ST_SummaryStats — 입력한 래스터 밴드 또는 래스터 또는 래스터 커버리지의 count, sum, mean, stddev, min, max로 이루어진 통계 요약을 반환합니다. 밴드를 따로 설정하지 않을 경우 밴드 1로 가정합니다.
summarystats ST_SummaryStats(
raster rast, boolean exclude_nodata_value)
;
summarystats ST_SummaryStats(
raster rast, integer nband, boolean exclude_nodata_value)
;
입력한 래스터 밴드 또는 래스터 또는 래스터 커버리지의 count, sum, mean, stddev, min, max로 이루어진 summarystats 을 반환합니다. 밴드를 따로 설정하지 않을 경우 nband
의 기본값은 1입니다.
기본적으로 |
기본적으로 모든 픽셀을 샘플링할 것입니다. 더 빠른 속도를 원한다면, |
2.2.0 버전부터 더 이상 ST_SummaryStats(rastertable, rastercolumn, ...) 변종 함수를 지원하지 않습니다. 대신 ST_SummaryStatsAgg 함수를 이용하십시오.
2.0.0 버전부터 사용할 수 있습니다.
SELECT rid, band, (stats).* FROM (SELECT rid, band, ST_SummaryStats(rast, band) As stats FROM dummy_rast CROSS JOIN generate_series(1,3) As band WHERE rid=2) As foo; rid | band | count | sum | mean | stddev | min | max -----+------+-------+------+------------+-----------+-----+----- 2 | 1 | 23 | 5821 | 253.086957 | 1.248061 | 250 | 254 2 | 2 | 25 | 3682 | 147.28 | 59.862188 | 78 | 254 2 | 3 | 25 | 3290 | 131.6 | 61.647384 | 62 | 254
PostGIS 윈도우 64비트 버전에서 모든 보스턴 건물들과 항공사진 타일들(각각 건물 레코드 102,000개, 150x150 픽셀 크기의 타일 134,000개)을 처리하는 이 예시가 574밀리초 걸렸습니다.
WITH -- our features of interest feat AS (SELECT gid As building_id, geom_26986 As geom FROM buildings AS b WHERE gid IN(100, 103,150) ), -- clip band 2 of raster tiles to boundaries of builds -- then get stats for these clipped regions b_stats AS (SELECT building_id, (stats).* FROM (SELECT building_id, ST_SummaryStats(ST_Clip(rast,2,geom)) As stats FROM aerials.boston INNER JOIN feat ON ST_Intersects(feat.geom,rast) ) As foo ) -- finally summarize stats SELECT building_id, SUM(count) As num_pixels , MIN(min) As min_pval , MAX(max) As max_pval , SUM(mean*count)/SUM(count) As avg_pval FROM b_stats WHERE count > 0 GROUP BY building_id ORDER BY building_id; building_id | num_pixels | min_pval | max_pval | avg_pval -------------+------------+----------+----------+------------------ 100 | 1090 | 1 | 255 | 61.0697247706422 103 | 655 | 7 | 182 | 70.5038167938931 150 | 895 | 2 | 252 | 185.642458100559
-- stats for each band -- SELECT band, (stats).* FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band) As stats FROM generate_series(1,3) As band) As foo; band | count | sum | mean | stddev | min | max ------+---------+--------+------------------+------------------+-----+----- 1 | 8450000 | 725799 | 82.7064349112426 | 45.6800222638537 | 0 | 255 2 | 8450000 | 700487 | 81.4197705325444 | 44.2161184161765 | 0 | 255 3 | 8450000 | 575943 | 74.682739408284 | 44.2143885481407 | 0 | 255 -- For a table -- will get better speed if set sampling to less than 100% -- Here we set to 25% and get a much faster answer SELECT band, (stats).* FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band,true,0.25) As stats FROM generate_series(1,3) As band) As foo; band | count | sum | mean | stddev | min | max ------+---------+--------+------------------+------------------+-----+----- 1 | 2112500 | 180686 | 82.6890480473373 | 45.6961043857248 | 0 | 255 2 | 2112500 | 174571 | 81.448503668639 | 44.2252623171821 | 0 | 255 3 | 2112500 | 144364 | 74.6765884023669 | 44.2014869384578 | 0 | 255