PostGIS  2.5.7dev-r@@SVN_REVISION@@

◆ compute_gserialized_stats_mode()

static void compute_gserialized_stats_mode ( VacAttrStats *  stats,
AnalyzeAttrFetchFunc  fetchfunc,
int  sample_rows,
double  total_rows,
int  mode 
)
static

The gserialized_analyze_nd sets this function as a callback on the stats object when called by the ANALYZE command.

ANALYZE then gathers the requisite number of sample rows and then calls this function.

We could also pass stats->extra_data in from gserialized_analyze_nd (things like the column type or other stuff from the system catalogs) but so far we don't use that capability.

Our job is to build some statistics on the sample data for use by operator estimators.

We will populate an n-d histogram using the provided sample rows. The selectivity estimators (sel and j_oinsel) can then use the histogram

Definition at line 1365 of file gserialized_estimate.c.

1367 {
1368  MemoryContext old_context;
1369  int d, i; /* Counters */
1370  int notnull_cnt = 0; /* # not null rows in the sample */
1371  int null_cnt = 0; /* # null rows in the sample */
1372  int histogram_features = 0; /* # rows that actually got counted in the histogram */
1373 
1374  ND_STATS *nd_stats; /* Our histogram */
1375  size_t nd_stats_size; /* Size to allocate */
1376 
1377  double total_width = 0; /* # of bytes used by sample */
1378  double total_sample_volume = 0; /* Area/volume coverage of the sample */
1379  double total_cell_count = 0; /* # of cells in histogram affected by sample */
1380 
1381  ND_BOX sum; /* Sum of extents of sample boxes */
1382  ND_BOX avg; /* Avg of extents of sample boxes */
1383  ND_BOX stddev; /* StdDev of extents of sample boxes */
1384 
1385  const ND_BOX **sample_boxes; /* ND_BOXes for each of the sample features */
1386  ND_BOX sample_extent; /* Extent of the raw sample */
1387  int histo_size[ND_DIMS]; /* histogram nrows, ncols, etc */
1388  ND_BOX histo_extent; /* Spatial extent of the histogram */
1389  ND_BOX histo_extent_new; /* Temporary variable */
1390  int histo_cells_target; /* Number of cells we will shoot for, given the stats target */
1391  int histo_cells; /* Number of cells in the histogram */
1392  int histo_cells_new = 1; /* Temporary variable */
1393 
1394  int ndims = 2; /* Dimensionality of the sample */
1395  int histo_ndims = 0; /* Dimensionality of the histogram */
1396  double sample_distribution[ND_DIMS]; /* How homogeneous is distribution of sample in each axis? */
1397  double total_distribution; /* Total of sample_distribution */
1398 
1399  int stats_slot; /* What slot is this data going into? (2D vs ND) */
1400  int stats_kind; /* And this is what? (2D vs ND) */
1401 
1402  /* Initialize sum and stddev */
1403  nd_box_init(&sum);
1404  nd_box_init(&stddev);
1405  nd_box_init(&avg);
1406  nd_box_init(&histo_extent);
1407  nd_box_init(&histo_extent_new);
1408 
1409  /*
1410  * This is where gserialized_analyze_nd
1411  * should put its' custom parameters.
1412  */
1413  /* void *mystats = stats->extra_data; */
1414 
1415  POSTGIS_DEBUG(2, "compute_gserialized_stats called");
1416  POSTGIS_DEBUGF(3, " # sample_rows: %d", sample_rows);
1417  POSTGIS_DEBUGF(3, " estimate of total_rows: %.6g", total_rows);
1418 
1419  /*
1420  * We might need less space, but don't think
1421  * its worth saving...
1422  */
1423  sample_boxes = palloc(sizeof(ND_BOX*) * sample_rows);
1424 
1425  /*
1426  * First scan:
1427  * o read boxes
1428  * o find dimensionality of the sample
1429  * o find extent of the sample
1430  * o count null-infinite/not-null values
1431  * o compute total_width
1432  * o compute total features's box area (for avgFeatureArea)
1433  * o sum features box coordinates (for standard deviation)
1434  */
1435  for ( i = 0; i < sample_rows; i++ )
1436  {
1437  Datum datum;
1438  GSERIALIZED *geom;
1439  GBOX gbox;
1440  ND_BOX *nd_box;
1441  bool is_null;
1442  bool is_copy;
1443 
1444  datum = fetchfunc(stats, i, &is_null);
1445 
1446  /* Skip all NULLs. */
1447  if ( is_null )
1448  {
1449  POSTGIS_DEBUGF(4, " skipped null geometry %d", i);
1450  null_cnt++;
1451  continue;
1452  }
1453 
1454  /* Read the bounds from the gserialized. */
1455  geom = (GSERIALIZED *)PG_DETOAST_DATUM(datum);
1456  is_copy = VARATT_IS_EXTENDED(datum);
1457  if ( LW_FAILURE == gserialized_get_gbox_p(geom, &gbox) )
1458  {
1459  /* Skip empties too. */
1460  POSTGIS_DEBUGF(3, " skipped empty geometry %d", i);
1461  continue;
1462  }
1463 
1464  /* If we're in 2D mode, zero out the higher dimensions for "safety" */
1465  if ( mode == 2 )
1466  gbox.zmin = gbox.zmax = gbox.mmin = gbox.mmax = 0.0;
1467 
1468  /* Check bounds for validity (finite and not NaN) */
1469  if ( ! gbox_is_valid(&gbox) )
1470  {
1471  POSTGIS_DEBUGF(3, " skipped infinite/nan geometry %d", i);
1472  continue;
1473  }
1474 
1475  /*
1476  * In N-D mode, set the ndims to the maximum dimensionality found
1477  * in the sample. Otherwise, leave at ndims == 2.
1478  */
1479  if ( mode != 2 )
1480  ndims = Max(gbox_ndims(&gbox), ndims);
1481 
1482  /* Convert gbox to n-d box */
1483  nd_box = palloc(sizeof(ND_BOX));
1484  nd_box_from_gbox(&gbox, nd_box);
1485 
1486  /* Cache n-d bounding box */
1487  sample_boxes[notnull_cnt] = nd_box;
1488 
1489  /* Initialize sample extent before merging first entry */
1490  if ( ! notnull_cnt )
1491  nd_box_init_bounds(&sample_extent);
1492 
1493  /* Add current sample to overall sample extent */
1494  nd_box_merge(nd_box, &sample_extent);
1495 
1496  /* How many bytes does this sample use? */
1497  total_width += VARSIZE(geom);
1498 
1499  /* Add bounds coordinates to sums for stddev calculation */
1500  for ( d = 0; d < ndims; d++ )
1501  {
1502  sum.min[d] += nd_box->min[d];
1503  sum.max[d] += nd_box->max[d];
1504  }
1505 
1506  /* Increment our "good feature" count */
1507  notnull_cnt++;
1508 
1509  /* Free up memory if our sample geometry was copied */
1510  if ( is_copy )
1511  pfree(geom);
1512 
1513  /* Give backend a chance of interrupting us */
1514  vacuum_delay_point();
1515  }
1516 
1517  /*
1518  * We'll build a histogram having stats->attr->attstattarget cells
1519  * on each side, within reason... we'll use ndims*10000 as the
1520  * maximum number of cells.
1521  * Also, if we're sampling a relatively small table, we'll try to ensure that
1522  * we have an average of 5 features for each cell so the histogram isn't
1523  * so sparse.
1524  */
1525  histo_cells_target = (int)pow((double)(stats->attr->attstattarget), (double)ndims);
1526  histo_cells_target = Min(histo_cells_target, ndims * 10000);
1527  histo_cells_target = Min(histo_cells_target, (int)(total_rows/5));
1528  POSTGIS_DEBUGF(3, " stats->attr->attstattarget: %d", stats->attr->attstattarget);
1529  POSTGIS_DEBUGF(3, " target # of histogram cells: %d", histo_cells_target);
1530 
1531  /* If there's no useful features, we can't work out stats */
1532  if ( ! notnull_cnt )
1533  {
1534  elog(NOTICE, "no non-null/empty features, unable to compute statistics");
1535  stats->stats_valid = false;
1536  return;
1537  }
1538 
1539  POSTGIS_DEBUGF(3, " sample_extent: %s", nd_box_to_json(&sample_extent, ndims));
1540 
1541  /*
1542  * Second scan:
1543  * o compute standard deviation
1544  */
1545  for ( d = 0; d < ndims; d++ )
1546  {
1547  /* Calculate average bounds values */
1548  avg.min[d] = sum.min[d] / notnull_cnt;
1549  avg.max[d] = sum.max[d] / notnull_cnt;
1550 
1551  /* Calculate standard deviation for this dimension bounds */
1552  for ( i = 0; i < notnull_cnt; i++ )
1553  {
1554  const ND_BOX *ndb = sample_boxes[i];
1555  stddev.min[d] += (ndb->min[d] - avg.min[d]) * (ndb->min[d] - avg.min[d]);
1556  stddev.max[d] += (ndb->max[d] - avg.max[d]) * (ndb->max[d] - avg.max[d]);
1557  }
1558  stddev.min[d] = sqrt(stddev.min[d] / notnull_cnt);
1559  stddev.max[d] = sqrt(stddev.max[d] / notnull_cnt);
1560 
1561  /* Histogram bounds for this dimension bounds is avg +/- SDFACTOR * stdev */
1562  histo_extent.min[d] = Max(avg.min[d] - SDFACTOR * stddev.min[d], sample_extent.min[d]);
1563  histo_extent.max[d] = Min(avg.max[d] + SDFACTOR * stddev.max[d], sample_extent.max[d]);
1564  }
1565 
1566  /*
1567  * Third scan:
1568  * o skip hard deviants
1569  * o compute new histogram box
1570  */
1571  nd_box_init_bounds(&histo_extent_new);
1572  for ( i = 0; i < notnull_cnt; i++ )
1573  {
1574  const ND_BOX *ndb = sample_boxes[i];
1575  /* Skip any hard deviants (boxes entirely outside our histo_extent */
1576  if ( ! nd_box_intersects(&histo_extent, ndb, ndims) )
1577  {
1578  POSTGIS_DEBUGF(4, " feature %d is a hard deviant, skipped", i);
1579  sample_boxes[i] = NULL;
1580  continue;
1581  }
1582  /* Expand our new box to fit all the other features. */
1583  nd_box_merge(ndb, &histo_extent_new);
1584  }
1585  /*
1586  * Expand the box slightly (1%) to avoid edge effects
1587  * with objects that are on the boundary
1588  */
1589  nd_box_expand(&histo_extent_new, 0.01);
1590  histo_extent = histo_extent_new;
1591 
1592  /*
1593  * How should we allocate our histogram cells to the
1594  * different dimensions? We can't do it by raw dimensional width,
1595  * because in x/y/z space, the z can have different units
1596  * from the x/y. Similarly for x/y/t space.
1597  * So, we instead calculate how much features overlap
1598  * each other in their dimension to figure out which
1599  * dimensions have useful selectivity characteristics (more
1600  * variability in density) and therefor would find
1601  * more cells useful (to distinguish between dense places and
1602  * homogeneous places).
1603  */
1604  nd_box_array_distribution(sample_boxes, notnull_cnt, &histo_extent, ndims,
1605  sample_distribution);
1606 
1607  /*
1608  * The sample_distribution array now tells us how spread out the
1609  * data is in each dimension, so we use that data to allocate
1610  * the histogram cells we have available.
1611  * At this point, histo_cells_target is the approximate target number
1612  * of cells.
1613  */
1614 
1615  /*
1616  * Some dimensions have basically a uniform distribution, we want
1617  * to allocate no cells to those dimensions, only to dimensions
1618  * that have some interesting differences in data distribution.
1619  * Here we count up the number of interesting dimensions
1620  */
1621  for ( d = 0; d < ndims; d++ )
1622  {
1623  if ( sample_distribution[d] > 0 )
1624  histo_ndims++;
1625  }
1626 
1627  if ( histo_ndims == 0 )
1628  {
1629  /* Special case: all our dimensions had low variability! */
1630  /* We just divide the cells up evenly */
1631  POSTGIS_DEBUG(3, " special case: no axes have variability");
1632  histo_cells_new = 1;
1633  for ( d = 0; d < ndims; d++ )
1634  {
1635  histo_size[d] = 1 + (int)pow((double)histo_cells_target, 1/(double)ndims);
1636  POSTGIS_DEBUGF(3, " histo_size[d]: %d", histo_size[d]);
1637  histo_cells_new *= histo_size[d];
1638  }
1639  POSTGIS_DEBUGF(3, " histo_cells_new: %d", histo_cells_new);
1640  }
1641  else
1642  {
1643  /*
1644  * We're going to express the amount of variability in each dimension
1645  * as a proportion of the total variability and allocate cells in that
1646  * dimension relative to that proportion.
1647  */
1648  POSTGIS_DEBUG(3, " allocating histogram axes based on axis variability");
1649  total_distribution = total_double(sample_distribution, ndims); /* First get the total */
1650  POSTGIS_DEBUGF(3, " total_distribution: %.8g", total_distribution);
1651  histo_cells_new = 1; /* For the number of cells in the final histogram */
1652  for ( d = 0; d < ndims; d++ )
1653  {
1654  if ( sample_distribution[d] == 0 ) /* Uninteresting dimensions don't get any room */
1655  {
1656  histo_size[d] = 1;
1657  }
1658  else /* Interesting dimension */
1659  {
1660  /* How does this dims variability compare to the total? */
1661  float edge_ratio = (float)sample_distribution[d] / (float)total_distribution;
1662  /*
1663  * Scale the target cells number by the # of dims and ratio,
1664  * then take the appropriate root to get the estimated number of cells
1665  * on this axis (eg, pow(0.5) for 2d, pow(0.333) for 3d, pow(0.25) for 4d)
1666  */
1667  histo_size[d] = (int)pow(histo_cells_target * histo_ndims * edge_ratio, 1/(double)histo_ndims);
1668  /* If something goes awry, just give this dim one slot */
1669  if ( ! histo_size[d] )
1670  histo_size[d] = 1;
1671  }
1672  histo_cells_new *= histo_size[d];
1673  }
1674  POSTGIS_DEBUGF(3, " histo_cells_new: %d", histo_cells_new);
1675  }
1676 
1677  /* Update histo_cells to the actual number of cells we need to allocate */
1678  histo_cells = histo_cells_new;
1679  POSTGIS_DEBUGF(3, " histo_cells: %d", histo_cells);
1680 
1681  /*
1682  * Create the histogram (ND_STATS) in the stats memory context
1683  */
1684  old_context = MemoryContextSwitchTo(stats->anl_context);
1685  nd_stats_size = sizeof(ND_STATS) + ((histo_cells - 1) * sizeof(float4));
1686  nd_stats = palloc(nd_stats_size);
1687  memset(nd_stats, 0, nd_stats_size); /* Initialize all values to 0 */
1688  MemoryContextSwitchTo(old_context);
1689 
1690  /* Initialize the #ND_STATS objects */
1691  nd_stats->ndims = ndims;
1692  nd_stats->extent = histo_extent;
1693  nd_stats->sample_features = sample_rows;
1694  nd_stats->table_features = total_rows;
1695  nd_stats->not_null_features = notnull_cnt;
1696  /* Copy in the histogram dimensions */
1697  for ( d = 0; d < ndims; d++ )
1698  nd_stats->size[d] = histo_size[d];
1699 
1700  /*
1701  * Fourth scan:
1702  * o fill histogram values with the proportion of
1703  * features' bbox overlaps: a feature's bvol
1704  * can fully overlap (1) or partially overlap
1705  * (fraction of 1) an histogram cell.
1706  *
1707  * Note that we are filling each cell with the "portion of
1708  * the feature's box that overlaps the cell". So, if we sum
1709  * up the values in the histogram, we could get the
1710  * histogram feature count.
1711  *
1712  */
1713  for ( i = 0; i < notnull_cnt; i++ )
1714  {
1715  const ND_BOX *nd_box;
1716  ND_IBOX nd_ibox;
1717  int at[ND_DIMS];
1718  int d;
1719  double num_cells = 0;
1720  double tmp_volume = 1.0;
1721  double min[ND_DIMS] = {0.0, 0.0, 0.0, 0.0};
1722  double max[ND_DIMS] = {0.0, 0.0, 0.0, 0.0};
1723  double cellsize[ND_DIMS] = {0.0, 0.0, 0.0, 0.0};
1724 
1725  nd_box = sample_boxes[i];
1726  if ( ! nd_box ) continue; /* Skip Null'ed out hard deviants */
1727 
1728  /* Give backend a chance of interrupting us */
1729  vacuum_delay_point();
1730 
1731  /* Find the cells that overlap with this box and put them into the ND_IBOX */
1732  nd_box_overlap(nd_stats, nd_box, &nd_ibox);
1733  memset(at, 0, sizeof(int)*ND_DIMS);
1734 
1735  POSTGIS_DEBUGF(3, " feature %d: ibox (%d, %d, %d, %d) (%d, %d, %d, %d)", i,
1736  nd_ibox.min[0], nd_ibox.min[1], nd_ibox.min[2], nd_ibox.min[3],
1737  nd_ibox.max[0], nd_ibox.max[1], nd_ibox.max[2], nd_ibox.max[3]);
1738 
1739  for ( d = 0; d < nd_stats->ndims; d++ )
1740  {
1741  /* Initialize the starting values */
1742  at[d] = nd_ibox.min[d];
1743  min[d] = nd_stats->extent.min[d];
1744  max[d] = nd_stats->extent.max[d];
1745  cellsize[d] = (max[d] - min[d])/(nd_stats->size[d]);
1746 
1747  /* What's the volume (area) of this feature's box? */
1748  tmp_volume *= (nd_box->max[d] - nd_box->min[d]);
1749  }
1750 
1751  /* Add feature volume (area) to our total */
1752  total_sample_volume += tmp_volume;
1753 
1754  /*
1755  * Move through all the overlaped histogram cells values and
1756  * add the box overlap proportion to them.
1757  */
1758  do
1759  {
1760  ND_BOX nd_cell = { {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0} };
1761  double ratio;
1762  /* Create a box for this histogram cell */
1763  for ( d = 0; d < nd_stats->ndims; d++ )
1764  {
1765  nd_cell.min[d] = min[d] + (at[d]+0) * cellsize[d];
1766  nd_cell.max[d] = min[d] + (at[d]+1) * cellsize[d];
1767  }
1768 
1769  /*
1770  * If a feature box is completely inside one cell the ratio will be
1771  * 1.0. If a feature box is 50% in two cells, each cell will get
1772  * 0.5 added on.
1773  */
1774  ratio = nd_box_ratio(&nd_cell, nd_box, nd_stats->ndims);
1775  nd_stats->value[nd_stats_value_index(nd_stats, at)] += ratio;
1776  num_cells += ratio;
1777  POSTGIS_DEBUGF(3, " ratio (%.8g) num_cells (%.8g)", ratio, num_cells);
1778  POSTGIS_DEBUGF(3, " at (%d, %d, %d, %d)", at[0], at[1], at[2], at[3]);
1779  }
1780  while ( nd_increment(&nd_ibox, nd_stats->ndims, at) );
1781 
1782  /* Keep track of overall number of overlaps counted */
1783  total_cell_count += num_cells;
1784  /* How many features have we added to this histogram? */
1785  histogram_features++;
1786  }
1787 
1788  POSTGIS_DEBUGF(3, " histogram_features: %d", histogram_features);
1789  POSTGIS_DEBUGF(3, " sample_rows: %d", sample_rows);
1790  POSTGIS_DEBUGF(3, " table_rows: %.6g", total_rows);
1791 
1792  /* Error out if we got no sample information */
1793  if ( ! histogram_features )
1794  {
1795  POSTGIS_DEBUG(3, " no stats have been gathered");
1796  elog(NOTICE, " no features lie in the stats histogram, invalid stats");
1797  stats->stats_valid = false;
1798  return;
1799  }
1800 
1801  nd_stats->histogram_features = histogram_features;
1802  nd_stats->histogram_cells = histo_cells;
1803  nd_stats->cells_covered = total_cell_count;
1804 
1805  /* Put this histogram data into the right slot/kind */
1806  if ( mode == 2 )
1807  {
1808  stats_slot = STATISTIC_SLOT_2D;
1809  stats_kind = STATISTIC_KIND_2D;
1810  }
1811  else
1812  {
1813  stats_slot = STATISTIC_SLOT_ND;
1814  stats_kind = STATISTIC_KIND_ND;
1815  }
1816 
1817  /* Write the statistics data */
1818  stats->stakind[stats_slot] = stats_kind;
1819  stats->staop[stats_slot] = InvalidOid;
1820  stats->stanumbers[stats_slot] = (float4*)nd_stats;
1821  stats->numnumbers[stats_slot] = nd_stats_size/sizeof(float4);
1822  stats->stanullfrac = (float4)null_cnt/sample_rows;
1823  stats->stawidth = total_width/notnull_cnt;
1824  stats->stadistinct = -1.0;
1825  stats->stats_valid = true;
1826 
1827  POSTGIS_DEBUGF(3, " out: slot 0: kind %d (STATISTIC_KIND_ND)", stats->stakind[0]);
1828  POSTGIS_DEBUGF(3, " out: slot 0: op %d (InvalidOid)", stats->staop[0]);
1829  POSTGIS_DEBUGF(3, " out: slot 0: numnumbers %d", stats->numnumbers[0]);
1830  POSTGIS_DEBUGF(3, " out: null fraction: %f=%d/%d", stats->stanullfrac, null_cnt, sample_rows);
1831  POSTGIS_DEBUGF(3, " out: average width: %d bytes", stats->stawidth);
1832  POSTGIS_DEBUG (3, " out: distinct values: all (no check done)");
1833  POSTGIS_DEBUGF(3, " out: %s", nd_stats_to_json(nd_stats));
1834  /*
1835  POSTGIS_DEBUGF(3, " out histogram:\n%s", nd_stats_to_grid(nd_stats));
1836  */
1837 
1838  return;
1839 }
int gbox_is_valid(const GBOX *gbox)
Return false if any of the dimensions is NaN or infinite.
Definition: g_box.c:204
int gserialized_get_gbox_p(const GSERIALIZED *g, GBOX *box)
Read the bounding box off a serialization and calculate one if it is not already there.
Definition: g_serialized.c:640
struct ND_STATS_T ND_STATS
N-dimensional statistics structure.
static char * nd_stats_to_json(const ND_STATS *nd_stats)
Convert an ND_STATS to a JSON representation for external use.
static int nd_box_intersects(const ND_BOX *a, const ND_BOX *b, int ndims)
Return true if ND_BOX a overlaps b, false otherwise.
static int nd_box_init_bounds(ND_BOX *a)
Prepare an ND_BOX for bounds calculation: set the maxes to the smallest thing possible and the mins t...
static int nd_increment(ND_IBOX *ibox, int ndims, int *counter)
Given an n-d index array (counter), and a domain to increment it in (ibox) increment it by one,...
#define STATISTIC_SLOT_ND
static int gbox_ndims(const GBOX *gbox)
Given that geodetic boxes are X/Y/Z regardless of the underlying geometry dimensionality and other bo...
#define ND_DIMS
The maximum number of dimensions our code can handle.
#define STATISTIC_KIND_2D
static int nd_box_merge(const ND_BOX *source, ND_BOX *target)
Create a printable view of the ND_STATS histogram.
#define STATISTIC_KIND_ND
static double total_double(const double *vals, int nvals)
Given double array, return sum of values.
#define SDFACTOR
static void nd_box_from_gbox(const GBOX *gbox, ND_BOX *nd_box)
Set the values of an ND_BOX from a GBOX.
static int nd_box_init(ND_BOX *a)
Zero out an ND_BOX.
static int nd_box_expand(ND_BOX *nd_box, double expansion_factor)
Expand an ND_BOX ever so slightly.
static int nd_box_overlap(const ND_STATS *nd_stats, const ND_BOX *nd_box, ND_IBOX *nd_ibox)
What stats cells overlap with this ND_BOX? Put the lowest cell addresses in ND_IBOX->min and the high...
static double nd_box_ratio(const ND_BOX *b1, const ND_BOX *b2, int ndims)
Returns the proportion of b2 that is covered by b1.
static int nd_stats_value_index(const ND_STATS *stats, int *indexes)
Given a position in the n-d histogram (i,j,k) return the position in the 1-d values array.
static char * nd_box_to_json(const ND_BOX *nd_box, int ndims)
Convert an ND_BOX to a JSON string for printing.
#define STATISTIC_SLOT_2D
static int nd_box_array_distribution(const ND_BOX **nd_boxes, int num_boxes, const ND_BOX *extent, int ndims, double *distribution)
Calculate how much a set of boxes is homogenously distributed or contentrated within one dimension,...
#define LW_FAILURE
Definition: liblwgeom.h:79
double zmax
Definition: liblwgeom.h:300
double zmin
Definition: liblwgeom.h:299
double mmax
Definition: liblwgeom.h:302
double mmin
Definition: liblwgeom.h:301
float4 max[ND_DIMS]
float4 min[ND_DIMS]
N-dimensional box type for calculations, to avoid doing explicit axis conversions from GBOX in all ca...
int max[ND_DIMS]
int min[ND_DIMS]
N-dimensional box index type.
float4 size[ND_DIMS]
N-dimensional statistics structure.

References ND_STATS_T::cells_covered, ND_STATS_T::extent, gbox_is_valid(), gbox_ndims(), gserialized_get_gbox_p(), ND_STATS_T::histogram_cells, ND_STATS_T::histogram_features, LW_FAILURE, ND_BOX_T::max, ND_IBOX_T::max, ND_BOX_T::min, ND_IBOX_T::min, GBOX::mmax, GBOX::mmin, nd_box_array_distribution(), nd_box_expand(), nd_box_from_gbox(), nd_box_init(), nd_box_init_bounds(), nd_box_intersects(), nd_box_merge(), nd_box_overlap(), nd_box_ratio(), nd_box_to_json(), ND_DIMS, nd_increment(), nd_stats_to_json(), nd_stats_value_index(), ND_STATS_T::ndims, ND_STATS_T::not_null_features, ND_STATS_T::sample_features, SDFACTOR, ND_STATS_T::size, STATISTIC_KIND_2D, STATISTIC_KIND_ND, STATISTIC_SLOT_2D, STATISTIC_SLOT_ND, ND_STATS_T::table_features, total_double(), ND_STATS_T::value, GBOX::zmax, and GBOX::zmin.

Referenced by compute_gserialized_stats().

Here is the call graph for this function:
Here is the caller graph for this function: