PostGIS  3.0.6dev-r@@SVN_REVISION@@

◆ lw_dist2d_seg_arc()

int lw_dist2d_seg_arc ( const POINT2D A1,
const POINT2D A2,
const POINT2D B1,
const POINT2D B2,
const POINT2D B3,
DISTPTS dl 
)

Calculate the shortest distance between an arc and an edge.

Line/circle approach from http://stackoverflow.com/questions/1073336/circle-line-collision-detection

Definition at line 1362 of file measures.c.

1368 {
1369  POINT2D C; /* center of arc circle */
1370  double radius_C; /* radius of arc circle */
1371  POINT2D D; /* point on A closest to C */
1372  double dist_C_D; /* distance from C to D */
1373  int pt_in_arc, pt_in_seg;
1374  DISTPTS dltmp;
1375 
1376  /* Bail out on crazy modes */
1377  if (dl->mode < 0)
1378  lwerror("lw_dist2d_seg_arc does not support maxdistance mode");
1379 
1380  /* What if the "arc" is a point? */
1381  if (lw_arc_is_pt(B1, B2, B3))
1382  return lw_dist2d_pt_seg(B1, A1, A2, dl);
1383 
1384  /* Calculate center and radius of the circle. */
1385  radius_C = lw_arc_center(B1, B2, B3, &C);
1386 
1387  /* This "arc" is actually a line (B2 is collinear with B1,B3) */
1388  if (radius_C < 0.0)
1389  return lw_dist2d_seg_seg(A1, A2, B1, B3, dl);
1390 
1391  /* Calculate distance between the line and circle center */
1393  if (lw_dist2d_pt_seg(&C, A1, A2, &dltmp) == LW_FALSE)
1394  lwerror("lw_dist2d_pt_seg failed in lw_dist2d_seg_arc");
1395 
1396  D = dltmp.p1;
1397  dist_C_D = dltmp.distance;
1398 
1399  /* Line intersects circle, maybe arc intersects edge? */
1400  /* If so, that's the closest point. */
1401  /* If not, the closest point is one of the end points of A */
1402  if (dist_C_D < radius_C)
1403  {
1404  double length_A; /* length of the segment A */
1405  POINT2D E, F; /* points of intersection of edge A and circle(B) */
1406  double dist_D_EF; /* distance from D to E or F (same distance both ways) */
1407 
1408  dist_D_EF = sqrt(radius_C * radius_C - dist_C_D * dist_C_D);
1409  length_A = sqrt((A2->x - A1->x) * (A2->x - A1->x) + (A2->y - A1->y) * (A2->y - A1->y));
1410 
1411  /* Point of intersection E */
1412  E.x = D.x - (A2->x - A1->x) * dist_D_EF / length_A;
1413  E.y = D.y - (A2->y - A1->y) * dist_D_EF / length_A;
1414  /* Point of intersection F */
1415  F.x = D.x + (A2->x - A1->x) * dist_D_EF / length_A;
1416  F.y = D.y + (A2->y - A1->y) * dist_D_EF / length_A;
1417 
1418  /* If E is within A and within B then it's an intersection point */
1419  pt_in_arc = lw_pt_in_arc(&E, B1, B2, B3);
1420  pt_in_seg = lw_pt_in_seg(&E, A1, A2);
1421 
1422  if (pt_in_arc && pt_in_seg)
1423  {
1424  dl->distance = 0.0;
1425  dl->p1 = E;
1426  dl->p2 = E;
1427  return LW_TRUE;
1428  }
1429 
1430  /* If F is within A and within B then it's an intersection point */
1431  pt_in_arc = lw_pt_in_arc(&F, B1, B2, B3);
1432  pt_in_seg = lw_pt_in_seg(&F, A1, A2);
1433 
1434  if (pt_in_arc && pt_in_seg)
1435  {
1436  dl->distance = 0.0;
1437  dl->p1 = F;
1438  dl->p2 = F;
1439  return LW_TRUE;
1440  }
1441  }
1442 
1443  /* Line grazes circle, maybe arc intersects edge? */
1444  /* If so, grazing point is the closest point. */
1445  /* If not, the closest point is one of the end points of A */
1446  else if (dist_C_D == radius_C)
1447  {
1448  /* Closest point D is also the point of grazing */
1449  pt_in_arc = lw_pt_in_arc(&D, B1, B2, B3);
1450  pt_in_seg = lw_pt_in_seg(&D, A1, A2);
1451 
1452  /* Is D contained in both A and B? */
1453  if (pt_in_arc && pt_in_seg)
1454  {
1455  dl->distance = 0.0;
1456  dl->p1 = D;
1457  dl->p2 = D;
1458  return LW_TRUE;
1459  }
1460  }
1461  /* Line misses circle. */
1462  /* If closest point to A on circle is within B, then that's the closest */
1463  /* Otherwise, the closest point will be an end point of A */
1464  else
1465  {
1466  POINT2D G; /* Point on circle closest to A */
1467  G.x = C.x + (D.x - C.x) * radius_C / dist_C_D;
1468  G.y = C.y + (D.y - C.y) * radius_C / dist_C_D;
1469 
1470  pt_in_arc = lw_pt_in_arc(&G, B1, B2, B3);
1471  pt_in_seg = lw_pt_in_seg(&D, A1, A2);
1472 
1473  /* Closest point is on the interior of A and B */
1474  if (pt_in_arc && pt_in_seg)
1475  return lw_dist2d_pt_pt(&D, &G, dl);
1476  }
1477 
1478  /* Now we test the many combinations of end points with either */
1479  /* arcs or edges. Each previous check determined if the closest */
1480  /* potential point was within the arc/segment inscribed on the */
1481  /* line/circle holding the arc/segment. */
1482 
1483  /* Closest point is in the arc, but not in the segment, so */
1484  /* one of the segment end points must be the closest. */
1485  if (pt_in_arc && !pt_in_seg)
1486  {
1487  lw_dist2d_pt_arc(A1, B1, B2, B3, dl);
1488  lw_dist2d_pt_arc(A2, B1, B2, B3, dl);
1489  return LW_TRUE;
1490  }
1491  /* or, one of the arc end points is the closest */
1492  else if (pt_in_seg && !pt_in_arc)
1493  {
1494  lw_dist2d_pt_seg(B1, A1, A2, dl);
1495  lw_dist2d_pt_seg(B3, A1, A2, dl);
1496  return LW_TRUE;
1497  }
1498  /* Finally, one of the end-point to end-point combos is the closest. */
1499  else
1500  {
1501  lw_dist2d_pt_pt(A1, B1, dl);
1502  lw_dist2d_pt_pt(A1, B3, dl);
1503  lw_dist2d_pt_pt(A2, B1, dl);
1504  lw_dist2d_pt_pt(A2, B3, dl);
1505  return LW_TRUE;
1506  }
1507 
1508  return LW_FALSE;
1509 }
#define LW_FALSE
Definition: liblwgeom.h:108
#define LW_TRUE
Return types for functions with status returns.
Definition: liblwgeom.h:107
double lw_arc_center(const POINT2D *p1, const POINT2D *p2, const POINT2D *p3, POINT2D *result)
Determines the center of the circle defined by the three given points.
Definition: lwalgorithm.c:229
int lw_pt_in_seg(const POINT2D *P, const POINT2D *A1, const POINT2D *A2)
Returns true if P is between A1/A2.
Definition: lwalgorithm.c:96
int lw_arc_is_pt(const POINT2D *A1, const POINT2D *A2, const POINT2D *A3)
Returns true if arc A is actually a point (all vertices are the same) .
Definition: lwalgorithm.c:106
int lw_pt_in_arc(const POINT2D *P, const POINT2D *A1, const POINT2D *A2, const POINT2D *A3)
Returns true if P is on the same side of the plane partition defined by A1/A3 as A2 is.
Definition: lwalgorithm.c:86
void lwerror(const char *fmt,...)
Write a notice out to the error handler.
Definition: lwutil.c:190
int lw_dist2d_pt_arc(const POINT2D *P, const POINT2D *A1, const POINT2D *A2, const POINT2D *A3, DISTPTS *dl)
Definition: measures.c:1512
int lw_dist2d_pt_seg(const POINT2D *p, const POINT2D *A, const POINT2D *B, DISTPTS *dl)
lw_dist2d_comp from p to line A->B This one is now sending every occasion to lw_dist2d_pt_pt Before i...
Definition: measures.c:2305
int lw_dist2d_seg_seg(const POINT2D *A, const POINT2D *B, const POINT2D *C, const POINT2D *D, DISTPTS *dl)
Finds the shortest distance between two segments.
Definition: measures.c:1916
void lw_dist2d_distpts_init(DISTPTS *dl, int mode)
Definition: measures.c:64
int lw_dist2d_pt_pt(const POINT2D *thep1, const POINT2D *thep2, DISTPTS *dl)
Compares incoming points and stores the points closest to each other or most far away from each other...
Definition: measures.c:2365
#define DIST_MIN
Definition: measures.h:44
POINT2D p1
Definition: measures.h:52
POINT2D p2
Definition: measures.h:53
int mode
Definition: measures.h:54
double distance
Definition: measures.h:51
Structure used in distance-calculations.
Definition: measures.h:50
double y
Definition: liblwgeom.h:376
double x
Definition: liblwgeom.h:376

References DIST_MIN, DISTPTS::distance, lw_arc_center(), lw_arc_is_pt(), lw_dist2d_distpts_init(), lw_dist2d_pt_arc(), lw_dist2d_pt_pt(), lw_dist2d_pt_seg(), lw_dist2d_seg_seg(), LW_FALSE, lw_pt_in_arc(), lw_pt_in_seg(), LW_TRUE, lwerror(), DISTPTS::mode, DISTPTS::p1, DISTPTS::p2, POINT2D::x, and POINT2D::y.

Referenced by lw_dist2d_arc_arc(), lw_dist2d_ptarray_ptarrayarc(), rect_leaf_node_distance(), rect_leaf_node_intersects(), and test_lw_dist2d_seg_arc().

Here is the call graph for this function:
Here is the caller graph for this function: