F ... | t
ST_PointFromWKB — Erzeugt eine Geometrie mit gegebener SRID von WKB.
geometry ST_GeomFromWKB(
bytea geom)
;
geometry ST_GeomFromWKB(
bytea geom, integer srid)
;
Die Funktion ST_PointFromWKB
nimmt eine Well-known-Binary Darstellung der Geometrie und eine Id für das Koordinatenreferenzsystem (SRID
) entgegen und erzeugt eine Instanz des entsprechenden geometrischen Datentyps - in diesem Fall eine Geometrie vom Typ POINT
. Diese Funktion übernimmt die Rolle der Geometrie-Factory in SQL.
Wenn keine SRID angegeben ist, wird diese standardmäßig auf 0 gesetzt. NULL
wird zurückgegeben, wenn die Eingabe bytea
keinen POINT
darstellt.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.7.2
This method implements the SQL/MM specification. SQL-MM 3: 6.1.9
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
ST_Box2dFromGeoHash — Gibt die BOX2D einer GeoHash Zeichenkette zurück.
box2d ST_Box2dFromGeoHash(
text geohash, integer precision=full_precision_of_geohash)
;
Gibt die BOX2D einer GeoHash Zeichenkette zurück.
If no precision
is specified ST_Box2dFromGeoHash returns a BOX2D based on full precision of the input GeoHash string.
Wenn precision
angegeben wird, verwendet ST_Box2dFromGeoHash entsprechend viele Zeichen des GeoHash um die BOX2D zu erzeugen. Niedrigere Werte erzeugen eine größere BOX2D und höhere Werte erhöhen die Genauigkeit.
Verfügbarkeit: 2.1.0
SELECT ST_Box2dFromGeoHash('9qqj7nmxncgyy4d0dbxqz0'); st_geomfromgeohash -------------------------------------------------- BOX(-115.172816 36.114646,-115.172816 36.114646) SELECT ST_Box2dFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 0); st_box2dfromgeohash ---------------------- BOX(-180 -90,180 90) SELECT ST_Box2dFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10); st_box2dfromgeohash --------------------------------------------------------------------------- BOX(-115.17282128334 36.1146408319473,-115.172810554504 36.1146461963654)
ST_GeomFromGeoHash — Gibt die Geometrie einer GeoHash Zeichenfolge zurück.
geometry ST_GeomFromGeoHash(
text geohash, integer precision=full_precision_of_geohash)
;
Gibt die Geometrie einer GeoHash Zeichenfolge zurück. Der geometrische Datentyp ist ein Polygon, das den GeoHash begrenzt.
Wenn keine precision
angegeben wird, dann gibt ST_GeomFromGeoHash ein Polygon zurück, das auf der vollständigen Genauigkeit der GeoHash Zeichenfolge beruht.
Wenn precision
angegeben wird, verwendet ST_GeomFromGeoHash entsprechend viele Zeichen des GeoHash, um das Polygon zu erzeugen.
Verfügbarkeit: 2.1.0
SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0')); st_astext -------------------------------------------------------------------------------------------------------------------------- POLYGON((-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646)) SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 4)); st_astext ------------------------------------------------------------------------------------------------------------------------------ POLYGON((-115.3125 36.03515625,-115.3125 36.2109375,-114.9609375 36.2109375,-114.9609375 36.03515625,-115.3125 36.03515625)) SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10)); st_astext ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- POLYGON((-115.17282128334 36.1146408319473,-115.17282128334 36.1146461963654,-115.172810554504 36.1146461963654,-115.172810554504 36.1146408319473,-115.17282128334 36.1146408319473))
ST_GeomFromGML — Nimmt als Eingabe eine GML-Darstellung der Geometrie und gibt ein geometrisches PostGIS-Objekt aus.
geometry ST_GeomFromGML(
text geomgml)
;
geometry ST_GeomFromGML(
text geomgml, integer srid)
;
Erzeugt ein PostGIS ST_Geometry Objekt aus der OGC GML Darstellung.
ST_GeomFromGML funktioniert nur bei Fragmenten von GML-Geometrien. Auf das ganze GML-Dokument angewendet führt zu einer Fehlermeldung.
Unterstützte OGC GML Versionen:
GML 3.2.1 Namespace
GML 3.1.1 Simple Features profile SF-2 (inkl. GML 3.1.0 und 3.0.0 Rückwertskompatibilität)
GML 2.1.2
OGC GML Standards, vgl.: http://www.opengeospatial.org/standards/gml:
Verfügbarkeit: 1.5, benötigt libxml2 1.6+
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen und TIN eingeführt.
Erweiterung: 2.0.0 Standardwert für den optionalen Parameter SRID eingefügt.
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
GML erlaubt das Mischen von Dimensionen (z.B. 2D und 3D innerhalb der selben MultiGeometry). Da PostGIS Geometrien dies nicht zulassen, wandelt ST_GeomFromGML die gesamte Geometrie in 2D um, sobald eine fehlende Z-Dimension existiert.
GML unterstützt uneinheitliche Koordinatenreferenzsysteme innerhalb derselben Mehrfachgeometrie. Da dies der geometrische Datentyp von PostGIS nicht unterstützt, wird in diesem Fall die Subgeometrie in das Referenzsystem des Knotens, der die Wurzel darstellt, umprojiziert. Wenn kein Attribut "srsName" für den Knoten der GML-Wurzel vorhanden ist, gibt die Funktion eine Fehlermeldung aus.
Die Funktion ST_GeomFromGML ist nicht kleinlich, was die explizite Vergabe eines GML-Namensraums betrifft. Bei üblichen Anwendungen können Sie die explizite Vergabe weglassen. Wenn Sie aber das XLink Feature von GML verwenden wollen, müssen Sie den Namensraum explizit angeben.
SQL/MM Kurvengeometrien werden von der Funktion ST_GeomFromGML nicht unterstützt |
SELECT ST_GeomFromGML(' <gml:LineString srsName="EPSG:4269"> <gml:coordinates> -71.16028,42.258729 -71.160837,42.259112 -71.161143,42.25932 </gml:coordinates> </gml:LineString >');
SELECT ST_GeomFromGML(' <gml:LineString xmlns:gml="http://www.opengis.net/gml" xmlns:xlink="http://www.w3.org/1999/xlink" srsName="urn:ogc:def:crs:EPSG::4269"> <gml:pointProperty> <gml:Point gml:id="p1" ><gml:pos >42.258729 -71.16028</gml:pos ></gml:Point> </gml:pointProperty> <gml:pos >42.259112 -71.160837</gml:pos> <gml:pointProperty> <gml:Point xlink:type="simple" xlink:href="#p1"/> </gml:pointProperty> </gml:LineString >'););
SELECT ST_AsEWKT(ST_GeomFromGML(' <gml:PolyhedralSurface> <gml:polygonPatches> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing ><gml:posList srsDimension="3" >0 0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList ></gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing ><gml:posList srsDimension="3" >0 0 0 0 1 0 1 1 0 1 0 0 0 0 0</gml:posList ></gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing ><gml:posList srsDimension="3" >0 0 0 1 0 0 1 0 1 0 0 1 0 0 0</gml:posList ></gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing ><gml:posList srsDimension="3" >1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml:posList ></gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing ><gml:posList srsDimension="3" >0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml:posList ></gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing ><gml:posList srsDimension="3" >0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml:posList ></gml:LinearRing> </gml:exterior> </gml:PolygonPatch> </gml:polygonPatches> </gml:PolyhedralSurface >')); -- result -- POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)), ((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)), ((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)), ((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)), ((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)), ((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)))
ST_GeomFromGeoJSON — Nimmt als Eingabe eine GeoJSON-Darstellung der Geometrie und gibt ein geometrisches PostGIS-Objekt aus.
geometry ST_GeomFromGeoJSON(
text geomjson)
;
geometry ST_GeomFromGeoJSON(
json geomjson)
;
geometry ST_GeomFromGeoJSON(
jsonb geomjson)
;
Erzeugt ein geometrisches PostGIS Objekt aus der GeoJSON Darstellung.
ST_GeomFromGeoJSON funktioniert nur bei Fragmenten von JSON-Geometrien. Auf das ganze JSON-Dokument angewendet führt zu einer Fehlermeldung.
Enhanced: 3.0.0 parsed geometry defaults to SRID=4326 if not specified otherwise.
Erweiterung: 2.5.0 unterstützt nun auch die Eingabe von json und jsonb.
Verfügbarkeit: 2.0.0 benötigt - JSON-C >= 0.9
Wenn Sie die JSON-C Unterstützung nicht aktiviert haben, sehen Sie eine Fehlermeldung anstatt einer Ausgabe. Um JSON-C zu aktivieren, führen Sie bitte configure --with-jsondir=/path/to/json-c aus. Für Einzelheiten siehe Section 2.2.3, “Konfiguration”. |
This function supports 3d and will not drop the z-index.
SELECT ST_AsText(ST_GeomFromGeoJSON('{"type":"Point","coordinates":[-48.23456,20.12345]}')) As wkt; wkt ------ POINT(-48.23456 20.12345)
-- ein 3D Polygonzug SELECT ST_AsText(ST_GeomFromGeoJSON('{"type":"LineString","coordinates":[[1,2,3],[4,5,6],[7,8,9]]}')) As wkt; wkt ------------------- LINESTRING(1 2,4 5,7 8)
ST_GeomFromKML — Nimmt als Eingabe eine KML-Darstellung der Geometrie und gibt ein geometrisches PostGIS-Objekt aus.
geometry ST_GeomFromKML(
text geomkml)
;
Erzeugt ein PostGIS ST_Geometry Objekt aus der OGC KML Darstellung.
T_GeomFromKML funktioniert nur bei Fragmenten von KML-Geometrien. Auf das ganze KML-Dokument angewendet führt zu einer Fehlermeldung.
Unterstützte OGC KML Versionen:
KML 2.2.0 Namespace
OGC KML Standards, vgl.: http://www.opengeospatial.org/standards/kml:
Verfügbarkeit: 1.5, benötigt libxml2 2.6+
This function supports 3d and will not drop the z-index.
SQL/MM Kurvengeometrien werden von der Funktion ST_GeomFromKML nicht unterstützt |
ST_GeomFromTWKB — Erzeugt eine Geometrie aus einer TWKB ("Tiny Well-Known Binary") Darstellung.
geometry ST_GeomFromTWKB(
bytea twkb)
;
Die Funktion ST_GeomFromTWKB
nimmt eine TWKB ("Tiny Well-Known Binary") Darstellung und erzeugt ein Objekt mit dem entsprechenden geometrischen Datentyp.
SELECT ST_AsText(ST_GeomFromTWKB(ST_AsTWKB('LINESTRING(126 34, 127 35)'::geometry))); st_astext ----------------------------- LINESTRING(126 34, 127 35) (1 row) SELECT ST_AsEWKT( ST_GeomFromTWKB(E'\\x620002f7f40dbce4040105') ); st_asewkt ------------------------------------------------------ LINESTRING(-113.98 39.198,-113.981 39.195) (1 row)
ST_GMLToSQL — Gibt einen spezifizierten ST_Geometry Wert aus einer GML-Darstellung zurück. Dies ist ein Aliasname für ST_GeomFromGML
geometry ST_GMLToSQL(
text geomgml)
;
geometry ST_GMLToSQL(
text geomgml, integer srid)
;
This method implements the SQL/MM specification. SQL-MM 3: 5.1.50 (ausgenommen Unterstützung von Kurven).
Verfügbarkeit: 1.5, benötigt libxml2 1.6+
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen und TIN eingeführt.
Erweiterung: 2.0.0 Standardwert für den optionalen Parameter SRID eingefügt.
ST_LineFromEncodedPolyline — Erzeugt einen LineString aus einem codierten Linienzug.
geometry ST_LineFromEncodedPolyline(
text polyline, integer precision=5)
;
Erzeugt einen LineString aus einem codierten Linienzug.
Der optionale Parameter precision
gibt an wieviele Dezimalstellen der kodierten Polylinie erhalten bleiben. Dieser Wert sollte beim Dekodieren und beim Kodieren ident sein, sonst entstehen inkorrekte Koordinaten.
Siehe http://developers.google.com/maps/documentation/utilities/polylinealgorithm
Verfügbarkeit: 2.2.0
-- Erzeugung eines Linienzuges aus einer Polyline SELECT ST_AsEWKT(ST_LineFromEncodedPolyline('_p~iF~ps|U_ulLnnqC_mqNvxq`@')); -- result -- SRID=4326;LINESTRING(-120.2 38.5,-120.95 40.7,-126.453 43.252) -- Unterschiedliche Kodierungsgenauigkeit der Polylinie auswählen SELECT ST_AsEWKT(ST_LineFromEncodedPolyline('_p~iF~ps|U_ulLnnqC_mqNvxq`@',6)); -- result -- SRID=4326;LINESTRING(-12.02 3.85,-12.095 4.07,-12.6453 4.3252)
ST_PointFromGeoHash — Gibt einen Punkt von einer GeoHash Zeichenfolge zurück.
point ST_PointFromGeoHash(
text geohash, integer precision=full_precision_of_geohash)
;
Gibt die Geometrie einer GeoHash Zeichenfolge zurück. Der Punkt entspricht dem Mittelpunkt des GeoHas.
Wenn keine precision
angegeben wird, dann gibt ST_PointFromGeoHash einen Punkt zurück, der auf der vollständigen Genauigkeit der gegebenen GeoHash Zeichenfolge beruht.
Wenn precision
angegeben wird, verwendet ST_PointFromGeoHash entsprechend viele Zeichen des GeoHash, um den Punkt zu erzeugen.
Verfügbarkeit: 2.1.0
SELECT ST_AsText(ST_PointFromGeoHash('9qqj7nmxncgyy4d0dbxqz0')); st_astext ------------------------------ POINT(-115.172816 36.114646) SELECT ST_AsText(ST_PointFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 4)); st_astext ----------------------------------- POINT(-115.13671875 36.123046875) SELECT ST_AsText(ST_PointFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10)); st_astext ------------------------------------------- POINT(-115.172815918922 36.1146435141563)
ST_FromFlatGeobufToTable — Creates a table based on the structure of FlatGeobuf data.
void ST_FromFlatGeobufToTable(
text schemaname, text tablename, bytea FlatGeobuf input data)
;
Creates a table based on the structure of FlatGeobuf data. (http://flatgeobuf.org).
schema
Schema name.
table
Table name.
data
Input FlatGeobuf data.
Availability: 3.2.0
ST_FromFlatGeobuf — Reads FlatGeobuf data.
setof anyelement ST_FromFlatGeobuf(
anyelement Table reference, bytea FlatGeobuf input data)
;
Reads FlatGeobuf data (http://flatgeobuf.org). NOTE: PostgreSQL bytea cannot exceed 1GB.
tabletype
reference to a table type.
data
input FlatGeobuf data.
Availability: 3.2.0
ST_AsEWKT — Gibt die Well-known-Text(WKT) Darstellung der Geometrie mit den SRID-Metadaten zurück.
text ST_AsEWKT(
geometry g1)
;
text ST_AsEWKT(
geometry g1, integer maxdecimaldigits=15)
;
text ST_AsEWKT(
geography g1)
;
text ST_AsEWKT(
geography g1, integer maxdecimaldigits=15)
;
Returns the Well-Known Text representation of the geometry prefixed with the SRID. The optional maxdecimaldigits
argument may be used to reduce the maximum number of decimal digits after floating point used in output (defaults to 15).
To perform the inverse conversion of EWKT representation to PostGIS geometry use ST_GeomFromEWKT.
Using the |
The WKT spec does not include the SRID. To get the OGC WKT format use ST_AsText. |
WKT format does not maintain precision so to prevent floating truncation, use ST_AsBinary or ST_AsEWKB format for transport. |
Enhanced: 3.1.0 support for optional precision parameter.
Erweiterung: Mit 2.0.0 wurde die Unterstützung für den geographischen Datentyp, polyedrische Oberflächen, Dreiecke und TIN eingeführt.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
SELECT ST_AsEWKT('0103000020E61000000100000005000000000000 000000000000000000000000000000000000000000000000000000 F03F000000000000F03F000000000000F03F000000000000F03 F000000000000000000000000000000000000000000000000'::geometry); st_asewkt -------------------------------- SRID=4326;POLYGON((0 0,0 1,1 1,1 0,0 0)) (1 row) SELECT ST_AsEWKT('0108000080030000000000000060E30A4100000000785C0241000000000000F03F0000000018 E20A4100000000485F024100000000000000400000000018 E20A4100000000305C02410000000000000840') --st_asewkt--- CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)
ST_AsText — Gibt die Well-known-Text(WKT) Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.
text ST_AsText(
geometry g1)
;
text ST_AsText(
geometry g1, integer maxdecimaldigits = 15)
;
text ST_AsText(
geography g1)
;
text ST_AsText(
geography g1, integer maxdecimaldigits = 15)
;
Returns the OGC Well-Known Text (WKT) representation of the geometry/geography. The optional maxdecimaldigits
argument may be used to limit the number of digits after the decimal point in output ordinates (defaults to 15).
To perform the inverse conversion of WKT representation to PostGIS geometry use ST_GeomFromText.
The standard OGC WKT representation does not include the SRID. To include the SRID as part of the output representation, use the non-standard PostGIS function ST_AsEWKT |
The textual representation of numbers in WKT may not maintain full floating-point precision. To ensure full accuracy for data storage or transport it is best to use Well-Known Binary (WKB) format (see ST_AsBinary and |
Using the |
Verfügbarkeit: 1.5 - Unterstützung von geograpischen Koordinaten.
Erweiterung: 2.5 - der optionale Parameter "precision" wurde eingeführt.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
This method implements the SQL/MM specification. SQL-MM 3: 5.1.25
This method supports Circular Strings and Curves
SELECT ST_AsText('01030000000100000005000000000000000000 000000000000000000000000000000000000000000000000 F03F000000000000F03F000000000000F03F000000000000F03 F000000000000000000000000000000000000000000000000'); st_astext -------------------------------- POLYGON((0 0,0 1,1 1,1 0,0 0))
Full precision output is the default.
SELECT ST_AsText('POINT(111.1111111 1.1111111)')); st_astext ------------------------------ POINT(111.1111111 1.1111111)
The maxdecimaldigits
argument can be used to limit output precision.
SELECT ST_AsText('POINT(111.1111111 1.1111111)'), 2); st_astext -------------------- POINT(111.11 1.11)
ST_AsBinary — Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
bytea ST_AsBinary(
geometry g1)
;
bytea ST_AsBinary(
geometry g1, text NDR_or_XDR)
;
bytea ST_AsBinary(
geography g1)
;
bytea ST_AsBinary(
geography g1, text NDR_or_XDR)
;
Returns the OGC/ISO Well-Known Binary (WKB) representation of the geometry. The first function variant defaults to encoding using server machine endian. The second function variant takes a text argument specifying the endian encoding, either little-endian ('NDR') or big-endian ('XDR').
WKB format is useful to read geometry data from the database and maintaining full numeric precision. This avoids the precision rounding that can happen with text formats such as WKT.
To perform the inverse conversion of WKB to PostGIS geometry use ST_GeomFromWKB.
The OGC/ISO WKB format does not include the SRID. To get the EWKB format which does include the SRID use ST_AsEWKB |
The default behavior in PostgreSQL 9.0 has been changed to output bytea in hex encoding. If your GUI tools require the old behavior, then SET bytea_output='escape' in your database. |
Erweiterung: 2.0.0 - Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.
Erweiterung: 2.0.0 - Unterstützung für höherdimensionale Koordinatensysteme eingeführt.
Erweiterung: 2.0.0 Unterstützung zum Festlegen des Endian beim geographischen Datentyp eingeführt.
Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.
Änderung: 2.0.0 - Eingabewerte für diese Funktion dürfen nicht "unknown" sein -- es muss sich um eine Geometrie handeln. Konstrukte, wie ST_AsBinary('POINT(1 2)')
, sind nicht länger gültig und geben folgende Fehlermeldung aus: n st_asbinary(unknown) is not unique error
. Dieser Code muss in ST_AsBinary('POINT(1 2)'::geometry);
geändert werden. Falls dies nicht möglich ist, so installieren Sie bitte legacy.sql
.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
This method implements the SQL/MM specification. SQL-MM 3: 5.1.37
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports 3d and will not drop the z-index.
SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)); st_asbinary -------------------------------- \x01030000000100000005000000000000000000000000000000000000000000000000000000000000 000000f03f000000000000f03f000000000000f03f000000000000f03f0000000000000000000000 00000000000000000000000000
SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR'); st_asbinary -------------------------------- \x000000000300000001000000050000000000000000000000000000000000000000000000003ff000 00000000003ff00000000000003ff00000000000003ff00000000000000000000000000000000000 00000000000000000000000000
ST_AsEWKB — Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta data.
bytea ST_AsEWKB(
geometry g1)
;
bytea ST_AsEWKB(
geometry g1, text NDR_or_XDR)
;
Returns the Extended Well-Known Binary (EWKB) representation of the geometry with SRID metadata. The first function variant defaults to encoding using server machine endian. The second function variant takes a text argument specifying the endian encoding, either little-endian ('NDR') or big-endian ('XDR').
WKB format is useful to read geometry data from the database and maintaining full numeric precision. This avoids the precision rounding that can happen with text formats such as WKT.
To perform the inverse conversion of EWKB to PostGIS geometry use ST_GeomFromEWKB.
To get the OGC/ISO WKB format use ST_AsBinary. Note that OGC/ISO WKB format does not include the SRID. |
Erweiterung: 2.0.0 - Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)); st_asewkb -------------------------------- \x0103000020e610000001000000050000000000000000000000000000000000000000000000000000 00000000000000f03f000000000000f03f000000000000f03f000000000000f03f00000000000000 0000000000000000000000000000000000
SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR'); st_asewkb -------------------------------- \x0020000003000010e600000001000000050000000000000000000000000000000000000000000000 003ff00000000000003ff00000000000003ff00000000000003ff000000000000000000000000000 0000000000000000000000000000000000
ST_AsHEXEWKB — Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung.
text ST_AsHEXEWKB(
geometry g1, text NDRorXDR)
;
text ST_AsHEXEWKB(
geometry g1)
;
Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung. Wenn keine Zeichenkodierung angegeben wurde, wird NDR verwendet.
Verfügbarkeit: 1.2.2 |
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
SELECT ST_AsHEXEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)); --gibt die selbe Antword wie SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)::text; st_ashexewkb -------- 0103000020E6100000010000000500 00000000000000000000000000000000 00000000000000000000000000000000F03F 000000000000F03F000000000000F03F000000000000F03 F000000000000000000000000000000000000000000000000
ST_AsEncodedPolyline — Erzeugt eine codierte Polylinie aus einer LineString Geometrie.
text ST_AsEncodedPolyline(
geometry geom, integer precision=5)
;
Gibt die Geometrie als kodierte Polyline aus. Dieses Format wird von "Google Maps" mit precision=5 und von "Open Source Routing Machine" mit precision=5 oder 6 verwendet.
Der optionale Parameter precision
gibt an wieviele Dezimalstellen der kodierten Polylinie erhalten bleiben. Dieser Wert sollte beim Dekodieren und beim Kodieren ident sein, sonst entstehen inkorrekte Koordinaten.
Verfügbarkeit: 2.2.0
Grundlegendes
SELECT ST_AsEncodedPolyline(GeomFromEWKT('SRID=4326;LINESTRING(-120.2 38.5,-120.95 40.7,-126.453 43.252)')); --result-- |_p~iF~ps|U_ulLnnqC_mqNvxq`@
Anwendung in Verbindung mit LINESTRING und ST_Segmentize für den geographischen Datentyp, und auf Google Maps stellen
-- das SQL von Boston nach San Francisco, segmentiert alle 100 KM SELECT ST_AsEncodedPolyline( ST_Segmentize( ST_GeogFromText('LINESTRING(-71.0519 42.4935,-122.4483 37.64)'), 100000)::geometry) As encodedFlightPath;
In JavaScript sieht dies ungefähr wie folgt aus, wobei die $ Variable durch das Abfrageergebnis ersetzt wird
<script type="text/javascript" src="http://maps.googleapis.com/maps/api/js?libraries=geometry" ></script> <script type="text/javascript"> flightPath = new google.maps.Polyline({ path: google.maps.geometry.encoding.decodePath("$encodedFlightPath"), map: map, strokeColor: '#0000CC', strokeOpacity: 1.0, strokeWeight: 4 }); </script>
ST_AsFlatGeobuf — Return a FlatGeobuf representation of a set of rows.
bytea ST_AsFlatGeobuf(
anyelement set row)
;
bytea ST_AsFlatGeobuf(
anyelement row, bool index)
;
bytea ST_AsFlatGeobuf(
anyelement row, bool index, text geom_name)
;
Return a FlatGeobuf representation (http://flatgeobuf.org) of a set of rows corresponding to a FeatureCollection. NOTE: PostgreSQL bytea cannot exceed 1GB.
row
Datenzeilen mit zumindest einer Geometriespalte.
index
toggle spatial index creation. Default is false.
geom_name
ist die Bezeichnung der Geometriespalte in den Datenzeilen. Wenn NULL, dann wird standardmäßig die erste aufgefundene Geometriespalte verwendet.
Availability: 3.2.0
ST_AsGeobuf — Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.
bytea ST_AsGeobuf(
anyelement set row)
;
bytea ST_AsGeobuf(
anyelement row, text geom_name)
;
Gibt Zeilen einer FeatureCollection in der Geobuf Darstellung (https://github.com/mapbox/geobuf) aus. Von jeder Eingabegeometrie wird die maximale Genauigkeit analysiert, um eine optimale Speicherung zu erreichen. Anmerkung: In der jetzigen Form kann Geobuf nicht "gestreamt" werden, wodurch die gesamte Ausgabe im Arbeitsspeicher zusammengestellt wird.
row
Datenzeilen mit zumindest einer Geometriespalte.
geom_name
ist die Bezeichnung der Geometriespalte in den Datenzeilen. Wenn NULL, dann wird standardmäßig die erste aufgefundene Geometriespalte verwendet.
Verfügbarkeit: 2.4.0
ST_AsGeoJSON — Return a geometry as a GeoJSON element.
text ST_AsGeoJSON(
record feature, text geomcolumnname, integer maxdecimaldigits=9, boolean pretty_bool=false)
;
text ST_AsGeoJSON(
geometry geom, integer maxdecimaldigits=9, integer options=8)
;
text ST_AsGeoJSON(
geography geog, integer maxdecimaldigits=9, integer options=0)
;
Returns a geometry as a GeoJSON "geometry", or a row as a GeoJSON "feature". (See the GeoJSON specifications RFC 7946). 2D and 3D Geometries are both supported. GeoJSON only support SFS 1.1 geometry types (no curve support for example).
Der Parameter maxdecimaldigits
kann zur Reduzierung der Nachkommastellen in der Ausgabe verwendet werden (standardmäßig 9). Wenn EPSG:4326 verwendet wird, kann maxdecimaldigits
=6 eine gute Wahl für viele Karten bei der Bildschirmausgabe sein.
Using the |
The options
argument can be used to add BBOX or CRS in GeoJSON output:
0: keine option
1: GeoJSON BBOX
2: GeoJSON CRS-Kurzform (z.B. EPSG:4326)
4: GeoJSON CRS-Langform (z.B. urn:ogc:def:crs:EPSG::4326)
8: GeoJSON CRS-Kurzform, außer bei EPSG:4326 (default)
The GeoJSON specification states that polygons are oriented using the Right-Hand Rule, and some clients require this orientation. This can be ensured by using ST_ForcePolygonCCW . The specification also requires that geometry be in the WGS84 coordinate system (SRID = 4326). If necessary geometry can be projected into WGS84 using ST_Transform: ST_Transform( geom, 4326 )
.
GeoJSON can be tested and viewed online at geojson.io and geojsonlint.com. It is widely supported by web mapping frameworks:
Verfügbarkeit: 1.3.4
Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.
Änderung: 2.0.0 Unterstützung für Standardargumente und benannte Argumente.
Änderung: 3.0.0 Unterstützung von Datensätzen bei der Eingabe
Änderung: 3.0.0 Ausgabe der SRID wenn nicht EPSG:4326
This function supports 3d and will not drop the z-index.
Generate a FeatureCollection:
SELECT json_build_object( 'type', 'FeatureCollection', 'features', json_agg(ST_AsGeoJSON(t.*)::json) ) FROM ( VALUES (1, 'one', 'POINT(1 1)'::geometry), (2, 'two', 'POINT(2 2)'), (3, 'three', 'POINT(3 3)') ) as t(id, name, geom);
{"type" : "FeatureCollection", "features" : [{"type": "Feature", "geometry": {"type":"Point","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[2,2]}, "properties": {"id": 2, "name": "two"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[3,3]}, "properties": {"id": 3, "name": "three"}}]}
Generate a Feature:
SELECT ST_AsGeoJSON(t.*) FROM (VALUES (1, 'one', 'POINT(1 1)'::geometry)) AS t(id, name, geom);
st_asgeojson ----------------------------------------------------------------------------------------------------------------- {"type": "Feature", "geometry": {"type":"Point","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}
An alternate way to generate Features with an id
property is to use JSONB functions and operators:
SELECT jsonb_build_object( 'type', 'Feature', 'id', id, 'geometry', ST_AsGeoJSON(geom)::jsonb, 'properties', to_jsonb( t.* ) - 'id' - 'geom' ) AS json FROM (VALUES (1, 'one', 'POINT(1 1)'::geometry)) AS t(id, name, geom);
json ----------------------------------------------------------------------------------------------------------------- {"id": 1, "type": "Feature", "geometry": {"type": "Point", "coordinates": [1, 1]}, "properties": {"name": "one"}}
Don't forget to transform your data to WGS84 longitude, latitude to conform with the GeoJSON specification:
SELECT ST_AsGeoJSON(ST_Transform(geom,4326)) from fe_edges limit 1;
st_asgeojson ----------------------------------------------------------------------------------------------------------- {"type":"MultiLineString","coordinates":[[[-89.734634999999997,31.492072000000000], [-89.734955999999997,31.492237999999997]]]}
3D geometries are supported:
SELECT ST_AsGeoJSON('LINESTRING(1 2 3, 4 5 6)');
{"type":"LineString","coordinates":[[1,2,3],[4,5,6]]}
ST_AsGML — Gibt die Geometrie als GML-Element - Version 2 oder 3 - zurück.
text ST_AsGML(
geometry geom, integer maxdecimaldigits=15, integer options=0)
;
text ST_AsGML(
geography geog, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null)
;
text ST_AsGML(
integer version, geometry geom, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null)
;
text ST_AsGML(
integer version, geography geog, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null)
;
Gibt die Geometrie als ein Geography Markup Language (GML) Element zurück. Ein Versionsparameter kann mit 2 oder 3 angegeben werden. Wenn kein Versionsparameter angegeben ist, wird dieser standardmäßig Version 2 angenommen. Der Parameter maxdecimaldigits
kann verwendet werden, um die Anzahl der Nachkommastellen bei der Ausgabe zu reduzieren (standardmäßig 15).
Using the |
GML 2 verweist auf Version 2.1.2, GML 3 auf Version 3.1.1
Der Übergabewert "options" ist ein Bitfeld. Es kann verwendet werden um das Koordinatenreferenzsystem bei der GML Ausgabe zu bestimmen und um die Daten in Länge/Breite anzugeben.
0: GML Kurzform für das CRS (z.B. EPSG:4326), Standardwert
1: GML Langform für das CRS (z.B. urn:ogc:def:crs:EPSG::4326)
2: Nur für GML 3, entfernt das srsDimension Attribut von der Ausgabe.
4: Nur für GML 3, Für Linien verwenden Sie bitte den Tag <LineString> anstatt <Curve>.
16: Deklarieren, dass die Daten in Breite/Länge (z.B. SRID=4326) vorliegen. Standardmäßig wird angenommen, dass die Daten planar sind. Diese Option ist nur bei Ausgabe in GML 3.1.1, in Bezug auf die Anordnung der Achsen sinnvoll. Falls Sie diese setzen, werden die Koordinaten von Länge/Breite auf Breite/Länge vertauscht.
32: Ausgabe der BBox der Geometrie (Umhüllende/Envelope).
Der Übergabewert 'namespace prefix' kann verwendet werden, um ein benutzerdefiniertes Präfix für den Namensraum anzugeben, oder kein Präfix (wenn leer). Wenn Null oder weggelassen, so wird das Präfix "gml" verwendet.
Verfügbarkeit: 1.3.2
Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.
Erweiterung: 2.0.0 Unterstützung durch Präfix eingeführt. Für GML3 wurde die Option 4 eingeführt, um die Verwendung von LineString anstatt von Kurven für Linien zu erlauben. Ebenfalls wurde die GML3 Unterstützung für polyedrische Oberflächen und TINS eingeführt, sowie die Option 32 zur Ausgabe der BBox.
Änderung: 2.0.0 verwendet standardmäßig benannte Argumente.
Erweiterung: 2.1.0 Für GML 3 wurde die Unterstützung einer ID eingeführt.
Nur die Version 3+ von ST_AsGML unterstützt polyedrische Oberflächen und TINs. |
This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 17.2
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
SELECT ST_AsGML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)); st_asgml -------- <gml:Polygon srsName="EPSG:4326" ><gml:outerBoundaryIs ><gml:LinearRing ><gml:coordinates >0,0 0,1 1,1 1,0 0,0</gml:coordinates ></gml:LinearRing ></gml:outerBoundaryIs ></gml:Polygon >
-- Koordinaten umdrehen und Ausgabe in erweitertem EPSG (16 | 1)-- SELECT ST_AsGML(3, ST_GeomFromText('POINT(5.234234233242 6.34534534534)',4326), 5, 17); st_asgml -------- <gml:Point srsName="urn:ogc:def:crs:EPSG::4326" ><gml:pos >6.34535 5.23423</gml:pos ></gml:Point >
-- Die Umhüllende/Envelope ausgeben (32) -- SELECT ST_AsGML(3, ST_GeomFromText('LINESTRING(1 2, 3 4, 10 20)',4326), 5, 32); st_asgml -------- <gml:Envelope srsName="EPSG:4326"> <gml:lowerCorner >1 2</gml:lowerCorner> <gml:upperCorner >10 20</gml:upperCorner> </gml:Envelope >
-- Die Umhüllende (32) ausgeben, umgedreht (Breite/Länge anstatt Länge/Bereite) (16), long srs (1)= 32 | 16 | 1 = 49 -- SELECT ST_AsGML(3, ST_GeomFromText('LINESTRING(1 2, 3 4, 10 20)',4326), 5, 49); st_asgml -------- <gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326"> <gml:lowerCorner >2 1</gml:lowerCorner> <gml:upperCorner >20 10</gml:upperCorner> </gml:Envelope >
-- Polyeder Beispiel -- SELECT ST_AsGML(3, ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')); st_asgml -------- <gml:PolyhedralSurface> <gml:polygonPatches> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing> <gml:posList srsDimension="3" >0 0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList> </gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing> <gml:posList srsDimension="3" >0 0 0 0 1 0 1 1 0 1 0 0 0 0 0</gml:posList> </gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing> <gml:posList srsDimension="3" >0 0 0 1 0 0 1 0 1 0 0 1 0 0 0</gml:posList> </gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing> <gml:posList srsDimension="3" >1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml:posList> </gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing> <gml:posList srsDimension="3" >0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml:posList> </gml:LinearRing> </gml:exterior> </gml:PolygonPatch> <gml:PolygonPatch> <gml:exterior> <gml:LinearRing> <gml:posList srsDimension="3" >0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml:posList> </gml:LinearRing> </gml:exterior> </gml:PolygonPatch> </gml:polygonPatches> </gml:PolyhedralSurface >
ST_AsKML — Gibt die Geometrie als GML-Element - Version 2 oder 3 - zurück.
text ST_AsKML(
geometry geom, integer maxdecimaldigits=15, text nprefix=NULL)
;
text ST_AsKML(
geography geog, integer maxdecimaldigits=15, text nprefix=NULL)
;
Gibt die Geometrie als ein Keyhole Markup Language (KML) Element zurück. Diese Funktion verfügt über mehrere Varianten. Die maximale Anzahl der Dezimalstellen die bei der Ausgabe verwendet wird (standardmäßig 15), die Version ist standardmäßig 2 und der Standardnamensraum hat kein Präfix.
Using the |
Setzt voraus, dass PostGIS mit Proj-Unterstützung kompiliert wurde. Verwenden Sie bitte PostGIS_Full_Version, um festzustellen ob mit proj kompiliert wurde. |
Verfügbarkeit: 1.2.2 - spätere Varianten ab 1.3.2 nehmen den Versionsparameter mit auf |
Erweiterung: 2.0.0 - Präfix Namensraum hinzugefügt. Standardmäßig kein Präfix |
Changed: 3.0.0 - Removed the "versioned" variant signature |
Die Ausgabe AsKML funktioniert nicht bei Geometrien ohne SRID |
This function supports 3d and will not drop the z-index.
SELECT ST_AsKML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)); st_askml -------- <Polygon ><outerBoundaryIs ><LinearRing ><coordinates >0,0 0,1 1,1 1,0 0,0</coordinates ></LinearRing ></outerBoundaryIs ></Polygon> --3D Linienzug SELECT ST_AsKML('SRID=4326;LINESTRING(1 2 3, 4 5 6)'); <LineString ><coordinates >1,2,3 4,5,6</coordinates ></LineString>
ST_AsLatLonText — Gibt die "Grad, Minuten, Sekunden"-Darstellung für den angegebenen Punkt aus.
text ST_AsLatLonText(
geometry pt, text format='')
;
Gibt die "Grad, Minuten, Sekunden"-Darstellung des Punktes aus.
Es wird angenommen, dass der Punkt in einer Breite/Länge-Projektion vorliegt. Die X (Länge) und Y (Breite) Koordinaten werden bei der Ausgabe in den "üblichen" Bereich (-180 to +180 für die Länge, -90 to +90 für die Breite) normalisiert. |
Der Textparameter ist eine Zeichenkette für die Formatierung der Ausgabe, ähnlich wie die Zeichenkette für die Formatierung der Datumsausgabe. Gültige Zeichen sind "D" für Grad/Degrees, "M" für Minuten, "S" für Sekunden, und "C" für die Himmelsrichtung (NSEW). DMS Zeichen können wiederholt werden, um die gewünschte Zeichenbreite und Genauigkeit anzugeben ("SSS.SSSS" bedeutet z.B. " 1.0023").
"M", "S", und "C" sind optional. Wenn "C" weggelassen wird, werden Grad mit einem "-" Zeichen versehen, wenn Süd oder West. Wenn "S" weggelassen wird, werden die Minuten als Dezimalzahl mit der vorgegebenen Anzahl an Kommastellen angezeigt. Wenn "M" wegggelassen wird, werden die Grad als Dezimalzahl mit der vorgegebenen Anzahl an Kommastellen angezeigt.
Wenn die Zeichenkette für das Ausgabeformat weggelassen wird (oder leer ist) wird ein Standardformat verwendet.
Verfügbarkeit: 2.0
Standardformat.
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)')); st_aslatlontext ---------------------------- 2°19'29.928"S 3°14'3.243"W
Ein Format angeben (identisch mit Standardformat).
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"C')); st_aslatlontext ---------------------------- 2°19'29.928"S 3°14'3.243"W
Andere Zeichen als D, M, S, C und "." werden lediglich durchgereicht.
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D degrees, M minutes, S seconds to the C')); st_aslatlontext -------------------------------------------------------------------------------------- 2 degrees, 19 minutes, 30 seconds to the S 3 degrees, 14 minutes, 3 seconds to the W
Grad mit einem Vorzeichen versehen - anstatt der Himmelsrichtung.
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"')); st_aslatlontext ---------------------------- -2°19'29.928" -3°14'3.243"
Dezimalgrad.
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D.DDDD degrees C')); st_aslatlontext ----------------------------------- 2.3250 degrees S 3.2342 degrees W
Überhöhte Werte werden normalisiert.
SELECT (ST_AsLatLonText('POINT (-302.2342342 -792.32498)')); st_aslatlontext ------------------------------- 72°19'29.928"S 57°45'56.757"E
ST_AsMARC21 — Returns geometry as a MARC21/XML record with a geographic datafield (034).
text ST_AsMARC21 (
geometry geom , text format='hdddmmss' )
;
This function returns a MARC21/XML record with Coded Cartographic Mathematical Data representing the bounding box of a given geometry. The format
parameter allows to encode the coordinates in subfields $d
,$e
,$f
and $g
in all formats supported by the MARC21/XML standard. Valid formats are:
cardinal direction, degrees, minutes and seconds (default): hdddmmss
decimal degrees with cardinal direction: hddd.dddddd
decimal degrees without cardinal direction: ddd.dddddd
decimal minutes with cardinal direction: hdddmm.mmmm
decimal minutes without cardinal direction: dddmm.mmmm
decimal seconds with cardinal direction: hdddmmss.sss
The decimal sign may be also a comma, e.g. hdddmm,mmmm
.
The precision of decimal formats can be limited by the number of characters after the decimal sign, e.g. hdddmm.mm
for decimal minutes with a precision of two decimals.
This function ignores the Z and M dimensions.
LOC MARC21/XML versions supported:
Availability: 3.3.0
This function does not support non lon/lat geometries, as they are not supported by the MARC21/XML standard (Coded Cartographic Mathematical Data). |
The MARC21/XML Standard does not provide any means to annotate the spatial reference system for Coded Cartographic Mathematical Data, which means that this information will be lost after conversion to MARC21/XML. |
Converting a POINT
to MARC21/XML formated as hdddmmss (default)
SELECT ST_AsMARC21('SRID=4326;POINT(-4.504289 54.253312)'::geometry); st_asmarc21 ------------------------------------------------- <record xmlns="http://www.loc.gov/MARC21/slim"> <datafield tag="034" ind1="1" ind2=" "> <subfield code="a">a</subfield> <subfield code="d">W0043015</subfield> <subfield code="e">W0043015</subfield> <subfield code="f">N0541512</subfield> <subfield code="g">N0541512</subfield> </datafield> </record>
Converting a POLYGON
to MARC21/XML formated in decimal degrees
SELECT ST_AsMARC21('SRID=4326;POLYGON((-4.5792388916015625 54.18172660239091,-4.56756591796875 54.196993557130355,-4.546623229980469 54.18313300502024,-4.5792388916015625 54.18172660239091))'::geometry,'hddd.dddd'); <record xmlns="http://www.loc.gov/MARC21/slim"> <datafield tag="034" ind1="1" ind2=" "> <subfield code="a">a</subfield> <subfield code="d">W004.5792</subfield> <subfield code="e">W004.5466</subfield> <subfield code="f">N054.1970</subfield> <subfield code="g">N054.1817</subfield> </datafield> </record>
Converting a GEOMETRYCOLLECTION
to MARC21/XML formated in decimal minutes. The geometries order in the MARC21/XML output correspond to their order in the collection.
SELECT ST_AsMARC21('SRID=4326;GEOMETRYCOLLECTION(POLYGON((13.1 52.65,13.516666666666667 52.65,13.516666666666667 52.38333333333333,13.1 52.38333333333333,13.1 52.65)),POINT(-4.5 54.25))'::geometry,'hdddmm.mmmm'); st_asmarc21 ------------------------------------------------- <record xmlns="http://www.loc.gov/MARC21/slim"> <datafield tag="034" ind1="1" ind2=" "> <subfield code="a">a</subfield> <subfield code="d">E01307.0000</subfield> <subfield code="e">E01331.0000</subfield> <subfield code="f">N05240.0000</subfield> <subfield code="g">N05224.0000</subfield> </datafield> <datafield tag="034" ind1="1" ind2=" "> <subfield code="a">a</subfield> <subfield code="d">W00430.0000</subfield> <subfield code="e">W00430.0000</subfield> <subfield code="f">N05415.0000</subfield> <subfield code="g">N05415.0000</subfield> </datafield> </record>
ST_AsMVTGeom — Transforms a geometry into the coordinate space of a MVT tile.
geometry ST_AsMVTGeom(
geometry geom, box2d bounds, integer extent=4096, integer buffer=256, boolean clip_geom=true)
;
Transforms a geometry into the coordinate space of a MVT (Mapbox Vector Tile) tile, clipping it to the tile bounds if required. The geometry must be in the coordinate system of the target map (using ST_Transform if needed). Commonly this is Web Mercator (SRID:3857).
The function attempts to preserve geometry validity, and corrects it if needed. This may cause the result geometry to collapse to a lower dimension.
The rectangular bounds of the tile in the target map coordinate space must be provided, so the geometry can be transformed, and clipped if required. The bounds can be generated using ST_MakeEnvelope.
This function is used to convert geometry into the tile coordinate space required by ST_AsMVT.
geom
is the geometry to transform, in the coordinate system of the target map.
bounds
is the rectangular bounds of the tile in map coordinate space, with no buffer.
extent
is the tile extent size in tile coordinate space as defined by the MVT specification. Defaults to 4096.
buffer
is the buffer size in tile coordinate space for geometry clippig. Defaults to 256.
clip_geom
is a boolean to control if geometries are clipped or encoded as-is. Defaults to true.
Verfügbarkeit: 2.4.0
Ab 3.0 kann zum Ausschneiden und Validieren von MVT-Polygonen bei der Konfiguration Wagyu gewählt werden. Diese Bibliothek ist schneller und liefert genauere Ergebnisse als die standardmäßige GEOS-Bibliothek, sie kann aber kleine Polygone verwerfen. |
SELECT ST_AsText(ST_AsMVTGeom( ST_GeomFromText('POLYGON ((0 0, 10 0, 10 5, 0 -5, 0 0))'), ST_MakeBox2D(ST_Point(0, 0), ST_Point(4096, 4096)), 4096, 0, false)); st_astext -------------------------------------------------------------------- MULTIPOLYGON(((5 4096,10 4091,10 4096,5 4096)),((5 4096,0 4101,0 4096,5 4096)))
Canonical example for a Web Mercator tile using a computed tile bounds to query and clip geometry.
SELECT ST_AsMVTGeom( ST_Transform( geom, 3857 ), ST_TileEnvelope(12, 513, 412), extent => 4096, buffer => 64) AS geom FROM data WHERE geom && ST_TileEnvelope(12, 513, 412, margin => (64.0 / 4096))
ST_AsMVT — Aggregate function returning a MVT representation of a set of rows.
bytea ST_AsMVT(
anyelement set row)
;
bytea ST_AsMVT(
anyelement row, text name)
;
bytea ST_AsMVT(
anyelement row, text name, integer extent)
;
bytea ST_AsMVT(
anyelement row, text name, integer extent, text geom_name)
;
bytea ST_AsMVT(
anyelement row, text name, integer extent, text geom_name, text feature_id_name)
;
An aggregate function which returns a binary Mapbox Vector Tile representation of a set of rows corresponding to a tile layer. The rows must contain a geometry column which will be encoded as a feature geometry. The geometry must be in tile coordinate space and valid as per the MVT specification. ST_AsMVTGeom can be used to transform geometry into tile coordinate space. Other row columns are encoded as feature attributes.
Das Mapbox Vector Tile Format kann Geoobjekte mit unterschiedlichen Attributen speichern. Um diese Möglichkeit zu nutzen, muss eine JSONB-Spalte in den Datensätzen mitgeliefert werden, welche in einer tieferen Ebene die JSON-Objekte enthält. Die Schlüssel und Werte im JSONB werden als Featureattribute kodiert.
Durch das Aneinanderhängen mehrerer Funktionsaufrufe mittels ||
, können Tiles mit mehreren Ebenen erstellt werden.
Darf nicht mit einer |
row
Datenzeilen mit zumindest einer Geometriespalte.
name
ist die Bezeichnung der Ebene. Standardmäßig die Zeichenkette "default".
extent
ist die Ausdehnung der Tiles in Bildschirmeinheiten. Standardmäßig 4096.
geom_name
is the name of the geometry column in the row data. Default is the first geometry column. Note that PostgreSQL by default automatically folds unquoted identifiers to lower case, which means that unless the geometry column is quoted, e.g. "MyMVTGeom"
, this parameter must be provided as lowercase.
feature_id_name
ist die Bezeichnung der Feature-ID Spalte im Datensatz. Ist der Übergabewert NULL oder negativ, dann wird die Feature-ID nicht gesetzt. Die erste Spaltee mit einem passenden Namen und einem gültigen Datentyp (Smallint, Integer, Bigint) wird als Feature-ID verwendet, alle nachfolgenden Spalten werden als Eigenschaften hinzugefügt. JSON-Properties werden nicht unterstützt.
Erweiterung: 3.0 - Unterstützung für eine Feature-ID.
Erweiterung: 2.5.0 - Unterstützung von nebenläufigen Abfragen.
Verfügbarkeit: 2.4.0
ST_AsSVG — Gibt eine Geometrie als SVG-Pfad aus.
text ST_AsSVG(
geometry geom, integer rel=0, integer maxdecimaldigits=15)
;
text ST_AsSVG(
geography geog, integer rel=0, integer maxdecimaldigits=15)
;
Gibt die Geometrie als Skalare Vektor Graphik (SVG-Pfadgeometrie) aus. Verwenden Sie 1 als zweiten Übergabewert um die Pfadgeometrie in relativen Schritten zu implementieren; Standardmäßig (oder 0) verwendet absolute Schritte. Der dritte Übergabewert kann verwendet werden, um die maximale Anzahl der Dezimalstellen bei der Ausgabe einzuschränken (standardmäßig 15). Punktgeometrie wird als cx/cy übersetzt wenn der Übergabewert 'rel' gleich 0 ist, x/y wenn 'rel' 1 ist. Mehrfachgeometrie wird durch Beistriche (",") getrennt, Sammelgeometrie wird durch Strichpunkt (";") getrennt.
Verfügbarkeit: 1.2.2. Änderung: 1.4.0 L-Befehl beim absoluten Pfad aufgenommen, um mit http://www.w3.org/TR/SVG/paths.html#PathDataBNF konform zu sein. |
Änderung: 2.0.0 verwendet Standardargumente und unterstützt benannte Argumente.
ST_AsTWKB — Gibt die Geometrie als TWKB, aka "Tiny Well-known Binary" zurück
bytea ST_AsTWKB(
geometry g1, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer decimaldigits_m=0, boolean include_sizes=false, boolean include_bounding boxes=false)
;
bytea ST_AsTWKB(
geometry[] geometries, bigint[] unique_ids, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer decimaldigits_m=0, boolean include_sizes=false, boolean include_bounding_boxes=false)
;
Gibt die Geometrie im TWKB ("Tiny Well-Known Binary") Format aus. TWKB ist ein komprimiertes binäres Format mit dem Schwerpunkt, die Ausgabegröße zu minimieren.
Der Parameter 'decimaldigits' bestimmt die Anzahl der Dezimalstellen bei der Ausgabe. Standardmäßig werden die Werte vor der Zeichenkodierung auf die Einserstelle gerundet. Wenn Sie die Daten mit höherer Genauigkeit übergeben wollen, erhöhen Sie bitte die Anzahl der Dezimalstellen. Zum Beispiel bedeutet ein Wert von 1, dass die erste Dezimalstelle erhalten bleibt.
Die Parameter "sizes" und "bounding_boxes" bestimmen ob zusätzliche Information über die kodierte Länge und die Abgrenzung des Objektes in der Ausgabe eingebunden werden. Standardmäßig passiert dies nicht. Drehen Sie diese bitte nicht auf, solange dies nicht von Ihrer Client-Software benötigt wird, da dies nur unnötig Speicherplatz verbraucht (Einsparen von Speicherplatz ist der Sinn von TWKB).
Das Feld-Eingabeformat dieser Funktion wird verwendet um eine Sammelgeometriee und eindeutige Identifikatoren in eine TWKB-Collection zu konvertieren, welche die Identifikatoren erhält. Dies ist nützlich für Clients, die davon ausgehen, eine Sammelgeometrie auszupacken, um so auf zusätzliche Information über die internen Objekte zuzugreifen. Sie können das Feld mit der Funktion array_agg erstellen. Die anderen Parameter bewirken dasselbe wie bei dem einfachen Format dieser Funktion.
Die Formatspezifikation steht Online unter https://github.com/TWKB/Specification zur Verfügung, und Code zum Aufbau eines JavaScript Clints findet sich unter https://github.com/TWKB/twkb.js. |
Erweiterung: 2.4.0 Hauptspeicher- und Geschwindigkeitsverbesserungen.
Verfügbarkeit: 2.2.0
SELECT ST_AsTWKB('LINESTRING(1 1,5 5)'::geometry); st_astwkb -------------------------------------------- \x02000202020808
Um ein aggregiertes TWKB-Objekt inklusive Identifikatoren zu erzeugen, fassen Sie bitte die gewünschte Geometrie und Objekte zuerst mittels "array_agg()" zusammen und rufen anschließend die passende TWKB Funktion auf.
SELECT ST_AsTWKB(array_agg(geom), array_agg(gid)) FROM mytable; st_astwkb -------------------------------------------- \x040402020400000202
ST_AsX3D — Gibt eine Geometrie im X3D XML Knotenelement-Format zurück: ISO-IEC-19776-1.2-X3DEncodings-XML
text ST_AsX3D(
geometry g1, integer maxdecimaldigits=15, integer options=0)
;
Gibt eine Geometrie als X3D knotenformatiertes XML Element zurück http://www.web3d.org/standards/number/19776-1. Falls maxdecimaldigits
(Genauigkeit) nicht angegeben ist, wird sie standardmäßig 15.
Es gibt verschiedene Möglichkeiten eine PostGIS Geometrie in X3D zu übersetzen, da sich der X3D Geometrietyp nicht direkt in den geometrischen Datentyp von PostGIS abbilden lässt. Einige neuere X3D Datentypen, die sich besser abbilden lassen könnten haben wir vermieden, da diese von den meisten Rendering-Tools zurzeit nicht untestützt werden. Dies sind die Abbildungen für die wir uns entschieden haben. Falls Sie Ideen haben, wie wir es den Anwendern ermöglichen können ihre bevorzugten Abbildungen anzugeben, können Sie gerne ein Bug-Ticket senden. Im Folgenden wird beschrieben, wie der PostGIS 2D/3D Datentyp derzeit in den X3D Datentyp abgebildet wird |
Das Argument 'options' ist ein Bitfeld. Ab PostGIS 2.2+ wird dieses verwendet, um anzuzeigen ob die Koordinaten als X3D geospatiale Knoten in GeoKoordinaten dargestellt werden und auch ob X- und Y-Achse vertauscht werden sollen. Standardmäßig erfolgt die Ausgabe durch ST_AsX3D
im Datenbankformat (Länge, Breite oder X,Y), aber es kann auch der X3D Standard mit Breite/Länge oder Y/X bevorzugt werden.
0: X/Y in der Datenbankreihenfolge (z.B. ist Länge/Breite = X,Y die standardmäßige Datenbankreihenfolge), Standardwert, und nicht-spatiale Koordinaten (nur der normale alte Koordinaten-Tag).
1: X und Y umdrehen. In Verbindung mit der Option für GeoKoordinaten wird bei der Standardausgabe die Breite zuerst/"latitude_first" ausgegeben und die Koordinaten umgedreht.
2: Die Koordinaten werden als geospatiale GeoKoordinaten ausgegeben. Diese Option gibt eine Fehlermeldung aus, falls die Geometrie nicht in WGS 84 Länge/Breite (SRID: 4326) vorliegt. Dies ist zurzeit der einzige GeoKoordinaten-Typ der unterstützt wird.Siehe die X3D Spezifikation für Koordinatenreferenzsysteme. Die Standardausgabe ist GeoCoordinate geoSystem='"GD" "WE" "longitude_first"'
. Wenn Sie den X3D Standard bevorzugen GeoCoordinate geoSystem='"GD" "WE" "latitude_first"'
verwenden Sie bitte (2+1)
= 3
PostGIS Datentyp | 2D X3D Datentyp | 3D X3D Datentyp |
---|---|---|
LINESTRING | zurzeit nicht implementiert - wird PolyLine2D | LineSet |
MULTILINESTRING | zurzeit nicht implementiert - wird PolyLine2D | IndexedLineSet |
MULTIPOINT | Polypoint2D | PointSet |
POINT | gibt leerzeichengetrennte Koordinaten aus | gibt leerzeichengetrennte Koordinaten aus |
(MULTI) POLYGON, POLYHEDRALSURFACE | Ungültiges X3D Markup | IndexedFaceSet (die inneren Ringe werden zurzeit als ein weiteres FaceSet abgebildet) |
TIN | TriangleSet2D (zurzeit nicht implementiert) | IndexedTriangleSet |
Die Unterstützung von 2D-Geometrie ist noch nicht vollständig. Die inneren Ringe werden zur Zeit lediglich als gesonderte Polygone abgebildet. Wir arbeiten daran. |
Lots of advancements happening in 3D space particularly with X3D Integration with HTML5
Es gibt auch einen feinen OpenSource X3D Viewer, den Sie benützen können, um Geometrien darzustellen. Free Wrl http://freewrl.sourceforge.net/ Binärdateien sind für Mac, Linux und Windows verfügbar. Sie können den mitgelieferten FreeWRL_Launcher verwenden, um Gemetrien darzustellen.
Also check out PostGIS minimalist X3D viewer that utilizes this function and x3dDom html/js open source toolkit.
Verfügbarkeit: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML
Erweiterung: 2.2.0: Unterstützung für geographische Koordinaten und Vertauschen der Achsen (x/y, Länge/Breite). Für nähere Details siehe Optionen.
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
SELECT '<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d-3.0.dtd"> <X3D> <Scene> <Transform> <Shape> <Appearance> <Material emissiveColor=''0 0 1''/> </Appearance > ' || ST_AsX3D( ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')) || '</Shape> </Transform> </Scene> </X3D >' As x3ddoc; x3ddoc -------- <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d-3.0.dtd"> <X3D> <Scene> <Transform> <Shape> <Appearance> <Material emissiveColor='0 0 1'/> </Appearance> <IndexedFaceSet coordIndex='0 1 2 3 -1 4 5 6 7 -1 8 9 10 11 -1 12 13 14 15 -1 16 17 18 19 -1 20 21 22 23'> <Coordinate point='0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1' /> </IndexedFaceSet> </Shape> </Transform> </Scene> </X3D >
Copy and paste the output of this query to x3d scene viewer and click Show
SELECT string_agg('<Shape>' || ST_AsX3D(ST_Extrude(geom, 0,0, i*0.5)) || '<Appearance> <Material diffuseColor="' || (0.01*i)::text || ' 0.8 0.2" specularColor="' || (0.05*i)::text || ' 0 0.5"/> </Appearance> </Shape>', '') FROM ST_Subdivide(ST_Letters('PostGIS'),20) WITH ORDINALITY AS f(geom,i);
SELECT ST_AsX3D( ST_Translate( ST_Force_3d( ST_Buffer(ST_Point(10,10),5, 'quad_segs=2')), 0,0, 3) ,6) As x3dfrag; x3dfrag -------- <IndexedFaceSet coordIndex="0 1 2 3 4 5 6 7"> <Coordinate point="15 10 3 13.535534 6.464466 3 10 5 3 6.464466 6.464466 3 5 10 3 6.464466 13.535534 3 10 15 3 13.535534 13.535534 3 " /> </IndexedFaceSet >
SELECT ST_AsX3D(ST_GeomFromEWKT('TIN ((( 0 0 0, 0 0 1, 0 1 0, 0 0 0 )), (( 0 0 0, 0 1 0, 1 1 0, 0 0 0 )) )')) As x3dfrag; x3dfrag -------- <IndexedTriangleSet index='0 1 2 3 4 5' ><Coordinate point='0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0'/></IndexedTriangleSet >
SELECT ST_AsX3D( ST_GeomFromEWKT('MULTILINESTRING((20 0 10,16 -12 10,0 -16 10,-12 -12 10,-20 0 10,-12 16 10,0 24 10,16 16 10,20 0 10), (12 0 10,8 8 10,0 12 10,-8 8 10,-8 0 10,-8 -4 10,0 -8 10,8 -4 10,12 0 10))') ) As x3dfrag; x3dfrag -------- <IndexedLineSet coordIndex='0 1 2 3 4 5 6 7 0 -1 8 9 10 11 12 13 14 15 8'> <Coordinate point='20 0 10 16 -12 10 0 -16 10 -12 -12 10 -20 0 10 -12 16 10 0 24 10 16 16 10 12 0 10 8 8 10 0 12 10 -8 8 10 -8 0 10 -8 -4 10 0 -8 10 8 -4 10 ' /> </IndexedLineSet >
ST_GeoHash — Gibt die Geometrie in der GeoHash Darstellung aus.
text ST_GeoHash(
geometry geom, integer maxchars=full_precision_of_point)
;
Gibt die Geometrie in der GeoHash-Darstellung (http://en.wikipedia.org/wiki/Geohash) aus. Ein GeoHash codiert einen Punkt in einem Textformat, das über Präfixe sortierbar und durchsuchbar ist. Ein kürzer codierter GeoHash ergibt eine ungenauere Darstellung des Punktes. Man kann sich einen GeoHash auch als eine Box vorstellen, welche den tatsächlichen Punkt enthält.
Wenn maxchars
nicht angegeben wird, gibt ST_GeoHash einen GeoHash mit der vollen Genauigkeit der Eingabegeometrie zurück. Punkte ergeben so einen GeoHash mit einer Genauigkeit von 20 Zeichen (dies sollte ausreichen um die Eingabe in Double Precision zur Gänze abzuspeichern). Andere Varianten geben einen Geohash, basierend auf der Größe des Geoobjektes, mit veränderlicher Genauigkeit zurück, Größere Geoobjekte werden mit geringerer, kleinere Geoobjekte mit höherer Genauigkeit dargestellt. Die Idee dahinter ist, dass die durch den GeoHash implizierte Box immer das gegebene Geoobjekt beinhaltet.
Wenn maxchars
angegeben wird, gibt ST_GeoHash einen GeoHash zurück, der maximal die Anzahl dieser Zeichen aufweist. Auf diese Weise ist es möglich die Eingabegeometrie mit einer geringeren Präzision darzustellen. Bei Nicht-Punkten befindet sich der Anfangspunkt der Berechnung im Mittelpunkt des Umgebungsrechtecks der Geometrie.
Verfügbarkeit: 1.4.0
ST_GeoHash funktioniert nicht, wenn die Geometrien nicht in geographischen (Länge/Breite) Koordinaten vorliegen. |
This method supports Circular Strings and Curves
TRUE
zurück, wenn die 2D Bounding Box von A die 2D Bounding Box von B schneidet.TRUE
zurück, wenn sich die 2D Bounding Box (cached) einer Geometrie mit einer 2D Bounding Box mit Gleitpunktgenauigkeit (BOX2DF) überschneidet.TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) eine Geometrie (cached) 2D bounding box schneidet.TRUE
zurück, wenn sich zwei 2D float precision Bounding Boxes (BOX2DF) überschneiden.TRUE
zurück, wenn A's n-D bounding box B's n-D bounding box schneidet.TRUE
zurück, wenn die (cached) n-D bounding box einer Geometrie eine n-D float precision bounding box (GIDX) schneidet.TRUE
zurück, wenn eine n-D float precision bounding box (GIDX) eine (cached) n-D bounding box einer Geometrie schneidet.TRUE
zurück, wenn sich zwei n-D float precision bounding boxes (GIDX) gegenseitig überschneiden.TRUE
zurück, wenn die bounding box der Geometrie A, die bounding box der Geometrie B überlagert oder links davon liegt.TRUE
zurück, wenn die bounding box von A jene von B überlagert oder unterhalb liegt.TRUE
zurück, wenn die Bounding Box von A jene von B überlagert oder rechts davon liegt.TRUE
zurück, wenn die Bounding Box von A zur Gänze links von der von B liegt.TRUE
zurück, wenn A's Bounding Box zur Gänze unterhalb von der von B liegt.TRUE
zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind.TRUE
zurück, wenn A's bounding box zur Gänze rechts von der von B liegt.TRUE
zurück, wenn die Bounding Box von A in jener von B enthalten ist.TRUE
zurück, wenn die 2D Bounding Box einer Geometrie in einer 2D float precision Bbounding Box (BOX2DF) enthalten ist.TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) in der 2D Bounding Box einer Geometrie enthalten ist..TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) innerhalb einer anderen 2D float precision bounding box enthalten ist.TRUE
zurück, wenn A's bounding box diejenige von B überlagert oder oberhalb von B liegt.TRUE
zurück, wenn A's bounding box is zur Gänze oberhalb der von B liegt.TRUE
zurück, wenn A's bounding box die von B enthält.TRUE
zurück, wenn die 2D bounding box einer Geometrie eine 2D float precision bounding box (GIDX) enthält.TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) die 2D Bounding Box einer Geometrie enthält.TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) eine andere 2D float precision bounding box (BOX2DF) enthält.TRUE
zurück, wenn die bounding box von A ident mit jener von B ist.&& — Gibt TRUE
zurück, wenn die 2D Bounding Box von A die 2D Bounding Box von B schneidet.
boolean &&(
geometry A , geometry B )
;
boolean &&(
geography A , geography B )
;
Der &&
Operator gibt TRUE
zurück, wenn die 2D Bounding Box von Geometrie A die 2D Bounding Box der Geometrie von B schneidet.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.
Verfügbarkeit: Mit 1.5.0 wurde die Unterstützung von geograpischen Koordinaten eingeführt
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
SELECT tbl1.column1, tbl2.column1, tbl1.column2 && tbl2.column2 AS overlaps FROM ( VALUES (1, 'LINESTRING(0 0, 3 3)'::geometry), (2, 'LINESTRING(0 1, 0 5)'::geometry)) AS tbl1, ( VALUES (3, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2; column1 | column1 | overlaps ---------+---------+---------- 1 | 3 | t 2 | 3 | f (2 rows)
&&(geometry,box2df) — Gibt TRUE
zurück, wenn sich die 2D Bounding Box (cached) einer Geometrie mit einer 2D Bounding Box mit Gleitpunktgenauigkeit (BOX2DF) überschneidet.
boolean &&(
geometry A , box2df B )
;
Der &&
Operator gibt TRUE
zurück, wenn die im Cache befindliche 2D Bounding Box der Geometrie A sich mit der 2D Bounding Box von B, unter Verwendung von Gleitpunktgenauigkeit überschneidet. D.h.: falls B eine (double precision) box2d ist, wird diese intern in eine auf Gleitpunkt genaue 2D Bounding Box (BOX2DF) umgewandelt.
Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
&&(box2df,geometry) — Gibt TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) eine Geometrie (cached) 2D bounding box schneidet.
boolean &&(
box2df A , geometry B )
;
Der &&
Operator gibt TRUE
zurück, wenn die 2D Bounding Box A die zwischengespeicherte 2D Bounding Box der Geometrie B, unter Benutzung von Fließpunktgenauigkeit, schneidet. D.h.: wenn A eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt.
Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
&&(box2df,box2df) — Gibt TRUE
zurück, wenn sich zwei 2D float precision Bounding Boxes (BOX2DF) überschneiden.
boolean &&(
box2df A , box2df B )
;
Der &&
Operator gibt TRUE
zurück, wenn sich zwei 2D Bounding Boxes A und B, unter Benutzung von float precision, gegenseitig überschneiden. D.h.: Wenn A (oder B) eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt
Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
&&& — Gibt TRUE
zurück, wenn A's n-D bounding box B's n-D bounding box schneidet.
boolean &&&(
geometry A , geometry B )
;
Der &&&
Operator gibt TRUE
zurück, wenn die n-D bounding box der Geometrie A die n-D bounding box der Geometrie B schneidet.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
Verfügbarkeit: 2.0.0
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports 3d and will not drop the z-index.
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3d, tbl1.column2 && tbl2.column2 AS overlaps_2d FROM ( VALUES (1, 'LINESTRING Z(0 0 1, 3 3 2)'::geometry), (2, 'LINESTRING Z(1 2 0, 0 5 -1)'::geometry)) AS tbl1, ( VALUES (3, 'LINESTRING Z(1 2 1, 4 6 1)'::geometry)) AS tbl2; column1 | column1 | overlaps_3d | overlaps_2d ---------+---------+-------------+------------- 1 | 3 | t | t 2 | 3 | f | t
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3zm, tbl1.column2 && tbl2.column2 AS overlaps_2d FROM ( VALUES (1, 'LINESTRING M(0 0 1, 3 3 2)'::geometry), (2, 'LINESTRING M(1 2 0, 0 5 -1)'::geometry)) AS tbl1, ( VALUES (3, 'LINESTRING M(1 2 1, 4 6 1)'::geometry)) AS tbl2; column1 | column1 | overlaps_3zm | overlaps_2d ---------+---------+-------------+------------- 1 | 3 | t | t 2 | 3 | f | t
&&&(geometry,gidx) — Gibt TRUE
zurück, wenn die (cached) n-D bounding box einer Geometrie eine n-D float precision bounding box (GIDX) schneidet.
boolean &&&(
geometry A , gidx B )
;
Der &&&
Operator gibt TRUE
zurück, wenn die zwischengespeicherte n-D bounding box der Geometrie A die n-D bounding box B, unter Benutzung von float precision, schneidet. D.h.: Wenn B eine (double precision) box3d ist, wird diese intern in eine float precision 3D bounding box (GIDX) umgewandelt
Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports 3d and will not drop the z-index.
&&&(gidx,geometry) — Gibt TRUE
zurück, wenn eine n-D float precision bounding box (GIDX) eine (cached) n-D bounding box einer Geometrie schneidet.
boolean &&&(
gidx A , geometry B )
;
Der &&&
Operator gibt TRUE
zurück, wenn die n-D bounding box A die cached n-D bounding box der Geometrie B, unter Benutzung von float precision, schneidet. D.h.: wenn A eine (double precision) box3d ist, wir diese intern in eine float precision 3D bounding box (GIDX) umgewandelt
Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports 3d and will not drop the z-index.
&&&(gidx,gidx) — Gibt TRUE
zurück, wenn sich zwei n-D float precision bounding boxes (GIDX) gegenseitig überschneiden.
boolean &&&(
gidx A , gidx B )
;
Der &&&
Operator gibt TRUE
zurück, wenn sich zwei n-D bounding boxes A und B, unter Benutzung von float precision, gegenseitig überschneiden. D.h.: wenn A (oder B) eine (double precision) box3d ist, wird diese intern in eine float precision 3D bounding box (GIDX) umgewandelt
Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports 3d and will not drop the z-index.
&< — Gibt TRUE
zurück, wenn die bounding box der Geometrie A, die bounding box der Geometrie B überlagert oder links davon liegt.
boolean &<(
geometry A , geometry B )
;
Der &<
Operator gibt TRUE
zurück, wenn die bounding box der Geometrie A die bounding box der Geometrie B überlagert oder links davon liegt, oder präziser, überlagert und NICHT rechts von der bounding box der Geometrie B liegt.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &< tbl2.column2 AS overleft FROM ( VALUES (1, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING(0 0, 3 3)'::geometry), (3, 'LINESTRING(0 1, 0 5)'::geometry), (4, 'LINESTRING(6 0, 6 1)'::geometry)) AS tbl2; column1 | column1 | overleft ---------+---------+---------- 1 | 2 | f 1 | 3 | f 1 | 4 | t (3 rows)
&<| — Gibt TRUE
zurück, wenn die bounding box von A jene von B überlagert oder unterhalb liegt.
boolean &<|(
geometry A , geometry B )
;
Der &<|
Operator gibt TRUE
zurück, wenn die Bounding Box der Geometrie A die Bounding Box der Geometrie B überlagert oder unterhalb liegt, oder präziser, überlagert oder NICHT oberhalb der Bounding der Geometrie B liegt.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &<| tbl2.column2 AS overbelow FROM ( VALUES (1, 'LINESTRING(6 0, 6 4)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING(0 0, 3 3)'::geometry), (3, 'LINESTRING(0 1, 0 5)'::geometry), (4, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2; column1 | column1 | overbelow ---------+---------+----------- 1 | 2 | f 1 | 3 | t 1 | 4 | t (3 rows)
&> — Gibt TRUE
zurück, wenn die Bounding Box von A jene von B überlagert oder rechts davon liegt.
boolean &>(
geometry A , geometry B )
;
Der &>
Operator gibt TRUE
zurück, wenn die Bounding Box der Geometrie A die Bounding Box der Geometrie B überlagert oder rechts von ihr liegt, oder präziser, überlagert und NICHT links von der Bounding Box der Geometrie B liegt.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &> tbl2.column2 AS overright FROM ( VALUES (1, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING(0 0, 3 3)'::geometry), (3, 'LINESTRING(0 1, 0 5)'::geometry), (4, 'LINESTRING(6 0, 6 1)'::geometry)) AS tbl2; column1 | column1 | overright ---------+---------+----------- 1 | 2 | t 1 | 3 | t 1 | 4 | f (3 rows)
<< — Gibt TRUE
zurück, wenn die Bounding Box von A zur Gänze links von der von B liegt.
boolean <<(
geometry A , geometry B )
;
Der <<
Operator gibt TRUE
zurück, wenn die Bounding Box der Geometrie A zur Gänze links der Bounding Box der Geometrie B liegt.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 << tbl2.column2 AS left FROM ( VALUES (1, 'LINESTRING (1 2, 1 5)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING (0 0, 4 3)'::geometry), (3, 'LINESTRING (6 0, 6 5)'::geometry), (4, 'LINESTRING (2 2, 5 6)'::geometry)) AS tbl2; column1 | column1 | left ---------+---------+------ 1 | 2 | f 1 | 3 | t 1 | 4 | t (3 rows)
<<| — Gibt TRUE
zurück, wenn A's Bounding Box zur Gänze unterhalb von der von B liegt.
boolean <<|(
geometry A , geometry B )
;
Der <<|
Operator gibt TRUE
zurück, wenn die Bounding Box der Geometrie A zur Gänze unterhalb der Bounding Box von Geometrie B liegt.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 <<| tbl2.column2 AS below FROM ( VALUES (1, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING (1 4, 1 7)'::geometry), (3, 'LINESTRING (6 1, 6 5)'::geometry), (4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2; column1 | column1 | below ---------+---------+------- 1 | 2 | t 1 | 3 | f 1 | 4 | f (3 rows)
= — Gibt TRUE
zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind.
boolean =(
geometry A , geometry B )
;
boolean =(
geography A , geography B )
;
Der Operator =
gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind. PostgreSQL verwendet die =, <, und > Operatoren um die interne Sortierung und den Vergleich von Geometrien durchzuführen (z.B.: in einer GROUP BY oder ORDER BY Klausel).
Nur die Geometrie/Geographie die in allen Gesichtspunkten übereinstimmt, d.h. mit den selben Koordinaten in der gleichen Reihenfolge, werden von diesem Operator als gleich betrachtet. Für "räumliche Gleichheit", bei der Dinge wie die Reihenfolge der Koordinaten außer Acht gelassen werden, und die es ermöglicht Geoobjekte zu erfassen, die denselben räumlichen Bereich mit unterschiedlicher Darstellung abdecken, verwenden Sie bitte ST_OrderingEquals oder ST_Equals |
Dieser Operator verwendet NICHT die Indizes, welche für die Geometrien vorhanden sind. Um eine Überprüfung auf exakte Gleichheit indexgestützt durchzuführen, kombinieren Sie bitte = mit &&. |
Änderung: 2.4.0, in Vorgängerversionen war dies die Gleichheit der umschreibenden Rechtecke, nicht die geometrische Gleichheit. Falls Sie auf Gleichheit der umschreibenden Rechtecke prüfen wollen, verwenden Sie stattdesse bitte ~=.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
SELECT 'LINESTRING(0 0, 0 1, 1 0)'::geometry = 'LINESTRING(1 1, 0 0)'::geometry; ?column? ---------- f (1 row) SELECT ST_AsText(column1) FROM ( VALUES ('LINESTRING(0 0, 1 1)'::geometry), ('LINESTRING(1 1, 0 0)'::geometry)) AS foo; st_astext --------------------- LINESTRING(0 0,1 1) LINESTRING(1 1,0 0) (2 rows) -- Anmerkung: die Klausel GROUP BY berwendet "=" um auf geometrische Gleichwertigkeit zu prüfen. SELECT ST_AsText(column1) FROM ( VALUES ('LINESTRING(0 0, 1 1)'::geometry), ('LINESTRING(1 1, 0 0)'::geometry)) AS foo GROUP BY column1; st_astext --------------------- LINESTRING(0 0,1 1) LINESTRING(1 1,0 0) (2 rows) -- In Vorgängerversionen von 2.0 wurde hier üblicherweise TRUE zurückgegeben -- SELECT ST_GeomFromText('POINT(1707296.37 4820536.77)') = ST_GeomFromText('POINT(1707296.27 4820536.87)') As pt_intersect; --pt_intersect -- f
>> — Gibt TRUE
zurück, wenn A's bounding box zur Gänze rechts von der von B liegt.
boolean >>(
geometry A , geometry B )
;
Der >>
Operator gibt TRUE
zurück, wenn die Bounding Box von Geometrie A zur Gänze rechts der Bounding Box von Geometrie B liegt.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 >> tbl2.column2 AS right FROM ( VALUES (1, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING (1 4, 1 7)'::geometry), (3, 'LINESTRING (6 1, 6 5)'::geometry), (4, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl2; column1 | column1 | right ---------+---------+------- 1 | 2 | t 1 | 3 | f 1 | 4 | f (3 rows)
@ — Gibt TRUE
zurück, wenn die Bounding Box von A in jener von B enthalten ist.
boolean @(
geometry A , geometry B )
;
Der @
Operator gibt TRUE
zurück, wenn die Bounding Box der Geometrie A vollstänig in der Bounding Box der Geometrie B enthalten ist.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 @ tbl2.column2 AS contained FROM ( VALUES (1, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING (0 0, 4 4)'::geometry), (3, 'LINESTRING (2 2, 4 4)'::geometry), (4, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl2; column1 | column1 | contained ---------+---------+----------- 1 | 2 | t 1 | 3 | f 1 | 4 | t (3 rows)
@(geometry,box2df) — Gibt TRUE
zurück, wenn die 2D Bounding Box einer Geometrie in einer 2D float precision Bbounding Box (BOX2DF) enthalten ist.
boolean @(
geometry A , box2df B )
;
Der @
Operator gibt TRUE
zurück, wenn die 2D Bounding Box der Geometrie A in der 2D Bounding Box der Geometrie B , unter Benutzung von float precision, enthalten ist. D.h.: wenn B eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) übersetzt.
Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
@(box2df,geometry) — Gibt TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) in der 2D Bounding Box einer Geometrie enthalten ist..
boolean @(
box2df A , geometry B )
;
Der @
Operator gibt TRUE
zurück, wenn die 2D bounding box A in der 2D bounding box der Geometrie B, unter Verwendung von float precision, enthalten ist. D.h.: wenn B eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt
Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
@(box2df,box2df) — Gibt TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) innerhalb einer anderen 2D float precision bounding box enthalten ist.
boolean @(
box2df A , box2df B )
;
Der @
Operator gibt TRUE
zurück, wenn die 2D bounding box A innerhalb der 2D bounding box B, unter Verwendung von float precision, enthalten ist. D.h.: wenn A (oder B) eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt.
Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
|&> — Gibt TRUE
zurück, wenn A's bounding box diejenige von B überlagert oder oberhalb von B liegt.
boolean |&>(
geometry A , geometry B )
;
Der |&>
Operator gibt TRUE
zurück, wenn die bounding box der Geometrie A die bounding box der Geometrie B überlagert oder oberhalb liegt, oder präziser, überlagert oder NICHT unterhalb der Bounding Box der Geometrie B liegt.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 |&> tbl2.column2 AS overabove FROM ( VALUES (1, 'LINESTRING(6 0, 6 4)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING(0 0, 3 3)'::geometry), (3, 'LINESTRING(0 1, 0 5)'::geometry), (4, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2; column1 | column1 | overabove ---------+---------+----------- 1 | 2 | t 1 | 3 | f 1 | 4 | f (3 rows)
|>> — Gibt TRUE
zurück, wenn A's bounding box is zur Gänze oberhalb der von B liegt.
boolean |>>(
geometry A , geometry B )
;
Der Operator |>>
gibt TRUE
zurück, wenn die Bounding Box der Geometrie A zur Gänze oberhalb der Bounding Box von Geometrie B liegt.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 |>> tbl2.column2 AS above FROM ( VALUES (1, 'LINESTRING (1 4, 1 7)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING (0 0, 4 2)'::geometry), (3, 'LINESTRING (6 1, 6 5)'::geometry), (4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2; column1 | column1 | above ---------+---------+------- 1 | 2 | t 1 | 3 | f 1 | 4 | f (3 rows)
~ — Gibt TRUE
zurück, wenn A's bounding box die von B enthält.
boolean ~(
geometry A , geometry B )
;
Der ~
Operator gibt TRUE
zurück, wenn die bounding box der Geometrie A zur Gänze die bounding box der Geometrie B enthält.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
SELECT tbl1.column1, tbl2.column1, tbl1.column2 ~ tbl2.column2 AS contains FROM ( VALUES (1, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl1, ( VALUES (2, 'LINESTRING (0 0, 4 4)'::geometry), (3, 'LINESTRING (1 1, 2 2)'::geometry), (4, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl2; column1 | column1 | contains ---------+---------+---------- 1 | 2 | f 1 | 3 | t 1 | 4 | t (3 rows)
~(geometry,box2df) — Gibt TRUE
zurück, wenn die 2D bounding box einer Geometrie eine 2D float precision bounding box (GIDX) enthält.
boolean ~(
geometry A , box2df B )
;
Der ~
Operator gibt TRUE
zurück, wenn die 2D bounding box einer Geometrie A die 2D bounding box B, unter Verwendung von float precision, enthält. D.h.: wenn B eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) übersetzt
Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
~(box2df,geometry) — Gibt TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) die 2D Bounding Box einer Geometrie enthält.
boolean ~(
box2df A , geometry B )
;
Der ~
Operator gibt TRUE
zurück, wenn die 2D bounding box A die Bounding Box der Geometrie B, unter Verwendung von float precision, enthält. D.h.: wenn A eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt.
Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
~(box2df,box2df) — Gibt TRUE
zurück, wenn eine 2D float precision bounding box (BOX2DF) eine andere 2D float precision bounding box (BOX2DF) enthält.
boolean ~(
box2df A , box2df B )
;
Der ~
Operator gibt TRUE
zurück, wenn die 2D bounding box A die 2D bounding box B, unter Verwendung von float precision, enthält. D.h.: wenn A eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt
Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht. |
Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
~= — Gibt TRUE
zurück, wenn die bounding box von A ident mit jener von B ist.
boolean ~=(
geometry A , geometry B )
;
Der ~=
Operator gibt TRUE
zurück, wenn die bounding box der Geometrie/Geographie A ident mit der bounding box der Geometrie/Geographie B ist.
Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt. |
Verfügbarkeit: 1.5.0 "Verhaltensänderung"
This function supports Polyhedral surfaces.
Dieser Operator verhält sich ab PostGIS 1.5 insofern anders, als er vom Prüfen der Übereinstimmung der tatsächlichen Geometrie auf eine ledigliche Überprüfung der Gleichheit der Bounding Boxes abgeändert wurde. Um die Sache noch weiter zu komplizieren, hängt dieses Verhalten der Datenbank davon ab, ob ein hard oder soft upgrade durchgeführt wurde. Um herauszufinden, wie sich die Datenbank in dieser Beziehung verhält, führen Sie bitte die untere Abfrage aus. Um auf exakte Gleichheit zu prüfen benutzen Sie bitte ST_OrderingEquals oder ST_Equals. |
<-> — Gibt die 2D Entfernung zwischen A und B zurück.
double precision <->(
geometry A , geometry B )
;
double precision <->(
geography A , geography B )
;
Der <->
Operator gibt die 2D Entfernung zwischen zwei Geometrien zurück. Wird er in einer "ORDER BY" Klausel verwendet, so liefert er Index-unterstützte nearest-neighbor Ergebnismengen. PostgreSQL Versionen unter 9.5 geben jedoch lediglich die Entfernung der Centroide der bounding boxes zurück, während PostgreSQL 9.5+ mittels KNN-Methode die tatsächliche Entfernung zwischen den Geometrien, bei geographischen Koordinaten die Entfernung auf der Späre, widergibt.
Dieser Operand verwendet 2D GiST Indizes, falls diese für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, die räumliche Indizes verwenden, indem der räumliche Index nur dann verwendet wird, wenn sich der Operator in einer ORDER BY Klausel befindet. |
Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist (sich nicht in einer Subquery/CTE befindet). Z.B. 'SRID=3005;POINT(1011102 450541)'::geometry und nicht a.geom |
Siehe OpenGeo workshop: Nearest-Neighbour Searching für ein praxisbezogenes Anwendungsbeispiel.
Verbesserung: 2.2.0 -- Echtes KNN ("K nearest neighbor") Verhalten für Geometrie und Geographie ab PostgreSQL 9.5+. Beachten Sie bitte, das KNN für Geographie auf der Späre und nicht auf dem Sphäroid beruht. Für PostgreSQL 9.4 und darunter, wird die Berechnung nur auf Basis des Centroids der Box unterstützt.
Änderung: 2.2.0 -- Da für Anwender von PostgreSQL 9.5 der alte hybride Syntax langsamer sein kann, möchten sie diesen Hack eventuell loswerden, falls der Code nur auf PostGIS 2.2+ 9.5+ läuft. Siehe die unteren Beispiele.
Verfügbarkeit: 2.0.0 -- Weak KNN liefert nearest neighbors, welche sich auf die Entfernung der Centroide der Geometrien, anstatt auf den tatsächlichen Entfernungen, stützen. Genaue Ergebnisse für Punkte, ungenau für alle anderen Geometrietypen. Verfügbar ab PostgreSQL 9.1+.
SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr FROM va2005 ORDER BY d limit 10; d | edabbr | vaabbr ------------------+--------+-------- 0 | ALQ | 128 5541.57712511724 | ALQ | 129A 5579.67450712005 | ALQ | 001 6083.4207708641 | ALQ | 131 7691.2205404848 | ALQ | 003 7900.75451037313 | ALQ | 122 8694.20710669982 | ALQ | 129B 9564.24289057111 | ALQ | 130 12089.665931705 | ALQ | 127 18472.5531479404 | ALQ | 002 (10 rows)
Then the KNN raw answer:
SELECT st_distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr FROM va2005 ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry limit 10; d | edabbr | vaabbr ------------------+--------+-------- 0 | ALQ | 128 5541.57712511724 | ALQ | 129A 5579.67450712005 | ALQ | 001 6083.4207708641 | ALQ | 131 7691.2205404848 | ALQ | 003 7900.75451037313 | ALQ | 122 8694.20710669982 | ALQ | 129B 9564.24289057111 | ALQ | 130 12089.665931705 | ALQ | 127 18472.5531479404 | ALQ | 002 (10 rows)
Wenn Sie "EXPLAIN ANALYZE" an den zwei Abfragen ausführen, sollte eine Performance Verbesserung im Ausmaß von einer Sekunde auftreten.
Anwender von PostgreSQL < 9.5 können eine hybride Abfrage erstellen, um die echten nearest neighbors aufzufinden. Zuerst eine CTE-Abfrage, welche die Index-unterstützten KNN-Methode anwendet, dann eine exakte Abfrage um eine korrekte Sortierung zu erhalten:
WITH index_query AS ( SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr FROM va2005 ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry LIMIT 100) SELECT * FROM index_query ORDER BY d limit 10; d | edabbr | vaabbr ------------------+--------+-------- 0 | ALQ | 128 5541.57712511724 | ALQ | 129A 5579.67450712005 | ALQ | 001 6083.4207708641 | ALQ | 131 7691.2205404848 | ALQ | 003 7900.75451037313 | ALQ | 122 8694.20710669982 | ALQ | 129B 9564.24289057111 | ALQ | 130 12089.665931705 | ALQ | 127 18472.5531479404 | ALQ | 002 (10 rows)
|=| — Gibt die Entfernung zwischen den Trajektorien A und B, am Ort der dichtesten Annäherung, an.
double precision |=|(
geometry A , geometry B )
;
Der |=|
Operator gibt die 3D Entfernung zwischen zwei Trajektorien (Siehe ST_IsValidTrajectory). Dieser entspricht ST_DistanceCPA, da es sich jedoch um einen Operator handelt, kann dieser für nearest neightbor searches mittels eines N-dimensionalen Index verwendet werden (verlangt PostgreSQL 9.5.0 oder höher).
Dieser Operand verwendet die ND GiST Indizes, welche für Geometrien vorhanden sein können. Er unterscheidet sich insofern von anderen Operatoren, die ebenfalls räumliche Indizes verwenden, als der räumliche Index nur dann angewandt wird, wenn sich der Operand in einer ORDER BY Klausel befindet. |
Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist (sich nicht in einer Subquery/CTE befindet). Z.B. 'SRID=3005;LINESTRINGM(0 0 0,0 0 1)'::geometry und nicht a.geom |
Verfügbarkeit: 2.2.0. Index-unterstützt steht erst ab PostgreSQL 9.5+ zur Verfügung.
-- Save a literal query trajectory in a psql variable... \set qt 'ST_AddMeasure(ST_MakeLine(ST_MakePointM(-350,300,0),ST_MakePointM(-410,490,0)),10,20)' -- Run the query ! SELECT track_id, dist FROM ( SELECT track_id, ST_DistanceCPA(tr,:qt) dist FROM trajectories ORDER BY tr |=| :qt LIMIT 5 ) foo; track_id dist ----------+------------------- 395 | 0.576496831518066 380 | 5.06797130410151 390 | 7.72262293958322 385 | 9.8004461358071 405 | 10.9534397988433 (5 rows)
<#> — Gibt die 2D Entfernung zwischen den Bounding Boxes von A und B zurück
double precision <#>(
geometry A , geometry B )
;
Der <#>
Operator gibt die Entfernung zwischen zwei floating point bounding boxes zurück, wobei diese eventuell vom räumlichen Index ausgelesen wird (PostgreSQL 9.1+ vorausgesetzt). Praktikabel falls man eine nearest neighbor Abfrage approximate nach der Entfernung sortieren will.
Dieser Operand verwendet sämtliche Indizes, welche für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, welche ebenfalls räumliche Indizes verwenden, als der räumliche Index nur dann verwendet wird, falls sich der Operand in einer ORDER BY Klausel befindet. |
Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist; z.B.: ORDER BY (ST_GeomFromText('POINT(1 2)') <#> geom) anstatt g1.geom <#>. |
Verfügbarkeit: 2.0.0 -- KNN steht erst ab PostgreSQL 9.1+ zur Verfügung
SELECT * FROM ( SELECT b.tlid, b.mtfcc, b.geom <# > ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576, 745787 2948499,745740 2948468,745712 2948438, 745690 2948384,745677 2948319)',2249) As b_dist, ST_Distance(b.geom, ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576, 745787 2948499,745740 2948468,745712 2948438, 745690 2948384,745677 2948319)',2249)) As act_dist FROM bos_roads As b ORDER BY b_dist, b.tlid LIMIT 100) As foo ORDER BY act_dist, tlid LIMIT 10; tlid | mtfcc | b_dist | act_dist -----------+-------+------------------+------------------ 85732027 | S1400 | 0 | 0 85732029 | S1400 | 0 | 0 85732031 | S1400 | 0 | 0 85734335 | S1400 | 0 | 0 85736037 | S1400 | 0 | 0 624683742 | S1400 | 0 | 128.528874268666 85719343 | S1400 | 260.839270432962 | 260.839270432962 85741826 | S1400 | 164.759294123275 | 260.839270432962 85732032 | S1400 | 277.75 | 311.830282365264 85735592 | S1400 | 222.25 | 311.830282365264 (10 rows)
<<->> — Gibt die n-D Entfernung zwischen den geometrischen Schwerpunkten der Begrenzungsrechtecke/Bounding Boxes von A und B zurück.
double precision <<->>(
geometry A , geometry B )
;
Der <<->>
Operator gibt die n-D (euklidische) Entfernung zwischen den geometrischen Schwerpunkten der Begrenzungsrechtecke zweier Geometrien zurück. Praktikabel für nearest neighbor approximate distance ordering.
Dieser Operator verwendet n-D GiST Indizes, falls diese für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, die räumliche Indizes verwenden, indem der räumliche Index nur dann verwendet wird, wenn sich der Operator in einer ORDER BY Klausel befindet. |
Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist (sich nicht in einer Subquery/CTE befindet). Z.B. 'SRID=3005;POINT(1011102 450541)'::geometry und nicht a.geom |
Verfügbarkeit: 2.2.0 -- KNN steht erst ab PostgreSQL 9.1+ zur Verfügung.
<<#>> — Gibt die n-D Entfernung zwischen den Bounding Boxes von A und B zurück.
double precision <<#>>(
geometry A , geometry B )
;
Der <<#>>
Operator gibt die Entfernung zwischen zwei floating point bounding boxes zurück, wobei diese eventuell vom räumlichen Index ausgelesen wird (PostgreSQL 9.1+ vorausgesetzt). Praktikabel falls man eine nearest neighbor Abfrage nach der Entfernung sortieren will / approximate distance ordering.
Dieser Operand verwendet sämtliche Indizes, welche für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, welche ebenfalls räumliche Indizes verwenden, als der räumliche Index nur dann verwendet wird, falls sich der Operand in einer ORDER BY Klausel befindet. |
Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist; z.B.: ORDER BY (ST_GeomFromText('POINT(1 2)') <<#>> geom) anstatt g1.geom <<#>>. |
Verfügbarkeit: 2.2.0 -- KNN steht erst ab PostgreSQL 9.1+ zur Verfügung.
ST_3DIntersects — Tests if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).
boolean ST_3DIntersects(
geometry geomA , geometry geomB )
;
Overlaps, Touches und Within implizieren räumliche Überschneidung. Wenn irgendeine dieser Eigenschaften TRUE zurückgibt, dann überschneiden sich die geometrischen Objekte auch. Disjoint impliziert FALSE für die räumliche Überschneidung.
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available on the geometries. |
Änderung: 3.0.0 das SFCGAL Back-end wurde entfernt, das GEOS Back-end unterstützt TIN.
Verfügbarkeit: 2.0.0
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 5.1
SELECT ST_3DIntersects(pt, line), ST_Intersects(pt, line) FROM (SELECT 'POINT(0 0 2)'::geometry As pt, 'LINESTRING (0 0 1, 0 2 3)'::geometry As line) As foo; st_3dintersects | st_intersects -----------------+--------------- f | t (1 row)
ST_Contains — Tests if no points of B lie in the exterior of A, and A and B have at least one interior point in common.
boolean ST_Contains(
geometry geomA, geometry geomB)
;
Gibt TRUE zurück, wenn Geometrie B zur Gänze innerhalb von Geometrie A liegt. A beinhaltet B dann und nur dann, wenn kein Punkt von B außerhalb von A liegt und zumindest ein Punkt von B innerhalb von A liegt.
Eine Feinheit dieser Definition ist, dass eine Geometrie keine Teile seiner Begrenzung enthält. Deshalb enthalten Polygone und Linien keine Linien oder Punkte ihrer Begrenzung. Für weitere Einzelheiten siehe Subtleties of OGC Covers, Contains, Within. (Das ST_Covers Prädikat bietet eine umfassendere Beziehung.) Allerdings beinhaltet eine Geometrie sich selbst. (Demgegenüber beinhaltet im ST_ContainsProperly Prädikat eine Geometrie nicht genau sich selbst.)
ST_Contains ist das Gegenteil von ST_Within. Daher, ST_Contains(A,B) = ST_Within(B,A)
.
This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries. Um die Verwendung eines Indices zu vermeiden, kann die Funktion |
Wird durch das GEOS Modul ausgeführt
Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Enhanced: 3.0.0 enabled support for |
Do not use this function with invalid geometries. You will get unexpected results. |
NOTE: this is the "allowable" version that returns a boolean, not an integer.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3 - same as within(geometry B, geometry A)
This method implements the SQL/MM specification. SQL-MM 3: 5.1.31
ST_Contains
returns TRUE
in the following situations:
The ST_Contains
predicate returns FALSE
in the following situations:
-- A circle within a circle SELECT ST_Contains(smallc, bigc) As smallcontainsbig, ST_Contains(bigc,smallc) As bigcontainssmall, ST_Contains(bigc, ST_Union(smallc, bigc)) as bigcontainsunion, ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion, ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior, ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc, ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo; -- Result smallcontainsbig | bigcontainssmall | bigcontainsunion | bigisunion | bigcoversexterior | bigcontainsexterior ------------------+------------------+------------------+------------+-------------------+--------------------- f | t | t | t | t | f -- Example demonstrating difference between contains and contains properly SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa, ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba FROM (VALUES ( ST_Buffer(ST_Point(1,1), 5,1) ), ( ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1) ) ), ( ST_Point(1,1) ) ) As foo(geomA); geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba --------------+------------+----------------+-------------+----------------- ST_Polygon | t | f | f | f ST_LineString | t | f | f | f ST_Point | t | t | f | f
ST_ContainsProperly — Tests if B intersects the interior of A but not the boundary or exterior.
boolean ST_ContainsProperly(
geometry geomA, geometry geomB)
;
Returns true if B intersects the interior of A but not the boundary or exterior.
A does not properly contain itself, but does contain itself.
Every point of the other geometry is a point of this geometry's interior. The DE-9IM Intersection Matrix for the two geometries matches [T**FF*FF*] used in ST_Relate
An example use case for this predicate is computing the intersections of a set of geometries with a large polygonal geometry. Since intersection is a fairly slow operation, it can be more efficient to use containsProperly to filter out test geometries which lie wholly inside the area. In these cases the intersection is known a priori to be exactly the original test geometry.
This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries. To avoid index use, use the function |
The advantage of this predicate over ST_Contains and ST_Intersects is that it can be computed more efficiently, with no need to compute topology at individual points. |
Performed by the GEOS module.
Availability: 1.4.0
Enhanced: 3.0.0 enabled support for |
Do not use this function with invalid geometries. You will get unexpected results. |
--a circle within a circle SELECT ST_ContainsProperly(smallc, bigc) As smallcontainspropbig, ST_ContainsProperly(bigc,smallc) As bigcontainspropsmall, ST_ContainsProperly(bigc, ST_Union(smallc, bigc)) as bigcontainspropunion, ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion, ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior, ST_ContainsProperly(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc, ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo; --Result smallcontainspropbig | bigcontainspropsmall | bigcontainspropunion | bigisunion | bigcoversexterior | bigcontainsexterior ------------------+------------------+------------------+------------+-------------------+--------------------- f | t | f | t | t | f --example demonstrating difference between contains and contains properly SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa, ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba FROM (VALUES ( ST_Buffer(ST_Point(1,1), 5,1) ), ( ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1) ) ), ( ST_Point(1,1) ) ) As foo(geomA); geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba --------------+------------+----------------+-------------+----------------- ST_Polygon | t | f | f | f ST_LineString | t | f | f | f ST_Point | t | t | f | f
ST_GeometryType, ST_Boundary, ST_Contains, ST_Covers, ST_CoveredBy, ST_Equals, ST_Relate, ST_Within
ST_CoveredBy — Tests if no point in A is outside B
boolean ST_CoveredBy(
geometry geomA, geometry geomB)
;
boolean ST_CoveredBy(
geography geogA, geography geogB)
;
Returns true
if no point in Geometry/Geography A lies outside Geometry/Geography B. Equivalently, tests if every point of geometry A is inside (i.e. intersects the interior or boundary of) geometry B.
This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries. To avoid index use, use the function |
Enhanced: 3.0.0 enabled support for |
Do not use this function with invalid geometries. You will get unexpected results. |
Wird durch das GEOS Modul ausgeführt
Availability: 1.2.2
NOTE: this is the "allowable" version that returns a boolean, not an integer.
Not an OGC standard, but Oracle has it too.
--a circle coveredby a circle SELECT ST_CoveredBy(smallc,smallc) As smallinsmall, ST_CoveredBy(smallc, bigc) As smallcoveredbybig, ST_CoveredBy(ST_ExteriorRing(bigc), bigc) As exteriorcoveredbybig, ST_Within(ST_ExteriorRing(bigc),bigc) As exeriorwithinbig FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc, ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo; --Result smallinsmall | smallcoveredbybig | exteriorcoveredbybig | exeriorwithinbig --------------+-------------------+----------------------+------------------ t | t | t | f (1 row)
ST_Covers — Tests if no point in B is outside A
boolean ST_Covers(
geometry geomA, geometry geomB)
;
boolean ST_Covers(
geography geogpolyA, geography geogpointB)
;
Returns true
if no point in Geometry/Geography B is outside Geometry/Geography A. Equivalently, tests if every point of geometry B is inside (i.e. intersects the interior or boundary of) geometry A.
This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries. To avoid index use, use the function |
Enhanced: 3.0.0 enabled support for |
Do not use this function with invalid geometries. You will get unexpected results. |
Wird durch das GEOS Modul ausgeführt
Enhanced: 2.4.0 Support for polygon in polygon and line in polygon added for geography type
Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Availability: 1.5 - support for geography was introduced.
Availability: 1.2.2
NOTE: this is the "allowable" version that returns a boolean, not an integer.
Not an OGC standard, but Oracle has it too.
Geometry example
--a circle covering a circle SELECT ST_Covers(smallc,smallc) As smallinsmall, ST_Covers(smallc, bigc) As smallcoversbig, ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior, ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc, ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo; --Result smallinsmall | smallcoversbig | bigcoversexterior | bigcontainsexterior --------------+----------------+-------------------+--------------------- t | f | t | f (1 row)
Geeography Example
-- a point with a 300 meter buffer compared to a point, a point and its 10 meter buffer SELECT ST_Covers(geog_poly, geog_pt) As poly_covers_pt, ST_Covers(ST_Buffer(geog_pt,10), geog_pt) As buff_10m_covers_cent FROM (SELECT ST_Buffer(ST_GeogFromText('SRID=4326;POINT(-99.327 31.4821)'), 300) As geog_poly, ST_GeogFromText('SRID=4326;POINT(-99.33 31.483)') As geog_pt ) As foo; poly_covers_pt | buff_10m_covers_cent ----------------+------------------ f | t
ST_Crosses — Tests if two geometries have some, but not all, interior points in common.
boolean ST_Crosses(
geometry g1, geometry g2)
;
Compares two geometry objects and returns true
if their intersection "spatially cross", that is, the geometries have some, but not all interior points in common. The intersection of the interiors of the geometries must be non-empty and must have dimension less than the maximum dimension of the two input geometries. Additionally, the intersection of the two geometries must not equal either of the source geometries. Otherwise, it returns false
.
In mathematical terms, this is:
Geometries cross if their DE-9IM Intersection Matrix matches:
T*T******
for Point/Line, Point/Area, and Line/Area situations
T*****T**
for Line/Point, Area/Point, and Area/Line situations
0********
for Line/Line situations
For Point/Point and Area/Area situations this predicate returns false
.
The OpenGIS Simple Features Specification defines this predicate only for Point/Line, Point/Area, Line/Line, and Line/Area situations. JTS / GEOS extends the definition to apply to Line/Point, Area/Point and Area/Line situations as well. This makes the relation symmetric.
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available on the geometries. |
Enhanced: 3.0.0 enabled support for |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.13.3
This method implements the SQL/MM specification. SQL-MM 3: 5.1.29
The following situations all return true
.
Consider a situation where a user has two tables: a table of roads and a table of highways.
CREATE TABLE roads ( id serial NOT NULL, geom geometry, CONSTRAINT roads_pkey PRIMARY KEY (road_id) );
|
CREATE TABLE highways ( id serial NOT NULL, the_gem geometry, CONSTRAINT roads_pkey PRIMARY KEY (road_id) );
|
To determine a list of roads that cross a highway, use a query similiar to:
SELECT roads.id FROM roads, highways WHERE ST_Crosses(roads.geom, highways.geom);
ST_Disjoint — Tests if two geometries are disjoint (they have no point in common).
boolean ST_Disjoint(
geometry A , geometry B )
;
Overlaps, Touches, Within all imply geometries are not spatially disjoint. If any of the aforementioned returns true, then the geometries are not spatially disjoint. Disjoint implies false for spatial intersection.
Enhanced: 3.0.0 enabled support for |
Wird durch das GEOS Modul ausgeführt
This function call does not use indexes |
NOTE: this is the "allowable" version that returns a boolean, not an integer. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 - a.Relate(b, 'FF*FF****')
This method implements the SQL/MM specification. SQL-MM 3: 5.1.26
ST_Equals — Tests if two geometries include the same set of points.
boolean ST_Equals(
geometry A, geometry B)
;
Returns true
if the given geometries are "spatially equal". Use this for a 'better' answer than '='. Note by spatially equal we mean ST_Within(A,B) = true and ST_Within(B,A) = true and also mean ordering of points can be different but represent the same geometry structure. To verify the order of points is consistent, use ST_OrderingEquals (it must be noted ST_OrderingEquals is a little more stringent than simply verifying order of points are the same).
Enhanced: 3.0.0 enabled support for |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2
This method implements the SQL/MM specification. SQL-MM 3: 5.1.24
Changed: 2.2.0 Returns true even for invalid geometries if they are binary equal
SELECT ST_Equals(ST_GeomFromText('LINESTRING(0 0, 10 10)'), ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)')); st_equals ----------- t (1 row) SELECT ST_Equals(ST_Reverse(ST_GeomFromText('LINESTRING(0 0, 10 10)')), ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)')); st_equals ----------- t (1 row)
ST_Intersects — Tests if two geometries intersect (they have at least one point in common).
boolean ST_Intersects(
geometry geomA , geometry geomB )
;
boolean ST_Intersects(
geography geogA , geography geogB )
;
Compares two geometries and returns true
if they intersect. Geometries intersect if they have any point in common.
For geography, a distance tolerance of 0.00001 meters is used (so points that are very close are considered to intersect).
Geometries intersect if their DE-9IM Intersection Matrix matches one of:
T********
*T*******
***T*****
****T****
Spatial intersection is implied by all the other spatial relationship tests, except ST_Disjoint, which tests that geometries do NOT intersect.
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available on the geometries. |
Changed: 3.0.0 SFCGAL version removed and native support for 2D TINS added.
Enhanced: 2.5.0 Supports GEOMETRYCOLLECTION.
Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Performed by the GEOS module (for geometry), geography is native
Availability: 1.5 support for geography was introduced.
For geography, this function has a distance tolerance of about 0.00001 meters and uses the sphere rather than spheroid calculation. |
NOTE: this is the "allowable" version that returns a boolean, not an integer. |
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 - ST_Intersects(g1, g2 ) --> Not (ST_Disjoint(g1, g2 ))
This method implements the SQL/MM specification. SQL-MM 3: 5.1.27
This method supports Circular Strings and Curves
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
SELECT ST_Intersects('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry); st_intersects --------------- f (1 row) SELECT ST_Intersects('POINT(0 0)'::geometry, 'LINESTRING ( 0 0, 0 2 )'::geometry); st_intersects --------------- t (1 row) -- Look up in table. Make sure table has a GiST index on geometry column for faster lookup. SELECT id, name FROM cities WHERE ST_Intersects(geom, 'SRID=4326;POLYGON((28 53,27.707 52.293,27 52,26.293 52.293,26 53,26.293 53.707,27 54,27.707 53.707,28 53))'); id | name ----+------- 2 | Minsk (1 row)
ST_LineCrossingDirection — Returns a number indicating the crossing behavior of two LineStrings.
integer ST_LineCrossingDirection(
geometry linestringA, geometry linestringB)
;
Given two linestrings returns an integer between -3 and 3 indicating what kind of crossing behavior exists between them. 0 indicates no crossing. This is only supported for LINESTRING
s.
The crossing number has the following meaning:
0: LINE NO CROSS
-1: LINE CROSS LEFT
1: LINE CROSS RIGHT
-2: LINE MULTICROSS END LEFT
2: LINE MULTICROSS END RIGHT
-3: LINE MULTICROSS END SAME FIRST LEFT
3: LINE MULTICROSS END SAME FIRST RIGHT
Availability: 1.4