PostGIS  3.3.9dev-r@@SVN_REVISION@@
ptarray.c
Go to the documentation of this file.
1 /**********************************************************************
2  *
3  * PostGIS - Spatial Types for PostgreSQL
4  * http://postgis.net
5  *
6  * PostGIS is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * PostGIS is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with PostGIS. If not, see <http://www.gnu.org/licenses/>.
18  *
19  **********************************************************************
20  *
21  * Copyright (C) 2012-2021 Sandro Santilli <strk@kbt.io>
22  * Copyright (C) 2001-2006 Refractions Research Inc.
23  *
24  **********************************************************************/
25 
26 
27 #include <stdio.h>
28 #include <string.h>
29 #include <stdlib.h>
30 
31 #include "../postgis_config.h"
32 /*#define POSTGIS_DEBUG_LEVEL 4*/
33 #include "liblwgeom_internal.h"
34 #include "lwgeom_log.h"
35 
36 int
38 {
39  if ( ! pa ) return LW_FALSE;
40  return FLAGS_GET_Z(pa->flags);
41 }
42 
43 int
45 {
46  if ( ! pa ) return LW_FALSE;
47  return FLAGS_GET_M(pa->flags);
48 }
49 
51 ptarray_construct(char hasz, char hasm, uint32_t npoints)
52 {
53  POINTARRAY *pa = ptarray_construct_empty(hasz, hasm, npoints);
54  pa->npoints = npoints;
55  return pa;
56 }
57 
59 ptarray_construct_empty(char hasz, char hasm, uint32_t maxpoints)
60 {
61  POINTARRAY *pa = lwalloc(sizeof(POINTARRAY));
62  pa->serialized_pointlist = NULL;
63 
64  /* Set our dimensionality info on the bitmap */
65  pa->flags = lwflags(hasz, hasm, 0);
66 
67  /* We will be allocating a bit of room */
68  pa->npoints = 0;
69  pa->maxpoints = maxpoints;
70 
71  /* Allocate the coordinate array */
72  if ( maxpoints > 0 )
73  pa->serialized_pointlist = lwalloc(maxpoints * ptarray_point_size(pa));
74  else
75  pa->serialized_pointlist = NULL;
76 
77  return pa;
78 }
79 
80 /*
81 * Add a point into a pointarray. Only adds as many dimensions as the
82 * pointarray supports.
83 */
84 int
85 ptarray_insert_point(POINTARRAY *pa, const POINT4D *p, uint32_t where)
86 {
87  if (!pa || !p)
88  return LW_FAILURE;
89  size_t point_size = ptarray_point_size(pa);
90  LWDEBUGF(5,"pa = %p; p = %p; where = %d", pa, p, where);
91  LWDEBUGF(5,"pa->npoints = %d; pa->maxpoints = %d", pa->npoints, pa->maxpoints);
92 
93  if ( FLAGS_GET_READONLY(pa->flags) )
94  {
95  lwerror("ptarray_insert_point: called on read-only point array");
96  return LW_FAILURE;
97  }
98 
99  /* Error on invalid offset value */
100  if ( where > pa->npoints )
101  {
102  lwerror("ptarray_insert_point: offset out of range (%d)", where);
103  return LW_FAILURE;
104  }
105 
106  /* If we have no storage, let's allocate some */
107  if( pa->maxpoints == 0 || ! pa->serialized_pointlist )
108  {
109  pa->maxpoints = 32;
110  pa->npoints = 0;
112  }
113 
114  /* Error out if we have a bad situation */
115  if ( pa->npoints > pa->maxpoints )
116  {
117  lwerror("npoints (%d) is greater than maxpoints (%d)", pa->npoints, pa->maxpoints);
118  return LW_FAILURE;
119  }
120 
121  /* Check if we have enough storage, add more if necessary */
122  if( pa->npoints == pa->maxpoints )
123  {
124  pa->maxpoints *= 2;
126  }
127 
128  /* Make space to insert the new point */
129  if( where < pa->npoints )
130  {
131  size_t copy_size = point_size * (pa->npoints - where);
132  memmove(getPoint_internal(pa, where+1), getPoint_internal(pa, where), copy_size);
133  LWDEBUGF(5,"copying %d bytes to start vertex %d from start vertex %d", copy_size, where+1, where);
134  }
135 
136  /* We have one more point */
137  ++pa->npoints;
138 
139  /* Copy the new point into the gap */
140  ptarray_set_point4d(pa, where, p);
141  LWDEBUGF(5,"copying new point to start vertex %d", point_size, where);
142 
143  return LW_SUCCESS;
144 }
145 
146 int
147 ptarray_append_point(POINTARRAY *pa, const POINT4D *pt, int repeated_points)
148 {
149  /* Check for pathology */
150  if( ! pa || ! pt )
151  {
152  lwerror("ptarray_append_point: null input");
153  return LW_FAILURE;
154  }
155 
156  /* Check for duplicate end point */
157  if ( repeated_points == LW_FALSE && pa->npoints > 0 )
158  {
159  POINT4D tmp;
160  getPoint4d_p(pa, pa->npoints-1, &tmp);
161  LWDEBUGF(4,"checking for duplicate end point (pt = POINT(%g %g) pa->npoints-q = POINT(%g %g))",pt->x,pt->y,tmp.x,tmp.y);
162 
163  /* Return LW_SUCCESS and do nothing else if previous point in list is equal to this one */
164  if ( (pt->x == tmp.x) && (pt->y == tmp.y) &&
165  (FLAGS_GET_Z(pa->flags) ? pt->z == tmp.z : 1) &&
166  (FLAGS_GET_M(pa->flags) ? pt->m == tmp.m : 1) )
167  {
168  return LW_SUCCESS;
169  }
170  }
171 
172  /* Append is just a special case of insert */
173  return ptarray_insert_point(pa, pt, pa->npoints);
174 }
175 
176 int
177 ptarray_append_ptarray(POINTARRAY *pa1, POINTARRAY *pa2, double gap_tolerance)
178 {
179  unsigned int poff = 0;
180  unsigned int npoints;
181  unsigned int ncap;
182  unsigned int ptsize;
183 
184  /* Check for pathology */
185  if( ! pa1 || ! pa2 )
186  {
187  lwerror("ptarray_append_ptarray: null input");
188  return LW_FAILURE;
189  }
190 
191  npoints = pa2->npoints;
192 
193  if ( ! npoints ) return LW_SUCCESS; /* nothing more to do */
194 
195  if( FLAGS_GET_READONLY(pa1->flags) )
196  {
197  lwerror("ptarray_append_ptarray: target pointarray is read-only");
198  return LW_FAILURE;
199  }
200 
201  if( FLAGS_GET_ZM(pa1->flags) != FLAGS_GET_ZM(pa2->flags) )
202  {
203  lwerror("ptarray_append_ptarray: appending mixed dimensionality is not allowed");
204  return LW_FAILURE;
205  }
206 
207  ptsize = ptarray_point_size(pa1);
208 
209  /* Check for duplicate end point */
210  if ( pa1->npoints )
211  {
212  POINT2D tmp1, tmp2;
213  getPoint2d_p(pa1, pa1->npoints-1, &tmp1);
214  getPoint2d_p(pa2, 0, &tmp2);
215 
216  /* If the end point and start point are the same, then don't copy start point */
217  if (p2d_same(&tmp1, &tmp2)) {
218  poff = 1;
219  --npoints;
220  }
221  else if ( gap_tolerance == 0 || ( gap_tolerance > 0 &&
222  distance2d_pt_pt(&tmp1, &tmp2) > gap_tolerance ) )
223  {
224  lwerror("Second line start point too far from first line end point");
225  return LW_FAILURE;
226  }
227  }
228 
229  /* Check if we need extra space */
230  ncap = pa1->npoints + npoints;
231  if ( pa1->maxpoints < ncap )
232  {
233  if ( pa1->maxpoints )
234  {
235  pa1->maxpoints = ncap > pa1->maxpoints*2 ?
236  ncap : pa1->maxpoints*2;
237  pa1->serialized_pointlist = lwrealloc(pa1->serialized_pointlist, (size_t)ptsize * pa1->maxpoints);
238  }
239  else
240  {
241  pa1->maxpoints = ncap;
242  pa1->serialized_pointlist = lwalloc((size_t)ptsize * pa1->maxpoints);
243  }
244  }
245 
246  memcpy(getPoint_internal(pa1, pa1->npoints),
247  getPoint_internal(pa2, poff), ptsize * npoints);
248 
249  pa1->npoints = ncap;
250 
251  return LW_SUCCESS;
252 }
253 
254 /*
255 * Add a point into a pointarray. Only adds as many dimensions as the
256 * pointarray supports.
257 */
258 int
259 ptarray_remove_point(POINTARRAY *pa, uint32_t where)
260 {
261  /* Check for pathology */
262  if( ! pa )
263  {
264  lwerror("ptarray_remove_point: null input");
265  return LW_FAILURE;
266  }
267 
268  /* Error on invalid offset value */
269  if ( where >= pa->npoints )
270  {
271  lwerror("ptarray_remove_point: offset out of range (%d)", where);
272  return LW_FAILURE;
273  }
274 
275  /* If the point is any but the last, we need to copy the data back one point */
276  if (where < pa->npoints - 1)
277  memmove(getPoint_internal(pa, where),
278  getPoint_internal(pa, where + 1),
279  ptarray_point_size(pa) * (pa->npoints - where - 1));
280 
281  /* We have one less point */
282  pa->npoints--;
283 
284  return LW_SUCCESS;
285 }
286 
291 POINTARRAY* ptarray_construct_reference_data(char hasz, char hasm, uint32_t npoints, uint8_t *ptlist)
292 {
293  POINTARRAY *pa = lwalloc(sizeof(POINTARRAY));
294  LWDEBUGF(5, "hasz = %d, hasm = %d, npoints = %d, ptlist = %p", hasz, hasm, npoints, ptlist);
295  pa->flags = lwflags(hasz, hasm, 0);
296  FLAGS_SET_READONLY(pa->flags, 1); /* We don't own this memory, so we can't alter or free it. */
297  pa->npoints = npoints;
298  pa->maxpoints = npoints;
299  pa->serialized_pointlist = ptlist;
300  return pa;
301 }
302 
303 
304 POINTARRAY*
305 ptarray_construct_copy_data(char hasz, char hasm, uint32_t npoints, const uint8_t *ptlist)
306 {
307  POINTARRAY *pa = lwalloc(sizeof(POINTARRAY));
308 
309  pa->flags = lwflags(hasz, hasm, 0);
310  pa->npoints = npoints;
311  pa->maxpoints = npoints;
312 
313  if ( npoints > 0 )
314  {
315  pa->serialized_pointlist = lwalloc(ptarray_point_size(pa) * npoints);
316  memcpy(pa->serialized_pointlist, ptlist, ptarray_point_size(pa) * npoints);
317  }
318  else
319  {
320  pa->serialized_pointlist = NULL;
321  }
322 
323  return pa;
324 }
325 
326 void
328 {
329  if (pa)
330  {
331  if (pa->serialized_pointlist && (!FLAGS_GET_READONLY(pa->flags)))
333  lwfree(pa);
334  }
335 }
336 
337 
338 void
340 {
341  if (!pa->npoints)
342  return;
343  uint32_t i;
344  uint32_t last = pa->npoints - 1;
345  uint32_t mid = pa->npoints / 2;
346 
347  double *d = (double*)(pa->serialized_pointlist);
348  int j;
349  int ndims = FLAGS_NDIMS(pa->flags);
350  for (i = 0; i < mid; i++)
351  {
352  for (j = 0; j < ndims; j++)
353  {
354  double buf;
355  buf = d[i*ndims+j];
356  d[i*ndims+j] = d[(last-i)*ndims+j];
357  d[(last-i)*ndims+j] = buf;
358  }
359  }
360  return;
361 }
362 
363 
367 POINTARRAY*
369 {
370  uint32_t i;
371  double d;
372  POINT4D p;
373 
374  for (i=0 ; i < pa->npoints ; i++)
375  {
376  getPoint4d_p(pa, i, &p);
377  d = p.y;
378  p.y = p.x;
379  p.x = d;
380  ptarray_set_point4d(pa, i, &p);
381  }
382 
383  return pa;
384 }
385 
386 void
388 {
389  uint32_t i;
390  double d, *dp1, *dp2;
391  POINT4D p;
392 
393  dp1 = ((double*)&p)+(unsigned)o1;
394  dp2 = ((double*)&p)+(unsigned)o2;
395  for (i=0 ; i < pa->npoints ; i++)
396  {
397  getPoint4d_p(pa, i, &p);
398  d = *dp2;
399  *dp2 = *dp1;
400  *dp1 = d;
401  ptarray_set_point4d(pa, i, &p);
402  }
403 }
404 
412 POINTARRAY *
413 ptarray_segmentize2d(const POINTARRAY *ipa, double dist)
414 {
415  double segdist;
416  POINT4D p1, p2;
417  POINT4D pbuf;
418  POINTARRAY *opa;
419  uint32_t i, j, nseg;
420  int hasz = FLAGS_GET_Z(ipa->flags);
421  int hasm = FLAGS_GET_M(ipa->flags);
422 
423  pbuf.x = pbuf.y = pbuf.z = pbuf.m = 0;
424 
425  /* Initial storage */
426  opa = ptarray_construct_empty(hasz, hasm, ipa->npoints);
427 
428  /* Add first point */
429  getPoint4d_p(ipa, 0, &p1);
430  ptarray_append_point(opa, &p1, LW_FALSE);
431 
432  /* Loop on all other input points */
433  for (i = 1; i < ipa->npoints; i++)
434  {
435  /*
436  * We use these pointers to avoid
437  * "strict-aliasing rules break" warning raised
438  * by gcc (3.3 and up).
439  *
440  * It looks that casting a variable address (also
441  * referred to as "type-punned pointer")
442  * breaks those "strict" rules.
443  */
444  POINT4D *p1ptr=&p1, *p2ptr=&p2;
445  double segments;
446 
447  getPoint4d_p(ipa, i, &p2);
448 
449  segdist = distance2d_pt_pt((POINT2D *)p1ptr, (POINT2D *)p2ptr);
450  /* Split input segment into shorter even chunks */
451  segments = ceil(segdist / dist);
452 
453  /* Uses INT32_MAX instead of UINT32_MAX to be safe that it fits */
454  if (segments >= INT32_MAX)
455  {
456  lwnotice("%s:%d - %s: Too many segments required (%e)",
457  __FILE__, __LINE__,__func__, segments);
458  ptarray_free(opa);
459  return NULL;
460  }
461  nseg = segments;
462 
463  for (j = 1; j < nseg; j++)
464  {
465  pbuf.x = p1.x + (p2.x - p1.x) * j / nseg;
466  pbuf.y = p1.y + (p2.y - p1.y) * j / nseg;
467  if (hasz)
468  pbuf.z = p1.z + (p2.z - p1.z) * j / nseg;
469  if (hasm)
470  pbuf.m = p1.m + (p2.m - p1.m) * j / nseg;
471  ptarray_append_point(opa, &pbuf, LW_FALSE);
472  LW_ON_INTERRUPT(ptarray_free(opa); return NULL);
473  }
474 
475  ptarray_append_point(opa, &p2, (ipa->npoints == 2) ? LW_TRUE : LW_FALSE);
476  p1 = p2;
477  LW_ON_INTERRUPT(ptarray_free(opa); return NULL);
478  }
479 
480  return opa;
481 }
482 
483 char
484 ptarray_same(const POINTARRAY *pa1, const POINTARRAY *pa2)
485 {
486  uint32_t i;
487  size_t ptsize;
488 
489  if ( FLAGS_GET_ZM(pa1->flags) != FLAGS_GET_ZM(pa2->flags) ) return LW_FALSE;
490  LWDEBUG(5,"dimensions are the same");
491 
492  if ( pa1->npoints != pa2->npoints ) return LW_FALSE;
493  LWDEBUG(5,"npoints are the same");
494 
495  ptsize = ptarray_point_size(pa1);
496  LWDEBUGF(5, "ptsize = %d", ptsize);
497 
498  for (i=0; i<pa1->npoints; i++)
499  {
500  if ( memcmp(getPoint_internal(pa1, i), getPoint_internal(pa2, i), ptsize) )
501  return LW_FALSE;
502  LWDEBUGF(5,"point #%d is the same",i);
503  }
504 
505  return LW_TRUE;
506 }
507 
508 POINTARRAY *
509 ptarray_addPoint(const POINTARRAY *pa, uint8_t *p, size_t pdims, uint32_t where)
510 {
511  POINTARRAY *ret;
512  POINT4D pbuf;
513  size_t ptsize = ptarray_point_size(pa);
514 
515  LWDEBUGF(3, "pa %x p %x size %d where %d",
516  pa, p, pdims, where);
517 
518  if ( pdims < 2 || pdims > 4 )
519  {
520  lwerror("ptarray_addPoint: point dimension out of range (%d)",
521  pdims);
522  return NULL;
523  }
524 
525  if ( where > pa->npoints )
526  {
527  lwerror("ptarray_addPoint: offset out of range (%d)",
528  where);
529  return NULL;
530  }
531 
532  LWDEBUG(3, "called with a %dD point");
533 
534  pbuf.x = pbuf.y = pbuf.z = pbuf.m = 0.0;
535  memcpy((uint8_t *)&pbuf, p, pdims*sizeof(double));
536 
537  LWDEBUG(3, "initialized point buffer");
538 
540  FLAGS_GET_M(pa->flags), pa->npoints+1);
541 
542 
543  if ( where )
544  {
545  memcpy(getPoint_internal(ret, 0), getPoint_internal(pa, 0), ptsize*where);
546  }
547 
548  memcpy(getPoint_internal(ret, where), (uint8_t *)&pbuf, ptsize);
549 
550  if ( where+1 != ret->npoints )
551  {
552  memcpy(getPoint_internal(ret, where+1),
553  getPoint_internal(pa, where),
554  ptsize*(pa->npoints-where));
555  }
556 
557  return ret;
558 }
559 
560 POINTARRAY *
561 ptarray_removePoint(POINTARRAY *pa, uint32_t which)
562 {
563  POINTARRAY *ret;
564  size_t ptsize = ptarray_point_size(pa);
565 
566  LWDEBUGF(3, "pa %x which %d", pa, which);
567 
568 #if PARANOIA_LEVEL > 0
569  if ( which > pa->npoints-1 )
570  {
571  lwerror("%s [%d] offset (%d) out of range (%d..%d)", __FILE__, __LINE__,
572  which, 0, pa->npoints-1);
573  return NULL;
574  }
575 
576  if ( pa->npoints < 3 )
577  {
578  lwerror("%s [%d] can't remove a point from a 2-vertex POINTARRAY", __FILE__, __LINE__);
579  return NULL;
580  }
581 #endif
582 
584  FLAGS_GET_M(pa->flags), pa->npoints-1);
585 
586  /* copy initial part */
587  if ( which )
588  {
589  memcpy(getPoint_internal(ret, 0), getPoint_internal(pa, 0), ptsize*which);
590  }
591 
592  /* copy final part */
593  if ( which < pa->npoints-1 )
594  {
595  memcpy(getPoint_internal(ret, which), getPoint_internal(pa, which+1),
596  ptsize*(pa->npoints-which-1));
597  }
598 
599  return ret;
600 }
601 
602 POINTARRAY *
604 {
605  POINTARRAY *pa;
606  size_t ptsize = ptarray_point_size(pa1);
607 
608  if (FLAGS_GET_ZM(pa1->flags) != FLAGS_GET_ZM(pa2->flags))
609  lwerror("ptarray_cat: Mixed dimension");
610 
611  pa = ptarray_construct( FLAGS_GET_Z(pa1->flags),
612  FLAGS_GET_M(pa1->flags),
613  pa1->npoints + pa2->npoints);
614 
615  memcpy( getPoint_internal(pa, 0),
616  getPoint_internal(pa1, 0),
617  ptsize*(pa1->npoints));
618 
619  memcpy( getPoint_internal(pa, pa1->npoints),
620  getPoint_internal(pa2, 0),
621  ptsize*(pa2->npoints));
622 
623  ptarray_free(pa1);
624  ptarray_free(pa2);
625 
626  return pa;
627 }
628 
629 
633 POINTARRAY *
635 {
636  POINTARRAY *out = lwalloc(sizeof(POINTARRAY));
637 
638  LWDEBUG(3, "ptarray_clone_deep called.");
639 
640  out->flags = in->flags;
641  out->npoints = in->npoints;
642  out->maxpoints = in->npoints;
643 
644  FLAGS_SET_READONLY(out->flags, 0);
645 
646  if (!in->npoints)
647  {
648  // Avoid calling lwalloc of 0 bytes
649  out->serialized_pointlist = NULL;
650  }
651  else
652  {
653  size_t size = in->npoints * ptarray_point_size(in);
654  out->serialized_pointlist = lwalloc(size);
655  memcpy(out->serialized_pointlist, in->serialized_pointlist, size);
656  }
657 
658  return out;
659 }
660 
664 POINTARRAY *
666 {
667  POINTARRAY *out = lwalloc(sizeof(POINTARRAY));
668 
669  LWDEBUG(3, "ptarray_clone called.");
670 
671  out->flags = in->flags;
672  out->npoints = in->npoints;
673  out->maxpoints = in->maxpoints;
674 
675  FLAGS_SET_READONLY(out->flags, 1);
676 
678 
679  return out;
680 }
681 
686 int
688 {
689  if (!in)
690  {
691  lwerror("ptarray_is_closed: called with null point array");
692  return 0;
693  }
694  if (in->npoints <= 1 ) return in->npoints; /* single-point are closed, empty not closed */
695 
696  return 0 == memcmp(getPoint_internal(in, 0), getPoint_internal(in, in->npoints-1), ptarray_point_size(in));
697 }
698 
699 
700 int
702 {
703  if (!in)
704  {
705  lwerror("ptarray_is_closed_2d: called with null point array");
706  return 0;
707  }
708  if (in->npoints <= 1 ) return in->npoints; /* single-point are closed, empty not closed */
709 
710  return 0 == memcmp(getPoint_internal(in, 0), getPoint_internal(in, in->npoints-1), sizeof(POINT2D) );
711 }
712 
713 int
715 {
716  if (!in)
717  {
718  lwerror("ptarray_is_closed_3d: called with null point array");
719  return 0;
720  }
721  if (in->npoints <= 1 ) return in->npoints; /* single-point are closed, empty not closed */
722 
723  return 0 == memcmp(getPoint_internal(in, 0), getPoint_internal(in, in->npoints-1), sizeof(POINT3D) );
724 }
725 
726 int
728 {
729  if ( FLAGS_GET_Z(in->flags) )
730  return ptarray_is_closed_3d(in);
731  else
732  return ptarray_is_closed_2d(in);
733 }
734 
739 int
741 {
742  return ptarray_contains_point_partial(pa, pt, LW_TRUE, NULL);
743 }
744 
745 int
746 ptarray_contains_point_partial(const POINTARRAY *pa, const POINT2D *pt, int check_closed, int *winding_number)
747 {
748  int wn = 0;
749  uint32_t i;
750  double side;
751  const POINT2D *seg1;
752  const POINT2D *seg2;
753  double ymin, ymax;
754 
755  seg1 = getPoint2d_cp(pa, 0);
756  seg2 = getPoint2d_cp(pa, pa->npoints-1);
757  if ( check_closed && ! p2d_same(seg1, seg2) )
758  lwerror("ptarray_contains_point called on unclosed ring");
759 
760  for ( i=1; i < pa->npoints; i++ )
761  {
762  seg2 = getPoint2d_cp(pa, i);
763 
764  /* Zero length segments are ignored. */
765  if ( seg1->x == seg2->x && seg1->y == seg2->y )
766  {
767  seg1 = seg2;
768  continue;
769  }
770 
771  ymin = FP_MIN(seg1->y, seg2->y);
772  ymax = FP_MAX(seg1->y, seg2->y);
773 
774  /* Only test segments in our vertical range */
775  if ( pt->y > ymax || pt->y < ymin )
776  {
777  seg1 = seg2;
778  continue;
779  }
780 
781  side = lw_segment_side(seg1, seg2, pt);
782 
783  /*
784  * A point on the boundary of a ring is not contained.
785  * WAS: if (fabs(side) < 1e-12), see #852
786  */
787  if ( (side == 0) && lw_pt_in_seg(pt, seg1, seg2) )
788  {
789  return LW_BOUNDARY;
790  }
791 
792  /*
793  * If the point is to the left of the line, and it's rising,
794  * then the line is to the right of the point and
795  * circling counter-clockwise, so increment.
796  */
797  if ( (side < 0) && (seg1->y <= pt->y) && (pt->y < seg2->y) )
798  {
799  wn++;
800  }
801 
802  /*
803  * If the point is to the right of the line, and it's falling,
804  * then the line is to the right of the point and circling
805  * clockwise, so decrement.
806  */
807  else if ( (side > 0) && (seg2->y <= pt->y) && (pt->y < seg1->y) )
808  {
809  wn--;
810  }
811 
812  seg1 = seg2;
813  }
814 
815  /* Sent out the winding number for calls that are building on this as a primitive */
816  if ( winding_number )
817  *winding_number = wn;
818 
819  /* Outside */
820  if (wn == 0)
821  {
822  return LW_OUTSIDE;
823  }
824 
825  /* Inside */
826  return LW_INSIDE;
827 }
828 
838 int
840 {
841  return ptarrayarc_contains_point_partial(pa, pt, LW_TRUE /* Check closed*/, NULL);
842 }
843 
844 int
845 ptarrayarc_contains_point_partial(const POINTARRAY *pa, const POINT2D *pt, int check_closed, int *winding_number)
846 {
847  int wn = 0;
848  uint32_t i;
849  int side;
850  const POINT2D *seg1;
851  const POINT2D *seg2;
852  const POINT2D *seg3;
853  GBOX gbox;
854 
855  /* Check for not an arc ring (always have odd # of points) */
856  if ( (pa->npoints % 2) == 0 )
857  {
858  lwerror("ptarrayarc_contains_point called with even number of points");
859  return LW_OUTSIDE;
860  }
861 
862  /* Check for not an arc ring (always have >= 3 points) */
863  if ( pa->npoints < 3 )
864  {
865  lwerror("ptarrayarc_contains_point called too-short pointarray");
866  return LW_OUTSIDE;
867  }
868 
869  /* Check for unclosed case */
870  seg1 = getPoint2d_cp(pa, 0);
871  seg3 = getPoint2d_cp(pa, pa->npoints-1);
872  if ( check_closed && ! p2d_same(seg1, seg3) )
873  {
874  lwerror("ptarrayarc_contains_point called on unclosed ring");
875  return LW_OUTSIDE;
876  }
877  /* OK, it's closed. Is it just one circle? */
878  else if ( p2d_same(seg1, seg3) && pa->npoints == 3 )
879  {
880  double radius, d;
881  POINT2D c;
882  seg2 = getPoint2d_cp(pa, 1);
883 
884  /* Wait, it's just a point, so it can't contain anything */
885  if ( lw_arc_is_pt(seg1, seg2, seg3) )
886  return LW_OUTSIDE;
887 
888  /* See if the point is within the circle radius */
889  radius = lw_arc_center(seg1, seg2, seg3, &c);
890  d = distance2d_pt_pt(pt, &c);
891  if ( FP_EQUALS(d, radius) )
892  return LW_BOUNDARY; /* Boundary of circle */
893  else if ( d < radius )
894  return LW_INSIDE; /* Inside circle */
895  else
896  return LW_OUTSIDE; /* Outside circle */
897  }
898  else if ( p2d_same(seg1, pt) || p2d_same(seg3, pt) )
899  {
900  return LW_BOUNDARY; /* Boundary case */
901  }
902 
903  /* Start on the ring */
904  seg1 = getPoint2d_cp(pa, 0);
905  for ( i=1; i < pa->npoints; i += 2 )
906  {
907  seg2 = getPoint2d_cp(pa, i);
908  seg3 = getPoint2d_cp(pa, i+1);
909 
910  /* Catch an easy boundary case */
911  if( p2d_same(seg3, pt) )
912  return LW_BOUNDARY;
913 
914  /* Skip arcs that have no size */
915  if ( lw_arc_is_pt(seg1, seg2, seg3) )
916  {
917  seg1 = seg3;
918  continue;
919  }
920 
921  /* Only test segments in our vertical range */
922  lw_arc_calculate_gbox_cartesian_2d(seg1, seg2, seg3, &gbox);
923  if ( pt->y > gbox.ymax || pt->y < gbox.ymin )
924  {
925  seg1 = seg3;
926  continue;
927  }
928 
929  /* Outside of horizontal range, and not between end points we also skip */
930  if ( (pt->x > gbox.xmax || pt->x < gbox.xmin) &&
931  (pt->y > FP_MAX(seg1->y, seg3->y) || pt->y < FP_MIN(seg1->y, seg3->y)) )
932  {
933  seg1 = seg3;
934  continue;
935  }
936 
937  side = lw_arc_side(seg1, seg2, seg3, pt);
938 
939  /* On the boundary */
940  if ( (side == 0) && lw_pt_in_arc(pt, seg1, seg2, seg3) )
941  {
942  return LW_BOUNDARY;
943  }
944 
945  /* Going "up"! Point to left of arc. */
946  if ( side < 0 && (seg1->y <= pt->y) && (pt->y < seg3->y) )
947  {
948  wn++;
949  }
950 
951  /* Going "down"! */
952  if ( side > 0 && (seg3->y <= pt->y) && (pt->y < seg1->y) )
953  {
954  wn--;
955  }
956 
957  /* Inside the arc! */
958  if ( pt->x <= gbox.xmax && pt->x >= gbox.xmin )
959  {
960  POINT2D C;
961  double radius = lw_arc_center(seg1, seg2, seg3, &C);
962  double d = distance2d_pt_pt(pt, &C);
963 
964  /* On the boundary! */
965  if ( d == radius )
966  return LW_BOUNDARY;
967 
968  /* Within the arc! */
969  if ( d < radius )
970  {
971  /* Left side, increment winding number */
972  if ( side < 0 )
973  wn++;
974  /* Right side, decrement winding number */
975  if ( side > 0 )
976  wn--;
977  }
978  }
979 
980  seg1 = seg3;
981  }
982 
983  /* Sent out the winding number for calls that are building on this as a primitive */
984  if ( winding_number )
985  *winding_number = wn;
986 
987  /* Outside */
988  if (wn == 0)
989  {
990  return LW_OUTSIDE;
991  }
992 
993  /* Inside */
994  return LW_INSIDE;
995 }
996 
1002 double
1004 {
1005  const POINT2D *P1;
1006  const POINT2D *P2;
1007  const POINT2D *P3;
1008  double sum = 0.0;
1009  double x0, x, y1, y2;
1010  uint32_t i;
1011 
1012  if (! pa || pa->npoints < 3 )
1013  return 0.0;
1014 
1015  P1 = getPoint2d_cp(pa, 0);
1016  P2 = getPoint2d_cp(pa, 1);
1017  x0 = P1->x;
1018  for ( i = 2; i < pa->npoints; i++ )
1019  {
1020  P3 = getPoint2d_cp(pa, i);
1021  x = P2->x - x0;
1022  y1 = P3->y;
1023  y2 = P1->y;
1024  sum += x * (y2-y1);
1025 
1026  /* Move forwards! */
1027  P1 = P2;
1028  P2 = P3;
1029  }
1030  return sum / 2.0;
1031 }
1032 
1033 int
1035 {
1036  double area = 0;
1037  area = ptarray_signed_area(pa);
1038  if ( area > 0 ) return LW_FALSE;
1039  else return LW_TRUE;
1040 }
1041 
1042 POINTARRAY*
1043 ptarray_force_dims(const POINTARRAY *pa, int hasz, int hasm, double zval, double mval)
1044 {
1045  /* TODO handle zero-length point arrays */
1046  uint32_t i;
1047  int in_hasz = FLAGS_GET_Z(pa->flags);
1048  int in_hasm = FLAGS_GET_M(pa->flags);
1049  POINT4D pt;
1050  POINTARRAY *pa_out = ptarray_construct_empty(hasz, hasm, pa->npoints);
1051 
1052  for( i = 0; i < pa->npoints; i++ )
1053  {
1054  getPoint4d_p(pa, i, &pt);
1055  if( hasz && ! in_hasz )
1056  pt.z = zval;
1057  if( hasm && ! in_hasm )
1058  pt.m = mval;
1059  ptarray_append_point(pa_out, &pt, LW_TRUE);
1060  }
1061 
1062  return pa_out;
1063 }
1064 
1065 POINTARRAY *
1066 ptarray_substring(POINTARRAY *ipa, double from, double to, double tolerance)
1067 {
1068  POINTARRAY *dpa;
1069  POINT4D pt;
1070  POINT4D p1, p2;
1071  POINT4D *p1ptr=&p1; /* don't break strict-aliasing rule */
1072  POINT4D *p2ptr=&p2;
1073  int nsegs, i;
1074  double length, slength, tlength;
1075  int state = 0; /* 0=before, 1=inside */
1076 
1077  /*
1078  * Create a dynamic pointarray with an initial capacity
1079  * equal to full copy of input points
1080  */
1082 
1083  /* Compute total line length */
1084  length = ptarray_length_2d(ipa);
1085 
1086 
1087  LWDEBUGF(3, "Total length: %g", length);
1088 
1089 
1090  /* Get 'from' and 'to' lengths */
1091  from = length*from;
1092  to = length*to;
1093 
1094 
1095  LWDEBUGF(3, "From/To: %g/%g", from, to);
1096 
1097 
1098  tlength = 0;
1099  getPoint4d_p(ipa, 0, &p1);
1100  nsegs = ipa->npoints - 1;
1101  for ( i = 0; i < nsegs; i++ )
1102  {
1103  double dseg;
1104 
1105  getPoint4d_p(ipa, i+1, &p2);
1106 
1107 
1108  LWDEBUGF(3 ,"Segment %d: (%g,%g,%g,%g)-(%g,%g,%g,%g)",
1109  i, p1.x, p1.y, p1.z, p1.m, p2.x, p2.y, p2.z, p2.m);
1110 
1111 
1112  /* Find the length of this segment */
1113  slength = distance2d_pt_pt((POINT2D *)p1ptr, (POINT2D *)p2ptr);
1114 
1115  /*
1116  * We are before requested start.
1117  */
1118  if ( state == 0 ) /* before */
1119  {
1120 
1121  LWDEBUG(3, " Before start");
1122 
1123  if ( fabs ( from - ( tlength + slength ) ) <= tolerance )
1124  {
1125 
1126  LWDEBUG(3, " Second point is our start");
1127 
1128  /*
1129  * Second point is our start
1130  */
1131  ptarray_append_point(dpa, &p2, LW_FALSE);
1132  state=1; /* we're inside now */
1133  goto END;
1134  }
1135 
1136  else if ( fabs(from - tlength) <= tolerance )
1137  {
1138 
1139  LWDEBUG(3, " First point is our start");
1140 
1141  /*
1142  * First point is our start
1143  */
1144  ptarray_append_point(dpa, &p1, LW_FALSE);
1145 
1146  /*
1147  * We're inside now, but will check
1148  * 'to' point as well
1149  */
1150  state=1;
1151  }
1152 
1153  /*
1154  * Didn't reach the 'from' point,
1155  * nothing to do
1156  */
1157  else if ( from > tlength + slength ) goto END;
1158 
1159  else /* tlength < from < tlength+slength */
1160  {
1161 
1162  LWDEBUG(3, " Seg contains first point");
1163 
1164  /*
1165  * Our start is between first and
1166  * second point
1167  */
1168  dseg = (from - tlength) / slength;
1169 
1170  interpolate_point4d(&p1, &p2, &pt, dseg);
1171 
1172  ptarray_append_point(dpa, &pt, LW_FALSE);
1173 
1174  /*
1175  * We're inside now, but will check
1176  * 'to' point as well
1177  */
1178  state=1;
1179  }
1180  }
1181 
1182  if ( state == 1 ) /* inside */
1183  {
1184 
1185  LWDEBUG(3, " Inside");
1186 
1187  /*
1188  * 'to' point is our second point.
1189  */
1190  if ( fabs(to - ( tlength + slength ) ) <= tolerance )
1191  {
1192 
1193  LWDEBUG(3, " Second point is our end");
1194 
1195  ptarray_append_point(dpa, &p2, LW_FALSE);
1196  break; /* substring complete */
1197  }
1198 
1199  /*
1200  * 'to' point is our first point.
1201  * (should only happen if 'to' is 0)
1202  */
1203  else if ( fabs(to - tlength) <= tolerance )
1204  {
1205 
1206  LWDEBUG(3, " First point is our end");
1207 
1208  ptarray_append_point(dpa, &p1, LW_FALSE);
1209 
1210  break; /* substring complete */
1211  }
1212 
1213  /*
1214  * Didn't reach the 'end' point,
1215  * just copy second point
1216  */
1217  else if ( to > tlength + slength )
1218  {
1219  ptarray_append_point(dpa, &p2, LW_FALSE);
1220  goto END;
1221  }
1222 
1223  /*
1224  * 'to' point falls on this segment
1225  * Interpolate and break.
1226  */
1227  else if ( to < tlength + slength )
1228  {
1229 
1230  LWDEBUG(3, " Seg contains our end");
1231 
1232  dseg = (to - tlength) / slength;
1233  interpolate_point4d(&p1, &p2, &pt, dseg);
1234 
1235  ptarray_append_point(dpa, &pt, LW_FALSE);
1236 
1237  break;
1238  }
1239 
1240  else
1241  {
1242  LWDEBUG(3, "Unhandled case");
1243  }
1244  }
1245 
1246 
1247 END:
1248 
1249  tlength += slength;
1250  memcpy(&p1, &p2, sizeof(POINT4D));
1251  }
1252 
1253  LWDEBUGF(3, "Out of loop, ptarray has %d points", dpa->npoints);
1254 
1255  return dpa;
1256 }
1257 
1258 /*
1259  * Write into the *ret argument coordinates of the closes point on
1260  * the given segment to the reference input point.
1261  */
1262 void
1263 closest_point_on_segment(const POINT4D *p, const POINT4D *A, const POINT4D *B, POINT4D *ret)
1264 {
1265  double r;
1266 
1267  if ( FP_EQUALS(A->x, B->x) && FP_EQUALS(A->y, B->y) )
1268  {
1269  *ret = *A;
1270  return;
1271  }
1272 
1273  /*
1274  * We use comp.graphics.algorithms Frequently Asked Questions method
1275  *
1276  * (1) AC dot AB
1277  * r = ----------
1278  * ||AB||^2
1279  * r has the following meaning:
1280  * r=0 P = A
1281  * r=1 P = B
1282  * r<0 P is on the backward extension of AB
1283  * r>1 P is on the forward extension of AB
1284  * 0<r<1 P is interior to AB
1285  *
1286  */
1287  r = ( (p->x-A->x) * (B->x-A->x) + (p->y-A->y) * (B->y-A->y) )/( (B->x-A->x)*(B->x-A->x) +(B->y-A->y)*(B->y-A->y) );
1288 
1289  if (r<=0)
1290  {
1291  *ret = *A;
1292  return;
1293  }
1294  if (r>=1)
1295  {
1296  *ret = *B;
1297  return;
1298  }
1299 
1300  ret->x = A->x + ( (B->x - A->x) * r );
1301  ret->y = A->y + ( (B->y - A->y) * r );
1302  ret->z = A->z + ( (B->z - A->z) * r );
1303  ret->m = A->m + ( (B->m - A->m) * r );
1304 }
1305 
1306 int
1307 ptarray_closest_segment_2d(const POINTARRAY *pa, const POINT2D *qp, double *dist)
1308 {
1309  const POINT2D *start = getPoint2d_cp(pa, 0), *end = NULL;
1310  uint32_t t, seg=0;
1311  double mindist=DBL_MAX;
1312 
1313  /* Loop through pointarray looking for nearest segment */
1314  for (t=1; t<pa->npoints; t++)
1315  {
1316  double dist_sqr;
1317  end = getPoint2d_cp(pa, t);
1318  dist_sqr = distance2d_sqr_pt_seg(qp, start, end);
1319 
1320  if (dist_sqr < mindist)
1321  {
1322  mindist = dist_sqr;
1323  seg=t-1;
1324  if ( mindist == 0 )
1325  {
1326  LWDEBUG(3, "Breaking on mindist=0");
1327  break;
1328  }
1329  }
1330 
1331  start = end;
1332  }
1333 
1334  if ( dist ) *dist = sqrt(mindist);
1335  return seg;
1336 }
1337 
1338 
1339 int
1340 ptarray_closest_vertex_2d(const POINTARRAY *pa, const POINT2D *qp, double *dist)
1341 {
1342  uint32_t t, pn=0;
1343  const POINT2D *p;
1344  double mindist = DBL_MAX;
1345 
1346  /* Loop through pointarray looking for nearest segment */
1347  for (t=0; t<pa->npoints; t++)
1348  {
1349  double dist_sqr;
1350  p = getPoint2d_cp(pa, t);
1351  dist_sqr = distance2d_sqr_pt_pt(p, qp);
1352 
1353  if (dist_sqr < mindist)
1354  {
1355  mindist = dist_sqr;
1356  pn = t;
1357  if ( mindist == 0 )
1358  {
1359  LWDEBUG(3, "Breaking on mindist=0");
1360  break;
1361  }
1362  }
1363  }
1364  if ( dist ) *dist = sqrt(mindist);
1365  return pn;
1366 }
1367 
1368 /*
1369  * Given a point, returns the location of closest point on pointarray
1370  * and, optionally, it's actual distance from the point array.
1371  */
1372 double
1373 ptarray_locate_point(const POINTARRAY *pa, const POINT4D *p4d, double *mindistout, POINT4D *proj4d)
1374 {
1375  double mindist=DBL_MAX;
1376  double tlen, plen;
1377  uint32_t t, seg=0;
1378  POINT4D start4d, end4d, projtmp;
1379  POINT2D proj, p;
1380  const POINT2D *start = NULL, *end = NULL;
1381 
1382  /* Initialize our 2D copy of the input parameter */
1383  p.x = p4d->x;
1384  p.y = p4d->y;
1385 
1386  if ( ! proj4d ) proj4d = &projtmp;
1387 
1388  /* Check for special cases (length 0 and 1) */
1389  if ( pa->npoints <= 1 )
1390  {
1391  if ( pa->npoints == 1 )
1392  {
1393  getPoint4d_p(pa, 0, proj4d);
1394  if ( mindistout )
1395  *mindistout = distance2d_pt_pt(&p, getPoint2d_cp(pa, 0));
1396  }
1397  return 0.0;
1398  }
1399 
1400  start = getPoint2d_cp(pa, 0);
1401  /* Loop through pointarray looking for nearest segment */
1402  for (t=1; t<pa->npoints; t++)
1403  {
1404  double dist_sqr;
1405  end = getPoint2d_cp(pa, t);
1406  dist_sqr = distance2d_sqr_pt_seg(&p, start, end);
1407 
1408  if (dist_sqr < mindist)
1409  {
1410  mindist = dist_sqr;
1411  seg=t-1;
1412  if ( mindist == 0 )
1413  {
1414  LWDEBUG(3, "Breaking on mindist=0");
1415  break;
1416  }
1417  }
1418 
1419  start = end;
1420  }
1421  mindist = sqrt(mindist);
1422 
1423  if ( mindistout ) *mindistout = mindist;
1424 
1425  LWDEBUGF(3, "Closest segment: %d", seg);
1426  LWDEBUGF(3, "mindist: %g", mindist);
1427 
1428  /*
1429  * We need to project the
1430  * point on the closest segment.
1431  */
1432  getPoint4d_p(pa, seg, &start4d);
1433  getPoint4d_p(pa, seg+1, &end4d);
1434  closest_point_on_segment(p4d, &start4d, &end4d, proj4d);
1435 
1436  /* Copy 4D values into 2D holder */
1437  proj.x = proj4d->x;
1438  proj.y = proj4d->y;
1439 
1440  LWDEBUGF(3, "Closest segment:%d, npoints:%d", seg, pa->npoints);
1441 
1442  /* For robustness, force 1 when closest point == endpoint */
1443  if ( (seg >= (pa->npoints-2)) && p2d_same(&proj, end) )
1444  {
1445  return 1.0;
1446  }
1447 
1448  LWDEBUGF(3, "Closest point on segment: %g,%g", proj.x, proj.y);
1449 
1450  tlen = ptarray_length_2d(pa);
1451 
1452  LWDEBUGF(3, "tlen %g", tlen);
1453 
1454  /* Location of any point on a zero-length line is 0 */
1455  /* See http://trac.osgeo.org/postgis/ticket/1772#comment:2 */
1456  if ( tlen == 0 ) return 0;
1457 
1458  plen=0;
1459  start = getPoint2d_cp(pa, 0);
1460  for (t=0; t<seg; t++, start=end)
1461  {
1462  end = getPoint2d_cp(pa, t+1);
1463  plen += distance2d_pt_pt(start, end);
1464 
1465  LWDEBUGF(4, "Segment %d made plen %g", t, plen);
1466  }
1467 
1468  plen+=distance2d_pt_pt(&proj, start);
1469 
1470  LWDEBUGF(3, "plen %g, tlen %g", plen, tlen);
1471 
1472  return plen/tlen;
1473 }
1474 
1484 void
1486 {
1487  uint32_t i;
1488  double x;
1489 
1490  for (i=0; i<pa->npoints; i++)
1491  {
1492  memcpy(&x, getPoint_internal(pa, i), sizeof(double));
1493  if ( x < 0 ) x+= 360;
1494  else if ( x > 180 ) x -= 360;
1495  memcpy(getPoint_internal(pa, i), &x, sizeof(double));
1496  }
1497 }
1498 
1499 
1500 /*
1501  * Returns a POINTARRAY with consecutive equal points
1502  * removed. Equality test on all dimensions of input.
1503  *
1504  * Always returns a newly allocated object.
1505  */
1506 static POINTARRAY *
1507 ptarray_remove_repeated_points_minpoints(const POINTARRAY *in, double tolerance, int minpoints)
1508 {
1509  POINTARRAY *out = ptarray_clone_deep(in);
1510  ptarray_remove_repeated_points_in_place(out, tolerance, minpoints);
1511  return out;
1512 }
1513 
1514 POINTARRAY *
1515 ptarray_remove_repeated_points(const POINTARRAY *in, double tolerance)
1516 {
1517  return ptarray_remove_repeated_points_minpoints(in, tolerance, 2);
1518 }
1519 
1520 
1521 void
1522 ptarray_remove_repeated_points_in_place(POINTARRAY *pa, double tolerance, uint32_t min_points)
1523 {
1524  uint32_t i;
1525  double tolsq = tolerance * tolerance;
1526  const POINT2D *last = NULL;
1527  const POINT2D *pt;
1528  uint32_t n_points = pa->npoints;
1529  uint32_t n_points_out = 1;
1530  size_t pt_size = ptarray_point_size(pa);
1531 
1532  double dsq = FLT_MAX;
1533 
1534  /* No-op on short inputs */
1535  if ( n_points <= min_points ) return;
1536 
1537  last = getPoint2d_cp(pa, 0);
1538  void *p_to = ((char *)last) + pt_size;
1539  for (i = 1; i < n_points; i++)
1540  {
1541  int last_point = (i == n_points - 1);
1542 
1543  /* Look straight into the abyss */
1544  pt = getPoint2d_cp(pa, i);
1545 
1546  /* Don't drop points if we are running short of points */
1547  if (n_points + n_points_out > min_points + i)
1548  {
1549  if (tolerance > 0.0)
1550  {
1551  /* Only drop points that are within our tolerance */
1552  dsq = distance2d_sqr_pt_pt(last, pt);
1553  /* Allow any point but the last one to be dropped */
1554  if (!last_point && dsq <= tolsq)
1555  {
1556  continue;
1557  }
1558  }
1559  else
1560  {
1561  /* At tolerance zero, only skip exact dupes */
1562  if (memcmp((char*)pt, (char*)last, pt_size) == 0)
1563  continue;
1564  }
1565 
1566  /* Got to last point, and it's not very different from */
1567  /* the point that preceded it. We want to keep the last */
1568  /* point, not the second-to-last one, so we pull our write */
1569  /* index back one value */
1570  if (last_point && n_points_out > 1 && tolerance > 0.0 && dsq <= tolsq)
1571  {
1572  n_points_out--;
1573  p_to = (char*)p_to - pt_size;
1574  }
1575  }
1576 
1577  /* Compact all remaining values to front of array */
1578  memcpy(p_to, pt, pt_size);
1579  n_points_out++;
1580  p_to = (char*)p_to + pt_size;
1581  last = pt;
1582  }
1583  /* Adjust array length */
1584  pa->npoints = n_points_out;
1585  return;
1586 }
1587 
1588 /* Out of the points in pa [itfist .. itlast], finds the one that's farthest away from
1589  * the segment determined by pts[itfist] and pts[itlast].
1590  * Returns itfirst if no point was found futher away than max_distance_sqr
1591  */
1592 static uint32_t
1593 ptarray_dp_findsplit_in_place(const POINTARRAY *pts, uint32_t it_first, uint32_t it_last, double max_distance_sqr)
1594 {
1595  uint32_t split = it_first;
1596  if ((it_first - it_last) < 2)
1597  return it_first;
1598 
1599  const POINT2D *A = getPoint2d_cp(pts, it_first);
1600  const POINT2D *B = getPoint2d_cp(pts, it_last);
1601 
1602  if (distance2d_sqr_pt_pt(A, B) < DBL_EPSILON)
1603  {
1604  /* If p1 == p2, we can just calculate the distance from each point to A */
1605  for (uint32_t itk = it_first + 1; itk < it_last; itk++)
1606  {
1607  const POINT2D *pk = getPoint2d_cp(pts, itk);
1608  double distance_sqr = distance2d_sqr_pt_pt(pk, A);
1609  if (distance_sqr > max_distance_sqr)
1610  {
1611  split = itk;
1612  max_distance_sqr = distance_sqr;
1613  }
1614  }
1615  return split;
1616  }
1617 
1618  /* This is based on distance2d_sqr_pt_seg, but heavily inlined here to avoid recalculations */
1619  double ba_x = (B->x - A->x);
1620  double ba_y = (B->y - A->y);
1621  double ab_length_sqr = (ba_x * ba_x + ba_y * ba_y);
1622  /* To avoid the division by ab_length_sqr in the 3rd path, we normalize here
1623  * and multiply in the first two paths [(dot_ac_ab < 0) and (> ab_length_sqr)] */
1624  max_distance_sqr *= ab_length_sqr;
1625  for (uint32_t itk = it_first + 1; itk < it_last; itk++)
1626  {
1627  const POINT2D *C = getPoint2d_cp(pts, itk);
1628  double distance_sqr;
1629  double ca_x = (C->x - A->x);
1630  double ca_y = (C->y - A->y);
1631  double dot_ac_ab = (ca_x * ba_x + ca_y * ba_y);
1632 
1633  if (dot_ac_ab <= 0.0)
1634  {
1635  distance_sqr = distance2d_sqr_pt_pt(C, A) * ab_length_sqr;
1636  }
1637  else if (dot_ac_ab >= ab_length_sqr)
1638  {
1639  distance_sqr = distance2d_sqr_pt_pt(C, B) * ab_length_sqr;
1640  }
1641  else
1642  {
1643  double s_numerator = ca_x * ba_y - ca_y * ba_x;
1644  distance_sqr = s_numerator * s_numerator; /* Missing division by ab_length_sqr on purpose */
1645  }
1646 
1647  if (distance_sqr > max_distance_sqr)
1648  {
1649  split = itk;
1650  max_distance_sqr = distance_sqr;
1651  }
1652  }
1653  return split;
1654 }
1655 
1656 /* O(N) simplification for tolearnce = 0 */
1657 static void
1659 {
1660  uint32_t kept_it = 0;
1661  uint32_t last_it = pa->npoints - 1;
1662  const POINT2D *kept_pt = getPoint2d_cp(pa, 0);
1663  const size_t pt_size = ptarray_point_size(pa);
1664 
1665  for (uint32_t i = 1; i < last_it; i++)
1666  {
1667  const POINT2D *curr_pt = getPoint2d_cp(pa, i);
1668  const POINT2D *next_pt = getPoint2d_cp(pa, i + 1);
1669 
1670  double ba_x = next_pt->x - kept_pt->x;
1671  double ba_y = next_pt->y - kept_pt->y;
1672  double ab_length_sqr = ba_x * ba_x + ba_y * ba_y;
1673 
1674  double ca_x = curr_pt->x - kept_pt->x;
1675  double ca_y = curr_pt->y - kept_pt->y;
1676  double dot_ac_ab = ca_x * ba_x + ca_y * ba_y;
1677  double s_numerator = ca_x * ba_y - ca_y * ba_x;
1678 
1679  if (dot_ac_ab < 0.0 || dot_ac_ab > ab_length_sqr || s_numerator != 0)
1680  {
1681  kept_it++;
1682  kept_pt = curr_pt;
1683  if (kept_it != i)
1684  memcpy(pa->serialized_pointlist + pt_size * kept_it,
1685  pa->serialized_pointlist + pt_size * i,
1686  pt_size);
1687  }
1688  }
1689 
1690  /* Append last point */
1691  kept_it++;
1692  if (kept_it != last_it)
1693  memcpy(pa->serialized_pointlist + pt_size * kept_it,
1694  pa->serialized_pointlist + pt_size * last_it,
1695  pt_size);
1696  pa->npoints = kept_it + 1;
1697 }
1698 
1699 void
1700 ptarray_simplify_in_place(POINTARRAY *pa, double tolerance, uint32_t minpts)
1701 {
1702  /* Do not try to simplify really short things */
1703  if (pa->npoints < 3 || pa->npoints <= minpts)
1704  return;
1705 
1706  if (tolerance == 0 && minpts <= 2)
1707  {
1709  return;
1710  }
1711 
1712  /* We use this array to keep track of the points we are keeping, so
1713  * we store just TRUE / FALSE in their position */
1714  uint8_t *kept_points = lwalloc(sizeof(uint8_t) * pa->npoints);
1715  memset(kept_points, LW_FALSE, sizeof(uint8_t) * pa->npoints);
1716  kept_points[0] = LW_TRUE;
1717  kept_points[pa->npoints - 1] = LW_TRUE;
1718  uint32_t keptn = 2;
1719 
1720  /* We use this array as a stack to store the iterators that we are going to need
1721  * in the following steps.
1722  * This is ~10% faster than iterating over @kept_points looking for them
1723  */
1724  uint32_t *iterator_stack = lwalloc(sizeof(uint32_t) * pa->npoints);
1725  iterator_stack[0] = 0;
1726  uint32_t iterator_stack_size = 1;
1727 
1728  uint32_t it_first = 0;
1729  uint32_t it_last = pa->npoints - 1;
1730 
1731  const double tolerance_sqr = tolerance * tolerance;
1732  /* For the first @minpts points we ignore the tolerance */
1733  double it_tol = keptn >= minpts ? tolerance_sqr : -1.0;
1734 
1735  while (iterator_stack_size)
1736  {
1737  uint32_t split = ptarray_dp_findsplit_in_place(pa, it_first, it_last, it_tol);
1738  if (split == it_first)
1739  {
1740  it_first = it_last;
1741  it_last = iterator_stack[--iterator_stack_size];
1742  }
1743  else
1744  {
1745  kept_points[split] = LW_TRUE;
1746  keptn++;
1747 
1748  iterator_stack[iterator_stack_size++] = it_last;
1749  it_last = split;
1750  it_tol = keptn >= minpts ? tolerance_sqr : -1.0;
1751  }
1752  }
1753 
1754  const size_t pt_size = ptarray_point_size(pa);
1755  /* The first point is already in place, so we don't need to copy it */
1756  size_t kept_it = 1;
1757  if (keptn == 2)
1758  {
1759  /* If there are 2 points remaining, it has to be first and last as
1760  * we added those at the start */
1761  memcpy(pa->serialized_pointlist + pt_size * kept_it,
1762  pa->serialized_pointlist + pt_size * (pa->npoints - 1),
1763  pt_size);
1764  }
1765  else if (pa->npoints != keptn) /* We don't need to move any points if we are keeping them all */
1766  {
1767  for (uint32_t i = 1; i < pa->npoints; i++)
1768  {
1769  if (kept_points[i])
1770  {
1771  memcpy(pa->serialized_pointlist + pt_size * kept_it,
1772  pa->serialized_pointlist + pt_size * i,
1773  pt_size);
1774  kept_it++;
1775  }
1776  }
1777  }
1778  pa->npoints = keptn;
1779 
1780  lwfree(kept_points);
1781  lwfree(iterator_stack);
1782 }
1783 
1784 /************************************************************************/
1785 
1791 double
1793 {
1794  double dist = 0.0;
1795  uint32_t i;
1796  const POINT2D *a1;
1797  const POINT2D *a2;
1798  const POINT2D *a3;
1799 
1800  if ( pts->npoints % 2 != 1 )
1801  lwerror("arc point array with even number of points");
1802 
1803  a1 = getPoint2d_cp(pts, 0);
1804 
1805  for ( i=2; i < pts->npoints; i += 2 )
1806  {
1807  a2 = getPoint2d_cp(pts, i-1);
1808  a3 = getPoint2d_cp(pts, i);
1809  dist += lw_arc_length(a1, a2, a3);
1810  a1 = a3;
1811  }
1812  return dist;
1813 }
1814 
1818 double
1820 {
1821  double dist = 0.0;
1822  uint32_t i;
1823  const POINT2D *frm;
1824  const POINT2D *to;
1825 
1826  if ( pts->npoints < 2 ) return 0.0;
1827 
1828  frm = getPoint2d_cp(pts, 0);
1829 
1830  for ( i=1; i < pts->npoints; i++ )
1831  {
1832  to = getPoint2d_cp(pts, i);
1833 
1834  dist += sqrt( ((frm->x - to->x)*(frm->x - to->x)) +
1835  ((frm->y - to->y)*(frm->y - to->y)) );
1836 
1837  frm = to;
1838  }
1839  return dist;
1840 }
1841 
1846 double
1848 {
1849  double dist = 0.0;
1850  uint32_t i;
1851  POINT3DZ frm;
1852  POINT3DZ to;
1853 
1854  if ( pts->npoints < 2 ) return 0.0;
1855 
1856  /* compute 2d length if 3d is not available */
1857  if ( ! FLAGS_GET_Z(pts->flags) ) return ptarray_length_2d(pts);
1858 
1859  getPoint3dz_p(pts, 0, &frm);
1860  for ( i=1; i < pts->npoints; i++ )
1861  {
1862  getPoint3dz_p(pts, i, &to);
1863  dist += sqrt( ((frm.x - to.x)*(frm.x - to.x)) +
1864  ((frm.y - to.y)*(frm.y - to.y)) +
1865  ((frm.z - to.z)*(frm.z - to.z)) );
1866  frm = to;
1867  }
1868  return dist;
1869 }
1870 
1871 
1872 
1876 void
1878 {
1879  if (FLAGS_GET_Z(pa->flags))
1880  {
1881  for (uint32_t i = 0; i < pa->npoints; i++)
1882  {
1883  POINT4D *p4d = (POINT4D *)(getPoint_internal(pa, i));
1884  double x = p4d->x;
1885  double y = p4d->y;
1886  double z = p4d->z;
1887  p4d->x = a->afac * x + a->bfac * y + a->cfac * z + a->xoff;
1888  p4d->y = a->dfac * x + a->efac * y + a->ffac * z + a->yoff;
1889  p4d->z = a->gfac * x + a->hfac * y + a->ifac * z + a->zoff;
1890  }
1891  }
1892  else
1893  {
1894  for (uint32_t i = 0; i < pa->npoints; i++)
1895  {
1896  POINT2D *pt = (POINT2D *)(getPoint_internal(pa, i));
1897  double x = pt->x;
1898  double y = pt->y;
1899  pt->x = a->afac * x + a->bfac * y + a->xoff;
1900  pt->y = a->dfac * x + a->efac * y + a->yoff;
1901  }
1902  }
1903 }
1904 
1909 #if 0
1910 static int gluInvertMatrix(const double *m, double *invOut)
1911 {
1912  double inv[16], det;
1913  int i;
1914 
1915  inv[0] = m[5] * m[10] * m[15] -
1916  m[5] * m[11] * m[14] -
1917  m[9] * m[6] * m[15] +
1918  m[9] * m[7] * m[14] +
1919  m[13] * m[6] * m[11] -
1920  m[13] * m[7] * m[10];
1921 
1922  inv[4] = -m[4] * m[10] * m[15] +
1923  m[4] * m[11] * m[14] +
1924  m[8] * m[6] * m[15] -
1925  m[8] * m[7] * m[14] -
1926  m[12] * m[6] * m[11] +
1927  m[12] * m[7] * m[10];
1928 
1929  inv[8] = m[4] * m[9] * m[15] -
1930  m[4] * m[11] * m[13] -
1931  m[8] * m[5] * m[15] +
1932  m[8] * m[7] * m[13] +
1933  m[12] * m[5] * m[11] -
1934  m[12] * m[7] * m[9];
1935 
1936  inv[12] = -m[4] * m[9] * m[14] +
1937  m[4] * m[10] * m[13] +
1938  m[8] * m[5] * m[14] -
1939  m[8] * m[6] * m[13] -
1940  m[12] * m[5] * m[10] +
1941  m[12] * m[6] * m[9];
1942 
1943  inv[1] = -m[1] * m[10] * m[15] +
1944  m[1] * m[11] * m[14] +
1945  m[9] * m[2] * m[15] -
1946  m[9] * m[3] * m[14] -
1947  m[13] * m[2] * m[11] +
1948  m[13] * m[3] * m[10];
1949 
1950  inv[5] = m[0] * m[10] * m[15] -
1951  m[0] * m[11] * m[14] -
1952  m[8] * m[2] * m[15] +
1953  m[8] * m[3] * m[14] +
1954  m[12] * m[2] * m[11] -
1955  m[12] * m[3] * m[10];
1956 
1957  inv[9] = -m[0] * m[9] * m[15] +
1958  m[0] * m[11] * m[13] +
1959  m[8] * m[1] * m[15] -
1960  m[8] * m[3] * m[13] -
1961  m[12] * m[1] * m[11] +
1962  m[12] * m[3] * m[9];
1963 
1964  inv[13] = m[0] * m[9] * m[14] -
1965  m[0] * m[10] * m[13] -
1966  m[8] * m[1] * m[14] +
1967  m[8] * m[2] * m[13] +
1968  m[12] * m[1] * m[10] -
1969  m[12] * m[2] * m[9];
1970 
1971  inv[2] = m[1] * m[6] * m[15] -
1972  m[1] * m[7] * m[14] -
1973  m[5] * m[2] * m[15] +
1974  m[5] * m[3] * m[14] +
1975  m[13] * m[2] * m[7] -
1976  m[13] * m[3] * m[6];
1977 
1978  inv[6] = -m[0] * m[6] * m[15] +
1979  m[0] * m[7] * m[14] +
1980  m[4] * m[2] * m[15] -
1981  m[4] * m[3] * m[14] -
1982  m[12] * m[2] * m[7] +
1983  m[12] * m[3] * m[6];
1984 
1985  inv[10] = m[0] * m[5] * m[15] -
1986  m[0] * m[7] * m[13] -
1987  m[4] * m[1] * m[15] +
1988  m[4] * m[3] * m[13] +
1989  m[12] * m[1] * m[7] -
1990  m[12] * m[3] * m[5];
1991 
1992  inv[14] = -m[0] * m[5] * m[14] +
1993  m[0] * m[6] * m[13] +
1994  m[4] * m[1] * m[14] -
1995  m[4] * m[2] * m[13] -
1996  m[12] * m[1] * m[6] +
1997  m[12] * m[2] * m[5];
1998 
1999  inv[3] = -m[1] * m[6] * m[11] +
2000  m[1] * m[7] * m[10] +
2001  m[5] * m[2] * m[11] -
2002  m[5] * m[3] * m[10] -
2003  m[9] * m[2] * m[7] +
2004  m[9] * m[3] * m[6];
2005 
2006  inv[7] = m[0] * m[6] * m[11] -
2007  m[0] * m[7] * m[10] -
2008  m[4] * m[2] * m[11] +
2009  m[4] * m[3] * m[10] +
2010  m[8] * m[2] * m[7] -
2011  m[8] * m[3] * m[6];
2012 
2013  inv[11] = -m[0] * m[5] * m[11] +
2014  m[0] * m[7] * m[9] +
2015  m[4] * m[1] * m[11] -
2016  m[4] * m[3] * m[9] -
2017  m[8] * m[1] * m[7] +
2018  m[8] * m[3] * m[5];
2019 
2020  inv[15] = m[0] * m[5] * m[10] -
2021  m[0] * m[6] * m[9] -
2022  m[4] * m[1] * m[10] +
2023  m[4] * m[2] * m[9] +
2024  m[8] * m[1] * m[6] -
2025  m[8] * m[2] * m[5];
2026 
2027  det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
2028 
2029  if (det == 0)
2030  return LW_FALSE;
2031 
2032  det = 1.0 / det;
2033 
2034  for (i = 0; i < 16; i++)
2035  invOut[i] = inv[i] * det;
2036 
2037  return LW_TRUE;
2038 }
2039 #endif
2040 
2044 void
2046 {
2047  uint32_t i;
2048  POINT4D p4d;
2049  LWDEBUG(3, "ptarray_scale start");
2050  for (i=0; i<pa->npoints; i++)
2051  {
2052  getPoint4d_p(pa, i, &p4d);
2053  p4d.x *= fact->x;
2054  p4d.y *= fact->y;
2055  p4d.z *= fact->z;
2056  p4d.m *= fact->m;
2057  ptarray_set_point4d(pa, i, &p4d);
2058  }
2059  LWDEBUG(3, "ptarray_scale end");
2060 }
2061 
2062 int
2064 {
2065  return getPoint4d_p(pa, 0, pt);
2066 }
2067 
2068 
2069 /*
2070  * Stick an array of points to the given gridspec.
2071  * Return "gridded" points in *outpts and their number in *outptsn.
2072  *
2073  * Two consecutive points falling on the same grid cell are collapsed
2074  * into one single point.
2075  *
2076  */
2077 void
2079 {
2080  uint32_t j = 0;
2081  POINT4D *p, *p_out = NULL;
2082  double x, y, z = 0, m = 0;
2083  uint32_t ndims = FLAGS_NDIMS(pa->flags);
2084  uint32_t has_z = FLAGS_GET_Z(pa->flags);
2085  uint32_t has_m = FLAGS_GET_M(pa->flags);
2086 
2087  for (uint32_t i = 0; i < pa->npoints; i++)
2088  {
2089  /* Look straight into the abyss */
2090  p = (POINT4D *)(getPoint_internal(pa, i));
2091  x = p->x;
2092  y = p->y;
2093  if (ndims > 2)
2094  z = p->z;
2095  if (ndims > 3)
2096  m = p->m;
2097 
2098  if (grid->xsize > 0)
2099  x = rint((x - grid->ipx) / grid->xsize) * grid->xsize + grid->ipx;
2100 
2101  if (grid->ysize > 0)
2102  y = rint((y - grid->ipy) / grid->ysize) * grid->ysize + grid->ipy;
2103 
2104  /* Read and round this point */
2105  /* Z is always in third position */
2106  if (has_z && grid->zsize > 0)
2107  z = rint((z - grid->ipz) / grid->zsize) * grid->zsize + grid->ipz;
2108 
2109  /* M might be in 3rd or 4th position */
2110  if (has_m && grid->msize > 0)
2111  {
2112  /* In POINT ZM, M is in 4th position, in POINT M, M is in 3rd position which is Z in POINT4D */
2113  if (has_z)
2114  m = rint((m - grid->ipm) / grid->msize) * grid->msize + grid->ipm;
2115  else
2116  z = rint((z - grid->ipm) / grid->msize) * grid->msize + grid->ipm;
2117  }
2118 
2119  /* Skip duplicates */
2120  if (p_out && p_out->x == x && p_out->y == y && (ndims > 2 ? p_out->z == z : 1) &&
2121  (ndims > 3 ? p_out->m == m : 1))
2122  continue;
2123 
2124  /* Write rounded values into the next available point */
2125  p_out = (POINT4D *)(getPoint_internal(pa, j++));
2126  p_out->x = x;
2127  p_out->y = y;
2128  if (ndims > 2)
2129  p_out->z = z;
2130  if (ndims > 3)
2131  p_out->m = m;
2132  }
2133 
2134  /* Update output ptarray length */
2135  pa->npoints = j;
2136  return;
2137 }
2138 
2139 int
2140 ptarray_npoints_in_rect(const POINTARRAY *pa, const GBOX *gbox)
2141 {
2142  const POINT2D *pt;
2143  int n = 0;
2144  uint32_t i;
2145  for ( i = 0; i < pa->npoints; i++ )
2146  {
2147  pt = getPoint2d_cp(pa, i);
2148  if ( gbox_contains_point2d(gbox, pt) )
2149  n++;
2150  }
2151  return n;
2152 }
2153 
2154 
2155 /*
2156  * Reorder the vertices of a closed pointarray so that the
2157  * given point is the first/last one.
2158  *
2159  * Error out if pointarray is not closed or it does not
2160  * contain the given point.
2161  */
2162 int
2164 {
2165  POINTARRAY *tmp;
2166  int found;
2167  uint32_t it;
2168  int ptsize;
2169 
2170  if ( ! ptarray_is_closed_2d(pa) )
2171  {
2172  lwerror("ptarray_scroll_in_place: input POINTARRAY is not closed");
2173  return LW_FAILURE;
2174  }
2175 
2176  ptsize = ptarray_point_size(pa);
2177 
2178  /* Find the point in the array */
2179  found = 0;
2180  for ( it = 0; it < pa->npoints; ++it )
2181  {
2182  if ( ! memcmp(getPoint_internal(pa, it), pt, ptsize) )
2183  {
2184  found = 1;
2185  break;
2186  }
2187  }
2188 
2189  if ( ! found )
2190  {
2191  lwerror("ptarray_scroll_in_place: input POINTARRAY does not contain the given point");
2192  return LW_FAILURE;
2193  }
2194 
2195  if ( 0 == it )
2196  {
2197  /* Point is already the start/end point, just clone the input */
2198  return LW_SUCCESS;
2199  }
2200 
2201  /* TODO: reduce allocations */
2203 
2204  bzero(getPoint_internal(tmp, 0), ptsize * pa->npoints);
2205  /* Copy the block from found point to last point into the output array */
2206  memcpy(
2207  getPoint_internal(tmp, 0),
2208  getPoint_internal(pa, it),
2209  ptsize * ( pa->npoints - it )
2210  );
2211 
2212  /* Copy the block from second point to the found point into the last portion of the
2213  * return */
2214  memcpy(
2215  getPoint_internal(tmp, pa->npoints - it),
2216  getPoint_internal(pa, 1),
2217  ptsize * ( it )
2218  );
2219 
2220  /* Copy the resulting pointarray back to source one */
2221  memcpy(
2222  getPoint_internal(pa, 0),
2223  getPoint_internal(tmp, 0),
2224  ptsize * ( pa->npoints )
2225  );
2226 
2227  ptarray_free(tmp);
2228 
2229  return LW_SUCCESS;
2230 }
char * r
Definition: cu_in_wkt.c:24
int gbox_contains_point2d(const GBOX *g, const POINT2D *p)
Definition: gbox.c:350
int lw_arc_calculate_gbox_cartesian_2d(const POINT2D *A1, const POINT2D *A2, const POINT2D *A3, GBOX *gbox)
Definition: gbox.c:453
#define LW_FALSE
Definition: liblwgeom.h:109
double distance2d_pt_pt(const POINT2D *p1, const POINT2D *p2)
Definition: measures.c:2445
#define LW_FAILURE
Definition: liblwgeom.h:111
void interpolate_point4d(const POINT4D *A, const POINT4D *B, POINT4D *I, double F)
Find interpolation point I between point A and point B so that the len(AI) == len(AB)*F and I falls o...
Definition: lwgeom_api.c:650
#define LW_SUCCESS
Definition: liblwgeom.h:112
int getPoint2d_p(const POINTARRAY *pa, uint32_t n, POINT2D *point)
Definition: lwgeom_api.c:343
#define FLAGS_GET_READONLY(flags)
Definition: liblwgeom.h:184
#define FLAGS_GET_Z(flags)
Definition: liblwgeom.h:180
int getPoint3dz_p(const POINTARRAY *pa, uint32_t n, POINT3DZ *point)
Definition: lwgeom_api.c:216
void * lwrealloc(void *mem, size_t size)
Definition: lwutil.c:235
void lwfree(void *mem)
Definition: lwutil.c:242
#define FLAGS_NDIMS(flags)
Definition: liblwgeom.h:194
#define FLAGS_GET_M(flags)
Definition: liblwgeom.h:181
int getPoint4d_p(const POINTARRAY *pa, uint32_t n, POINT4D *point)
Definition: lwgeom_api.c:126
double distance2d_sqr_pt_seg(const POINT2D *p, const POINT2D *A, const POINT2D *B)
Definition: measures.c:2455
#define FLAGS_GET_ZM(flags)
Definition: liblwgeom.h:195
void * lwalloc(size_t size)
Definition: lwutil.c:227
#define FLAGS_SET_READONLY(flags, value)
Definition: liblwgeom.h:191
lwflags_t lwflags(int hasz, int hasm, int geodetic)
Construct a new flags bitmask.
Definition: lwutil.c:471
#define LW_TRUE
Return types for functions with status returns.
Definition: liblwgeom.h:108
void ptarray_set_point4d(POINTARRAY *pa, uint32_t n, const POINT4D *p4d)
Definition: lwgeom_api.c:370
enum LWORD_T LWORD
Ordinate names.
#define LW_INSIDE
Constants for point-in-polygon return values.
#define LW_BOUNDARY
double lw_arc_length(const POINT2D *A1, const POINT2D *A2, const POINT2D *A3)
Returns the length of a circular arc segment.
Definition: lwalgorithm.c:119
#define LW_ON_INTERRUPT(x)
#define FP_MAX(A, B)
#define FP_MIN(A, B)
double lw_arc_center(const POINT2D *p1, const POINT2D *p2, const POINT2D *p3, POINT2D *result)
Determines the center of the circle defined by the three given points.
Definition: lwalgorithm.c:229
int lw_arc_side(const POINT2D *A1, const POINT2D *A2, const POINT2D *A3, const POINT2D *Q)
Definition: lwalgorithm.c:179
#define FP_EQUALS(A, B)
int lw_pt_in_seg(const POINT2D *P, const POINT2D *A1, const POINT2D *A2)
Returns true if P is between A1/A2.
Definition: lwalgorithm.c:96
#define LW_OUTSIDE
int lw_segment_side(const POINT2D *p1, const POINT2D *p2, const POINT2D *q)
lw_segment_side()
Definition: lwalgorithm.c:65
int lw_arc_is_pt(const POINT2D *A1, const POINT2D *A2, const POINT2D *A3)
Returns true if arc A is actually a point (all vertices are the same) .
Definition: lwalgorithm.c:106
int lw_pt_in_arc(const POINT2D *P, const POINT2D *A1, const POINT2D *A2, const POINT2D *A3)
Returns true if P is on the same side of the plane partition defined by A1/A3 as A2 is.
Definition: lwalgorithm.c:86
int p2d_same(const POINT2D *p1, const POINT2D *p2)
Definition: lwalgorithm.c:50
static double det(double m00, double m01, double m10, double m11)
#define LWDEBUG(level, msg)
Definition: lwgeom_log.h:83
#define LWDEBUGF(level, msg,...)
Definition: lwgeom_log.h:88
void lwerror(const char *fmt,...)
Write a notice out to the error handler.
Definition: lwutil.c:190
void lwnotice(const char *fmt,...)
Write a notice out to the notice handler.
Definition: lwutil.c:177
#define INT32_MAX
Definition: lwin_wkt_lex.c:334
static const POINT2D * getPoint2d_cp(const POINTARRAY *pa, uint32_t n)
Returns a POINT2D pointer into the POINTARRAY serialized_ptlist, suitable for reading from.
Definition: lwinline.h:101
static double distance2d_sqr_pt_pt(const POINT2D *p1, const POINT2D *p2)
Definition: lwinline.h:35
static size_t ptarray_point_size(const POINTARRAY *pa)
Definition: lwinline.h:58
static uint8_t * getPoint_internal(const POINTARRAY *pa, uint32_t n)
Definition: lwinline.h:77
int ptarray_contains_point_partial(const POINTARRAY *pa, const POINT2D *pt, int check_closed, int *winding_number)
Definition: ptarray.c:746
POINTARRAY * ptarray_force_dims(const POINTARRAY *pa, int hasz, int hasm, double zval, double mval)
Definition: ptarray.c:1043
static uint32_t ptarray_dp_findsplit_in_place(const POINTARRAY *pts, uint32_t it_first, uint32_t it_last, double max_distance_sqr)
Definition: ptarray.c:1593
POINTARRAY * ptarray_construct_reference_data(char hasz, char hasm, uint32_t npoints, uint8_t *ptlist)
Build a new POINTARRAY, but on top of someone else's ordinate array.
Definition: ptarray.c:291
int ptarray_remove_point(POINTARRAY *pa, uint32_t where)
Remove a point from an existing POINTARRAY.
Definition: ptarray.c:259
void ptarray_longitude_shift(POINTARRAY *pa)
Longitude shift for a pointarray.
Definition: ptarray.c:1485
POINTARRAY * ptarray_construct_copy_data(char hasz, char hasm, uint32_t npoints, const uint8_t *ptlist)
Construct a new POINTARRAY, copying in the data from ptlist.
Definition: ptarray.c:305
int ptarray_closest_segment_2d(const POINTARRAY *pa, const POINT2D *qp, double *dist)
Definition: ptarray.c:1307
POINTARRAY * ptarray_clone(const POINTARRAY *in)
Clone a POINTARRAY object.
Definition: ptarray.c:665
int ptarray_append_ptarray(POINTARRAY *pa1, POINTARRAY *pa2, double gap_tolerance)
Append a POINTARRAY, pa2 to the end of an existing POINTARRAY, pa1.
Definition: ptarray.c:177
void ptarray_reverse_in_place(POINTARRAY *pa)
Definition: ptarray.c:339
int ptarray_closest_vertex_2d(const POINTARRAY *pa, const POINT2D *qp, double *dist)
Definition: ptarray.c:1340
int ptarrayarc_contains_point(const POINTARRAY *pa, const POINT2D *pt)
For POINTARRAYs representing CIRCULARSTRINGS.
Definition: ptarray.c:839
int ptarray_is_closed_2d(const POINTARRAY *in)
Definition: ptarray.c:701
int ptarray_is_closed_z(const POINTARRAY *in)
Definition: ptarray.c:727
double ptarray_length(const POINTARRAY *pts)
Find the 3d/2d length of the given POINTARRAY (depending on its dimensionality)
Definition: ptarray.c:1847
double ptarray_signed_area(const POINTARRAY *pa)
Returns the area in cartesian units.
Definition: ptarray.c:1003
POINTARRAY * ptarray_addPoint(const POINTARRAY *pa, uint8_t *p, size_t pdims, uint32_t where)
Add a point in a pointarray.
Definition: ptarray.c:509
void closest_point_on_segment(const POINT4D *p, const POINT4D *A, const POINT4D *B, POINT4D *ret)
Definition: ptarray.c:1263
int ptarray_startpoint(const POINTARRAY *pa, POINT4D *pt)
Definition: ptarray.c:2063
int ptarray_is_closed(const POINTARRAY *in)
Check for ring closure using whatever dimensionality is declared on the pointarray.
Definition: ptarray.c:687
POINTARRAY * ptarray_clone_deep(const POINTARRAY *in)
Deep clone a pointarray (also clones serialized pointlist)
Definition: ptarray.c:634
POINTARRAY * ptarray_construct(char hasz, char hasm, uint32_t npoints)
Construct an empty pointarray, allocating storage and setting the npoints, but not filling in any inf...
Definition: ptarray.c:51
void ptarray_grid_in_place(POINTARRAY *pa, const gridspec *grid)
Snap to grid.
Definition: ptarray.c:2078
double ptarray_length_2d(const POINTARRAY *pts)
Find the 2d length of the given POINTARRAY (even if it's 3d)
Definition: ptarray.c:1819
char ptarray_same(const POINTARRAY *pa1, const POINTARRAY *pa2)
Definition: ptarray.c:484
int ptarray_is_closed_3d(const POINTARRAY *in)
Definition: ptarray.c:714
void ptarray_remove_repeated_points_in_place(POINTARRAY *pa, double tolerance, uint32_t min_points)
Definition: ptarray.c:1522
POINTARRAY * ptarray_removePoint(POINTARRAY *pa, uint32_t which)
Remove a point from a pointarray.
Definition: ptarray.c:561
int ptarray_scroll_in_place(POINTARRAY *pa, const POINT4D *pt)
Definition: ptarray.c:2163
void ptarray_simplify_in_place(POINTARRAY *pa, double tolerance, uint32_t minpts)
Definition: ptarray.c:1700
int ptarray_insert_point(POINTARRAY *pa, const POINT4D *p, uint32_t where)
Insert a point into an existing POINTARRAY.
Definition: ptarray.c:85
double ptarray_arc_length_2d(const POINTARRAY *pts)
Find the 2d length of the given POINTARRAY, using circular arc interpolation between each coordinate ...
Definition: ptarray.c:1792
POINTARRAY * ptarray_remove_repeated_points(const POINTARRAY *in, double tolerance)
Definition: ptarray.c:1515
void ptarray_affine(POINTARRAY *pa, const AFFINE *a)
Affine transform a pointarray.
Definition: ptarray.c:1877
int ptarray_contains_point(const POINTARRAY *pa, const POINT2D *pt)
Return 1 if the point is inside the POINTARRAY, -1 if it is outside, and 0 if it is on the boundary.
Definition: ptarray.c:740
int ptarrayarc_contains_point_partial(const POINTARRAY *pa, const POINT2D *pt, int check_closed, int *winding_number)
Definition: ptarray.c:845
POINTARRAY * ptarray_construct_empty(char hasz, char hasm, uint32_t maxpoints)
Create a new POINTARRAY with no points.
Definition: ptarray.c:59
void ptarray_free(POINTARRAY *pa)
Definition: ptarray.c:327
static void ptarray_simplify_in_place_tolerance0(POINTARRAY *pa)
Definition: ptarray.c:1658
int ptarray_isccw(const POINTARRAY *pa)
Definition: ptarray.c:1034
int ptarray_has_z(const POINTARRAY *pa)
Definition: ptarray.c:37
int ptarray_append_point(POINTARRAY *pa, const POINT4D *pt, int repeated_points)
Append a point to the end of an existing POINTARRAY If allow_duplicate is LW_FALSE,...
Definition: ptarray.c:147
void ptarray_scale(POINTARRAY *pa, const POINT4D *fact)
WARNING, make sure you send in only 16-member double arrays or obviously things will go pear-shaped f...
Definition: ptarray.c:2045
static POINTARRAY * ptarray_remove_repeated_points_minpoints(const POINTARRAY *in, double tolerance, int minpoints)
Definition: ptarray.c:1507
void ptarray_swap_ordinates(POINTARRAY *pa, LWORD o1, LWORD o2)
Swap ordinate values o1 and o2 on a given POINTARRAY.
Definition: ptarray.c:387
int ptarray_npoints_in_rect(const POINTARRAY *pa, const GBOX *gbox)
Definition: ptarray.c:2140
POINTARRAY * ptarray_substring(POINTARRAY *ipa, double from, double to, double tolerance)
@d1 start location (distance from start / total distance) @d2 end location (distance from start / tot...
Definition: ptarray.c:1066
POINTARRAY * ptarray_merge(POINTARRAY *pa1, POINTARRAY *pa2)
Merge two given POINTARRAY and returns a pointer on the new aggregate one.
Definition: ptarray.c:603
POINTARRAY * ptarray_flip_coordinates(POINTARRAY *pa)
Reverse X and Y axis on a given POINTARRAY.
Definition: ptarray.c:368
int ptarray_has_m(const POINTARRAY *pa)
Definition: ptarray.c:44
POINTARRAY * ptarray_segmentize2d(const POINTARRAY *ipa, double dist)
Returns a modified POINTARRAY so that no segment is longer than the given distance (computed using 2d...
Definition: ptarray.c:413
double ptarray_locate_point(const POINTARRAY *pa, const POINT4D *p4d, double *mindistout, POINT4D *proj4d)
Definition: ptarray.c:1373
double gfac
Definition: liblwgeom.h:347
double zoff
Definition: liblwgeom.h:347
double bfac
Definition: liblwgeom.h:347
double ifac
Definition: liblwgeom.h:347
double xoff
Definition: liblwgeom.h:347
double dfac
Definition: liblwgeom.h:347
double afac
Definition: liblwgeom.h:347
double ffac
Definition: liblwgeom.h:347
double cfac
Definition: liblwgeom.h:347
double hfac
Definition: liblwgeom.h:347
double efac
Definition: liblwgeom.h:347
double yoff
Definition: liblwgeom.h:347
double ymax
Definition: liblwgeom.h:372
double xmax
Definition: liblwgeom.h:370
double ymin
Definition: liblwgeom.h:371
double xmin
Definition: liblwgeom.h:369
double y
Definition: liblwgeom.h:405
double x
Definition: liblwgeom.h:405
double z
Definition: liblwgeom.h:411
double x
Definition: liblwgeom.h:411
double y
Definition: liblwgeom.h:411
double m
Definition: liblwgeom.h:429
double x
Definition: liblwgeom.h:429
double z
Definition: liblwgeom.h:429
double y
Definition: liblwgeom.h:429
lwflags_t flags
Definition: liblwgeom.h:446
uint32_t maxpoints
Definition: liblwgeom.h:443
uint32_t npoints
Definition: liblwgeom.h:442
uint8_t * serialized_pointlist
Definition: liblwgeom.h:449
double ipm
Definition: liblwgeom.h:1387
double zsize
Definition: liblwgeom.h:1390
double ysize
Definition: liblwgeom.h:1389
double xsize
Definition: liblwgeom.h:1388
double ipx
Definition: liblwgeom.h:1384
double msize
Definition: liblwgeom.h:1391
double ipy
Definition: liblwgeom.h:1385
double ipz
Definition: liblwgeom.h:1386
Snap-to-grid.
Definition: liblwgeom.h:1383