
Introduction to PostGIS
Release 1.1

Mark Leslie, Paul Ramsey, et. al

July 25, 2024

CONTENTS

1 Welcome 1

2 Introduction 3

3 Installation 11

4 Creating a Spatial Database 15

5 Loading spatial data 21

6 About our data 31

7 Simple SQL 37

8 Simple SQL Exercises 41

9 Geometries 45

10 Geometry Exercises 59

11 Spatial Relationships 63

12 Spatial Relationships Exercises 75

13 Spatial Joins 79

14 Spatial Joins Exercises 85

15 Spatial Indexing 89

16 Projecting Data 95

17 Projection Exercises 99

18 Geography 103

19 Geography Exercises 111

20 Geometry Constructing Functions 113

21 Geometry Constructing Exercises 121

22 More Spatial Joins 125

i

23 Validity 131

24 Equality 137

25 Linear Referencing 143

26 Dimensionally Extended 9-Intersection Model 147

27 Clustering on Indices 157

28 3-D 161

29 Nearest-Neighbour Searching 165

30 Rasters 169

31 Topology 193

32 Tracking Edit History using Triggers 201

33 Basic PostgreSQL Tuning 207

34 PostgreSQL Security 211

35 PostgreSQL Schemas 219

36 PostgreSQL Backup and Restore 223

37 Software Upgrades 233

38 Advanced Geometry Constructions 237

39 Appendix A: PostGIS Functions 249

40 Appendix B: Glossary 251

41 Appendix C: License 253

Index 255

ii

CHAPTER

ONE

WELCOME

1.1 Workshop Conventions

These sections conform to a number of conventions to make it easier to follow the conversation. This
section gives a brief overview of what to expect in the way of typographic conventions, as well as a short
overview of the structure of each workbook.

1.1.1 Directions

Directions for you, the workshop attendee, will be noted by bold font.

For example:

Click Next to continue.

1.1.2 Code

SQL query examples will be displayed in an offset box

SELECT postgis_full_version();

These examples can be entered into the query window or command line interface.

1.1.3 Notes

Notes are used to provide information that is useful but not critical to the overall understanding of the
topic.

Note: If you haven’t eaten an apple today, the doctor may be on the way.

1

Introduction to PostGIS, Release 1.1

1.1.4 Functions

Where function names are defined in the text, they will be rendered in a bold font.

For example:

ST_Touches(geometry A, geometry B) returns TRUE if either of the geome-
tries’ boundaries intersect

1.1.5 Files, Tables and Column Names

File names, paths, table names and column names will be shown in fixed-width font.

For example:

Select the name column in the nyc_streets table.

1.1.6 Menus and Form elements

Menus/submenus and form elements such as fields or check boxes and other on-screen artifacts are
displayed in italics.

For example:

Click on the File > New menu. Check the box that says Confirm.

1.1.7 Workflow

Sections are designed to be progressive. Each section will start with the assumption that you have
completed and understood the previous section in the series and will build on that knowledge. A single
section will progress through a handful of ideas and provide working examples wherever possible. At
the end of a section, where appropriate, we have included a handful of exercises to allow you to try out
the ideas we’ve presented. In some cases the section will include “Things To Try”. These tasks contain
more complex problems than the exercises and is designed to challenge participants with advanced
knowledge.

2 Chapter 1. Welcome

CHAPTER

TWO

INTRODUCTION

2.1 What is a Spatial Database?

PostGIS is a spatial database. Oracle Spatial and SQL Server (2008 and later) are also spatial databases.
But what does that mean; what is it that makes an ordinary database a spatial database?

The short answer, is. . .

Spatial databases store and manipulate spatial objects like any other object in the database.

The following briefly covers the evolution of spatial databases, and then reviews three aspects that asso-
ciate spatial data with a database – data types, indexes, and functions.

1. Spatial data types refer to shapes such as point, line, and polygon;

2. Multi-dimensional spatial indexing is used for efficient processing of spatial operations;

3. Spatial functions, posed in SQL, are for querying of spatial properties and relationships.

Combined, spatial data types, indexes, and functions provide a flexible structure for optimized perfor-
mance and analysis.

2.1.1 In the Beginning

In legacy first-generation GIS implementations, all spatial data is stored in flat files and special GIS
software is required to interpret and manipulate the data. These first-generation management systems
are designed to meet the needs of users where all required data is within the user’s organizational domain.
They are proprietary, self-contained systems specifically built for handling spatial data.

Second-generation spatial systems store some data in relational databases (usually the “attribute” or
non-spatial parts) but still lack the flexibility afforded with direct integration.

True spatial databases were born when people started to treat spatial features as first class
database objects.

Spatial databases fully integrate spatial data with a relational database. The system orientation changes
from GIS-centric to database-centric.

3

Introduction to PostGIS, Release 1.1

Note: A spatial database management system may be used in applications besides the geographic
world. Spatial databases are used to manage data related to the anatomy of the human body, large-scale
integrated circuits, molecular structures, and electro-magnetic fields, among others.

2.1.2 Spatial Data Types

An ordinary database has strings, numbers, and dates. A spatial database adds additional (spatial) types
for representing geographic features. These spatial data types abstract and encapsulate spatial struc-
tures such as boundary and dimension. In many respects, spatial data types can be understood simply as
shapes.

4 Chapter 2. Introduction

Introduction to PostGIS, Release 1.1

Spatial data types are organized in a type hierarchy. Each sub-type inherits the structure (attributes) and
the behavior (methods or functions) of its super-type.

2.1.3 Spatial Indexes and Bounding Boxes

An ordinary database provides indexes to allow for fast and random access to subsets of data. Indexing
for standard types (numbers, strings, dates) is usually done with B-tree indexes.

A B-tree partitions the data using the natural sort order to put the data into a hierarchical tree. The
natural sort order of numbers, strings, and dates is simple to determine – every value is less than, greater
than or equal to every other value.

But because polygons can overlap, can be contained in one another, and are arrayed in a two-dimensional
(or more) space, a B-tree cannot be used to efficiently index them. Real spatial databases provide a
“spatial index” that instead answers the question “which objects are within this particular bounding
box?”.

A bounding box is the smallest rectangle – parallel to the coordinate axes – capable of containing a
given feature.

2.1. What is a Spatial Database? 5

http://en.wikipedia.org/wiki/B-tree

Introduction to PostGIS, Release 1.1

Bounding boxes are used because answering the question “is A inside B?” is very computationally
intensive for polygons but very fast in the case of rectangles. Even the most complex polygons and
linestrings can be represented by a simple bounding box.

Indexes have to perform quickly in order to be useful. So instead of providing exact results, as B-trees
do, spatial indexes provide approximate results. The question “what lines are inside this polygon?” will
be instead interpreted by a spatial index as “what lines have bounding boxes that are contained inside
this polygon’s bounding box?”

The actual spatial indexes implemented by various databases vary widely. The most common imple-
mentations are the R-Tree and Quadtree (used in PostGIS), but there are also grid-based indexes and
GeoHash indexes implemented in other spatial databases.

2.1.4 Spatial Functions

For manipulating data during a query, an ordinary database provides functions such as concatenating
strings, performing hash operations on strings, doing mathematics on numbers, and extracting informa-
tion from dates.

A spatial database provides a complete set of functions for analyzing geometric components, determin-
ing spatial relationships, and manipulating geometries. These spatial functions serve as the building
block for any spatial project.

The majority of all spatial functions can be grouped into one of the following five categories:

1. Conversion: Functions that convert between geometries and external data formats.

2. Management: Functions that manage information about spatial tables and PostGIS administra-
tion.

3. Retrieval: Functions that retrieve properties and measurements of a Geometry.

4. Comparison: Functions that compare two geometries with respect to their spatial relation.

6 Chapter 2. Introduction

http://en.wikipedia.org/wiki/R-tree
http://en.wikipedia.org/wiki/Quadtree
http://en.wikipedia.org/wiki/Grid_(spatial_index)
https://en.wikipedia.org/wiki/Geohash

Introduction to PostGIS, Release 1.1

5. Generation: Functions that generate new geometries from others.

The list of possible functions is very large, but a common set of functions is defined by the OGC SFSQL
and implemented (along with additional useful functions) by PostGIS.

2.2 What is PostGIS?

PostGIS turns the PostgreSQL Database Management System into a spatial database by adding support
for the three features: spatial types, spatial indexes, and spatial functions. Because it is built on Post-
greSQL, PostGIS automatically inherits important “enterprise” features as well as open standards for
implementation.

2.2.1 But what is PostgreSQL?

PostgreSQL is a powerful relational database management system (RDBMS). It is released under a
BSD-style license and is thus free and open source software. As with many other open source programs,
PostgreSQL is not controlled by any single company, but has a global community of developers and
companies to develop it.

PostgreSQL was designed from the very start with type extension in mind – the ability to add new data
types, functions and indexes at run-time. Because of this, the PostGIS extension can be developed by a
separate development team, yet still integrate very tightly into the core PostgreSQL database.

Why choose PostgreSQL?

A common question from people familiar with open source databases is, “Why wasn’t PostGIS built on
MySQL?”.

PostgreSQL has:

• Proven reliability and transactional integrity by default (ACID)

• Careful support for SQL standards (full SQL92)

• Pluggable type extension and function extension

• Community-oriented development model

• No limit on column sizes (“TOAST”able tuples) to support big GIS objects

• Generic index structure (GiST) to allow R-Tree index

• Easy to add custom functions

Combined, PostgreSQL provides a very easy development path to add new spatial types. In the pro-
prietary world, only Illustra (now Informix Universal Server) allowed such easy extension. This is no
coincidence; Illustra is a proprietary re-working of the original PostgreSQL code base from the 1980’s.

Because the development path for adding types to PostgreSQL was so straightforward, it made sense to
start there. When MySQL released basic spatial types in version 4.1, the PostGIS team took a look at
their code, and the exercise reinforced the original decision to use PostgreSQL.

Because MySQL spatial objects had to be hacked on top of the string type as a special case, the MySQL
code was spread over the entire code base. Development of PostGIS 0.1 took under a month. Doing a
“MyGIS” 0.1 would have taken a lot longer, and as such, might never have seen the light of day.

2.2. What is PostGIS? 7

http://www.postgresql.org/
https://www.postgresql.org/community/contributors/
https://en.wikipedia.org/wiki/Illustra

Introduction to PostGIS, Release 1.1

2.2.2 Why not files?

The Shapefile (and other formats like the Esri File Geodatabase and the GeoPackage) have been a stan-
dard way of storing and interacting with spatial data since GIS software was first written. However,
these “flat” files have the following disadvantages:

• Files require special software to read and write. SQL is an abstraction for random data access
and analysis. Without that abstraction, you will need to write all the access and analysis code
yourself.

• Concurrent users can cause corruption and slowdowns. While it’s possible to write extra code
to ensure that multiple writes to the same file do not corrupt the data, by the time you have solved
the problem and also solved the associated performance problem, you will have written the better
part of a database system. Why not just use a standard database?

• Complicated questions require complicated software to answer. Complicated and interesting
questions (spatial joins, aggregations, etc) that are expressible in one line of SQL in the database
take hundreds of lines of specialized code to answer when programming against files.

Most users of PostGIS are setting up systems where multiple applications will be expected to access the
data, so having a standard SQL access method simplifies deployment and development. Some users are
working with large data sets; with files, they might be segmented into multiple files, but in a database
they can be stored as a single large table.

In summation, the combination of support for multiple users, complex ad hoc queries, and performance
on large data sets are what sets spatial databases apart from file-based systems.

2.2.3 A brief history of PostGIS

In the May of 2001, Refractions Research released the first version of PostGIS. PostGIS 0.1 had objects,
indexes and a handful of functions. The result was a database suitable for storage and retrieval, but not
analysis.

As the number of functions increased, the need for an organizing principle became clear. The “Simple
Features for SQL” (SFSQL) specification from the Open Geospatial Consortium provided such structure
with guidelines for function naming and requirements.

With PostGIS support for simple analysis and spatial joins, Mapserver became the first external applica-
tion to provide visualization of data in the database.

Over the next several years the number of PostGIS functions grew, but its power remained limited. Many
of the most interesting functions (e.g., ST_Intersects(), ST_Buffer(), ST_Union()) were very difficult to
code. Writing them from scratch promised years of work.

Fortunately a second project, the “Geometry Engine, Open Source” or GEOS, came along. The GEOS
library provides the necessary algorithms for implementing the SFSQL specification. By linking in
GEOS, PostGIS provided complete support for SFSQL by version 0.8.

As PostGIS data capacity grew, another issue surfaced: the representation used to store geometry proved
relatively inefficient. For small objects like points and short lines, the metadata in the representation had
as much as a 300% overhead. For performance reasons, it was necessary to put the representation on a
diet. By shrinking the metadata header and required dimensions, overhead greatly reduced. In PostGIS
1.0, this new, faster, lightweight representation became the default.

Recent releases of PostGIS continue to add features and performance improvements, as well as support
for new features in the PostgreSQL core system.

8 Chapter 2. Introduction

http://en.wikipedia.org/wiki/Shapefile
https://www.geopackage.org/
http://www.refractions.net/
http://mapserver.org/
http://trac.osgeo.org/geos

Introduction to PostGIS, Release 1.1

2.2.4 Who uses PostGIS?

For a complete list of case studies, see the PostGIS case studies page.

Institut Geographique National, France

IGN is the national mapping agency of France, and uses PostGIS to store the high resolution topographic
map of the country, “BDUni”. BDUni has more than 100 million features, and is maintained by a staff
of over 100 field staff who verify observations and add new mapping to the database daily. The IGN
installation uses the database transactional system to ensure consistency during update processes, and a
warm standby system to maintain uptime in the event of a system failure.

RedFin

RedFin is a real estate agency with a web-based service for exploring properties and estimate values.
Their system was originally built on MySQL, but they found that moving to PostgreSQL and PostGIS
provided huge benefits in performance and reliability.

2.2.5 What applications support PostGIS?

PostGIS has become a widely used spatial database, and the number of third-party programs that support
storing and retrieving data using it has increased as well. The programs that support PostGIS include
both open source and proprietary software on both server and desktop systems.

The following table shows a list of some of the software that leverages PostGIS:

2.2. What is PostGIS? 9

https://postgis.net/category/casestudy/
https://www.postgresql.org/docs/devel/warm-standby.html
https://www.redfin.com
https://www.redfin.com/news/elephant_versus_dolphin_which_is_faster_which_is_smarter/
http://trac.osgeo.org/postgis/wiki/UsersWikiToolsSupportPostgis

Introduction to PostGIS, Release 1.1

Open/Free Closed/Proprietary/Paid services

• Loading/Extracting
– Shp2Pgsql
– ogr2ogr
– Dxf2PostGIS
– GeoKettle

• Web-Based
– Mapserver
– GeoServer /geoNode
– pg_tileserv
– pg_featureserv
– Deegree
– Carto
– QGIS Server
– MapGuide Open Source (using FDO)

• Desktop
– QGIS
– OpenJUMP
– GRASS
– pgAdmin
– DBeaver
– GvSIG
– SAGA
– uDig

• Loading/Extracting
– Safe FME Desktop Transla-

tor/Converter
– Dbt

• Web-Based
– Cadcorp GeognoSIS
– ESRI ArcGIS Server / Online

• Services / DbaaS
– Aiven for PostgreSQL
– Amazon RDS / Aurora for Post-

greSQL
– Carto
– Crunchy Bridge
– Microsoft Azure for PostgreSQL
– Google Cloud SQL for PostgreSQL

• Desktop
– Cadcorp SIS
– ESRI Desktop/Pro
– GeoConcept
– Global Mapper
– Manifold
– MapInfo
– Microimages TNTmips GIS

10 Chapter 2. Introduction

CHAPTER

THREE

INSTALLATION

To explore the PostgreSQL/PostGIS database, and learn about writing spatial queries in SQL, we will
need some software, either installed locally or available remotely on the cloud.

• There are instructions below on how to access PostgreSQL for installation on Windows or MacOS.
PostgreSQL for Windows and MacOS either include PostGIS or have an easy way to add it on.

• There are instructions below on how to install PgAdmin. PgAdmin is a graphical database explorer
and SQL editor which provides a “user facing” interface to the database engine that does all the
world.

For always up-to-date directions on installing PostgreSQL, go to the PostgreSQL download page and
select the operating system you are using.

3.1 PostgreSQL for Microsoft Windows

For a Windows install:

1. Go to the Windows PostgreSQL download page.

2. Select the latest version of PostgreSQL and save the installer to disk.

3. Run the installer and accept the defaults.

4. Find and run the “StackBuilder” program that was installed with the database.

5. Select the “Spatial Extensions” section and choose latest “PostGIS ..Bundle” option.

11

https://www.pgadmin.org/
https://www.postgresql.org/download/
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

Introduction to PostGIS, Release 1.1

6. Accept the defaults and install.

3.2 PostgreSQL for Apple MacOS

For a MacOS install:

1. Go to the Postgres.app site, and download the latest release.

2. Open the disk image, and drag the Postgres icon into the Applications folder.

12 Chapter 3. Installation

https://postgresapp.com/

Introduction to PostGIS, Release 1.1

3. In the Applications folder, double-click the Postgres icon to start the server.

4. Click the Initialize button to create a new blank database instance.

5. In the Applications folder, go to the Utilities folder and open Terminal.

6. Add the command-line utilities to your PATH for convenience.

sudo mkdir -p /etc/paths.d
echo /Applications/Postgres.app/Contents/Versions/latest/bin |
→˓sudo tee /etc/paths.d/postgresapp

3.2. PostgreSQL for Apple MacOS 13

Introduction to PostGIS, Release 1.1

3.3 PgAdmin for Windows and MacOS

PgAdmin is available for multiple platforms, at https://www.pgadmin.org/download/.

1. Download and install the latest version for your platform.

2. Start PgAdmin!

14 Chapter 3. Installation

https://www.pgadmin.org/download/

CHAPTER

FOUR

CREATING A SPATIAL DATABASE

4.1 PgAdmin

PostgreSQL has a number of administrative front-ends. The primary one is psql, a command-line tool for
entering SQL queries. Another popular PostgreSQL front-end is the free and open source graphical tool
pgAdmin. All queries done in pgAdmin can also be done on the command line with psql. pgAdmin
also includes a geometry viewer you can use to spatial view PostGIS queries.

1. Find pgAdmin and start it up.

2. If this is the first time you have run pgAdmin, you probably don’t have any servers configured.
Right click the Servers item in the Browser panel.

We’ll name our server PostGIS. In the Connection tab, enter the Host name/address. If
you’re working with a local PostgreSQL install, you’ll be able to use localhost. If you’re
using a cloud service, you should be able to retrieve the host name from your account.

Leave Port set at 5432, and both Maintenance database and Username as postgres. The
Password should be what you specified with a local install or with your cloud service.

15

http://www.postgresql.org/docs/current/static/app-psql.html
http://www.pgadmin.org/

Introduction to PostGIS, Release 1.1

4.2 Creating a Database

1. Open the Databases tree item and have a look at the available databases. The postgres database
is the user database for the default postgres user and is not too interesting to us.

2. Right-click on the Databases item and select New Database.

16 Chapter 4. Creating a Spatial Database

Introduction to PostGIS, Release 1.1

3. Fill in the Create Database form as shown below and click OK.

Name nyc
Owner postgres

4. Select the new nyc database and open it up to display the tree of objects. You’ll see the public
schema.

4.2. Creating a Database 17

Introduction to PostGIS, Release 1.1

5. Click on the SQL query button indicated below (or go to Tools > Query Tool).

6. Enter the following query into the query text field to load the PostGIS spatial extension:

CREATE EXTENSION postgis;

7. Click the Play button in the toolbar (or press F5) to “Execute the query.”

8. Now confirm that PostGIS is installed by running a PostGIS function:

SELECT postgis_full_version();

You have successfully created a PostGIS spatial database!!

18 Chapter 4. Creating a Spatial Database

Introduction to PostGIS, Release 1.1

4.3 Function List

PostGIS_Full_Version: Reports full PostGIS version and build configuration info.

4.3. Function List 19

http://postgis.net/docs/PostGIS_Full_Version.html

Introduction to PostGIS, Release 1.1

20 Chapter 4. Creating a Spatial Database

CHAPTER

FIVE

LOADING SPATIAL DATA

Supported by a wide variety of libraries and applications, PostGIS provides many options for loading
data.

We will first load our working data from a database backup file, then review some standard ways of
loading different GIS data formats using common tools.

5.1 Loading the Backup File

1. In the PgAdmin browser, right-click on the nyc database icon, and then select the Restore. . .
option.

2. Browse to the location of your workshop data data directory (available in the workshop data
bundle), and select the nyc_data.backup file.

21

https://s3.amazonaws.com/s3.cleverelephant.ca/postgis-workshop-2020.zip
https://s3.amazonaws.com/s3.cleverelephant.ca/postgis-workshop-2020.zip

Introduction to PostGIS, Release 1.1

3. Click on the Restore options tab, scroll down to the Do not save section and toggle Owner to
Yes.

4. Click the Restore button. The database restore should run to completion without errors.

22 Chapter 5. Loading spatial data

Introduction to PostGIS, Release 1.1

5. After the load is complete, right click the nyc database, and select the Refresh option to update
the client information about what tables exist in the database.

Note: If you want to practice loading data from the native spatial formats, instead of using the Post-
greSQL db backup files just covered, the next couple of sections will guide you thru loading using var-
ious command-line tools and QGIS DbManager. Note you can skip these sections, if you have already
loaded the data with pgAdmin.

5.1. Loading the Backup File 23

Introduction to PostGIS, Release 1.1

5.2 Loading with ogr2ogr

ogr2ogr is a commandline utility for converting data between GIS data formats, including common
file formats and common spatial databases.

Windows:

• Builds of ogr2ogr can be downloaded from GIS Internals.

• ogr2ogr is included as part of QGIS Install and accessible via OSGeo4W Shell -

• Builds of ogr2ogr can be downloaded from MS4W.

MacOS:

• If you installed Postgres.app, then you will find ogr2ogr in the /Applications/
Postgres.app/Contents/Versions/*/bin directory.

• Finally, if you have installed HomeBrew you can install the gdal package to get access to
ogr2ogr

Linux:

• If you installed QGIS from packages, ogr2ogr should be installed and on your PATH
already as part of the gdal or libgdal* packages.

The postgis workshop data directory includes a 2000/ sub-directory, which contains shape files from
the 2000 census, that were obsoleted by data from the 2010 census. We can practice data loading using
those files, to avoid creating name collisions with the data we already loaded using the backup file. Be
sure to be in the 2000/ sub-directory with the shell when doing these instructions:

export PGPASSWORD=mydatabasepassword

Rather than passing the password in the connection string, we put it in the environment, so it won’t be
visible in the process list while the command runs.

Note that on Windows, you will need to use set instead of export.

ogr2ogr \
-nln nyc_census_blocks_2000 \
-nlt PROMOTE_TO_MULTI \
-lco GEOMETRY_NAME=geom \
-lco FID=gid \
-lco PRECISION=NO \
Pg:"dbname=nyc host=localhost user=pramsey port=5432" \
nyc_census_blocks_2000.shp

For more visual clarity, these lines are displayed with \, but they should be written in one line on your
shell.

The ogr2ogr has a huge number of options, and we’re only using a handful of them here. Here is a
line-by-line explanation of the command.

ogr2ogr \

The executable name! You may need to ensure the executable location is in your PATH or use the full
path to the executable, depending on your setup.

24 Chapter 5. Loading spatial data

https://www.gisinternals.com/release.php
https://qgis.org/en/site/forusers/download.html
https://ms4w.com/download.html
https://postgresapp.com/
https://brew.sh/

Introduction to PostGIS, Release 1.1

-nln nyc_census_blocks_2000 \

The nln option stands for “new layer name”, and sets the table name that will be created in the target
database.

-nlt PROMOTE_TO_MULTI \

The nlt option stands for “new layer type”. For shape file input in particular, the new layer type is often
a “multi-part geometry”, so the system needs to be told in advance to use “MultiPolygon” instead of
“Polygon” for the geometry type.

-lco GEOMETRY_NAME=geom \
-lco FID=gid \
-lco PRECISION=NO \

The lco option stands for “layer create option”. Different drivers have different create options, and we
are using three options for the PostgreSQL driver here.

• GEOMETRY_NAME sets the column name for the geometry column. We prefer “geom” over
the default, so that our tables match the standard column names in the workshop.

• FID sets the primary key column name. Again we prefer “gid” which is the standard used in the
workshop.

• PRECISION controls how numeric fields are represented in the database. The default when
loading a shape file is to use the database “numeric” type, which is more precise but sometimes
harder to work with than simple number types like “integer” and “double precision”. We use
“NO” to turn off the “numeric” type.

Pg:"dbname=nyc host=localhost user=pramsey port=5432" \

The order of arguments in ogr2ogr is, roughly: executable, then options, then destination location,
then source location. So this is the destination, the connection string for our PostgreSQL database. The
“Pg:” portion is the driver name, and then the connection string is contained in quotation marks (because
it might have embedded spaces).

nyc_census_blocks_2000.shp

The source data set in this case is the shape file we are reading. It is possible to read multiple layers in
one invocation by putting the connection string here, and then following it with a list of layer names, but
in this case we have just the one shape file to load.

5.3 Shapefiles? What’s that?

You may be asking yourself – “What’s this shapefile thing?” A “shapefile” commonly refers to a
collection of files with .shp, .shx, .dbf, and other extensions on a common prefix name (e.g.,
nyc_census_blocks). The actual shapefile relates specifically to files with the .shp extension. How-
ever, the .shp file alone is incomplete for distribution without the required supporting files.

Mandatory files:

• .shp—shape format; the feature geometry itself

• .shx—shape index format; a positional index of the feature geometry

5.3. Shapefiles? What’s that? 25

https://gdal.org/drivers/vector/pg.html
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

Introduction to PostGIS, Release 1.1

• .dbf—attribute format; columnar attributes for each shape, in dBase III

Optional files include:

• .prj—projection format; the coordinate system and projection information, a plain text file de-
scribing the projection using well-known text format

The shp2pgsql utility makes shape data usable in PostGIS by converting it from binary data into a
series of SQL commands that are then run in the database to load the data.

5.4 Loading with shp2pgsql

The shp2pgsql converts Shape files into SQL. It is a conversion utility that is part of the PostGIS code
base and ships with PostGIS packages. If you installed PostgreSQL locally on your computer, you may
find that shp2pgsql has been installed along with it, and it is available in the executable directory of
your installation.

Unlike ogr2ogr, shp2pgsql does not connect directly to the destination database, it just emits the
SQL equivalent to the input shape file. It is up to the user to pass the SQL to the database, either with a
“pipe” or by saving the SQL to file and then loading it.

Here is an example invocation, loading the same data as before:

export PGPASSWORD=mydatabasepassword

shp2pgsql \
-D \
-I \
-s 26918 \
nyc_census_blocks_2000.shp \
nyc_census_blocks_2000 \
| psql dbname=nyc user=postgres host=localhost

Here is a line-by-line explanation of the command.

shp2pgsql \

The executable program! It reads the source data file, and emits SQL which can be directed to a file or
piped to psql to load directly into the database.

-D \

The D flag tells the program to generate “dump format” which is much faster to load than the default
“insert format”.

-I \

The I flag tells the program to create a spatial index on the table after loading is complete.

-s 26918 \

The s flag tells the program what the “spatial reference identifier (SRID)” of the data is. The source data
for this workshop is all in “UTM 18”, for which the SRID is 26918 (see below).

26 Chapter 5. Loading spatial data

Introduction to PostGIS, Release 1.1

nyc_census_blocks_2000.shp \

The source shape file to read.

nyc_census_blocks_2000 \

The table name to use when creating the destination table.

| psql dbname=nyc user=postgres host=localhost

The utility program is generating a stream of SQL. The “|” operator takes that stream and uses it as input
to the psql database terminal program. The arguments to psql are just the connection string for the
destination database.

5.5 SRID 26918? What’s with that?

Most of the import process is self-explanatory, but even experienced GIS professionals can trip over an
SRID.

An “SRID” stands for “Spatial Reference IDentifier.” It defines all the parameters of our data’s geo-
graphic coordinate system and projection. An SRID is convenient because it packs all the information
about a map projection (which can be quite complex) into a single number.

You can see the definition of our workshop map projection by looking it up either in an online database,

• https://epsg.io/26918

or directly inside PostGIS with a query to the spatial_ref_sys table.

SELECT srtext FROM spatial_ref_sys WHERE srid = 26918;

Note: The PostGIS spatial_ref_sys table is an OGC-standard table that defines all the spatial
reference systems known to the database. The data shipped with PostGIS, lists over 3000 known spatial
reference systems and details needed to transform/re-project between them.

In both cases, you see a textual representation of the 26918 spatial reference system (pretty-printed here
for clarity):

PROJCS["NAD83 / UTM zone 18N",
GEOGCS["NAD83",

DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101,AUTHORITY["EPSG","7019"]],
AUTHORITY["EPSG","6269"]],

PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],
UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4269"]],

UNIT["metre",1,AUTHORITY["EPSG","9001"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-75],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],

(continues on next page)

5.5. SRID 26918? What’s with that? 27

https://epsg.io/26918

Introduction to PostGIS, Release 1.1

(continued from previous page)

PARAMETER["false_northing",0],
AUTHORITY["EPSG","26918"],
AXIS["Easting",EAST],
AXIS["Northing",NORTH]]

If you open up the nyc_neighborhoods.prj file from the data directory, you’ll see the same
projection definition.

Data you receive from local agencies—such as New York City—will usually be in a local projection
noted by “state plane” or “UTM”. Our projection is “Universal Transverse Mercator (UTM) Zone 18
North” or EPSG:26918.

5.6 Things to Try: View data using QGIS

QGIS, is a desktop GIS viewer/editor for quickly looking at data. You can view a number of data formats
including flat shapefiles and a PostGIS database. Its graphical interface allows for easy exploration of
your data, as well as simple testing and fast styling.

Try using this software to connect your PostGIS database. The application can be downloaded from
https://qgis.org

You’ll first want to create a connection to a PostGIS database using menu Layer->Add
Layer->PostGIS Layers->New and then filling in the prompts. Once you have a connection,
you can add Layers by clicking connect and selecting a table to display.

5.7 Loading data using QGIS DbManager

QGIS comes with a tool called DbManager that allows you to connect to various different kinds of
databases, including a PostGIS enabled one. After you have a PostGIS Database connection configured,
go to Database->DbManager and expand to your database as shown below:

28 Chapter 5. Loading spatial data

http://qgis.org
https://qgis.org
https://docs.qgis.org/3.28/en/docs/user_manual/plugins/core_plugins/plugins_db_manager.html#dbmanager

Introduction to PostGIS, Release 1.1

From there you can use the Import Layer/File menu option to load numerous different spatial
formats. In addition to being able to load data from many spatial formats and export data to many
formats, you can also add ad-hoc queries to the canvas or define views in your database, using the
highlighted wrench icon.

5.7. Loading data using QGIS DbManager 29

Introduction to PostGIS, Release 1.1

30 Chapter 5. Loading spatial data

CHAPTER

SIX

ABOUT OUR DATA

The data for this workshop is four shapefiles for New York City, and one attribute table of sociodemo-
graphic variables. We’ve loaded our shapefiles as PostGIS tables and will add sociodemographic data
later in the workshop.

The following describes the number of records and table attributes for each of our datasets. These
attribute values and relationships are fundamental to our future analysis.

To explore the nature of your tables in pgAdmin, right-click a highlighted table and select Properties.
You will find a summary of table properties, including a list of table attributes within the Columns tab.

6.1 nyc_census_blocks

A census block is the smallest geography for which census data is reported. All higher level census
geographies (block groups, tracts, metro areas, counties, etc) can be built from unions of census blocks.
We have attached some demographic data to our collection of blocks.

Number of records: 38794

blkid A 15-digit code that uniquely identifies every census block. Eg:
360050001009000

popn_total Total number of people in the census block
popn_white Number of people self-identifying as “White” in the block
popn_black Number of people self-identifying as “Black” in the block
popn_nativ Number of people self-identifying as “Native American” in the block
popn_asian Number of people self-identifying as “Asian” in the block
popn_other Number of people self-identifying with other categories in the block
boroname Name of the New York borough. Manhattan, The Bronx, Brooklyn, Staten Is-

land, Queens
geom Polygon boundary of the block

Note: To get census data into GIS, you need to join two pieces of information: the actual data (text),
and the boundary files (spatial). There are many options for getting the data, including downloading
data and boundaries from the Census Bureau’s American FactFinder.

31

http://factfinder.census.gov

Introduction to PostGIS, Release 1.1

Fig. 1: Black population as a percentage of Total Population

32 Chapter 6. About our data

Introduction to PostGIS, Release 1.1

6.2 nyc_neighborhoods

New York has a rich history of neighborhood names and extent. Neighborhoods are social constructs that
do not follow lines laid down by the government. For example, the Brooklyn neighborhoods of Carroll
Gardens, Red Hook, and Cobble Hill were once collectively known as “South Brooklyn.” And now,
depending on which real estate agent you talk to, the same four blocks in the-neighborhood-formerly-
known-as-Red-Hook can be referred to as Columbia Heights, Carroll Gardens West, or Red Hook!

Number of records: 129

name Name of the neighborhood
boroname Name of the New York borough. Manhattan, The Bronx, Brooklyn, Staten Is-

land, Queens
geom Polygon boundary of the neighborhood

Fig. 2: The neighborhoods of New York City

6.2. nyc_neighborhoods 33

Introduction to PostGIS, Release 1.1

6.3 nyc_streets

The street centerlines form the transportation network of the city. These streets have been flagged with
types in order to distinguish between such thoroughfares as back alleys, arterial streets, freeways, and
smaller streets. Desirable areas to live might be on residential streets rather than next to a freeway.

Number of records: 19091

name Name of the street
oneway Is the street one-way? “yes” = yes, “” = no
type Road type (primary, secondary, residential, motorway)
geom Linear centerline of the street

Fig. 3: The streets of New York City. Major roads are in red.

34 Chapter 6. About our data

Introduction to PostGIS, Release 1.1

6.4 nyc_subway_stations

The subway stations link the upper world where people live to the invisible network of subways beneath.
As portals to the public transportation system, station locations help determine how easy it is for different
people to enter the subway system.

Number of records: 491

name Name of the station
borough Name of the New York borough. Manhattan, The Bronx, Brooklyn, Staten Is-

land, Queens
routes Subway lines that run through this station
transfers Lines you can transfer to via this station
express Stations where express trains stop, “express” = yes, “” = no
geom Point location of the station

6.5 nyc_census_sociodata

There is a rich collection of social-economic data collected during the census process, but only at the
larger geography level of census tract. Census blocks combine to form census tracts (and block groups).
We have collected some social-economic at a census tract level to answer some of these more interesting
questions about New York City.

Note: The nyc_census_sociodata is a data table. We will need to connect it to Census geogra-
phies before conducting any spatial analysis.

tractid An 11-digit code that uniquely identifies every census tract. (“36005000100”)
transit_total Number of workers in the tract
transit_private Number of workers in the tract who use private automobiles / motorcycles
transit_public Number of workers in the tract who take public transit
transit_walk Number of workers in the tract who walk
transit_other Number of workers in the tract who use other forms like walking / biking
transit_none Number of workers in the tract who work from home
transit_time_mins Total number of minutes spent in transit by all workers in the tract (minutes)
family_count Number of families in the tract
family_income_medianMedian family income in the tract (dollars)
family_income_meanAverage family income in the tract (dollars)
family_income_aggregateTotal income of all families in the tract (dollars)
edu_total Number of people with educational history
edu_no_highschool_diplNumber of people with no high school diploma
edu_highschool_diplNumber of people with high school diploma and no further education
edu_college_dipl Number of people with college diploma and no further education
edu_graduate_dipl Number of people with graduate school diploma

6.4. nyc_subway_stations 35

Introduction to PostGIS, Release 1.1

Fig. 4: Point locations for New York City subway stations

36 Chapter 6. About our data

CHAPTER

SEVEN

SIMPLE SQL

SQL, or “Structured Query Language”, is a means of asking questions of, and updating data in, relational
databases. You have already seen SQL when we created our first database. Recall:

SELECT postgis_full_version();

But that was a question about the database. Now that we’ve loaded data into our database, let’s use SQL
to ask questions of the data! For example,

“What are the names of all the neighborhoods in New York City?”

Open up the SQL query window in pgAdmin by clicking the “Query Tool” button.

then enter the following query in to the query window

SELECT name FROM nyc_neighborhoods;

and click the Execute Query button (the green triangle).

The query will run for a few (milli)seconds and return the 129 results.

37

Introduction to PostGIS, Release 1.1

But what exactly happened here? To understand, let’s begin with the four “verbs” of SQL,

• SELECT, returns rows in response to a query

• INSERT, adds new rows to a table

• UPDATE, alters existing rows in a table

• DELETE, removes rows from a table

We will be working almost exclusively with SELECT in order to ask questions of tables using spatial
functions.

7.1 SELECT queries

A select query is generally of the form:

SELECT some_columns FROM some_data_source WHERE some_condition;

Note: For a synopsis of all SELECT parameters, see the PostgresSQL documentation.

The some_columns are either column names or functions of column values. The
some_data_source is either a single table, or a composite table created by joining two tables on
a key or condition. The some_condition is a filter that restricts the number of rows to be returned.

“What are the names of all the neighborhoods in Brooklyn?”

We return to our nyc_neighborhoods table with a filter in hand. The table contains all the neigh-
borhoods in New York, but we only want the ones in Brooklyn.

38 Chapter 7. Simple SQL

http://www.postgresql.org/docs/current/interactive/sql-select.html

Introduction to PostGIS, Release 1.1

SELECT name
FROM nyc_neighborhoods
WHERE boroname = 'Brooklyn';

The query will run for even fewer (milli)seconds and return the 23 results.

Sometimes we will need to apply a function to the results of our query. For example,

“What is the number of letters in the names of all the neighborhoods in Brooklyn?”

Fortunately, PostgreSQL has a string length function, char_length(string).

SELECT char_length(name)
FROM nyc_neighborhoods
WHERE boroname = 'Brooklyn';

Often, we are less interested in the individual rows than in a statistic that applies to all of them. So
knowing the lengths of the neighborhood names might be less interesting than knowing the average
length of the names. Functions that take in multiple rows and return a single result are called “aggregate”
functions.

PostgreSQL has a series of built-in aggregate functions, including the general purpose avg() for aver-
age values and stddev() for standard deviations.

“What is the average number of letters and standard deviation of number of letters in the
names of all the neighborhoods in Brooklyn?”

SELECT avg(char_length(name)), stddev(char_length(name))
FROM nyc_neighborhoods
WHERE boroname = 'Brooklyn';

avg | stddev
---------------------+--------------------
11.7391304347826087 | 3.9105613559407395

The aggregate functions in our last example were applied to every row in the result set. What if we
want the summaries to be carried out over smaller groups within the overall result set? For that we
add a GROUP BY clause. Aggregate functions often need an added GROUP BY statement to group the
result-set by one or more columns.

“What is the average number of letters in the names of all the neighborhoods in New York
City, reported by borough?”

SELECT boroname, avg(char_length(name)), stddev(char_length(name))
FROM nyc_neighborhoods
GROUP BY boroname;

We include the boroname column in the output result so we can determine which statistic applies to
which borough. In an aggregate query, you can only output columns that are either (a) members of the
grouping clause or (b) aggregate functions.

boroname | avg | stddev
---------------+---------------------+--------------------
Brooklyn | 11.7391304347826087 | 3.9105613559407395
Manhattan | 11.8214285714285714 | 4.3123729948325257
The Bronx | 12.0416666666666667 | 3.6651017740975152

(continues on next page)

7.1. SELECT queries 39

Introduction to PostGIS, Release 1.1

(continued from previous page)

Queens | 11.6666666666666667 | 5.0057438272815975
Staten Island | 12.2916666666666667 | 5.2043390480959474

7.2 Function List

avg(expression): PostgreSQL aggregate function that returns the average value of a numeric column.

char_length(string): PostgreSQL string function that returns the number of character in a string.

stddev(expression): PostgreSQL aggregate function that returns the standard deviation of input values.

40 Chapter 7. Simple SQL

http://www.postgresql.org/docs/current/static/functions-aggregate.html#FUNCTIONS-AGGREGATE-TABLE
http://www.postgresql.org/docs/current/static/functions-string.html
http://www.postgresql.org/docs/current/static/functions-aggregate.html#FUNCTIONS-AGGREGATE-STATISTICS-TABLE

CHAPTER

EIGHT

SIMPLE SQL EXERCISES

Using the nyc_census_blocks table, answer the following questions (don’t peek at the answers!).

Here is some helpful information to get started. Recall from the About Our Data section our
nyc_census_blocks table definition.

blkid A 15-digit code that uniquely identifies every census block.
(“360050001009000”)

popn_total Total number of people in the census block
popn_white Number of people self-identifying as “white” in the block
popn_black Number of people self-identifying as “black” in the block
popn_nativ Number of people self-identifying as “native american” in the block
popn_asian Number of people self-identifying as “asias” in the block
popn_other Number of people self-identifying with other categories in the block
hous_total Number of housing units in the block
hous_own Number of owner-occupied housing units in the block
hous_rent Number of renter-occupied housing units in the block
boroname Name of the New York borough. Manhattan, The Bronx, Brooklyn, Staten Is-

land, Queens
geom Polygon boundary of the block

And, here are some common SQL aggregation functions you might find useful:

• avg() - the average (mean) of the values in a set of records

• sum() - the sum of the values in a set of records

• count() - the number of records in a set of records

Now the questions:

• How many records are in the nyc_streets table?

SELECT Count(*)
FROM nyc_streets;

19091

• How many streets in NYC start with ‘B’?

SELECT Count(*)
FROM nyc_streets
WHERE name LIKE 'B%';

41

Introduction to PostGIS, Release 1.1

1282

• What is the population of the City of New York?

SELECT Sum(popn_total) AS population
FROM nyc_census_blocks;

8175032

Note: What is this AS? You can give a table or a column another name by using an alias. Aliases
can make queries easier to both write and to read. So instead of our outputted column name as
sum we write it AS the more readable population.

• What is the population of the Bronx?

SELECT Sum(popn_total) AS population
FROM nyc_census_blocks
WHERE boroname = 'The Bronx';

1385108

• How many “neighborhoods” are in each borough?

SELECT boroname, count(*)
FROM nyc_neighborhoods
GROUP BY boroname;

boroname | count
---------------+-------
Queens | 30
Brooklyn | 23
Staten Island | 24
The Bronx | 24
Manhattan | 28

• For each borough, what percentage of the population is white?

SELECT
boroname,
100.0 * Sum(popn_white)/Sum(popn_total) AS white_pct

FROM nyc_census_blocks
GROUP BY boroname;

boroname | white_pct
---------------+------------------
Brooklyn | 42.8011737932687
Manhattan | 57.4493039480463
The Bronx | 27.9037446899448
Queens | 39.722077394591
Staten Island | 72.8942034860154

42 Chapter 8. Simple SQL Exercises

Introduction to PostGIS, Release 1.1

8.1 Function List

avg(expression): PostgreSQL aggregate function that returns the average value of a numeric column.

count(expression): PostgreSQL aggregate function that returns the number of records in a set of records.

sum(expression): PostgreSQL aggregate function that returns the sum of records in a set of records.

8.1. Function List 43

http://www.postgresql.org/docs/current/static/functions-aggregate.html#FUNCTIONS-AGGREGATE-TABLE
http://www.postgresql.org/docs/current/static/functions-aggregate.html#FUNCTIONS-AGGREGATE-TABLE
http://www.postgresql.org/docs/current/static/functions-aggregate.html#FUNCTIONS-AGGREGATE-TABLE

Introduction to PostGIS, Release 1.1

44 Chapter 8. Simple SQL Exercises

CHAPTER

NINE

GEOMETRIES

9.1 Introduction

In the previous section, we loaded a variety of data. Before we start playing with our data lets have
a look at some simpler examples. In pgAdmin, once again select the nyc database and open the SQL
query tool. Paste this example SQL code into the pgAdmin SQL Editor window (removing any text that
may be there by default) and then execute.

CREATE TABLE geometries (name varchar, geom geometry);

INSERT INTO geometries VALUES
('Point', 'POINT(0 0)'),
('Linestring', 'LINESTRING(0 0, 1 1, 2 1, 2 2)'),
('Polygon', 'POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))'),
('PolygonWithHole', 'POLYGON((0 0, 10 0, 10 10, 0 10, 0 0),(1 1, 1 2, 2

→˓2, 2 1, 1 1))'),
('Collection', 'GEOMETRYCOLLECTION(POINT(2 0),POLYGON((0 0, 1 0, 1 1, 0

→˓1, 0 0)))');

SELECT name, ST_AsText(geom) FROM geometries;

The above example CREATEs a table (geometries) then INSERTs five geometries: a point, a line, a
polygon, a polygon with a hole, and a collection. Finally, the inserted rows are SELECTed and displayed
in the Output pane.

45

Introduction to PostGIS, Release 1.1

9.2 Metadata Tables

In conformance with the Simple Features for SQL (SFSQL) specification, PostGIS provides two tables
to track and report on the geometry types available in a given database.

• The first table, spatial_ref_sys, defines all the spatial reference systems known to the
database and will be described in greater detail later.

• The second table (actually, a view), geometry_columns, provides a listing of all “features”
(defined as an object with geometric attributes), and the basic details of those features.

Let’s have a look at the geometry_columns table in our database. Paste this command in the Query
Tool as before:

SELECT * FROM geometry_columns;

46 Chapter 9. Geometries

Introduction to PostGIS, Release 1.1

• f_table_catalog, f_table_schema, and f_table_name provide the fully qualified
name of the feature table containing a given geometry. Because PostgreSQL doesn’t make use of
catalogs, f_table_catalog will tend to be empty.

• f_geometry_column is the name of the column that geometry containing column – for feature
tables with multiple geometry columns, there will be one record for each.

• coord_dimension and srid define the the dimension of the geometry (2-, 3- or 4-
dimensional) and the Spatial Reference system identifier that refers to the spatial_ref_sys
table respectively.

• The type column defines the type of geometry as described below; we’ve seen Point and
Linestring types so far.

By querying this table, GIS clients and libraries can determine what to expect when retrieving data and
can perform any necessary projection, processing or rendering without needing to inspect each geometry.

Note:

Do some or all of your nyc tables not have an srid of 26918? It’s easy to fix by updating
the table.

ALTER TABLE nyc_neighborhoods
ALTER COLUMN geom
TYPE Geometry(MultiPolygon, 26918)
USING ST_SetSRID(geom, 26918);

9.2. Metadata Tables 47

Introduction to PostGIS, Release 1.1

9.3 Representing Real World Objects

The Simple Features for SQL (SFSQL) specification, the original guiding standard for PostGIS develop-
ment, defines how a real world object is represented. By taking a continuous shape and digitizing it at a
fixed resolution we achieve a passable representation of the object. SFSQL only handled 2-dimensional
representations. PostGIS has extended that to include 3- and 4-dimensional representations; more re-
cently the SQL-Multimedia Part 3 (SQL/MM) specification has officially defined their own representa-
tion.

Our example table contains a mixture of different geometry types. We can collect general information
about each object using functions that read the geometry metadata.

• ST_GeometryType(geometry) returns the type of the geometry

• ST_NDims(geometry) returns the number of dimensions of the geometry

• ST_SRID(geometry) returns the spatial reference identifier number of the geometry

SELECT name, ST_GeometryType(geom), ST_NDims(geom), ST_SRID(geom)
FROM geometries;

name | st_geometrytype | st_ndims | st_srid
-----------------+-----------------------+----------+---------
Point | ST_Point | 2 | 0
Polygon | ST_Polygon | 2 | 0
PolygonWithHole | ST_Polygon | 2 | 0
Collection | ST_GeometryCollection | 2 | 0
Linestring | ST_LineString | 2 | 0

9.3.1 Points

A spatial point represents a single location on the Earth. This point is represented by a single coordinate
(including either 2-, 3- or 4-dimensions). Points are used to represent objects when the exact details,
such as shape and size, are not important at the target scale. For example, cities on a map of the world
can be described as points, while a map of a single state might represent cities as polygons.

SELECT ST_AsText(geom)
FROM geometries
WHERE name = 'Point';

POINT(0 0)

Some of the specific spatial functions for working with points are:

• ST_X(geometry) returns the X ordinate

• ST_Y(geometry) returns the Y ordinate

48 Chapter 9. Geometries

Introduction to PostGIS, Release 1.1

So, we can read the ordinates from a point like this:

SELECT ST_X(geom), ST_Y(geom)
FROM geometries
WHERE name = 'Point';

The New York City subway stations (nyc_subway_stations) table is a data set represented as
points. The following SQL query will return the geometry associated with one point (in the ST_AsText
column).

SELECT name, ST_AsText(geom)
FROM nyc_subway_stations
LIMIT 1;

9.3.2 Linestrings

A linestring is a path between locations. It takes the form of an ordered series of two or more points.
Roads and rivers are typically represented as linestrings. A linestring is said to be closed if it starts and
ends on the same point. It is said to be simple if it does not cross or touch itself (except at its endpoints
if it is closed). A linestring can be both closed and simple.

The street network for New York (nyc_streets) was loaded earlier in the workshop. This dataset
contains details such as name, and type. A single real world street may consist of many linestrings, each
representing a segment of road with different attributes.

The following SQL query will return the geometry associated with one linestring (in the ST_AsText
column).

SELECT ST_AsText(geom)
FROM geometries
WHERE name = 'Linestring';

LINESTRING(0 0, 1 1, 2 1, 2 2)

Some of the specific spatial functions for working with linestrings are:

• ST_Length(geometry) returns the length of the linestring

• ST_StartPoint(geometry) returns the first coordinate as a point

• ST_EndPoint(geometry) returns the last coordinate as a point

• ST_NPoints(geometry) returns the number of coordinates in the linestring

So, the length of our linestring is:

9.3. Representing Real World Objects 49

Introduction to PostGIS, Release 1.1

SELECT ST_Length(geom)
FROM geometries
WHERE name = 'Linestring';

3.41421356237309

9.3.3 Polygons

A polygon is a representation of an area. The outer boundary of the polygon is represented by a ring.
This ring is a linestring that is both closed and simple as defined above. Holes within the polygon are
also represented by rings.

Polygons are used to represent objects whose size and shape are important. City limits, parks, building
footprints or bodies of water are all commonly represented as polygons when the scale is sufficiently
high to see their area. Roads and rivers can sometimes be represented as polygons.

The following SQL query will return the geometry associated with one polygon (in the ST_AsText
column).

SELECT ST_AsText(geom)
FROM geometries
WHERE name LIKE 'Polygon%';

Note: Rather than using an = sign in our WHERE clause, we are using the LIKE operator to carry out a
string matching operation. You may be used to the ``*`` symbol as a “glob” for pattern matching,
but in SQL the ``%`` symbol is used, along with the LIKE operator to tell the system to do globbing.

POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))
POLYGON((0 0, 10 0, 10 10, 0 10, 0 0),(1 1, 1 2, 2 2, 2 1, 1 1))

The first polygon has only one ring. The second one has an interior “hole”. Most graphics systems
include the concept of a “polygon”, but GIS systems are relatively unique in allowing polygons to
explicitly have holes.

50 Chapter 9. Geometries

Introduction to PostGIS, Release 1.1

Some of the specific spatial functions for working with polygons are:

• ST_Area(geometry) returns the area of the polygons

• ST_NRings(geometry) returns the number of rings (usually 1, more if there are holes)

• ST_ExteriorRing(geometry) returns the outer ring as a linestring

• ST_InteriorRingN(geometry,n) returns a specified interior ring as a linestring

• ST_Perimeter(geometry) returns the length of all the rings

We can calculate the area of our polygons using the area function:

SELECT name, ST_Area(geom)
FROM geometries
WHERE name LIKE 'Polygon%';

Polygon 1
PolygonWithHole 99

Note that the polygon with a hole has an area that is the area of the outer shell (a 10x10 square) minus
the area of the hole (a 1x1 square).

9.3. Representing Real World Objects 51

Introduction to PostGIS, Release 1.1

9.3.4 Collections

There are four collection types, which group multiple simple geometries into sets.

• MultiPoint, a collection of points

• MultiLineString, a collection of linestrings

• MultiPolygon, a collection of polygons

• GeometryCollection, a heterogeneous collection of any geometry (including other collections)

Collections are another concept that shows up in GIS software more than in generic graphics software.
They are useful for directly modeling real world objects as spatial objects. For example, how to model
a lot that is split by a right-of-way? As a MultiPolygon, with a part on either side of the right-of-way.

52 Chapter 9. Geometries

Introduction to PostGIS, Release 1.1

Our example collection contains a polygon and a point:

9.3. Representing Real World Objects 53

Introduction to PostGIS, Release 1.1

SELECT name, ST_AsText(geom)
FROM geometries
WHERE name = 'Collection';

GEOMETRYCOLLECTION(POINT(2 0),POLYGON((0 0, 1 0, 1 1, 0 1, 0 0)))

Some of the specific spatial functions for working with collections are:

• ST_NumGeometries(geometry) returns the number of parts in the collection

• ST_GeometryN(geometry,n) returns the specified part

• ST_Area(geometry) returns the total area of all polygonal parts

• ST_Length(geometry) returns the total length of all linear parts

9.4 Geometry Input and Output

Within the database, geometries are stored on disk in a format only used by the PostGIS program. In
order for external programs to insert and retrieve useful geometries, they need to be converted into a
format that other applications can understand. Fortunately, PostGIS supports emitting and consuming
geometries in a large number of formats:

• Well-known text (WKT)

– ST_GeomFromText(text, srid) returns geometry

– ST_AsText(geometry) returns text

– ST_AsEWKT(geometry) returns text

• Well-known binary (WKB)

– ST_GeomFromWKB(bytea) returns geometry

– ST_AsBinary(geometry) returns bytea

– ST_AsEWKB(geometry) returns bytea

• Geographic Mark-up Language (GML)

– ST_GeomFromGML(text) returns geometry

– ST_AsGML(geometry) returns text

• Keyhole Mark-up Language (KML)

– ST_GeomFromKML(text) returns geometry

– ST_AsKML(geometry) returns text

• GeoJSON

54 Chapter 9. Geometries

Introduction to PostGIS, Release 1.1

– ST_AsGeoJSON(geometry) returns text

• Scalable Vector Graphics (SVG)

– ST_AsSVG(geometry) returns text

The most common use of a constructor is to turn a text representation of a geometry into an internal
representation:

Note that in addition to a text parameter with a geometry representation, we also have a numeric param-
eter providing the SRID of the geometry.

The following SQL query shows an example of WKB representation (the call to encode() is required
to convert the binary output into an ASCII form for printing):

SELECT encode(
ST_AsBinary(ST_GeometryFromText('LINESTRING(0 0,1 0)')),
'hex');

01020000000200f03f0000000000000000

For the purposes of this workshop we will continue to use WKT to ensure you can read and understand
the geometries we’re viewing. However, most actual processes, such as viewing data in a GIS applica-
tion, transferring data to a web service, or processing data remotely, WKB is the format of choice.

Since WKT and WKB were defined in the SFSQL specification, they do not handle 3- or 4-dimensional
geometries. For these cases PostGIS has defined the Extended Well Known Text (EWKT) and Extended
Well Known Binary (EWKB) formats. These provide the same formatting capabilities of WKT and
WKB with the added dimensionality.

Here is an example of a 3D linestring in WKT:

SELECT ST_AsText(ST_GeometryFromText('LINESTRING(0 0 0,1 0 0,1 1 2)'));

LINESTRING Z (0 0 0,1 0 0,1 1 2)

Note that the text representation changes! This is because the text input routine for PostGIS is liberal in
what it consumes. It will consume

• hex-encoded EWKB,

• extended well-known text, and

• ISO standard well-known text.

On the output side, the ST_AsText function is conservative, and only emits ISO standard well-known
text.

In addition to the ST_GeometryFromText function, there are many other ways to create geometries
from well-known text or similar formatted inputs:

-- Using ST_GeomFromText with the SRID parameter
SELECT ST_GeomFromText('POINT(2 2)',4326);

-- Using ST_GeomFromText without the SRID parameter
SELECT ST_SetSRID(ST_GeomFromText('POINT(2 2)'),4326);

-- Using a ST_Make* function

(continues on next page)

9.4. Geometry Input and Output 55

Introduction to PostGIS, Release 1.1

(continued from previous page)

SELECT ST_SetSRID(ST_MakePoint(2, 2), 4326);

-- Using PostgreSQL casting syntax and ISO WKT
SELECT ST_SetSRID('POINT(2 2)'::geometry, 4326);

-- Using PostgreSQL casting syntax and extended WKT
SELECT 'SRID=4326;POINT(2 2)'::geometry;

In addition to emitters for the various forms (WKT, WKB, GML, KML, JSON, SVG), PostGIS also
has consumers for four (WKT, WKB, GML, KML). Most applications use the WKT or WKB geometry
creation functions, but the others work too. Here’s an example that consumes GML and output JSON:

SELECT ST_AsGeoJSON(ST_GeomFromGML('<gml:Point><gml:coordinates>1,1</
→˓gml:coordinates></gml:Point>'));

9.5 Casting from Text

The WKT strings we’ve see so far have been of type ‘text’ and we have been converting them to type
‘geometry’ using PostGIS functions like ST_GeomFromText().

PostgreSQL includes a short form syntax that allows data to be converted from one type to another, the
casting syntax, oldata::newtype. So for example, this SQL converts a double into a text string.

SELECT 0.9::text;

Less trivially, this SQL converts a WKT string into a geometry:

SELECT 'POINT(0 0)'::geometry;

One thing to note about using casting to create geometries: unless you specify the SRID, you will get
a geometry with an unknown SRID. You can specify the SRID using the “extended” well-known text
form, which includes an SRID block at the front:

56 Chapter 9. Geometries

Introduction to PostGIS, Release 1.1

SELECT 'SRID=4326;POINT(0 0)'::geometry;

It’s very common to use the casting notation when working with WKT , as well as geometry and geogra-
phy columns (see Geography).

9.6 Function List

ST_Area: Returns the area of the surface if it is a polygon or multi-polygon. For “geometry” type area
is in SRID units. For “geography” area is in square meters.

ST_AsText: Returns the Well-Known Text (WKT) representation of the geometry/geography without
SRID metadata.

ST_AsBinary: Returns the Well-Known Binary (WKB) representation of the geometry/geography with-
out SRID meta data.

ST_EndPoint: Returns the last point of a LINESTRING geometry as a POINT.

ST_AsEWKB: Returns the Well-Known Binary (WKB) representation of the geometry with SRID meta
data.

ST_AsEWKT: Returns the Well-Known Text (WKT) representation of the geometry with SRID meta
data.

ST_AsGeoJSON: Returns the geometry as a GeoJSON element.

ST_AsGML: Returns the geometry as a GML version 2 or 3 element.

ST_AsKML: Returns the geometry as a KML element. Several variants. Default version=2, default
precision=15.

ST_AsSVG: Returns a Geometry in SVG path data given a geometry or geography object.

ST_ExteriorRing: Returns a line string representing the exterior ring of the POLYGON geometry. Re-
turn NULL if the geometry is not a polygon. Will not work with MULTIPOLYGON

ST_GeometryN: Returns the 1-based Nth geometry if the geometry is a GEOMETRYCOLLEC-
TION, MULTIPOINT, MULTILINESTRING, MULTICURVE or MULTIPOLYGON. Otherwise, return
NULL.

ST_GeomFromGML: Takes as input GML representation of geometry and outputs a PostGIS geometry
object.

ST_GeomFromKML: Takes as input KML representation of geometry and outputs a PostGIS geometry
object

ST_GeomFromText: Returns a specified ST_Geometry value from Well-Known Text representation
(WKT).

ST_GeomFromWKB: Creates a geometry instance from a Well-Known Binary geometry representation
(WKB) and optional SRID.

ST_GeometryType: Returns the geometry type of the ST_Geometry value.

ST_InteriorRingN: Returns the Nth interior linestring ring of the polygon geometry. Return NULL if
the geometry is not a polygon or the given N is out of range.

9.6. Function List 57

http://postgis.net/docs/ST_Area.html
http://postgis.net/docs/ST_AsText.html
http://postgis.net/docs/ST_AsBinary.html
http://postgis.net/docs/ST_EndPoint.html
http://postgis.net/docs/ST_AsEWKB.html
http://postgis.net/docs/ST_AsEWKT.html
http://postgis.net/docs/ST_AsGeoJSON.html
http://postgis.net/docs/ST_AsGML.html
http://postgis.net/docs/ST_AsKML.html
http://postgis.net/docs/ST_AsSVG.html
http://postgis.net/docs/ST_ExteriorRing.html
http://postgis.net/docs/ST_GeometryN.html
http://postgis.net/docs/ST_GeomFromGML.html
http://postgis.net/docs/ST_GeomFromKML.html
http://postgis.net/docs/ST_GeomFromText.html
http://postgis.net/docs/ST_GeomFromWKB.html
http://postgis.net/docs/ST_GeometryType.html
http://postgis.net/docs/ST_InteriorRingN.html

Introduction to PostGIS, Release 1.1

ST_Length: Returns the 2d length of the geometry if it is a linestring or multilinestring. geometry are in
units of spatial reference and geography are in meters (default spheroid)

ST_NDims: Returns coordinate dimension of the geometry as a small int. Values are: 2,3 or 4.

ST_NPoints: Returns the number of points (vertexes) in a geometry.

ST_NRings: If the geometry is a polygon or multi-polygon returns the number of rings.

ST_NumGeometries: If geometry is a GEOMETRYCOLLECTION (or MULTI*) returns the number of
geometries, otherwise return NULL.

ST_Perimeter: Returns the length measurement of the boundary of an ST_Surface or ST_MultiSurface
value. (Polygon, Multipolygon)

ST_SRID: Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys
table.

ST_StartPoint: Returns the first point of a LINESTRING geometry as a POINT.

ST_X: Returns the X coordinate of the point, or NULL if not available. Input must be a point.

ST_Y: Returns the Y coordinate of the point, or NULL if not available. Input must be a point.

58 Chapter 9. Geometries

http://postgis.net/docs/ST_Length.html
http://postgis.net/docs/ST_NDims.html
http://postgis.net/docs/ST_NPoints.html
http://postgis.net/docs/ST_NRings.html
http://postgis.net/docs/ST_NumGeometries.html
http://postgis.net/docs/ST_Perimeter.html
http://postgis.net/docs/ST_SRID.html
http://postgis.net/docs/ST_StartPoint.html
http://postgis.net/docs/ST_X.html
http://postgis.net/docs/ST_Y.html

CHAPTER

TEN

GEOMETRY EXERCISES

Here’s a reminder of all the functions we have seen so far. They should be useful for the exercises!

• sum(expression) aggregate to return a sum for a set of records

• count(expression) aggregate to return the size of a set of records

• ST_GeometryType(geometry) returns the type of the geometry

• ST_NDims(geometry) returns the number of dimensions of the geometry

• ST_SRID(geometry) returns the spatial reference identifier number of the geometry

• ST_X(point) returns the X ordinate

• ST_Y(point) returns the Y ordinate

• ST_Length(linestring) returns the length of the linestring

• ST_StartPoint(geometry) returns the first coordinate as a point

• ST_EndPoint(geometry) returns the last coordinate as a point

• ST_NPoints(geometry) returns the number of coordinates in the linestring

• ST_Area(geometry) returns the area of the polygons

• ST_NRings(geometry) returns the number of rings (usually 1, more if there are holes)

• ST_ExteriorRing(polygon) returns the outer ring as a linestring

• ST_InteriorRingN(polygon, integer) returns a specified interior ring as a linestring

• ST_Perimeter(geometry) returns the length of all the rings

• ST_NumGeometries(multi/geomcollection) returns the number of parts in the col-
lection

• ST_GeometryN(geometry, integer) returns the specified part of the collection

• ST_GeomFromText(text) returns geometry

• ST_AsText(geometry) returns WKT text

• ST_AsEWKT(geometry) returns EWKT text

• ST_GeomFromWKB(bytea) returns geometry

• ST_AsBinary(geometry) returns WKB bytea

• ST_AsEWKB(geometry) returns EWKB bytea

• ST_GeomFromGML(text) returns geometry

59

Introduction to PostGIS, Release 1.1

• ST_AsGML(geometry) returns GML text

• ST_GeomFromKML(text) returns geometry

• ST_AsKML(geometry) returns KML text

• ST_AsGeoJSON(geometry) returns JSON text

• ST_AsSVG(geometry) returns SVG text

Also remember the tables we have available:

• nyc_census_blocks

– blkid, popn_total, boroname, geom

• nyc_streets

– name, type, geom

• nyc_subway_stations

– name, geom

• nyc_neighborhoods

– name, boroname, geom

10.1 Exercises

• What is the area of the ‘West Village’ neighborhood?

SELECT ST_Area(geom)
FROM nyc_neighborhoods
WHERE name = 'West Village';

1044614.5296486

Note: The area is given in square meters. To get an area in hectares, divide by 10000. To get an
area in acres, divide by 4047.

• What is the geometry type of ‘Pelham St’? The length?

SELECT
ST_GeometryType(geom),
ST_Length(geom)

FROM nyc_streets
WHERE name = 'Pelham St';

ST_MultiLineString
50.323

• What is the GeoJSON representation of the ‘Broad St’ subway station?

60 Chapter 10. Geometry Exercises

Introduction to PostGIS, Release 1.1

SELECT
ST_AsGeoJSON(geom)
FROM nyc_subway_stations
WHERE name = 'Broad St';

{"type":"Point",
"crs":{"type":"name","properties":{"name":"EPSG:26918"}},
"coordinates":[583571.905921312,4506714.341192182]}

• What is the total length of streets (in kilometers) in New York City? (Hint: The units of
measurement of the spatial data are meters, there are 1000 meters in a kilometer.)

SELECT Sum(ST_Length(geom)) / 1000
FROM nyc_streets;

10418.9047172

• What is the area of Manhattan in acres? (Hint: both nyc_census_blocks and
nyc_neighborhoods have a boroname in them.)

SELECT Sum(ST_Area(geom)) / 4047
FROM nyc_neighborhoods
WHERE boroname = 'Manhattan';

13965.3201224118

or. . .

SELECT Sum(ST_Area(geom)) / 4047
FROM nyc_census_blocks
WHERE boroname = 'Manhattan';

14601.3987215548

• What is the most westerly subway station?

SELECT ST_X(geom), name
FROM nyc_subway_stations
ORDER BY ST_X(geom)
LIMIT 1;

Tottenville

• How long is ‘Columbus Cir’ (aka Columbus Circle)?

SELECT ST_Length(geom)
FROM nyc_streets
WHERE name = 'Columbus Cir';

308.34199

• What is the length of streets in New York City, summarized by type?

10.1. Exercises 61

Introduction to PostGIS, Release 1.1

SELECT type, Sum(ST_Length(geom)) AS length
FROM nyc_streets
GROUP BY type
ORDER BY length DESC;

type | length
--+------------------
residential | 8629870.33786606
motorway | 403622.478126363
tertiary | 360394.879051303
motorway_link | 294261.419479668
secondary | 276264.303897926
unclassified | 166936.371604458
primary | 135034.233017947
footway | 71798.4878378096
service | 28337.635038596
trunk | 20353.5819826076
cycleway | 8863.75144825929
pedestrian | 4867.05032825026
construction | 4803.08162103562
residential; motorway_link | 3661.57506293745
trunk_link | 3202.18981240201
primary_link | 2492.57457083536
living_street | 1894.63905457332
primary; residential; motorway_link; residential | 1367.76576941335
undefined | 380.53861910346
steps | 282.745221342127
motorway_link; residential | 215.07778911517

Note: The ORDER BY length DESC clause sorts the result by length in descending order.
The result is that most prevalent types are first in the list.

62 Chapter 10. Geometry Exercises

CHAPTER

ELEVEN

SPATIAL RELATIONSHIPS

So far we have only used spatial functions that measure (ST_Area, ST_Length), serialize
(ST_GeomFromText) or deserialize (ST_AsGML) geometries. What these functions have in com-
mon is that they only work on one geometry at a time.

Spatial databases are powerful because they not only store geometry, they also have the ability to com-
pare relationships between geometries.

Questions like “Which are the closest bike racks to a park?” or “Where are the intersections of subway
lines and streets?” can only be answered by comparing geometries representing the bike racks, streets,
and subway lines.

The OGC standard defines the following set of methods to compare geometries.

11.1 ST_Equals

ST_Equals(geometry A, geometry B) tests the spatial equality of two geometries.

ST_Equals returns TRUE if two geometries of the same type have identical x,y coordinate values, i.e. if
the second shape is equal (identical) to the first shape.

First, let’s retrieve a representation of a point from our nyc_subway_stations table. We’ll take
just the entry for ‘Broad St’.

SELECT name, geom
FROM nyc_subway_stations
WHERE name = 'Broad St';

name | geom
----------+---
Broad St | 0101000020266900000EEBD4CF27CF2141BC17D69516315141

Then, plug the geometry representation back into an ST_Equals test:

SELECT name
FROM nyc_subway_stations
WHERE ST_Equals(

geom,
'0101000020266900000EEBD4CF27CF2141BC17D69516315141');

Broad St

63

Introduction to PostGIS, Release 1.1

64 Chapter 11. Spatial Relationships

Introduction to PostGIS, Release 1.1

Note: The representation of the point was not very human readable
(0101000020266900000EEBD4CF27CF2141BC17D69516315141) but it was an exact
representation of the coordinate values. For a test like equality, using the exact coordinates is necessary.

11.2 ST_Intersects, ST_Disjoint, ST_Crosses and ST_Overlaps

ST_Intersects, ST_Crosses, and ST_Overlaps test whether the interiors of the geometries
intersect.

ST_Intersects(geometry A, geometry B) returns t (TRUE) if the two shapes have any
space in common, i.e., if their boundaries or interiors intersect.

11.2. ST_Intersects, ST_Disjoint, ST_Crosses and ST_Overlaps 65

Introduction to PostGIS, Release 1.1

66 Chapter 11. Spatial Relationships

Introduction to PostGIS, Release 1.1

The opposite of ST_Intersects is ST_Disjoint(geometry A , geometry B). If two geome-
tries are disjoint, they do not intersect, and vice-versa. In fact, it is often more efficient to test “not
intersects” than to test “disjoint” because the intersects tests can be spatially indexed, while the disjoint
test cannot.

For multipoint/polygon, multipoint/linestring, linestring/linestring, linestring/polygon, and
linestring/multipolygon comparisons, ST_Crosses(geometry A, geometry B) returns t
(TRUE) if the intersection results in a geometry whose dimension is one less than the maximum
dimension of the two source geometries and the intersection set is interior to both source geometries.

ST_Overlaps(geometry A, geometry B) compares two geometries of the same dimension
and returns TRUE if their intersection set results in a geometry different from both but of the same
dimension.

Let’s take our Broad Street subway station and determine its neighborhood using the ST_Intersects
function:

SELECT name, ST_AsText(geom)
FROM nyc_subway_stations
WHERE name = 'Broad St';

POINT(583571 4506714)

SELECT name, boroname
FROM nyc_neighborhoods
WHERE ST_Intersects(geom, ST_GeomFromText('POINT(583571 4506714)',26918));

11.2. ST_Intersects, ST_Disjoint, ST_Crosses and ST_Overlaps 67

Introduction to PostGIS, Release 1.1

68 Chapter 11. Spatial Relationships

Introduction to PostGIS, Release 1.1

name | boroname
--------------------+-----------
Financial District | Manhattan

11.3 ST_Touches

ST_Touches tests whether two geometries touch at their boundaries, but do not intersect in their
interiors

ST_Touches(geometry A, geometry B) returns TRUE if either of the geometries’ boundaries
intersect or if only one of the geometry’s interiors intersects the other’s boundary.

11.3. ST_Touches 69

Introduction to PostGIS, Release 1.1

11.4 ST_Within and ST_Contains

ST_Within and ST_Contains test whether one geometry is fully within the other.

ST_Within(geometry A , geometry B) returns TRUE if the first geometry is completely
within the second geometry. ST_Within tests for the exact opposite result of ST_Contains.

ST_Contains(geometry A, geometry B) returns TRUE if the second geometry is completely
contained by the first geometry.

70 Chapter 11. Spatial Relationships

Introduction to PostGIS, Release 1.1

11.5 ST_Distance and ST_DWithin

An extremely common GIS question is “find all the stuff within distance X of this other stuff”.

The ST_Distance(geometry A, geometry B) calculates the shortest distance between two
geometries and returns it as a float. This is useful for actually reporting back the distance between
objects.

SELECT ST_Distance(
ST_GeometryFromText('POINT(0 5)'),
ST_GeometryFromText('LINESTRING(-2 2, 2 2)'));

3

For testing whether two objects are within a distance of one another, the ST_DWithin function pro-
vides an index-accelerated true/false test. This is useful for questions like “how many trees are within
a 500 meter buffer of the road?”. You don’t have to calculate an actual buffer, you just have to test the
distance relationship.

Using our Broad Street subway station again, we can find the streets nearby (within 10 meters of) the
subway stop:

SELECT name
FROM nyc_streets

(continues on next page)

11.5. ST_Distance and ST_DWithin 71

Introduction to PostGIS, Release 1.1

(continued from previous page)

WHERE ST_DWithin(
geom,
ST_GeomFromText('POINT(583571 4506714)',26918),
10

);

name

Wall St
Broad St
Nassau St

And we can verify the answer on a map. The Broad St station is actually at the intersection of Wall,
Broad and Nassau Streets.

72 Chapter 11. Spatial Relationships

Introduction to PostGIS, Release 1.1

11.6 Function List

ST_Contains(geometry A, geometry B): Returns true if and only if no points of B lie in the exterior of
A, and at least one point of the interior of B lies in the interior of A.

ST_Crosses(geometry A, geometry B): Returns TRUE if the supplied geometries have some, but not all,
interior points in common.

ST_Disjoint(geometry A , geometry B): Returns TRUE if the Geometries do not “spatially intersect” -
if they do not share any space together.

ST_Distance(geometry A, geometry B): Returns the 2-dimensional cartesian minimum distance (based
on spatial ref) between two geometries in projected units.

ST_DWithin(geometry A, geometry B, radius): Returns true if the geometries are within the specified
distance (radius) of one another.

ST_Equals(geometry A, geometry B): Returns true if the given geometries represent the same geometry.
Directionality is ignored.

ST_Intersects(geometry A, geometry B): Returns TRUE if the Geometries/Geography “spatially inter-
sect” - (share any portion of space) and FALSE if they don’t (they are Disjoint).

ST_Overlaps(geometry A, geometry B): Returns TRUE if the Geometries share space, are of the same
dimension, but are not completely contained by each other.

ST_Touches(geometry A, geometry B): Returns TRUE if the geometries have at least one point in com-
mon, but their interiors do not intersect.

ST_Within(geometry A , geometry B): Returns true if the geometry A is completely inside geometry B

11.6. Function List 73

http://postgis.net/docs/ST_Contains.html
http://postgis.net/docs/ST_Crosses.html
http://postgis.net/docs/ST_Disjoint.html
http://postgis.net/docs/ST_Distance.html
http://postgis.net/docs/ST_DWithin.html
http://postgis.net/docs/ST_Equals.html
http://postgis.net/docs/ST_Intersects.html
http://postgis.net/docs/ST_Overlaps.html
http://postgis.net/docs/ST_Touches.html
http://postgis.net/docs/ST_Within.html

Introduction to PostGIS, Release 1.1

74 Chapter 11. Spatial Relationships

CHAPTER

TWELVE

SPATIAL RELATIONSHIPS EXERCISES

Here’s a reminder of the functions we saw in the last section. They should be useful for the exercises!

• sum(expression) aggregate to return a sum for a set of records

• count(expression) aggregate to return the size of a set of records

• ST_Contains(geometry A, geometry B) returns true if geometry A contains geome-
try B

• ST_Crosses(geometry A, geometry B) returns true if geometry A crosses geometry
B

• ST_Disjoint(geometry A , geometry B) returns true if the geometries do not “spa-
tially intersect”

• ST_Distance(geometry A, geometry B) returns the minimum distance between ge-
ometry A and geometry B

• ST_DWithin(geometry A, geometry B, radius) returns true if geometry A is ra-
dius distance or less from geometry B

• ST_Equals(geometry A, geometry B) returns true if geometry A is the same as geom-
etry B

• ST_Intersects(geometry A, geometry B) returns true if geometry A intersects ge-
ometry B

• ST_Overlaps(geometry A, geometry B) returns true if geometry A and geometry B
share space, but are not completely contained by each other.

• ST_Touches(geometry A, geometry B) returns true if the boundary of geometry A
touches geometry B

• ST_Within(geometry A, geometry B) returns true if geometry A is within geometry
B

Also remember the tables we have available:

• nyc_census_blocks

– blkid, popn_total, boroname, geom

• nyc_streets

– name, type, geom

• nyc_subway_stations

– name, geom

75

Introduction to PostGIS, Release 1.1

• nyc_neighborhoods

– name, boroname, geom

12.1 Exercises

• What is the geometry value for the street named ‘Atlantic Commons’?

SELECT ST_AsText(geom)
FROM nyc_streets
WHERE name = 'Atlantic Commons';

MULTILINESTRING((586781.701577724 4504202.15314339,586863.51964484
→˓4504215.9881701))

• What neighborhood and borough is Atlantic Commons in?

SELECT name, boroname
FROM nyc_neighborhoods
WHERE ST_Intersects(

geom,
ST_GeomFromText('LINESTRING(586782 4504202,586864 4504216)', 26918)

);

name | boroname
------------+----------
Fort Green | Brooklyn

Note: “Hey, why did you change from a ‘MULTILINESTRING’ to a ‘LINESTRING’?” Spatially
they describe the same shape, so going from a single-item multi-geometry to a singleton saves a
few keystrokes.

More importantly, we also rounded the coordinates to make them easier to read, which does
actually change results: we couldn’t use the ST_Touches() predicate to find out which roads join
Atlantic Commons, because the coordinates are not exactly the same anymore.

• What streets does Atlantic Commons join with?

SELECT name
FROM nyc_streets
WHERE ST_DWithin(

geom,
ST_GeomFromText('LINESTRING(586782 4504202,586864 4504216)', 26918),
0.1

);

name

Cumberland St
Atlantic Commons

76 Chapter 12. Spatial Relationships Exercises

Introduction to PostGIS, Release 1.1

• Approximately how many people live on (within 50 meters of) Atlantic Commons?

SELECT Sum(popn_total)
FROM nyc_census_blocks
WHERE ST_DWithin(
geom,
ST_GeomFromText('LINESTRING(586782 4504202,586864 4504216)',

→˓26918),
50

);

1438

12.1. Exercises 77

Introduction to PostGIS, Release 1.1

78 Chapter 12. Spatial Relationships Exercises

CHAPTER

THIRTEEN

SPATIAL JOINS

Spatial joins are the bread-and-butter of spatial databases. They allow you to combine information from
different tables by using spatial relationships as the join key. Much of what we think of as “standard GIS
analysis” can be expressed as spatial joins.

In the previous section, we explored spatial relationships using a two-step process: first we extracted
a subway station point for ‘Broad St’; then, we used that point to ask further questions such as “what
neighborhood is the ‘Broad St’ station in?”

Using a spatial join, we can answer the question in one step, retrieving information about the subway
station and the neighborhood that contains it:

SELECT
subways.name AS subway_name,
neighborhoods.name AS neighborhood_name,
neighborhoods.boroname AS borough

FROM nyc_neighborhoods AS neighborhoods
JOIN nyc_subway_stations AS subways
ON ST_Contains(neighborhoods.geom, subways.geom)
WHERE subways.name = 'Broad St';

subway_name | neighborhood_name | borough
-------------+--------------------+-----------
Broad St | Financial District | Manhattan

We could have joined every subway station to its containing neighborhood, but in this case we wanted
information about just one. Any function that provides a true/false relationship between two tables can be
used to drive a spatial join, but the most commonly used ones are: ST_Intersects, ST_Contains,
and ST_DWithin.

13.1 Join and Summarize

The combination of a JOIN with a GROUP BY provides the kind of analysis that is usually done in a
GIS system.

For example: “What is the population and racial make-up of the neighborhoods of Manhattan?”
Here we have a question that combines information from about population from the census with the
boundaries of neighborhoods, with a restriction to just one borough of Manhattan.

SELECT
neighborhoods.name AS neighborhood_name,
Sum(census.popn_total) AS population,

(continues on next page)

79

Introduction to PostGIS, Release 1.1

(continued from previous page)

100.0 * Sum(census.popn_white) / Sum(census.popn_total) AS white_pct,
100.0 * Sum(census.popn_black) / Sum(census.popn_total) AS black_pct

FROM nyc_neighborhoods AS neighborhoods
JOIN nyc_census_blocks AS census
ON ST_Intersects(neighborhoods.geom, census.geom)
WHERE neighborhoods.boroname = 'Manhattan'
GROUP BY neighborhoods.name
ORDER BY white_pct DESC;

neighborhood_name | population | white_pct | black_pct
---------------------+------------+-----------+-----------
Carnegie Hill | 18763 | 90.1 | 1.4
North Sutton Area | 22460 | 87.6 | 1.6
West Village | 26718 | 87.6 | 2.2
Upper East Side | 203741 | 85.0 | 2.7
Soho | 15436 | 84.6 | 2.2
Greenwich Village | 57224 | 82.0 | 2.4
Central Park | 46600 | 79.5 | 8.0
Tribeca | 20908 | 79.1 | 3.5
Gramercy | 104876 | 75.5 | 4.7
Murray Hill | 29655 | 75.0 | 2.5
Chelsea | 61340 | 74.8 | 6.4
Upper West Side | 214761 | 74.6 | 9.2
Midtown | 76840 | 72.6 | 5.2
Battery Park | 17153 | 71.8 | 3.4
Financial District | 34807 | 69.9 | 3.8
Clinton | 32201 | 65.3 | 7.9
East Village | 82266 | 63.3 | 8.8
Garment District | 10539 | 55.2 | 7.1
Morningside Heights | 42844 | 52.7 | 19.4
Little Italy | 12568 | 49.0 | 1.8
Yorkville | 58450 | 35.6 | 29.7
Inwood | 50047 | 35.2 | 16.8
Washington Heights | 169013 | 34.9 | 16.8
Lower East Side | 96156 | 33.5 | 9.1
East Harlem | 60576 | 26.4 | 40.4
Hamilton Heights | 67432 | 23.9 | 35.8
Chinatown | 16209 | 15.2 | 3.8
Harlem | 134955 | 15.1 | 67.1

What’s going on here? Notionally (the actual evaluation order is optimized under the covers by the
database) this is what happens:

1. The JOIN clause creates a virtual table that includes columns from both the neighborhoods and
census tables.

2. The WHERE clause filters our virtual table to just rows in Manhattan.

3. The remaining rows are grouped by the neighborhood name and fed through the aggregation
function to Sum() the population values.

4. After a little arithmetic and formatting (e.g., GROUP BY, ORDER BY) on the final numbers, our
query spits out the percentages.

Note: The JOIN clause combines two FROM items. By default, we are using an INNER JOIN, but
there are four other types of joins. For further information see the join_type definition in the PostgreSQL

80 Chapter 13. Spatial Joins

http://www.postgresql.org/docs/9.1/interactive/sql-select.html#SQL-FROM

Introduction to PostGIS, Release 1.1

documentation.

We can also use distance tests as a join key, to create summarized “all items within a radius” queries.
Let’s explore the racial geography of New York using distance queries.

First, let’s get the baseline racial make-up of the city.

SELECT
100.0 * Sum(popn_white) / Sum(popn_total) AS white_pct,
100.0 * Sum(popn_black) / Sum(popn_total) AS black_pct,
Sum(popn_total) AS popn_total

FROM nyc_census_blocks;

white_pct | black_pct | popn_total
------------------+------------------+------------
44.0039500762811 | 25.5465789002416 | 8175032

So, of the 8M people in New York, about 44% are recorded as “white” and 26% are recorded as “black”.

Duke Ellington once sang that “You / must take the A-train / To / go to Sugar Hill way up in Harlem.”
As we saw earlier, Harlem has far and away the highest African-American population in Manhattan
(80.5%). Is the same true of Duke’s A-train?

First, note that the contents of the nyc_subway_stations table routes field is what we are inter-
ested in to find the A-train. The values in there are a little complex.

SELECT DISTINCT routes FROM nyc_subway_stations;

A,C,G
4,5
D,F,N,Q
5
E,F
E,J,Z
R,W

Note: The DISTINCT keyword eliminates duplicate rows from the result. Without the DISTINCT
keyword, the query above identifies 491 results instead of 73.

So to find the A-train, we will want any row in routes that has an ‘A’ in it. We can do this a number of
ways, but today we will use the fact that strpos(routes,'A') will return a non-zero number only
if ‘A’ is in the routes field.

SELECT DISTINCT routes
FROM nyc_subway_stations AS subways
WHERE strpos(subways.routes,'A') > 0;

A,B,C
A,C
A
A,C,G
A,C,E,L
A,S

(continues on next page)

13.1. Join and Summarize 81

Introduction to PostGIS, Release 1.1

(continued from previous page)

A,C,F
A,B,C,D
A,C,E

Let’s summarize the racial make-up of within 200 meters of the A-train line.

SELECT
100.0 * Sum(popn_white) / Sum(popn_total) AS white_pct,
100.0 * Sum(popn_black) / Sum(popn_total) AS black_pct,
Sum(popn_total) AS popn_total

FROM nyc_census_blocks AS census
JOIN nyc_subway_stations AS subways
ON ST_DWithin(census.geom, subways.geom, 200)
WHERE strpos(subways.routes,'A') > 0;

white_pct | black_pct | popn_total
------------------+------------------+------------
45.5901255900202 | 22.0936235670937 | 189824

So the racial make-up along the A-train isn’t radically different from the make-up of New York City as
a whole.

13.2 Advanced Join

In the last section we saw that the A-train didn’t serve a population that differed much from the racial
make-up of the rest of the city. Are there any trains that have a non-average racial make-up?

To answer that question, we’ll add another join to our query, so that we can simultaneously calculate the
make-up of many subway lines at once. To do that, we’ll need to create a new table that enumerates all
the lines we want to summarize.

CREATE TABLE subway_lines (route char(1));
INSERT INTO subway_lines (route) VALUES

('A'),('B'),('C'),('D'),('E'),('F'),('G'),
('J'),('L'),('M'),('N'),('Q'),('R'),('S'),
('Z'),('1'),('2'),('3'),('4'),('5'),('6'),
('7');

Now we can join the table of subway lines onto our original query.

SELECT
lines.route,
100.0 * Sum(popn_white) / Sum(popn_total) AS white_pct,
100.0 * Sum(popn_black) / Sum(popn_total) AS black_pct,
Sum(popn_total) AS popn_total

FROM nyc_census_blocks AS census
JOIN nyc_subway_stations AS subways
ON ST_DWithin(census.geom, subways.geom, 200)
JOIN subway_lines AS lines
ON strpos(subways.routes, lines.route) > 0
GROUP BY lines.route
ORDER BY black_pct DESC;

82 Chapter 13. Spatial Joins

Introduction to PostGIS, Release 1.1

route | white_pct | black_pct | popn_total
-------+-----------+-----------+------------
S | 39.8 | 46.5 | 33301
3 | 42.7 | 42.1 | 223047
5 | 33.8 | 41.4 | 218919
2 | 39.3 | 38.4 | 291661
C | 46.9 | 30.6 | 224411
4 | 37.6 | 27.4 | 174998
B | 40.0 | 26.9 | 256583
A | 45.6 | 22.1 | 189824
J | 37.6 | 21.6 | 132861
Q | 56.9 | 20.6 | 127112
Z | 38.4 | 20.2 | 87131
D | 39.5 | 19.4 | 234931
L | 57.6 | 16.8 | 110118
G | 49.6 | 16.1 | 135012
6 | 52.3 | 15.7 | 260240
1 | 59.1 | 11.3 | 327742
F | 60.9 | 7.5 | 229439
M | 56.5 | 6.4 | 174196
E | 66.8 | 4.7 | 90958
R | 58.5 | 4.0 | 196999
N | 59.7 | 3.5 | 147792
7 | 35.7 | 3.5 | 102401

As before, the joins create a virtual table of all the possible combinations available within the constraints
of the JOIN ON restrictions, and those rows are then fed into a GROUP summary. The spatial magic is
in the ST_DWithin function, that ensures only census blocks close to the appropriate subway stations
are included in the calculation.

13.3 Function List

ST_Contains(geometry A, geometry B): Returns true if and only if no points of B lie in the exterior of
A, and at least one point of the interior of B lies in the interior of A.

ST_DWithin(geometry A, geometry B, radius): Returns true if the geometries are within the specified
distance of one another.

ST_Intersects(geometry A, geometry B): Returns TRUE if the Geometries/Geography “spatially inter-
sect” - (share any portion of space) and FALSE if they don’t (they are Disjoint).

round(v numeric, s integer): PostgreSQL math function that rounds to s decimal places

strpos(string, substring): PostgreSQL string function that returns an integer location of a specified sub-
string.

sum(expression): PostgreSQL aggregate function that returns the sum of records in a set of records.

13.3. Function List 83

http://postgis.net/docs/ST_Contains.html
http://postgis.net/docs/ST_DWithin.html
http://postgis.net/docs/ST_Intersects.html
http://www.postgresql.org/docs/current/interactive/functions-math.html
http://www.postgresql.org/docs/current/static/functions-string.html
http://www.postgresql.org/docs/current/static/functions-aggregate.html#FUNCTIONS-AGGREGATE-TABLE

Introduction to PostGIS, Release 1.1

84 Chapter 13. Spatial Joins

CHAPTER

FOURTEEN

SPATIAL JOINS EXERCISES

Here’s a reminder of some of the functions we have seen. Hint: they should be useful for the exercises!

• sum(expression): aggregate to return a sum for a set of records

• count(expression): aggregate to return the size of a set of records

• ST_Area(geometry) returns the area of the polygons

• ST_AsText(geometry) returns WKT text

• ST_Contains(geometry A, geometry B) returns the true if geometry A contains ge-
ometry B

• ST_Distance(geometry A, geometry B) returns the minimum distance between ge-
ometry A and geometry B

• ST_DWithin(geometry A, geometry B, radius) returns the true if geometry A is
radius distance or less from geometry B

• ST_GeomFromText(text) returns geometry

• ST_Intersects(geometry A, geometry B) returns the true if geometry A intersects
geometry B

• ST_Length(linestring) returns the length of the linestring

• ST_Touches(geometry A, geometry B) returns the true if the boundary of geometry A
touches geometry B

• ST_Within(geometry A, geometry B) returns the true if geometry A is within geome-
try B

Also remember the tables we have available:

• nyc_census_blocks

– name, popn_total, boroname, geom

• nyc_streets

– name, type, geom

• nyc_subway_stations

– name, routes, geom

• nyc_neighborhoods

– name, boroname, geom

85

Introduction to PostGIS, Release 1.1

14.1 Exercises

• What subway station is in ‘Little Italy’? What subway route is it on?

SELECT s.name, s.routes
FROM nyc_subway_stations AS s
JOIN nyc_neighborhoods AS n
ON ST_Contains(n.geom, s.geom)
WHERE n.name = 'Little Italy';

name | routes
-----------+--------
Spring St | 6

• What are all the neighborhoods served by the 6-train? (Hint: The routes column in the
nyc_subway_stations table has values like ‘B,D,6,V’ and ‘C,6’)

SELECT DISTINCT n.name, n.boroname
FROM nyc_subway_stations AS s
JOIN nyc_neighborhoods AS n
ON ST_Contains(n.geom, s.geom)
WHERE strpos(s.routes,'6') > 0;

name | boroname
--------------------+-----------
Midtown | Manhattan
Hunts Point | The Bronx
Gramercy | Manhattan
Little Italy | Manhattan
Financial District | Manhattan
South Bronx | The Bronx
Yorkville | Manhattan
Murray Hill | Manhattan
Mott Haven | The Bronx
Upper East Side | Manhattan
Chinatown | Manhattan
East Harlem | Manhattan
Greenwich Village | Manhattan
Parkchester | The Bronx
Soundview | The Bronx

Note: We used the DISTINCT keyword to remove duplicate values from our result set where
there were more than one subway station in a neighborhood.

• After 9/11, the ‘Battery Park’ neighborhood was off limits for several days. How many
people had to be evacuated?

SELECT Sum(popn_total)
FROM nyc_neighborhoods AS n
JOIN nyc_census_blocks AS c
ON ST_Intersects(n.geom, c.geom)
WHERE n.name = 'Battery Park';

86 Chapter 14. Spatial Joins Exercises

Introduction to PostGIS, Release 1.1

17153

• What neighborhood has the highest population density (persons/km2)?

SELECT
n.name,
Sum(c.popn_total) / (ST_Area(n.geom) / 1000000.0) AS popn_per_sqkm

FROM nyc_census_blocks AS c
JOIN nyc_neighborhoods AS n
ON ST_Intersects(c.geom, n.geom)
GROUP BY n.name, n.geom
ORDER BY popn_per_sqkm DESC LIMIT 2;

name | popn_per_sqkm
-------------------+------------------
North Sutton Area | 68435.13283772678
East Village | 50404.48341332535

14.1. Exercises 87

Introduction to PostGIS, Release 1.1

88 Chapter 14. Spatial Joins Exercises

CHAPTER

FIFTEEN

SPATIAL INDEXING

Recall that spatial index is one of the three key features of a spatial database. Indexes make using a
spatial database for large data sets possible. Without indexing, any search for a feature would require a
“sequential scan” of every record in the database. Indexing speeds up searching by organizing the data
into a search tree which can be quickly traversed to find a particular record.

Spatial indices are one of the greatest assets of PostGIS. In the previous example building spatial joins
requires comparing whole tables with each other. This can get very costly: joining two tables of 10,000
records each without indexes would require 100,000,000 comparisons; with indexes the cost could be as
low as 20,000 comparisons.

Our data load file already included spatial indexes for all the tables, so in order to demonstrate the
efficacy of indexes we will have to first remove them.

Let’s run a query on nyc_census_blocks without our spatial index.

Our first step is to remove the index.

DROP INDEX nyc_census_blocks_geom_idx;

Note: The DROP INDEX statement drops an existing index from the database system. For more
information, see the PostgreSQL documentation.

Now, watch the “Timing” meter at the lower right-hand corner of the pgAdmin query window and run
the following. Our query searches through every single census block in order to identify blocks that
contain subway stops that start with “B”.

SELECT count(blocks.blkid)
FROM nyc_census_blocks blocks
JOIN nyc_subway_stations subways
ON ST_Contains(blocks.geom, subways.geom)
WHERE subways.name LIKE 'B%';

count

46

The nyc_census_blocks table is very small (only a few thousand records) so even without an index,
the query only takes 300 ms on my test computer.

Now add the spatial index back in and run the query again.

89

http://www.postgresql.org/docs/current/interactive/sql-dropindex.html

Introduction to PostGIS, Release 1.1

CREATE INDEX nyc_census_blocks_geom_idx
ON nyc_census_blocks
USING GIST (geom);

Note: The USING GIST clause tells PostgreSQL to use the generic index structure (GIST) when
building the index. If you receive an error that looks like ERROR: index row requires 11340
bytes, maximum size is 8191 when creating your index, you have likely neglected to add the
USING GIST clause.

On my test computer the time drops to 50 ms. The larger your table, the larger the relative speed
improvement of an indexed query will be.

15.1 How Spatial Indexes Work

Standard database indexes create a hierarchical tree based on the values of the column being indexed.
Spatial indexes are a little different – they are unable to index the geometric features themselves and
instead index the bounding boxes of the features.

In the figure above, the number of lines that intersect the yellow star is one, the red line. But the bounding
boxes of features that intersect the yellow box is two, the red and blue ones.

The way the database efficiently answers the question “what lines intersect the yellow star” is to first
answer the question “what boxes intersect the yellow box” using the index (which is very fast) and then
do an exact calculation of “what lines intersect the yellow star” only for those features returned by the
first test.

For a large table, this “two pass” system of evaluating the approximate index first, then carrying out an
exact test can radically reduce the amount of calculations necessary to answer a query.

Both PostGIS and Oracle Spatial share the same “R-Tree”1 spatial index structure. R-Trees break up
data into rectangles, and sub-rectangles, and sub-sub rectangles, etc. It is a self-tuning index structure
that automatically handles variable data density, differing amounts of object overlap, and object size.

1 http://postgis.net/docs/support/rtree.pdf

90 Chapter 15. Spatial Indexing

http://postgis.net/docs/support/rtree.pdf

Introduction to PostGIS, Release 1.1

15.1. How Spatial Indexes Work 91

Introduction to PostGIS, Release 1.1

15.2 Spatially Indexed Functions

Only a subset of functions will automatically make use of a spatial index, if one is available.

• ST_Intersects

• ST_Contains

• ST_Within

• ST_DWithin

• ST_ContainsProperly

• ST_CoveredBy

• ST_Covers

• ST_Overlaps

• ST_Crosses

• ST_DFullyWithin

• ST_3DIntersects

• ST_3DDWithin

• ST_3DDFullyWithin

• ST_LineCrossingDirection

• ST_OrderingEquals

• ST_Equals

The first four are the ones most commonly used in queries, and ST_DWithin is very important for doing
“within a distance” or “within a radius” style queries while still getting a performance boost from the
index.

In order to add index acceleration to other functions that are not in this list (most commonly, ST_Relate)
add an index-only clause as descibed below.

15.3 Index-Only Queries

Most of the commonly used functions in PostGIS (ST_Contains, ST_Intersects,
ST_DWithin, etc) include an index filter automatically. But some functions (e.g., ST_Relate) do
not include an index filter.

To do a bounding-box search using the index (and no filtering), make use of the && operator. For
geometries, the && operator means “bounding boxes overlap or touch” in the same way that for numbers
the = operator means “values are the same”.

Let’s compare an index-only query for the population of the ‘West Village’ to a more exact query. Using
&& our index-only query looks like the following:

SELECT Sum(popn_total)
FROM nyc_neighborhoods neighborhoods
JOIN nyc_census_blocks blocks

(continues on next page)

92 Chapter 15. Spatial Indexing

http://postgis.net/docs/ST_Intersects.html
http://postgis.net/docs/ST_Contains.html
http://postgis.net/docs/ST_Within.html
http://postgis.net/docs/ST_DWithin.html
http://postgis.net/docs/ST_ContainsProperly.html
http://postgis.net/docs/ST_CoveredBy.html
http://postgis.net/docs/ST_Covers.html
http://postgis.net/docs/ST_Overlaps.html
http://postgis.net/docs/ST_Crosses.html
http://postgis.net/docs/ST_DFullyWithin.html
http://postgis.net/docs/ST_3DIntersects.html
http://postgis.net/docs/ST_3DDWithin.html
http://postgis.net/docs/ST_3DDFullyWithin.html
http://postgis.net/docs/ST_LineCrossingDirection.html
http://postgis.net/docs/ST_OrderingEquals.html
http://postgis.net/docs/ST_Equals.html
http://postgis.net/docs/ST_DWithin.html
http://postgis.net/docs/ST_Relate.html

Introduction to PostGIS, Release 1.1

(continued from previous page)

ON neighborhoods.geom && blocks.geom
WHERE neighborhoods.name = 'West Village';

49821

Now let’s do the same query using the more exact ST_Intersects function.

SELECT Sum(popn_total)
FROM nyc_neighborhoods neighborhoods
JOIN nyc_census_blocks blocks
ON ST_Intersects(neighborhoods.geom, blocks.geom)
WHERE neighborhoods.name = 'West Village';

26718

A much lower answer! The first query summed up every block whose bounding box intersects the neigh-
borhood’s bounding box; the second query only summed up those blocks that intersect the neighborhood
itself.

15.4 Analyzing

The PostgreSQL query planner intelligently chooses when to use or not to use indexes to evaluate a
query. Counter-intuitively, it is not always faster to do an index search: if the search is going to return
every record in the table, traversing the index tree to get each record will actually be slower than just
sequentially reading the whole table from the start.

Knowing the size of the query rectangle is not enough to pin down whether a query will return a large
number or small number of records. Below, the red square is small, but will return many more records
than the blue square.

In order to figure out what situation it is dealing with (reading a small part of the table versus reading
a large portion of the table), PostgreSQL keeps statistics about the distribution of data in each indexed

15.4. Analyzing 93

Introduction to PostGIS, Release 1.1

table column. By default, PostgreSQL gathers statistics on a regular basis. However, if you dramatically
change the contents of your table within a short period of time, the statistics will not be up-to-date.

To ensure the statistics match your table contents, it is wise the to run the ANALYZE command after bulk
data loads and deletes in your tables. This force the statistics system to gather data for all your indexed
columns.

The ANALYZE command asks PostgreSQL to traverse the table and update its internal statistics used for
query plan estimation (query plan analysis will be discussed later).

ANALYZE nyc_census_blocks;

15.5 Vacuuming

It’s worth stressing that just creating an index is not enough to allow PostgreSQL to use it effectively.
VACUUMing must be performed whenever a large number of UPDATEs, INSERTs or DELETEs are
issued against a table. The VACUUM command asks PostgreSQL to reclaim any unused space in the table
pages left by updates or deletes to records.

Vacuuming is so critical for the efficient running of the database that PostgreSQL provides an “autovac-
uum” facility by default.

Autovacuum both vacuums (recovers space) and analyzes (updates statistics) on your tables at sensible
intervals determined by the level of activity. While this is essential for highly transactional databases,
it is not advisable to wait for an autovacuum run after adding indices or bulk-loading data. Whenever a
large batch update is performed, you should manually run VACUUM.

Vacuuming and analyzing the database can be performed separately as needed. Issuing VACUUM com-
mand will not update the database statistics; likewise issuing an ANALYZE command will not recover
unused table rows. Both commands can be run against the entire database, a single table, or a single
column.

VACUUM ANALYZE nyc_census_blocks;

15.6 Function List

geometry_a && geometry_b: Returns TRUE if A’s bounding box overlaps B’s.

geometry_a = geometry_b: Returns TRUE if A’s bounding box is the same as B’s.

ST_Intersects(geometry_a, geometry_b): Returns TRUE if the Geometries/Geography “spatially inter-
sect” - (share any portion of space) and FALSE if they don’t (they are Disjoint).

94 Chapter 15. Spatial Indexing

http://postgis.net/docs/geometry_overlaps.html
http://postgis.net/docs/ST_Geometry_EQ.html
http://postgis.net/docs/ST_Intersects.html

CHAPTER

SIXTEEN

PROJECTING DATA

The earth is not flat, and there is no simple way of putting it down on a flat paper map (or computer
screen), so people have come up with all sorts of ingenious solutions, each with pros and cons. Some
projections preserve area, so all objects have a relative size to each other; other projections preserve
angles (conformal) like the Mercator projection; some projections try to find a good intermediate mix
with only little distortion on several parameters. Common to all projections is that they transform the
(spherical) world onto a flat Cartesian coordinate system, and which projection to choose depends on
how you will be using the data.

We’ve already encountered projections when we loaded our nyc data. (Recall that pesky SRID 26918).
Sometimes, however, you need to transform and re-project between spatial reference systems. PostGIS
includes built-in support for changing the projection of data, using the ST_Transform(geometry,
srid) function. For managing the spatial reference identifiers on geometries, PostGIS provides the
ST_SRID(geometry) and ST_SetSRID(geometry, srid) functions.

We can confirm the SRID of our data with the ST_SRID function:

SELECT ST_SRID(geom) FROM nyc_streets LIMIT 1;

26918

And what is definition of “26918”? As we saw in “loading data section”, the definition is contained in
the spatial_ref_sys table. In fact, two definitions are there. The “well-known text” (WKT) defi-
nition is in the srtext column, and there is a second definition in “proj.4” format in the proj4text
column.

SELECT * FROM spatial_ref_sys WHERE srid = 26918;

The PostGIS reprojection engine will attempt to find the best projection from the spatial_ref_sys
table:

• auth_name / auth_srid If proj can find a valid “authority name” and “authority srid” in its internal
catalogue, it will use that to generate a projection definition.

• srtext If proj can parse and form a definition object from the srtext it will use that.

• proj4text Finally, proj will attempt to process the proj4text.

All this redundancy means that all you need to create a new projection in PostGIS is either a valid
srtext string or proj4text string. All the common authority name/code pairs are already loaded
in the table by default.

If you have a choice when creating a custom projection, fill out the srtext column, since that column
is also used by external programs like GeoServer, QGIS, and FME and others.

95

http://geoserver.org
https://qgis.org
http://www.safe.com/

Introduction to PostGIS, Release 1.1

16.1 Comparing Data

Taken together, a coordinate and an SRID define a location on the globe. Without an SRID, a coordinate
is just an abstract notion. A “Cartesian” coordinate plane is defined as a “flat” coordinate system placed
on the surface of Earth. Because PostGIS functions work on such a plane, comparison operations require
that both geometries be represented in the same SRID.

If you feed in geometries with differing SRIDs you will just get an error:

SELECT ST_Equals(
ST_GeomFromText('POINT(0 0)', 4326),
ST_GeomFromText('POINT(0 0)', 26918)
);

ERROR: ST_Equals: Operation on mixed SRID geometries (Point, 4326) !=
→˓(Point, 26918)

Note: Be careful of getting too happy with using ST_Transform for on-the-fly conversion. Spatial
indexes are built using SRID of the stored geometries. If comparison are done in a different SRID, spatial
indexes are (often) not used. It is best practice to choose one SRID for all the tables in your database.
Only use the transformation function when you are reading or writing data to external applications.

16.2 Transforming Data

If we return to our proj4 definition for SRID 26918, we can see that our working projection is UTM
(Universal Transverse Mercator) of zone 18, with meters as the unit of measurement.

SELECT srtext FROM spatial_ref_sys WHERE srid = 26918;

PROJCS["NAD83 / UTM zone 18N",
GEOGCS["NAD83",

DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101,AUTHORITY["EPSG","7019"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6269"]],

PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4269"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-75],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1,AUTHORITY["EPSG","9001"]],
AXIS["Easting",EAST],AXIS["Northing",NORTH],
AUTHORITY["EPSG","26918"]]

Let’s convert some data from our working projection to geographic coordinates – also known as “longi-
tude/latitude”.

96 Chapter 16. Projecting Data

Introduction to PostGIS, Release 1.1

To convert data from one SRID to another, you must first verify that your geometry has a valid SRID.
Since we have already confirmed a valid SRID, we next need the SRID of the projection to transform
into. In other words, what is the SRID of geographic coordinates?

The most common SRID for geographic coordinates is 4326, which corresponds to “longitude/latitude
on the WGS84 spheroid”. You can see the definition here:

https://epsg.io/4326

You can also pull the definitions from the spatial_ref_sys table:

SELECT srtext FROM spatial_ref_sys WHERE srid = 4326;

GEOGCS["WGS 84",
DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],
UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]

Let’s convert the coordinates of the ‘Broad St’ subway station into geographics:

SELECT ST_AsText(ST_Transform(geom,4326))
FROM nyc_subway_stations
WHERE name = 'Broad St';

POINT(-74.01067146887341 40.70710481558761)

If you load data or create a new geometry without specifying an SRID, the SRID value will be 0. Recall
in Geometries, that when we created our geometries table we didn’t specify an SRID. If we query
our database, we should expect all the nyc_ tables to have an SRID of 26918, while the geometries
table defaulted to an SRID of 0.

To view a table’s SRID assignment, query the database’s geometry_columns table.

SELECT f_table_name AS name, srid
FROM geometry_columns;

name | srid
---------------------+-------
nyc_census_blocks | 26918
nyc_homicides | 26918
nyc_neighborhoods | 26918
nyc_streets | 26918
nyc_subway_stations | 26918
geometries | 0

However, if you know what the SRID of the coordinates is supposed to be, you can set it post-facto, using
ST_SetSRID on the geometry. Then you will be able to transform the geometry into other systems.

SELECT ST_AsText(
ST_Transform(

ST_SetSRID(geom,26918),
4326)

(continues on next page)

16.2. Transforming Data 97

https://epsg.io/4326

Introduction to PostGIS, Release 1.1

(continued from previous page)

)
FROM geometries;

16.3 Function List

ST_AsText: Returns the Well-Known Text (WKT) representation of the geometry/geography without
SRID metadata.

ST_SetSRID(geometry, srid): Sets the SRID on a geometry to a particular integer value.

ST_SRID(geometry): Returns the spatial reference identifier for the ST_Geometry as defined in spa-
tial_ref_sys table.

ST_Transform(geometry, srid): Returns a new geometry with its coordinates transformed to the SRID
referenced by the integer parameter.

98 Chapter 16. Projecting Data

http://postgis.net/docs/ST_AsText.html
http://postgis.net/docs/ST_SetSRID.html
http://postgis.net/docs/ST_SRID.html
http://postgis.net/docs/ST_Transform.html

CHAPTER

SEVENTEEN

PROJECTION EXERCISES

Here’s a reminder of some of the functions we have seen. Hint: they should be useful for the exercises!

• sum(expression) aggregate to return a sum for a set of records

• ST_Length(linestring) returns the length of the linestring

• ST_SRID(geometry) returns the SRID of the geometry

• ST_Transform(geometry, srid) converts geometries into different spatial reference sys-
tems

• ST_GeomFromText(text) returns geometry

• ST_AsText(geometry) returns WKT text

• ST_AsGML(geometry) returns GML text

Remember the online resources that are available to you:

• https://epsg.io/

Also remember the tables we have available:

• nyc_census_blocks

– name, popn_total, boroname, geom

• nyc_streets

– name, type, geom

• nyc_subway_stations

– name, geom

• nyc_neighborhoods

– name, boroname, geom

99

https://epsg.io/

Introduction to PostGIS, Release 1.1

17.1 Exercises

• What is the length of all streets in New York, as measured in UTM 18?

SELECT Sum(ST_Length(geom))
FROM nyc_streets;

10418904.7172

• What is the WKT definition of SRID 2831?

SELECT srtext FROM spatial_ref_sys
WHERE SRID = 2831;

Or, via https://epsg.io/2831

PROJCS["NAD83(HARN) / New York Long Island",
GEOGCS["NAD83(HARN)",

DATUM["NAD83 (High Accuracy Regional Network)",
SPHEROID["GRS 1980", 6378137.0, 298.257222101,

AUTHORITY["EPSG","7019"]],
TOWGS84[-0.991, 1.9072, 0.5129, 0.0257899075194932, -0.

→˓009650098960270402, -0.011659943232342112, 0.0],
AUTHORITY["EPSG","6152"]],

PRIMEM["Greenwich", 0.0,
AUTHORITY["EPSG","8901"]],

UNIT["degree", 0.017453292519943295],
AXIS["Geodetic longitude", EAST],
AXIS["Geodetic latitude", NORTH],
AUTHORITY["EPSG","4152"]],

PROJECTION["Lambert Conic Conformal (2SP)",
AUTHORITY["EPSG","9802"]],

PARAMETER["central_meridian", -74.0],
PARAMETER["latitude_of_origin", 40.166666666666664],
PARAMETER["standard_parallel_1", 41.03333333333333],
PARAMETER["false_easting", 300000.0],
PARAMETER["false_northing", 0.0],
PARAMETER["scale_factor", 1.0],
PARAMETER["standard_parallel_2", 40.666666666666664],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","2831"]]

• What is the length of all streets in New York, as measured in SRID 2831?

SELECT Sum(ST_Length(ST_Transform(geom,2831)))
FROM nyc_streets;

10421993.706374

Note: The difference between the UTM 18 and the State Plane Long Island measurements is
(10421993 - 10418904)/10418904, or 0.02%. Calculated on the spheroid using Geography the
total street length is 10421999, which is closer to the State Plane value. This is not surprising,

100 Chapter 17. Projection Exercises

https://epsg.io/2831

Introduction to PostGIS, Release 1.1

since the State Plane Long Island projection is precisely calibrated for a very small area (New
York City) while UTM 18 has to provide reasonable results for a large regional area.

• How many streets cross the 74th meridian?

SELECT Count(*)
FROM nyc_streets
WHERE ST_Intersects(

ST_Transform(geom, 4326),
'SRID=4326;LINESTRING(-74 20, -74 60)'
);

223

The “74th meridian” is a fancy way of saying “a vertical line in geographics where the X value is
-74”. We can construct such a line and then compare it to the streets, projected into geographics
also. Projecting the line into UTM and comparing it there will return a slightly different answer.
To get the same answer, you need to “segmentize” it, so it has more points, before transforming.

SELECT Count(*)
FROM nyc_streets
WHERE ST_Intersects(

geom,
ST_Transform(ST_Segmentize('SRID=4326;LINESTRING(-74 20, -74 60)

→˓'::geometry,0.001), 26918)
);

17.1. Exercises 101

Introduction to PostGIS, Release 1.1

102 Chapter 17. Projection Exercises

CHAPTER

EIGHTEEN

GEOGRAPHY

It is very common to have data in which the coordinate are “geographics” or “latitude/longitude”.

Unlike coordinates in Mercator, UTM, or Stateplane, geographic coordinates are not Cartesian coor-
dinates. Geographic coordinates do not represent a linear distance from an origin as plotted on a plane.
Rather, these spherical coordinates describe angular coordinates on a globe. In spherical coordinates a
point is specified by the angle of rotation from a reference meridian (longitude), and the angle from the
equator (latitude).

You can treat geographic coordinates as approximate Cartesian coordinates and continue to do spatial
calculations. However, measurements of distance, length and area will be nonsensical. Since spherical
coordinates measure angular distance, the units are in “degrees.” Further, the approximate results from
indexes and true/false tests like intersects and contains can become terribly wrong. The distance between
points get larger as problem areas like the poles or the international dateline are approached.

For example, here are the coordinates of Los Angeles and Paris.

• Los Angeles: POINT(-118.4079 33.9434)

• Paris: POINT(2.3490 48.8533)

The following calculates the distance between Los Angeles and Paris using the standard PostGIS Carte-
sian ST_Distance(geometry, geometry). Note that the SRID of 4326 declares a geographic
spatial reference system.

103

Introduction to PostGIS, Release 1.1

SELECT ST_Distance(
'SRID=4326;POINT(-118.4079 33.9434)'::geometry, -- Los Angeles (LAX)
'SRID=4326;POINT(2.5559 49.0083)'::geometry -- Paris (CDG)
);

121.898285970107

Aha! 122! But, what does that mean?

The units for spatial reference 4326 are degrees. So our answer is 122 degrees. But (again), what does
that mean?

On a sphere, the size of one “degree square” is quite variable, becoming smaller as you move away from
the equator. Think of the meridians (vertical lines) on the globe getting closer to each other as you go
towards the poles. So, a distance of 122 degrees doesn’t mean anything. It is a nonsense number.

In order to calculate a meaningful distance, we must treat geographic coordinates not as approximate
Cartesian coordinates but rather as true spherical coordinates. We must measure the distances between
points as true paths over a sphere – a portion of a great circle.

PostGIS provides this functionality through the geography type.

Note: Different spatial databases have different approaches for “handling geographics”

• Oracle attempts to paper over the differences by transparently doing geographic calculations when
the SRID is geographic.

• SQL Server uses two spatial types, “STGeometry” for Cartesian data and “STGeography” for
geographics.

• Informix Spatial is a pure Cartesian extension to Informix, while Informix Geodetic is a pure
geographic extension.

• Similar to SQL Server, PostGIS uses two types, “geometry” and “geography”.

Using the geography instead of geometry type, let’s try again to measure the distance between Los
Angeles and Paris.

SELECT ST_Distance(
'SRID=4326;POINT(-118.4079 33.9434)'::geography, -- Los Angeles (LAX)
'SRID=4326;POINT(2.5559 49.0083)'::geography -- Paris (CDG)
);

9124665.27317673

A big number! All return values from geography calculations are in meters, so our answer is 9125km.

Older versions of PostGIS supported very basic calculations over the sphere using the
ST_Distance_Spheroid(point, point, measurement) function. However,
ST_Distance_Spheroid is substantially limited. The function only works on points and
provides no support for indexing across the poles or international dateline.

The need to support non-point geometries becomes very clear when posing a question like “How close
will a flight from Los Angeles to Paris come to Iceland?”

104 Chapter 18. Geography

Introduction to PostGIS, Release 1.1

Working with geographic coordinates on a Cartesian plane (the purple line) yields a very wrong answer
indeed! Using great circle routes (the red lines) gives the right answer. If we convert our LAX-CDG
flight into a line string and calculate the distance to a point in Iceland using geography we’ll get the
right answer (recall) in meters.

SELECT ST_Distance(
ST_GeographyFromText('LINESTRING(-118.4079 33.9434, 2.5559 49.0083)'), --

→˓ LAX-CDG
ST_GeographyFromText('POINT(-22.6056 63.9850)') --

→˓ Iceland (KEF)
);

502454.906643729

So the closest approach to Iceland (as measured from its international airport) on the LAX-CDG route
is a relatively small 502km.

The Cartesian approach to handling geographic coordinates breaks down entirely for features that cross
the international dateline. The shortest great-circle route from Los Angeles to Tokyo crosses the Pacific
Ocean. The shortest Cartesian route crosses the Atlantic and Indian Oceans.

105

Introduction to PostGIS, Release 1.1

SELECT ST_Distance(
ST_GeometryFromText('Point(-118.4079 33.9434)'), -- LAX
ST_GeometryFromText('Point(139.733 35.567)')) -- NRT (Tokyo/Narita)
AS geometry_distance,

ST_Distance(
ST_GeographyFromText('Point(-118.4079 33.9434)'), -- LAX
ST_GeographyFromText('Point(139.733 35.567)')) -- NRT (Tokyo/Narita)
AS geography_distance;

geometry_distance | geography_distance
-------------------+--------------------

258.146005837336 | 8833954.76996256

18.1 Using Geography

In order to load geometry data into a geography table, the geometry first needs to be
projected into EPSG:4326 (longitude/latitude), then it needs to be changed into geography.
The ST_Transform(geometry,srid) function converts coordinates to geographics and the
Geography(geometry) function or the ::geography suffix “casts” to geography.

CREATE TABLE nyc_subway_stations_geog AS
SELECT

ST_Transform(geom,4326)::geography AS geog,
name,
routes

FROM nyc_subway_stations;

Building a spatial index on a geography table is exactly the same as for geometry:

CREATE INDEX nyc_subway_stations_geog_gix
ON nyc_subway_stations_geog USING GIST (geog);

The difference is under the covers: the geography index will correctly handle queries that cover the poles
or the international date-line, while the geometry one will not.

Here’s a query to find all the subway stations within 500 meters of the Empire State Building.

There are only a small number of native functions for the geography type:

• ST_AsText(geography) returns text

• ST_GeographyFromText(text) returns geography

• ST_AsBinary(geography) returns bytea

• ST_GeogFromWKB(bytea) returns geography

• ST_AsSVG(geography) returns text

• ST_AsGML(geography) returns text

• ST_AsKML(geography) returns text

• ST_AsGeoJson(geography) returns text

• ST_Distance(geography, geography) returns double

106 Chapter 18. Geography

Introduction to PostGIS, Release 1.1

• ST_DWithin(geography, geography, float8) returns boolean

• ST_Area(geography) returns double

• ST_Length(geography) returns double

• ST_Covers(geography, geography) returns boolean

• ST_CoveredBy(geography, geography) returns boolean

• ST_Intersects(geography, geography) returns boolean

• ST_Buffer(geography, float8) returns geography1

• ST_Intersection(geography, geography) returns geography1

18.2 Creating a Geography Table

The SQL for creating a new table with a geography column is much like that for creating a geometry
table. However, geography includes the ability to specify the object type directly at the time of table
creation. For example:

CREATE TABLE airports (
code VARCHAR(3),
geog GEOGRAPHY(Point)

);

INSERT INTO airports
VALUES ('LAX', 'POINT(-118.4079 33.9434)');

INSERT INTO airports
VALUES ('CDG', 'POINT(2.5559 49.0083)');

INSERT INTO airports
VALUES ('KEF', 'POINT(-22.6056 63.9850)');

In the table definition, the GEOGRAPHY(Point) specifies our airport data type as points. The new
geography fields don’t get registered in the geometry_columns view. Instead, they are registered in
a view called geography_columns.

SELECT * FROM geography_columns;

f_table_name | f_geography_column | srid | type
--------------------------+--------------------+------+----------
nyc_subway_stations_geog | geog | 0 | Geometry
airports | geog | 4326 | Point

Note: Some columns were omitted from the above output.

1 The buffer and intersection functions are actually wrappers on top of a cast to geometry, and are not carried out natively
in spherical coordinates. As a result, they may fail to return correct results for objects with very large extents that cannot be
cleanly converted to a planar representation.

For example, the ST_Buffer(geography,distance) function transforms the geography object into a “best” projec-
tion, buffers it, and then transforms it back to geographics. If there is no “best” projection (the object is too large), the operation
can fail or return a malformed buffer.

18.2. Creating a Geography Table 107

Introduction to PostGIS, Release 1.1

18.3 Casting to Geometry

While the basic functions for geography types can handle many use cases, there are times when you
might need access to other functions only supported by the geometry type. Fortunately, you can convert
objects back and forth from geography to geometry.

The PostgreSQL syntax convention for casting is to append ::typename to the end of the value
you wish to cast. So, 2::text will convert a numeric two to a text string ‘2’. And 'POINT(0
0)'::geometry will convert the text representation of point into a geometry point.

The ST_X(point) function only supports the geometry type. How can we read the X coordinate from
our geographies?

SELECT code, ST_X(geog::geometry) AS longitude FROM airports;

code | longitude
------+-----------
LAX | -118.4079
CDG | 2.5559
KEF | -21.8628

By appending ::geometry to our geography value, we convert the object to a geometry with an SRID
of 4326. From there we can use as many geometry functions as strike our fancy. But, remember – now
that our object is a geometry, the coordinates will be interpretted as Cartesian coordinates, not spherical
ones.

18.4 Why (Not) Use Geography

Geographics are universally accepted coordinates – everyone understands what latitude/longitude mean,
but very few people understand what UTM coordinates mean. Why not use geography all the time?

• First, as noted earlier, there are far fewer functions available (right now) that directly support the
geography type. You may spend a lot of time working around geography type limitations.

• Second, the calculations on a sphere are computationally far more expensive than Cartesian calcu-
lations. For example, the Cartesian formula for distance (Pythagoras) involves one call to sqrt().
The spherical formula for distance (Haversine) involves two sqrt() calls, an arctan() call, four
sin() calls and two cos() calls. Trigonometric functions are very costly, and spherical calculations
involve a lot of them.

The conclusion?

If your data is geographically compact (contained within a state, county or city), use the geometry
type with a Cartesian projection that makes sense with your data. See the http://epsg.io site and type
in the name of your region for a selection of possible reference systems.

If you need to measure distance with a dataset that is geographically dispersed (covering much of
the world), use the geography type. The application complexity you save by working in geography
will offset any performance issues. And casting to geometry can offset most functionality limitations.

108 Chapter 18. Geography

http://epsg.io

Introduction to PostGIS, Release 1.1

18.5 Function List

ST_Distance(geometry, geometry): For geometry type Returns the 2-dimensional Cartesian minimum
distance (based on spatial ref) between two geometries in projected units. For geography type defaults
to return spheroidal minimum distance between two geographies in meters.

ST_GeographyFromText(text): Returns a specified geography value from Well-Known Text representa-
tion or extended (WKT).

ST_Transform(geometry, srid): Returns a new geometry with its coordinates transformed to the SRID
referenced by the integer parameter.

ST_X(point): Returns the X coordinate of the point, or NULL if not available. Input must be a point.

ST_Azimuth(geography_A, geography_B): Returns the direction from A to B in radians.

ST_DWithin(geography_A, geography_B, R): Returns true if A is within R meters of B.

18.5. Function List 109

http://postgis.net/docs/ST_Distance.html
http://postgis.net/docs/ST_GeographyFromText.html
http://postgis.net/docs/ST_Transform.html
http://postgis.net/docs/ST_X.html
http://postgis.net/docs/ST_Azimuth.html
http://postgis.net/docs/ST_DWithin.html

Introduction to PostGIS, Release 1.1

110 Chapter 18. Geography

CHAPTER

NINETEEN

GEOGRAPHY EXERCISES

Here’s a reminder of all the functions we have seen so far. They should be useful for the exercises!

• Sum(number) adds up all the numbers in the result set

• ST_GeogFromText(text) returns a geography

• ST_Distance(geography, geography) returns the distance between geographies

• ST_Transform(geometry, srid) returns geometry, in the new projection

• ST_Length(geography) returns the length of the line

• ST_Intersects(geometry, geometry) returns true if the objects are not disjoint in pla-
nar space

• ST_Intersects(geography, geography) returns true if the objects are not disjoint in
spheroidal space

Also remember the tables we have available:

• nyc_streets

– name, type, geom

• nyc_neighborhoods

– name, boroname, geom

19.1 Exercises

• How far is New York from Seattle? What are the units of the answer?

Note: New York = POINT(-74.0064 40.7142) and Seattle = POINT(-122.3331 47.
6097)

SELECT ST_Distance(
'POINT(-74.0064 40.7142)'::geography,
'POINT(-122.3331 47.6097)'::geography
);

3875538.57141352

• What is the total length of all streets in New York, calculated on the spheroid?

111

Introduction to PostGIS, Release 1.1

SELECT Sum(
ST_Length(Geography(

ST_Transform(geom,4326)
)))

FROM nyc_streets;

10421999.666

Note: The length calculated in the planar “UTM Zone 18” projection is 10418904.717, 0.02%
different. UTM is good at preserving area and distance, within the zone boundaries.

• Does ‘POINT(1 2.0001)’ intersect with ‘POLYGON((0 0, 0 2, 2 2, 2 0, 0 0))’ in geography?
In geometry? Why the difference?

SELECT ST_Intersects(
'POINT(1 2.0001)'::geography,
'POLYGON((0 0,0 2,2 2,2 0,0 0))'::geography

);

SELECT ST_Intersects(
'POINT(1 2.0001)'::geometry,
'POLYGON((0 0,0 2,2 2,2 0,0 0))'::geometry

);

true and false

Note: The upper edge of the square is a straight line in geometry, and passes below the point, so
the square does not contain the point. The upper edge of the square is a great circle in geography,
and passes above the point, so the square does contain the point.

112 Chapter 19. Geography Exercises

CHAPTER

TWENTY

GEOMETRY CONSTRUCTING FUNCTIONS

All the functions we have seen so far work with geometries “as they are” and returns

• analyses of the objects (ST_Length(geometry), ST_Area(geometry)),

• serializations of the objects (ST_AsText(geometry), ST_AsGML(geometry)),

• parts of the object (ST_RingN(geometry,n)) or

• true/false tests (ST_Contains(geometry,geometry), ST_Intersects(geometry,
geometry)).

“Geometry constructing functions” take geometries as inputs and output new shapes.

20.1 ST_Centroid / ST_PointOnSurface

A common need when composing a spatial query is to replace a polygon feature with a point representa-
tion of the feature. This is useful for spatial joins (as discussed in Polygon/Polygon Joins) because using
ST_Intersects(geometry,geometry) on two polygon layers often results in double-counting:
a polygon on a boundary will intersect an object on both sides; replacing it with a point forces it to be
on one side or the other, not both.

• ST_Centroid(geometry) returns a point that is approximately on the center of mass of the
input argument. This simple calculation is very fast, but sometimes not desirable, because the
returned point is not necessarily in the feature itself. If the input feature has a convexity (imagine
the letter ‘C’) the returned centroid might not be in the interior of the feature.

• ST_PointOnSurface(geometry) returns a point that is guaranteed to be inside the input
argument. This makes it more useful for computing “proxy points” for spatial joins.

113

Introduction to PostGIS, Release 1.1

-- Compare the location of centroid and point-on-surface for a concave
→˓geometry

SELECT ST_Intersects(geom, ST_Centroid(geom)) AS centroid_inside,
ST_Intersects(geom, ST_PointOnSurface(geom)) AS pos_inside

FROM (VALUES
('POLYGON ((30 0, 30 10, 10 10, 10 40, 30 40, 30 50, 0 50, 0 0, 0 0,

→˓30 0))'::geometry)
) AS t(geom);

centroid_inside | pos_inside
-----------------+------------
f | t

20.2 ST_Buffer

The buffering operation is common in GIS workflows, and is also available in PostGIS.
ST_Buffer(geometry,distance) takes in a buffer distance and geometry type and outputs a
polygon with a boundary the buffer distance away from the input geometry.

114 Chapter 20. Geometry Constructing Functions

Introduction to PostGIS, Release 1.1

For example, if the US Park Service wanted to enforce a marine traffic zone around Liberty Island, they
might build a 500 meter buffer polygon around the island. Liberty Island is a single census block in our
nyc_census_blocks table, so we can easily extract and buffer it.

-- Make a new table with a Liberty Island 500m buffer zone
CREATE TABLE liberty_island_zone AS
SELECT ST_Buffer(geom,500)::geometry(Polygon,26918) AS geom
FROM nyc_census_blocks
WHERE blkid = '360610001001001';

20.2. ST_Buffer 115

Introduction to PostGIS, Release 1.1

The ST_Buffer function also accepts negative distances and builds inscribed polygons within polyg-
onal inputs. For lines and points you will just get an empty return.

116 Chapter 20. Geometry Constructing Functions

Introduction to PostGIS, Release 1.1

20.3 ST_Intersection

Another classic GIS operation – the “overlay” – creates a new coverage by calculating the intersection
of two superimposed polygons. The resultant has the property that any polygon in either of the parents
can be built by merging polygons in the resultant.

The ST_Intersection(geometry A, geometry B) function returns the spatial area (or line,
or point) that both arguments have in common. If the arguments are disjoint, the function returns an
empty geometry.

-- What is the area these two circles have in common?
-- Using ST_Buffer to make the circles!

SELECT ST_AsText(ST_Intersection(
ST_Buffer('POINT(0 0)', 2),
ST_Buffer('POINT(3 0)', 2)

));

20.4 ST_Union

In the previous example we intersected geometries, creating a new geometry that had lines from both
the inputs. The ST_Union function does the reverse; it takes inputs and removes common lines. There
are two forms of the ST_Union function:

• ST_Union(geometry, geometry): A two-argument version that takes in two geometries
and returns the merged union. For example, our two-circle example from the previous section
looks like this when you replace the intersection with a union.

-- What is the total area these two circles cover?
-- Using ST_Buffer to make the circles!

SELECT ST_AsText(ST_Union(
ST_Buffer('POINT(0 0)', 2),
ST_Buffer('POINT(3 0)', 2)

));

20.3. ST_Intersection 117

Introduction to PostGIS, Release 1.1

• ST_Union([geometry]): An aggregate version that takes in a set of geometries and returns
the merged geometry for the entire group. The aggregate ST_Union can be used with the GROUP
BY SQL statement to create carefully merged subsets of basic geometries. It is very powerful.

As an example of ST_Union aggregation, consider our nyc_census_blocks table. Census ge-
ography is carefully constructed so that larger geographies can be built up from smaller ones. So, we
can create a census tracts map by merging the blocks that form each tract (as we do later in Creating a
Census Tracts Table). Or, we can create a county map by merging blocks that fall within each county.

To carry out the merge, note that the unique key blkid actually embeds information about the higher
level geographies. Here are the parts of the key for Liberty Island we used earlier:

360610001001001 = 36 061 000100 1 001

36 = State of New York
061 = New York County (Manhattan)
000100 = Census Tract
1 = Census Block Group
001 = Census Block

So, we can create a county map by merging all geometries that share the same first 5 digits of their
blkid. Be patient; this is computationally expensive and can take a minute or two.

-- Create a nyc_census_counties table by merging census blocks
CREATE TABLE nyc_census_counties AS
SELECT

ST_Union(geom)::Geometry(MultiPolygon,26918) AS geom,
SubStr(blkid,1,5) AS countyid

FROM nyc_census_blocks
GROUP BY countyid;

118 Chapter 20. Geometry Constructing Functions

Introduction to PostGIS, Release 1.1

An area test can confirm that our union operation did not lose any geometry. First, we calculate the area
of each individual census block, and sum those areas grouping by census county id.

SELECT SubStr(blkid,1,5) AS countyid, Sum(ST_Area(geom)) AS area
FROM nyc_census_blocks
GROUP BY countyid
ORDER BY countyid;

countyid | area
----------+------------------
36005 | 110196022.906506
36047 | 181927497.678368
36061 | 59091860.6261323
36081 | 283194473.613692
36085 | 150758328.111199

Then we calculate the area of each of our new county polygons from the county table:

SELECT countyid, ST_Area(geom) AS area
FROM nyc_census_counties
ORDER BY countyid;

countyid | area
----------+------------------
36005 | 110196022.906507
36047 | 181927497.678367
36061 | 59091860.6261324
36081 | 283194473.593646
36085 | 150758328.111199

The same answer! We have successfully built an NYC county table from our census blocks data.

20.4. ST_Union 119

Introduction to PostGIS, Release 1.1

20.5 Function List

ST_Centroid(geometry): Returns a point geometry that represents the center of mass of the input geom-
etry.

ST_PointOnSurface(geometry): Returns a point geometry that is guaranteed to be in the interior of the
input geometry.

ST_Buffer(geometry, distance): For geometry: Returns a geometry that represents all points whose
distance from this Geometry is less than or equal to distance. Calculations are in the Spatial Reference
System of this Geometry. For geography: Uses a planar transform wrapper.

ST_Intersection(geometry A, geometry B): Returns a geometry that represents the shared portion of
geomA and geomB. The geography implementation does a transform to geometry to do the intersection
and then transform back to WGS84.

ST_Union(): Returns a geometry that represents the point set union of the Geometries.

ST_AsText(text): Returns the Well-Known Text (WKT) representation of the geometry/geography with-
out SRID metadata.

substring(string [from int] [for int]): PostgreSQL string function to extract substring matching SQL
regular expression.

sum(expression): PostgreSQL aggregate function that returns the sum of records in a set of records.

120 Chapter 20. Geometry Constructing Functions

http://postgis.net/docs/ST_Centroid.html
http://postgis.net/docs/ST_PointOnSurface.html
http://postgis.net/docs/ST_Buffer.html
http://postgis.net/docs/ST_Intersection.html
http://postgis.net/docs/ST_Union.html
http://postgis.net/docs/ST_AsText.html
http://www.postgresql.org/docs/current/static/functions-string.html
http://www.postgresql.org/docs/current/static/functions-aggregate.html#FUNCTIONS-AGGREGATE-TABLE

CHAPTER

TWENTYONE

GEOMETRY CONSTRUCTING EXERCISES

Here’s a reminder of some of the functions we have seen. Hint: they should be useful for the exercises!

• sum(expression) aggregate to return a sum for a set of records

• ST_Area(geometry) returns the area of the geometry

• ST_Centroid(geometry) returns the geometry centroid

• ST_Transform(geometry, srid) converts geometries into different spatial reference
systems

• ST_Buffer(geometry, radius) returns an expanded geometry shape

• ST_Contains(geometry1, geometry2) returns truw if geometry1 contains geometry2

• ST_Union(geometry[]) returns the aggregate union of all geometries in the group

• ST_GeometryType(geometry) returns the type of the geometry

• ST_NumGeometries(geometry) returns the number of geometries in a collection or 1 for
simple geometries

• ST_Intersection(geometry, geometry) returns the area that the two input geometries
share in common

Remember the tables we have available:

• nyc_census_blocks

– name, popn_total, boroname, geom

• nyc_streets

– name, type, geom

• nyc_subway_stations

– name, geom

• nyc_neighborhoods

– name, boroname, geom

121

Introduction to PostGIS, Release 1.1

21.1 Exercises

• How many census blocks don’t contain their own centroid?

SELECT Count(*)
FROM nyc_census_blocks
WHERE NOT

ST_Contains(
geom,
ST_Centroid(geom)

);

481

• Union all the census blocks into a single output. What kind of geometry is it? How many
parts does it have?

CREATE TABLE nyc_census_blocks_merge AS
SELECT ST_Union(geom) AS geom
FROM nyc_census_blocks;

SELECT ST_GeometryType(geom)
FROM nyc_census_blocks_merge;

ST_MultiPolygon

SELECT ST_NumGeometries(geom)
FROM nyc_census_blocks_merge;

63

• What is the area of a one unit buffer around the origin? How different is it from what you
would expect? Why?

SELECT ST_Area(ST_Buffer('POINT(0 0)', 1));

3.121445152258052

Note: A unit circle (circle with radius of one) should have an area of pi, 3.1415926. . . The
difference is due to the linear stroking of the edges of the buffer. The buffer has a finite number
of edges. Increasing the number of edges in the buffer will get the value closer to pi, but it will
always be smaller due to the linearization.

• The Brooklyn neighborhoods of ‘Park Slope’ and ‘Carroll Gardens’ are going to war! Con-
struct a polygon delineating a 100 meter wide DMZ on the border between the neighbor-
hoods. What is the area of the DMZ?

CREATE TABLE brooklyn_dmz AS
SELECT

ST_Intersection(
ST_Buffer(ps.geom, 50),

(continues on next page)

122 Chapter 21. Geometry Constructing Exercises

Introduction to PostGIS, Release 1.1

(continued from previous page)

ST_Buffer(cg.geom, 50))
AS geom

FROM
nyc_neighborhoods ps,
nyc_neighborhoods cg

WHERE ps.name = 'Park Slope'
AND cg.name = 'Carroll Gardens';

SELECT ST_Area(geom) FROM brooklyn_dmz;

Note: It is easy to buffer both the neighborhoods of interest, but to get the intersection requires
a self-join of the table, creating one relation (ps) with just the “Park Slope” record and another
(cg) with just the “Carroll Gardens” record. Note that the area of the intersection is in square
meters because we are still working in UTM 18 (EPSG:26918).

180990.964207547

21.1. Exercises 123

Introduction to PostGIS, Release 1.1

124 Chapter 21. Geometry Constructing Exercises

CHAPTER

TWENTYTWO

MORE SPATIAL JOINS

In the last section we saw the ST_Centroid(geometry) and ST_Union([geometry]) func-
tions, and some simple examples. In this section we will do some more elaborate things with them.

22.1 Creating a Census Tracts Table

In the workshop \data\ directory, is a file that includes attribute data, but no geometry,
nyc_census_sociodata.sql. The table includes interesting socioeconomic data about New
York: commute times, incomes, and education attainment. There is just one problem. The data are
summarized by “census tract” and we have no census tract spatial data!

In this section we will

• Load the nyc_census_sociodata.sql table

• Create a spatial table for census tracts

• Join the attribute data to the spatial data

• Carry out some analysis using our new data

22.1.1 Loading nyc_census_sociodata.sql

1. Open the SQL query window in PgAdmin

2. Select File->Open from the menu and browse to the nyc_census_sociodata.sql file

3. Press the “Run Query” button

4. If you press the “Refresh” button in PgAdmin, the list of tables should now include at
nyc_census_sociodata table

22.1.2 Creating a Census Tracts Table

As we saw in the previous section, we can build up higher level geometries from the census block by
summarizing on substrings of the blkid key. In order to get census tracts, we need to summarize
grouping on the first 11 characters of the blkid.

360610001001001 = 36 061 000100 1 001

36 = State of New York
061 = New York County (Manhattan)

(continues on next page)

125

Introduction to PostGIS, Release 1.1

(continued from previous page)

000100 = Census Tract
1 = Census Block Group
001 = Census Block

Create the new table using the ST_Union aggregate:

-- Make the tracts table
CREATE TABLE nyc_census_tract_geoms AS
SELECT

ST_Union(geom) AS geom,
SubStr(blkid,1,11) AS tractid

FROM nyc_census_blocks
GROUP BY tractid;

-- Index the tractid
CREATE INDEX nyc_census_tract_geoms_tractid_idx

ON nyc_census_tract_geoms (tractid);

22.1.3 Join the Attributes to the Spatial Data

Join the table of tract geometries to the table of tract attributes with a standard attribute join

-- Make the tracts table
CREATE TABLE nyc_census_tracts AS
SELECT

g.geom,
a.*

FROM nyc_census_tract_geoms g
JOIN nyc_census_sociodata a
ON g.tractid = a.tractid;

-- Index the geometries
CREATE INDEX nyc_census_tract_gidx

ON nyc_census_tracts USING GIST (geom);

22.1.4 Answer an Interesting Question

Answer an interesting question! “List top 10 New York neighborhoods ordered by the proportion of
people who have graduate degrees.”

SELECT
100.0 * Sum(t.edu_graduate_dipl) / Sum(t.edu_total) AS graduate_pct,
n.name, n.boroname

FROM nyc_neighborhoods n
JOIN nyc_census_tracts t
ON ST_Intersects(n.geom, t.geom)
WHERE t.edu_total > 0
GROUP BY n.name, n.boroname
ORDER BY graduate_pct DESC
LIMIT 10;

We sum up the statistics we are interested, then divide them together at the end. In order to avoid
divide-by-zero errors, we don’t bother bringing in tracts that have a population count of zero.

126 Chapter 22. More Spatial Joins

Introduction to PostGIS, Release 1.1

graduate_pct | name | boroname
--------------+-------------------+-----------

47.6 | Carnegie Hill | Manhattan
42.2 | Upper West Side | Manhattan
41.1 | Battery Park | Manhattan
39.6 | Flatbush | Brooklyn
39.3 | Tribeca | Manhattan
39.2 | North Sutton Area | Manhattan
38.7 | Greenwich Village | Manhattan
38.6 | Upper East Side | Manhattan
37.9 | Murray Hill | Manhattan
37.4 | Central Park | Manhattan

Note: New York geographers will be wondering at the presence of “Flatbush” in this list of over-
educated neighborhoods. The answer is discussed in the next section.

22.2 Polygon/Polygon Joins

In our interesting query (in Answer an Interesting Question) we used the
ST_Intersects(geometry_a, geometry_b) function to determine which census tract
polygons to include in each neighborhood summary. Which leads to the question: what if a tract falls on
the border between two neighborhoods? It will intersect both, and so will be included in the summary
statistics for both.

To avoid this kind of double counting there are two methods:

22.2. Polygon/Polygon Joins 127

Introduction to PostGIS, Release 1.1

• The simple method is to ensure that each tract only falls in one summary area (using
ST_Centroid(geometry))

• The complex method is to divide crossing tracts at the borders (using
ST_Intersection(geometry,geometry))

Here is an example of using the simple method to avoid double counting in our graduate education
query:

SELECT
100.0 * Sum(t.edu_graduate_dipl) / Sum(t.edu_total) AS graduate_pct,
n.name, n.boroname

FROM nyc_neighborhoods n
JOIN nyc_census_tracts t
ON ST_Contains(n.geom, ST_Centroid(t.geom))
WHERE t.edu_total > 0
GROUP BY n.name, n.boroname
ORDER BY graduate_pct DESC
LIMIT 10;

Note that the query takes longer to run now, because the ST_Centroid function has to be run on every
census tract.

graduate_pct | name | boroname
--------------+---------------------+-----------

48.0 | Carnegie Hill | Manhattan
44.2 | Morningside Heights | Manhattan
42.1 | Greenwich Village | Manhattan
42.0 | Upper West Side | Manhattan
41.4 | Tribeca | Manhattan
40.7 | Battery Park | Manhattan
39.5 | Upper East Side | Manhattan
39.3 | North Sutton Area | Manhattan
37.4 | Cobble Hill | Brooklyn
37.4 | Murray Hill | Manhattan

Avoiding double counting changes the results!

22.2.1 What about Flatbush?

In particular, the Flatbush neighborhood has dropped off the list. The reason why can be seen by looking
more closely at the map of the Flatbush neighborhood in our table.

128 Chapter 22. More Spatial Joins

Introduction to PostGIS, Release 1.1

As defined by our data source, Flatbush is not really a neighborhood in the conventional sense, since it
just covers the area of Prospect Park. The census tract for that area records, naturally, zero residents.
However, the neighborhood boundary does scrape one of the expensive census tracts bordering the north
side of the park (in the gentrified Park Slope neighborhood). When using polygon/polygon tests, this
single tract was added to the otherwise empty Flatbush, resulting in the very high score for that query.

22.3 Large Radius Distance Joins

A query that is fun to ask is “How do the commute times of people near (within 500 meters) subway
stations differ from those of people far away from subway stations?”

However, the question runs into some problems of double counting: many people will be within 500
meters of multiple subway stations. Compare the population of New York:

SELECT Sum(popn_total)
FROM nyc_census_blocks;

8175032

With the population of the people in New York within 500 meters of a subway station:

SELECT Sum(popn_total)
FROM nyc_census_blocks census

(continues on next page)

22.3. Large Radius Distance Joins 129

Introduction to PostGIS, Release 1.1

(continued from previous page)

JOIN nyc_subway_stations subway
ON ST_DWithin(census.geom, subway.geom, 500);

10855873

There’s more people close to the subway than there are people! Clearly, our simple SQL is making a big
double-counting error. You can see the problem looking at the picture of the buffered subways.

The solution is to ensure that we have only distinct census blocks before passing them into the summa-
rization portion of the query. We can do that by breaking our query up into a subquery that finds the
distinct blocks, wrapped in a summarization query that returns our answer:

WITH distinct_blocks AS (
SELECT DISTINCT ON (blkid) popn_total
FROM nyc_census_blocks census
JOIN nyc_subway_stations subway
ON ST_DWithin(census.geom, subway.geom, 500)

)
SELECT Sum(popn_total)
FROM distinct_blocks;

5005743

That’s better! So a bit over half the population of New York is within 500m (about a 5-7 minute walk)
of the subway.

130 Chapter 22. More Spatial Joins

CHAPTER

TWENTYTHREE

VALIDITY

In 90% of the cases the answer to the question, “why is my query giving me a ‘TopologyException’
error” is “one or more of the inputs are invalid”. Which begs the question: what does it mean to be
invalid, and why should we care?

23.1 What is Validity

Validity is most important for polygons, which define bounded areas and require a good deal of structure.
Lines are very simple and cannot be invalid, nor can points.

Some of the rules of polygon validity feel obvious, and others feel arbitrary (and in fact, are arbitrary).

• Polygon rings must close.

• Rings that define holes should be inside rings that define exterior boundaries.

• Rings may not self-intersect (they may neither touch nor cross themselves).

• Rings may not touch other rings, except at a point.

• Elements of multi-polygons may not touch each other.

The last three rules are in the arbitrary category. There are other ways to define polygons that are equally
self-consistent but the rules above are the ones used by the OGC SFSQL standard that PostGIS conforms
to.

The reason the rules are important is because algorithms for geometry calculations depend on consistent
structure in the inputs. It is possible to build algorithms that have no structural assumptions, but those
routines tend to be very slow, because the first step in any structure-free routine is to analyze the inputs
and build structure into them.

Here’s an example of why structure matters. This polygon is invalid:

POLYGON((0 0, 0 1, 2 1, 2 2, 1 2, 1 0, 0 0));

You can see the invalidity a little more clearly in this diagram:

131

Introduction to PostGIS, Release 1.1

The outer ring is actually a figure-eight, with a self-intersection in the middle. Note that the graphic
routines successfully render the polygon fill, so that visually it is appears to be an “area”: two one-unit
squares, so a total area of two units of area.

Let’s see what the database thinks the area of our polygon is:

SELECT ST_Area(ST_GeometryFromText(
'POLYGON((0 0, 0 1, 1 1, 2 1, 2 2, 1 2, 1 1, 1 0, 0 0))'

));

st_area

0

What’s going on here? The algorithm that calculates area assumes that rings do not self-intersect. A
well-behaved ring will always have the area that is bounded (the interior) on one side of the bounding
line (it doesn’t matter which side, just that it is on one side). However, in our (poorly behaved) figure-
eight, the bounded area is to the right of the line for one lobe and to the left for the other. This causes the
areas calculated for each lobe to cancel out (one comes out as 1, the other as -1) hence the “zero area”
result.

132 Chapter 23. Validity

Introduction to PostGIS, Release 1.1

23.2 Detecting Validity

In the previous example we had one polygon that we knew was invalid. How do we detect invalidity in
a table with millions of geometries? With the ST_IsValid(geometry) function. Used against our
figure-eight, we get a quick answer:

SELECT ST_IsValid(ST_GeometryFromText(
'POLYGON((0 0, 0 1, 1 1, 2 1, 2 2, 1 2, 1 1, 1 0, 0 0))'

));

f

Now we know that the feature is invalid, but we don’t know why. We can use the
ST_IsValidReason(geometry) function to find out the source of the invalidity:

SELECT ST_IsValidReason(ST_GeometryFromText(
'POLYGON((0 0, 0 1, 1 1, 2 1, 2 2, 1 2, 1 1, 1 0, 0 0))'

));

Self-intersection[1 1]

Note that in addition to the reason (self-intersection) the location of the invalidity (coordinate (1 1)) is
also returned.

We can use the ST_IsValid(geometry) function to test our tables too:

-- Find all the invalid polygons and what their problem is
SELECT name, boroname, ST_IsValidReason(geom)
FROM nyc_neighborhoods
WHERE NOT ST_IsValid(geom);

name | boroname | st_isvalidreason
-------------------------+---------------+---------------------------------
→˓--------
Howard Beach | Queens | Self-intersection[597264.08
→˓4499924.54]
Corona | Queens | Self-intersection[595483.05
→˓4513817.95]
Steinway | Queens | Self-intersection[593545.57
→˓4514735.20]
Red Hook | Brooklyn | Self-intersection[584306.82
→˓4502360.51]

23.3 Repairing Invalidity

Repairing invalidity involves stripping a polygon down to its simplest structures (rings), ensuring the
rings follow the rules of validity, then building up new polygons that follow the rules of ring enclosure.
Frequently the results are intuitive, but in the case of extremely ill-behaved inputs, the valid outputs may
not conform to your intuition of how they should look. Recent versions of PostGIS include different
algorithms for geometry repair: read the manual page carefully and choose the one you like best.

For example, here’s a classic invalidity – the “banana polygon” – a single ring that encloses an area but
bends around to touch itself, leaving a “hole” which is not actually a hole.

23.2. Detecting Validity 133

http://postgis.net/docs/ST_MakeValid.html

Introduction to PostGIS, Release 1.1

POLYGON((0 0, 2 0, 1 1, 2 2, 3 1, 2 0, 4 0, 4 4, 0 4, 0 0))

Running ST_MakeValid on the polygon returns a valid OGC polygon, consisting of an outer and inner
ring that touch at one point.

SELECT ST_AsText(
ST_MakeValid(

ST_GeometryFromText('POLYGON((0 0, 2 0, 1 1, 2 2, 3 1, 2 0, 4 0,
→˓ 4 4, 0 4, 0 0))')

)
);

POLYGON((0 0,0 4,4 4,4 0,2 0,0 0),(2 0,3 1,2 2,1 1,2 0))

Note: The “banana polygon” (or “inverted shell”) is a case where the OGC topology model for valid
geometry and the model used internally by ESRI differ. The ESRI model considers rings that touch to
be invalid, and prefers the banana form for this kind of shape. The OGC model is the reverse. Neither is
“correct”, they are just different ways to model the same situation.

134 Chapter 23. Validity

http://postgis.net/docs/ST_MakeValid.html

Introduction to PostGIS, Release 1.1

23.4 Bulk Validity Repair

Here’s an example of SQL to flag invalid geometries for review while adding a repaired version to the
table.

-- Column for old invalid form
ALTER TABLE nyc_neighborhoods

ADD COLUMN geom_invalid geometry
DEFAULT NULL;

-- Fix invalid and save the original
UPDATE nyc_neighborhoods
SET geom = ST_MakeValid(geom),

geom_invalid = geom
WHERE NOT ST_IsValid(geom);

-- Review the invalid cases
SELECT geom, ST_IsValidReason(geom_invalid)

FROM nyc_neighborhoods
WHERE geom_invalid IS NOT NULL;

A good tool for visually repairing invalid geometry is OpenJump (http://openjump.org) which includes
a validation routine under Tools->QA->Validate Selected Layers.

23.5 Function List

ST_IsValid(geometry A): Returns a boolean indiciting whether the geometery is valid.

ST_IsValidReason(geometry A): Returns a text string with the reason for the invalidity and a coordinate
of invalidity.

ST_MakeValid(geometry A): Returns a geometry re-constructed to obey the validity rules.

23.4. Bulk Validity Repair 135

http://openjump.org
http://postgis.net/docs/ST_IsValid.html
http://postgis.net/docs/ST_IsValidReason.html
http://postgis.net/docs/ST_MakeValid.html

Introduction to PostGIS, Release 1.1

136 Chapter 23. Validity

CHAPTER

TWENTYFOUR

EQUALITY

24.1 Equality

Determining equality when dealing with geometries can be tricky. PostGIS supports three different
functions that can be used to determine different levels of equality, though for clarity we will use the
definitions below. To illustrate these functions, we will use the following polygons.

These polygons are loaded using the following commands.

CREATE TABLE polygons (id integer, name varchar, poly geometry);

INSERT INTO polygons VALUES
(1, 'Polygon 1', 'POLYGON((-1 1.732,1 1.732,2 0,1 -1.732,

-1 -1.732,-2 0,-1 1.732))'),
(2, 'Polygon 2', 'POLYGON((-1 1.732,-2 0,-1 -1.732,1 -1.732,

2 0,1 1.732,-1 1.732))'),
(3, 'Polygon 3', 'POLYGON((1 -1.732,2 0,1 1.732,-1 1.732,

(continues on next page)

137

Introduction to PostGIS, Release 1.1

(continued from previous page)

-2 0,-1 -1.732,1 -1.732))'),
(4, 'Polygon 4', 'POLYGON((-1 1.732,0 1.732, 1 1.732,1.5 0.866,

2 0,1.5 -0.866,1 -1.732,0 -1.732,-1 -1.732,-1.5 -0.866,
-2 0,-1.5 0.866,-1 1.732))'),

(5, 'Polygon 5', 'POLYGON((-2 -1.732,2 -1.732,2 1.732,
-2 1.732,-2 -1.732))');

24.1.1 Exactly Equal

Exact equality is determined by comparing two geometries, vertex by vertex, in order, to ensure they are
identical in position. The following examples show how this method can be limited in its effectiveness.

SELECT a.name, b.name,
CASE WHEN ST_OrderingEquals(a.poly, b.poly)

THEN 'Exactly Equal'
ELSE 'Not Exactly Equal' END

FROM polygons AS a, polygons AS b;

138 Chapter 24. Equality

Introduction to PostGIS, Release 1.1

In this example, the polygons are only equal to themselves, not to other seemingly equivalent polygons
(as in the case of Polygons 1 through 3). In the case of Polygons 1, 2, and 3, the vertices are in identical
positions but are defined in differing orders. Polygon 4 has colinear (and thus redundant) vertices on the
hexagon edges causing inequality with Polygon 1.

24.1.2 Spatially Equal

As we saw above, exact equality does not take into account the spatial nature of the geometries. There is
an function, aptly named ST_Equals, available to test the spatial equality or equivalence of geometries.

SELECT a.name, b.name,
CASE WHEN ST_Equals(a.poly, b.poly)

THEN 'Spatially Equal'
ELSE 'Not Equal' END

FROM polygons AS a, polygons AS b;

24.1. Equality 139

Introduction to PostGIS, Release 1.1

These results are more in line with our intuitive understanding of equality. Polygons 1 through 4 are
considered equal, since they enclose the same area. Note that neither the direction of the polygon is
drawn, the starting point for defining the polygon, nor the number of points used are important here.
What is important is that the polygons contain the same space.

24.1.3 Equal Bounds

Exact equality requires, in the worst case, comparison of each and every vertex in the geometry to
determine equality. This can be slow, and may not be appropriate for comparing huge numbers of
geometries. To allow for speedier comparison, the equal bounds operator, ~=, is provided. This operates
only on the bounding box (rectangle), ensuring that the geometries occupy the same two dimensional
extent, but not necessarily the same space.

SELECT a.name, b.name,
CASE WHEN a.poly ~= b.poly

THEN 'Equal Bounds'
ELSE 'Non-equal Bounds' END

FROM polygons AS a, polygons AS b;

140 Chapter 24. Equality

Introduction to PostGIS, Release 1.1

As you can see, all of our spatially equal geometries also have equal bounds. Unfortunately, Polygon 5
is also returned as equal under this test, because it shares the same bounding box as the other geometries.
Why is this useful, then? Although this will be covered in detail later, the short answer is that this enables
the use of spatial indexing that can quickly reduce huge comparison sets into more manageable blocks
when joining or filtering data.

24.1. Equality 141

Introduction to PostGIS, Release 1.1

142 Chapter 24. Equality

CHAPTER

TWENTYFIVE

LINEAR REFERENCING

Linear referencing (sometimes called “dynamic segmentation”) is a means of representing features that
can be described by referencing a base set of linear features. Common examples of features that are
modelled using linear referencing are:

• Highway assets, which are referenced using miles along a highway network

• Road maintenance operations, which are referenced as occurring along a road network between a
pair of mile measurements.

• Aquatic inventories, where fish presence is recorded as existing between a pair of mileage-
upstream measurements.

• Hydrologic characterizations (“reaches”) of streams, recorded with a from- and to- mileage.

The benefit of linear referencing models is that the dependent spatial observations do not need to be
separately recorded from the base observations, and updates to the base observation layer can be carried
out knowing that the dependent observations will automatically track the new geometry.

Note: The Esri terminological convention for linear referencing is to have a base table of linear spatial
features, and a non-spatial table of “events” which includes a foreign key reference to the spatial feature
and a measure along the referenced feature. We will use the term “event table” to refer to the non-spatial
tables we build.

25.1 Creating Linear References

If you have an existing point table that you want to reference to a linear network, use the
ST_LineLocatePoint function, which takes a line and point, and returns the proportion along the
line that the point can be found.

-- Simple example of locating a point half-way along a line
SELECT ST_LineLocatePoint('LINESTRING(0 0, 2 2)', 'POINT(1 1)');
-- Answer 0.5

-- What if the point is not on the line? It projects to closest point
SELECT ST_LineLocatePoint('LINESTRING(0 0, 2 2)', 'POINT(0 2)');
-- Answer 0.5

We can convert the nyc_subway_stations into an “event table” relative to the streets by using
ST_LineLocatePoint.

143

Introduction to PostGIS, Release 1.1

-- All the SQL below is in aid of creating the new event table
CREATE TABLE nyc_subway_station_events AS
-- We first need to get a candidate set of maybe-closest
-- streets, ordered by id and distance...
WITH ordered_nearest AS (
SELECT

ST_GeometryN(streets.geom,1) AS streets_geom,
streets.gid AS streets_gid,
subways.geom AS subways_geom,
subways.gid AS subways_gid,
ST_Distance(streets.geom, subways.geom) AS distance

FROM nyc_streets streets
JOIN nyc_subway_stations subways
ON ST_DWithin(streets.geom, subways.geom, 200)

ORDER BY subways_gid, distance ASC
)
-- We use the 'distinct on' PostgreSQL feature to get the first
-- street (the nearest) for each unique street gid. We can then
-- pass that one street into ST_LineLocatePoint along with
-- its candidate subway station to calculate the measure.
SELECT

DISTINCT ON (subways_gid)
subways_gid,
streets_gid,
ST_LineLocatePoint(streets_geom, subways_geom) AS measure,
distance

FROM ordered_nearest;

-- Primary keys are useful for visualization softwares
ALTER TABLE nyc_subway_station_events ADD PRIMARY KEY (subways_gid);

Once we have an event table, it’s fun to turn it back into a spatial view, so we can visualize the events
relative to the original points they were derived from.

To go from a measure to a point, we use the ST_LineInterpolatePoint function. Here’s our
previous simple examples reversed:

-- Simple example of locating a point half-way along a line
SELECT ST_AsText(ST_LineInterpolatePoint('LINESTRING(0 0, 2 2)', 0.5));

-- Answer POINT(1 1)

And we can join the nyc_subway_station_events tables back to the nyc_streets table and use the mea-
sure attribute to generate the spatial event points, without referencing the original nyc_subway_stations
table.

-- New view that turns events back into spatial objects
CREATE OR REPLACE VIEW nyc_subway_stations_lrs AS
SELECT

events.subways_gid,
ST_LineInterpolatePoint(ST_GeometryN(streets.geom, 1), events.measure)AS

→˓geom,
events.streets_gid

FROM nyc_subway_station_events events
JOIN nyc_streets streets
ON (streets.gid = events.streets_gid);

144 Chapter 25. Linear Referencing

Introduction to PostGIS, Release 1.1

Viewing the original (red star) and event (blue circle) points with the streets, you can see how the events
are snapped directly to the closest street lines.

Note: One surprising use of the linear referencing functions has nothing to do with linear referencing
models. As shown above, it’s possible to use the functions to snap points to linear features. For use
cases like GPS tracks or other inputs that are expected to reference a linear network, snapping is a handy
feature to have available.

25.2 Function List

• ST_LineInterpolatePoint(geometry A, double measure): Returns a point interpolated along a line.

• ST_LineLocatePoint(geometry A, geometry B): Returns a float between 0 and 1 representing the
location of the closest point on LineString to the given Point.

• ST_LineSubstring(geometry A, double from, double to): Return a linestring being a substring of
the input one starting and ending at the given fractions of total 2d length.

• ST_LocateAlong(geometry A, double measure): Return a derived geometry collection value with
elements that match the specified measure.

• ST_LocateBetween(geometry A, double from, double to): Return a derived geometry collection
value with elements that match the specified range of measures inclusively.

25.2. Function List 145

http://postgis.net/docs/ST_LineInterpolatePoint.html
http://postgis.net/docs/ST_LineLocatePoint.html
http://postgis.net/docs/ST_LineSubstring.html
http://postgis.net/docs/ST_LocateAlong.html
http://postgis.net/docs/ST_LocateBetween.html

Introduction to PostGIS, Release 1.1

• ST_AddMeasure(geometry A, double from, double to): Return a derived geometry with measure
elements linearly interpolated between the start and end points. If the geometry has no measure
dimension, one is added.

146 Chapter 25. Linear Referencing

http://postgis.net/docs/ST_AddMeasure.html

CHAPTER

TWENTYSIX

DIMENSIONALLY EXTENDED 9-INTERSECTION MODEL

The “Dimensionally Extended 9-Intersection Model” (DE9IM) is a framework for modelling how two
spatial objects interact.

First, every spatial object has:

• An interior

• A boundary

• An exterior

For polygons, the interior, boundary and exterior are obvious:

The interior is the part bounded by the rings; the boundary is the rings themselves; the exterior is
everything else in the plane.

For linear features, the interior, boundary and exterior are less well-known:

147

http://en.wikipedia.org/wiki/DE-9IM

Introduction to PostGIS, Release 1.1

The interior is the part of the line bounded by the ends; the boundary is the ends of the linear feature,
and the exterior is everything else in the plane.

For points, things are even stranger: the interior is the point; the boundary is the empty set and the
exterior is everything else in the plane.

Using these definitions of interior, exterior and boundary, the relationships between any pair of spatial
features can be characterized using the dimensionality of the nine possible intersections between the
interiors/boundaries/exteriors of a pair of objects.

148 Chapter 26. Dimensionally Extended 9-Intersection Model

Introduction to PostGIS, Release 1.1

For the polygons in the example above, the intersection of the interiors is a 2-dimensional area, so
that portion of the matrix is filled out with a “2”. The boundaries only intersect at points, which are
zero-dimensional, so that portion of the matrix is filled out with a 0.

When there is no intersection between components, the square the matrix is filled out with an “F”.

Here’s another example, of a linestring partially entering a polygon:

149

Introduction to PostGIS, Release 1.1

The DE9IM matrix for the interaction is this:

Note that the boundaries of the two objects don’t actually intersect at all (the end point of the line
interacts with the interior of the polygon, not the boundary, and vice versa), so the B/B cell is filled in
with an “F”.

150 Chapter 26. Dimensionally Extended 9-Intersection Model

Introduction to PostGIS, Release 1.1

While it’s fun to visually fill out DE9IM matrices, it would be nice if a computer could do it, and that’s
what the ST_Relate function is for.

The previous example can be simplified using a simple box and line, with the same spatial relationship
as our polygon and linestring:

And we can generate the DE9IM information in SQL:

SELECT ST_Relate(
'LINESTRING(0 0, 2 0)',
'POLYGON((1 -1, 1 1, 3 1, 3 -1, 1 -1))'

);

The answer (1010F0212) is the same as we calculated visually, but returned as a 9-character string, with
the first row, second row and third row of the table appended together.

101
0F0
212

However, the power of DE9IM matrices is not in generating them, but in using them as a matching key
to find geometries with very specific relationships to one another.

CREATE TABLE lakes (id serial primary key, geom geometry);
CREATE TABLE docks (id serial primary key, good boolean, geom geometry);

INSERT INTO lakes (geom)
VALUES ('POLYGON ((100 200, 140 230, 180 310, 280 310, 390 270, 400 210,

→˓ 320 140, 215 141, 150 170, 100 200))');

INSERT INTO docks (geom, good)
VALUES

('LINESTRING (170 290, 205 272)',true),
('LINESTRING (120 215, 176 197)',true),
('LINESTRING (290 260, 340 250)',false),
('LINESTRING (350 300, 400 320)',false),
('LINESTRING (370 230, 420 240)',false),
('LINESTRING (370 180, 390 160)',false);

Suppose we have a data model that includes Lakes and Docks, and suppose further that Docks must be
inside lakes, and must touch the boundary of their containing lake at one end. Can we find all the docks
in our database that obey that rule?

151

Introduction to PostGIS, Release 1.1

Our legal docks have the following characteristics:

• Their interiors have a linear (1D) intersection with the lake interior

• Their boundaries have a point (0D) intersection with the lake interior

• Their boundaries also have a point (0D) intersection with the lake boundary

• Their interiors have no intersection (F) with the lake exterior

So their DE9IM matrix looks like this:

152 Chapter 26. Dimensionally Extended 9-Intersection Model

Introduction to PostGIS, Release 1.1

So to find all the legal docks, we would want to find all the docks that intersect lakes (a super-set of
potential candidates we use for our join key), and then find all the docks in that set which have the legal
relate pattern.

SELECT docks.*
FROM docks JOIN lakes ON ST_Intersects(docks.geom, lakes.geom)
WHERE ST_Relate(docks.geom, lakes.geom, '1FF00F212');

-- Answer: our two good docks

Note the use of the three-parameter version of ST_Relate, which returns true if the pattern matches
or false if it does not. For a fully-defined pattern like this one, the three-parameter version is not needed
– we could have just used a string equality operator.

However, for looser pattern searches, the three-parameter allows substitution characters in the pattern
string:

• “*” means “any value in this cell is acceptable”

• “T” means “any non-false value (0, 1 or 2) is acceptable”

So for example, one possible dock we did not include in our example graphic is a dock with a two-
dimensional intersection with the lake boundary:

INSERT INTO docks (geom, good)
VALUES ('LINESTRING (140 230, 150 250, 210 230)',true);

153

Introduction to PostGIS, Release 1.1

If we are to include this case in our set of “legal” docks, we need to change the relate pattern in our
query. In particular, the intersection of the dock interior lake boundary can now be either 1 (our new
case) or F (our original case). So we use the “*” catchall in the pattern.

And the SQL looks like this:

154 Chapter 26. Dimensionally Extended 9-Intersection Model

Introduction to PostGIS, Release 1.1

SELECT docks.*
FROM docks JOIN lakes ON ST_Intersects(docks.geom, lakes.geom)
WHERE ST_Relate(docks.geom, lakes.geom, '1*F00F212');

-- Answer: our (now) three good docks

Confirm that the stricter SQL from the previous example does not return the new dock.

26.1 Data Quality Testing

The TIGER data is carefully quality controlled when it is prepared, so we expect our data to meet strict
standards. For example: no census block should overlap any other census block. Can we test for that?

Sure!

SELECT a.gid, b.gid
FROM nyc_census_blocks a, nyc_census_blocks b
WHERE ST_Intersects(a.geom, b.geom)

AND ST_Relate(a.geom, b.geom, '2********')
AND a.gid != b.gid

LIMIT 10;

-- Answer: 10, there's some funny business

Similarly, we would expect that the roads data is all end-noded. That is, we expect that intersections
only occur at the ends of lines, not at the mid-points.

26.1. Data Quality Testing 155

Introduction to PostGIS, Release 1.1

We can test for that by looking for streets that intersect (so we have a join) but where the intersection
between the boundaries is not zero-dimensional (that is, the end points don’t touch):

SELECT a.gid, b.gid
FROM nyc_streets a, nyc_streets b
WHERE ST_Intersects(a.geom, b.geom)

AND NOT ST_Relate(a.geom, b.geom, '****0****')
AND a.gid != b.gid

LIMIT 10;

-- Answer: This happens, so the data is not end-noded.

26.1.1 Function List

ST_Relate(geometry A, geometry B): Returns a text string representing the DE9IM relationship between
the geometries.

156 Chapter 26. Dimensionally Extended 9-Intersection Model

http://postgis.net/docs/ST_Relate.html

CHAPTER

TWENTYSEVEN

CLUSTERING ON INDICES

Databases can only retrieve information as fast as they can get it off of disk. Small databases will float
up entirely into RAM cache, and get away from physical disk limitations, but for large databases, access
to the physical disk will be a limiting stop in disk access speed.

Data is written to disk opportunistically, so there is not necessarily any correlation between the order
data is stored on the disk and the way it will be accessed or organized by applications.

One way to speed up access to data is to ensure that records which is likely to be retrieved together
in the same result set are located in similar physical locations on the hard disk platters. This is called
“clustering”.

The right clustering scheme to use can be tricky, but a general rule applies: indexes define a natural
ordering scheme for data which is similar to the access pattern that will be used in retrieving the data.

157

Introduction to PostGIS, Release 1.1

Because of this, ordering the data on the disk in the same order as the index can provide a speed advan-
tage in some cases.

27.1 Clustering on the R-Tree

Spatial data tends to be accessed in spatially correlated windows: think of the map window in a web
or desktop application. All the data in the windows has similar location value (or it wouldn’t be in the
window!)

So, clustering based on a spatial index makes sense for spatial data that is going to be accessed with
spatial queries: similar things tend to have similar locations.

Let’s cluster our nyc_census_blocks based on their spatial index:

-- Cluster the blocks based on their spatial index
CLUSTER nyc_census_blocks USING nyc_census_blocks_geom_idx;

The command re-writes the nyc_census_blocks in the order defined by the spatial index
nyc_census_blocks_geom_gist. Can you perceive a speed difference? Maybe not, because
the original data may have already had some pre-existing spatial ordering (this is not uncommon in GIS
data sets).

158 Chapter 27. Clustering on Indices

Introduction to PostGIS, Release 1.1

27.2 Disk Versus Memory/SSD

Most modern databases are run using SSD storage, which is much faster at random access than old
spinning magnetic media. Also, most modern databases are running on top of data which is small
enough to fit into the RAM of the database server, and ends up there as the operating system “virtual
filesystem” caches it.

Is clustering still necessary?

Surprisingly, yes. Keeping records that are “near each other” in space “near each other” in memory
increases the odds that related records will move up the servers “memory cache heirarchy” together, and
thus make memory accesses faster.

System RAM is not the fastest memory on a modern computer. There are several levels of cache between
system RAM and the actual CPU, and the underlying operating system and processor will move data up
and down the cache heirarchy in blocks. If the block getting moved up happens to include the piece of
data the system will need next. . . that’s a big win. Correlating the memory structure with the spatial
structure is a way in increase the odds of that win happening.

27.3 Does Index Structure Matter?

In theory, yes. In practice, no really. As long as the index is a “pretty good” spatial decomposition of
the data, the main determinant of performance will be the order of the actual table tuples.

The difference between “no index” and “index” is generally huge and highly measurable. The difference
between “mediocre index” and “great index” usually takes quite careful measurement to discern, and can
be very sensitive to the workload being tested.

27.2. Disk Versus Memory/SSD 159

Introduction to PostGIS, Release 1.1

27.4 Function List

CLUSTER: Re-orders the data in a table to match the ordering in the index.

160 Chapter 27. Clustering on Indices

https://www.postgresql.org/docs/current/sql-cluster.html

CHAPTER

TWENTYEIGHT

3-D

28.1 3-D Geometries

So far, we have been working with 2-D geometries, with only X and Y coordinates. But PostGIS
supports additional dimensions on all geometry types, a “Z” dimension to add height information and
a “M” dimension for additional dimensional information (commonly time, or road-mile, or upstream-
distance information) for each coordinate.

For 3-D and 4-D geometries, the extra dimensions are added as extra coordinates for each vertex in the
geometry, and the geometry type is enhanced to indicate how to interpret the extra dimensions. Adding
the extra dimensions results in three extra possible geometry types for each geometry primitive:

• Point (a 2-D type) is joined by PointZ, PointM and PointZM types.

• Linestring (a 2-D type) is joined by LinestringZ, LinestringM and LinestringZM types.

• Polygon (a 2-D type) is joined by PolygonZ, PolygonM and PolygonZM types.

• And so on.

For well-known text (WKT) representation, the format for higher dimensional geometries is given by
the ISO SQL/MM specification. The extra dimensionality information is simply added to the text string
after the type name, and the extra coordinates added after the X/Y information. For example:

• POINT ZM (1 2 3 4)

• LINESTRING M (1 1 0, 1 2 0, 1 3 1, 2 2 0)

• POLYGON Z ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0))

The ST_AsText() function will return the above representations when dealing with 3-D and 4-D geome-
tries.

For well-known binary (WKB) representation, the format for higher dimensional geometries is given by
the ISO SQL/MM specification. The BNF form of the format is available from https://git.osgeo.org/
gitea/postgis/postgis/src/branch/master/doc/bnf-wkb.txt.

In addition to higher-dimensional forms of the standard types, PostGIS includes a few new types that
make sense in a 3-D space:

• The TIN type allows you to model triangular meshes as rows in your database.

• The POLYHEDRALSURFACE allows you to model volumetric objects in your database.

Since both these types are for modelling 3-D objects, it only really makes sense to use the Z variants.
An example of a POLYHEDRALSURFACE Z would be the 1 unit cube:

161

https://git.osgeo.org/gitea/postgis/postgis/src/branch/master/doc/bnf-wkb.txt
https://git.osgeo.org/gitea/postgis/postgis/src/branch/master/doc/bnf-wkb.txt

Introduction to PostGIS, Release 1.1

POLYHEDRALSURFACE Z (
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 0 1 0, 0 1 1, 0 0 1, 0 0 0)),
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 1, 1 0 1, 0 0 1, 0 1 1, 1 1 1)),
((1 1 1, 1 0 1, 1 0 0, 1 1 0, 1 1 1)),
((1 1 1, 1 1 0, 0 1 0, 0 1 1, 1 1 1))

)

28.2 3-D Functions

There are a number of functions built to calculate relationships between 3-D objects:

• ST_3DClosestPoint — Returns the 3-dimensional point on g1 that is closest to g2. This is the first
point of the 3D shortest line.

• ST_3DDistance — For geometry type Returns the 3-dimensional cartesian minimum distance
(based on spatial ref) between two geometries in projected units.

• ST_3DDWithin — For 3d (z) geometry type Returns true if two geometries 3d distance is within
number of units.

• ST_3DDFullyWithin — Returns true if all of the 3D geometries are within the specified distance
of one another.

• ST_3DIntersects — Returns TRUE if the Geometries “spatially intersect” in 3d - only for points
and linestrings

• ST_3DLongestLine — Returns the 3-dimensional longest line between two geometries

• ST_3DMaxDistance — For geometry type Returns the 3-dimensional cartesian maximum dis-
tance (based on spatial ref) between two geometries in projected units.

• ST_3DShortestLine — Returns the 3-dimensional shortest line between two geometries

For example, we can calculate the distance between our unit cube and a point using the ST_3DDistance
function:

-- This is really the distance between the top corner
-- and the point.
SELECT ST_3DDistance(

'POLYHEDRALSURFACE Z (
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 0 1 0, 0 1 1, 0 0 1, 0 0 0)),
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 1, 1 0 1, 0 0 1, 0 1 1, 1 1 1)),
((1 1 1, 1 0 1, 1 0 0, 1 1 0, 1 1 1)),
((1 1 1, 1 1 0, 0 1 0, 0 1 1, 1 1 1))

)'::geometry,
'POINT Z (2 2 2)'::geometry

);

-- So here's a shorter form.
SELECT ST_3DDistance(

'POINT Z (1 1 1)'::geometry,
'POINT Z (2 2 2)'::geometry

(continues on next page)

162 Chapter 28. 3-D

Introduction to PostGIS, Release 1.1

(continued from previous page)

);

-- Both return 1.73205080756888 == sqrt(3) as expected

28.3 N-D Indexes

Once you have data in higher dimensions it may make sense to index it. However, you should think
carefully about the distribution of your data in all dimensions before applying a multi-dimensional index.

Indexes are only useful when they allow the database to drastically reduce the number of return rows as
a result of a WHERE condition. For a higher dimension index to be useful, the data must cover a wide
range of that dimension, relative to the kinds of queries you are constructing.

• A set of DEM points would probably be a poor candidate for a 3-D index, since the queries would
usually be extracting a 2-D box of points, and rarely attempting to select a Z-slice of points.

• A set of GPS traces in X/Y/T space might be a good candidate for a 3-D index, if the GPS tracks
overlapped each other frequently in all dimensions (for example, driving the same route over and
over at different times), since there would be large variability in all dimensions of the data set.

You can create a multi-dimensional index on data of any dimensionality (even mixed dimensionality).
For example, to create a multi-dimensional index on the nyc_streets table,

CREATE INDEX nyc_streets_gix_nd ON nyc_streets
USING GIST (geom gist_geometry_ops_nd);

The gist_geometry_ops_nd parameter tells PostGIS to use the N-D index instead of the standard
2-D index.

Once you have the index built, you can use it in queries with the &&& index operator. &&& has the same
semantics as &&, “bounding boxes interact”, but applies those semantics using all the dimensions of the
input geometries. Geometries with mis-matching dimensionality do not interact.

-- Returns true (both 3-D on the zero plane)
SELECT 'POINT Z (1 1 0)'::geometry &&&

'POLYGON ((0 0 0, 0 2 0, 2 2 0, 2 0 0, 0 0 0))'::geometry;

-- Returns false (one 2-D one 3-D)
SELECT 'POINT Z (3 3 3)'::geometry &&&

'POLYGON ((0 0, 0 2, 2 2, 2 0, 0 0))'::geometry;

-- Returns true (the volume around the linestring interacts with the point)
SELECT 'LINESTRING Z(0 0 0, 1 1 1)'::geometry &&&

'POINT(0 1 1)'::geometry;

To search the nyc_streets table using the N-D index, just replace the usual && 2-D index operator
with the &&& operator.

-- N-D index operator
SELECT gid, name
FROM nyc_streets
WHERE geom &&&

ST_SetSRID('LINESTRING(586785 4492901,587561 4493037)'::geometry,
→˓26918);

(continues on next page)

28.3. N-D Indexes 163

Introduction to PostGIS, Release 1.1

(continued from previous page)

-- 2-D index operator
SELECT gid, name
FROM nyc_streets
WHERE geom &&

ST_SetSRID('LINESTRING(586785 4492901,587561 4493037)'::geometry,
→˓26918);

The results should be the same. In general the N-D index is very slightly slower than the 2-D index,
so only use the N-D index where you are certain that N-D queries will improve the selectivity of your
queries.

164 Chapter 28. 3-D

CHAPTER

TWENTYNINE

NEAREST-NEIGHBOUR SEARCHING

29.1 What is a Nearest Neighbour Search?

A frequently posed spatial query is: “what is the nearest <candidate feature> to <query feature>?”

Unlike a distance search, the “nearest neighbour” search doesn’t include any measurement restricting
how far away candidate geometries might be, features of any distance away will be accepted, as long as
they are the nearest.

PostgreSQL solves the nearest neighbor problem by introducing an “order by distance” (<->) operator
that induces the database to use an index to speed up a sorted return set. With an “order by distance”
operator in place, a nearest neighbor query can return the “N nearest features” just by adding an ordering
and limiting the result set to N entries.

The “order by distance” operator works for both geometry and geography types. The only difference
between how they work between the two types is the distance value returned. For geometry <-> returns
the same answer as ST_Distance which is dependent on the units of the spatial reference system in use.
For geography the distance value returned is the sphere distance, instead of the more accurate spheroidal
distance that ST_Distance(geography,geography) returns.

Here’s the 3 nearest streets to ‘Broad St’ subway station:

-- Get the geometry of Broad St
SELECT ST_AsEWKT(geom, 1)
FROM nyc_subway_stations
WHERE name = 'Broad St';

SRID=26918;POINT(583571.9 4506714.3)

-- Plug the geometry into a nearest-neighbor query
SELECT streets.gid, streets.name,

ST_Transform(streets.geom, 4326),
streets.geom <-> 'SRID=26918;POINT(583571.9 4506714.3)'::geometry AS dist

FROM
nyc_streets streets

ORDER BY
dist

LIMIT 3;

gid | name | dist
-------+-----------+--------------------
17385 | Wall St | 0.749987508809928

(continues on next page)

165

Introduction to PostGIS, Release 1.1

(continued from previous page)

17390 | Broad St | 0.8836306235191059
17436 | Nassau St | 1.3368280241070414

How can we be sure we are getting an index-assisted query? It’s a good idea to check the EXPLAIN
output for a nearest-neighbor query, because it’s possible to get correct answers from non-indexed SQL
and the lack of an index might not be obvious until the size of the tables scales up.

This is the output from EXPLAIN, note the index scan over the order by:

QUERY PLAN

→˓------
Limit (cost=0.28..79.58 rows=3 width=31)

-> Index Scan using nyc_streets_geom_idx on nyc_streets streets
(cost=0.28..504685.12 rows=19091 width=31)

Order By:
(geom <-> '0101000020266900000EEBD4CF27CF2141BC17D69516315141

→˓'::geometry)

29.2 Nearest Neighbor Join

The index assisted order by operator has one major draw back: it only works with a single geometry
literal on one side of the operator. This is fine for finding the objects nearest to one query object, but
does not help for a spatial join, where the goal is to find the nearest neighbor for each of a full set of
candidates.

Fortunately, there’s a SQL language feature that allows us to run a query repeatedly driven in a loop: the
LATERAL join.

Here we will find the nearest street to each subway station:

SELECT subways.gid AS subway_gid,
subways.name AS subway,

(continues on next page)

166 Chapter 29. Nearest-Neighbour Searching

https://medium.com/kkempin/postgresqls-lateral-join-bfd6bd0199df

Introduction to PostGIS, Release 1.1

(continued from previous page)

streets.name AS street,
streets.gid AS street_gid,
streets.geom::geometry(MultiLinestring, 26918) AS street_geom,
streets.dist

FROM nyc_subway_stations subways
CROSS JOIN LATERAL (
SELECT streets.name, streets.geom, streets.gid, streets.geom <-> subways.

→˓geom AS dist
FROM nyc_streets AS streets
ORDER BY dist
LIMIT 1

) streets;

Note the way the CROSS JOIN LATERAL acts as the inner part of a loop driven by the subways table.
Each record in the subways table gets fed into the lateral subquery, one at a time, so you get a nearest
result for each subway record.

The explain shows the loop on the subway stations, and the index-assisted order by inside the loop where
we want it:

QUERY PLAN

Nested Loop (cost=0.28..13140.71 rows=491 width=37)

-> Seq Scan on nyc_subway_stations subways
(cost=0.00..15.91 rows=491 width=46)

-> Limit
(cost=0.28..1.71 rows=1 width=170)

-> Index Scan using nyc_streets_geom_idx on nyc_streets streets
(cost=0.28..27410.12 rows=19091 width=170)

Order By: (geom <-> subways.geom)

29.2. Nearest Neighbor Join 167

Introduction to PostGIS, Release 1.1

168 Chapter 29. Nearest-Neighbour Searching

CHAPTER

THIRTY

RASTERS

PostGIS supports another kind of spatial data type called a raster. Raster data, much like geometry data,
uses Cartesian coordinates and a spatial reference system. However instead of vector data, raster data
is represented as an n-dimensional matrix consisting of pixels and bands. The bands defines the number
of matrices you have. Each pixel stores a value corresponding to each band. So a 3-banded raster such
as an RGB image, would have 3 values for each pixel corresponding to the Red-Green-Blue bands.

Although pretty pictures such as those you see on your TV screen are rasters, rasters may not be that
exciting to look at. In a nutshell, a raster is a matrix, pinned on a coordinate system, that has values that
can represent anything you want them to represent.

Since rasters live in cartesian space, rasters can interact with geometries. PostGIS offers many func-
tions that take as input both rasters and geometries. Many operations applied to rasters will result in
geometries. Common ones are the ST_Polygon, ST_Envelope, ST_ConvexHull, and ST_MinConvexHull
as shown below. When you cast a raster to a geometry, what is output is the ST_ConvexHull of the raster.

169

Introduction to PostGIS, Release 1.1

The raster format is commonly used to store elevation data, temperature data, satellite data, and thematic
data representing things like environmental contamination, population density, and environmental haz-
ard occurrences. You can use rasters to store any numeric data that has a meaningful coordinate location.
The only restriction is that for all data in a specific band the numeric data types have to be the same.

Although raster data can be created from scratch in PostGIS, a more common approach is to load raster
data from various formats using the raster2pgsql command line tool packaged with PostGIS. Be-
fore all of that, you must enable raster support in your database by running the command:

CREATE EXTENSION postgis_raster;

30.1 Creating Rasters From Geometries

We’ll start off by first creating raster data from vector data, and then move on to the more exciting
approach of loading data from a raster source. You will find that raster data is available in abundance
and often free from various government sites.

We’ll start by converting some geometries into rasters using ST_AsRaster function as follows.

CREATE TABLE rasters (name varchar, rast raster);

INSERT INTO rasters(name, rast)
SELECT f.word, ST_AsRaster(geom, width=>150, height=>150)
FROM (VALUES ('Hello'), ('Raster')) AS f(word)

, ST_Letters(word) AS geom;

CREATE INDEX ix_rasters_rast
ON rasters USING gist(ST_ConvexHull(rast));

The above example CREATEs a table (rasters) from geometries formed from letters using the PostGIS
3.2+ ST_Letters function. Rasters similar to geometries, can take advantage of spatial indexes. The
spatial index used for raster is a functional index that indexes the geometry convexhull of the raster.

You can see some useful metadata of your rasters with the following query which utilizes the postgis
raster ST_Count function to count the number of pixels that have data and the ST_MetaData function to
provide all sorts of useful background info for our rasters.

SELECT name, ST_Count(rast) As num_pixels, md.*
FROM rasters, ST_MetaData(rast) AS md;

name | num_pixels | upperleftx | upperlefty | width | height |
→˓ scalex | scaley | skewx | skewy | srid | numbands
--------+------------+------------+-------------------+-------+--------+---
→˓-----------------+---------------------+-------+-------+------+----------
Hello | 13926 | 0 | 77.10000000000001 | 150 | 150 | 1.
→˓226888888888889 | -0.5173333333333334 | 0 | 0 | 0 | 1
Raster | 11967 | 0 | 75.4 | 150 | 150 | 1.
→˓7226319023207244 | -0.5086666666666667 | 0 | 0 | 0 | 1
(2 rows)

Note: There are two levels of raster functions. There are functions such as ST_MetaData that work
at the raster level and there are functions such as ST_Count function and ST_BandMetaData function

170 Chapter 30. Rasters

https://postgis.net/docs/RT_ST_AsRaster.html
https://postgis.net/docs/ST_Letters.html
https://postgis.net/docs/RT_ST_Count.html
https://postgis.net/docs/RT_ST_MetaData.html
https://postgis.net/docs/RT_ST_BandMetaData.html

Introduction to PostGIS, Release 1.1

that work at the band level. Most functions in postgis raster that work at the band level, work with only
one band at a time, and assume the band you want is 1.

If you have a multi-band raster, and you need to count the pixel not no-data values in a band other than
1, you would explicitly specify the band number as follows ST_Count(rast,2).

Note how all the rasters have a 150x150 dimension. This is not ideal. This means that in order to force
that, our rasters, are squished in all sorts of ways. If only we could see the ugliness of the rasters before
us.

30.2 Loading Rasters using raster2pgsql

raster2pgsql is a command-line tool often packaged with PostGIS. If you are on windows and used ap-
plication stackbuilder PostGIS Bundle, you’ll find raster2pgsql.exe in the folder C:\Program
Files\PostgreSQL\15\bin where the 15 should be replaced with the version of PostgreSQL you
are running.

If you are using Postgres.App, you’ll find raster2pgsql among the other Postgres.app CLI Tools.

On Ubuntu and Debian, you will need

apt install postgis

to have the PostGIS commandline tools installed. This may install an additional version of PostgreSQL
as well. You can see a list of clusters in Debian/Ubuntu using the pg_lsclusters command and
drop them using the pg_dropcluster command.

For this and later exercises, we’ll be using nyc_dem.tif found in the file PG Raster Workshop Dataset
https://postgis.net/stuff/workshop-data/postgis_raster_workshop.zip. For some geometry/raster exam-
ples, we will also be using NYC data loaded from prior chapters. In-lieu of loading the tif, you can
restore the nyc_dem.backup included in the zip file in your database using the pg_restore comman-
dline tool or the pgAdmin Restore menu.

Note: This raster data was sourced from NYC DEM 1-foot Integer which is a 3GB DEM tif representing
elevation relative to sea level with buildings and overwater removed. We then created a lower res version
of it.

The rasterpgsql tool is similar to the shp2gpsql except instead of loading ESRI shapefiles into
PostGIS geometry/geography tables, it loads any GDAL supported raster format into raster tables. Just
like shp2pgsql you can pass it a spatial reference id (SRID) of the source. Unlike shp2pgsql it
can infer the spatial references system of the source data if your source data has suitable metadata.

For a full exposure of all the possible switches offered refer to raster2pgsql options.

Some other notable options raster2pgsql offers which we will not cover are:

• Ability to denote the SRID of the source. Instead, we’ll rely on raster2pgsql guessing skills.

• Ability to set the nodata value, when not specified, raster2pgsql tries to infer from the file.

• Abiliity to load out-of-database rasters.

To load all the tif files in our folder and also create overviews, we would run the below.

30.2. Loading Rasters using raster2pgsql 171

https://postgis.net/docs/using_raster_dataman.html#RT_Raster_Loader
https://postgresapp.com/documentation/cli-tools.html
https://postgis.net/stuff/workshop-data/postgis_raster_workshop.zip
https://postgis.net/stuff/workshop-data/postgis_raster_workshop.zip
https://data.cityofnewyork.us/City-Government/1-foot-Digital-Elevation-Model-DEM-/dpc8-z3jc
https://postgis.net/docs/using_raster_dataman.html#RT_Loading_Rasters

Introduction to PostGIS, Release 1.1

raster2pgsql -d -e -l 2,3 -I -C -M -F -Y -t 256x256 *.tif nyc_dem | psql -
→˓d nyc

• -d to drop the tables if they already exist

• The above command uses -e to do load immediately instead of committing in a transaction

• -C set raster constraints, this is useful for raster_columns to show info. You may want to combine
with -x to exclude the extent constraint, which is a slow constraint to check and also hampers
future loads in the table.

• -M to vacuum and analyze after load, to improve query planner statistics

• -Y to use copy in batches of 50. If you are running PostGIS 3.3 or higher, you can use -Y 1000 to
have copy be in batches of 1000, or even higher number. This will run faster, but will use more
memory.

• -l 2,3 to create over view tables: o_2_ncy_dem and o_3_nyc_dem. This is useful for viewing data.

• -I to create a spatial index

• -F to add file name, if you have only one tif file, this is kinda pointless. If you had multiple, this
would be useful to tell you what file each row came from.

• -t to set the block size. Note if you are not sure the best size use, use -t auto instead and raster2pgql
will use the same tiling as what was in the tif. The output will tell you what the blocksize is it
chose. Cancel if it looks huge or weird. The original file had a size of 300x7 which is not ideal.

• Use psql to run the generated sql against the database. If you want to dump to a file instead, use
> nyc_dem.sql

For this example, we have only one tif file, so we could instead specify the full file name, instead of *.tif.
If the files are not in your current directory, you can also specify a folder path with *.tif.

Note: If you are on windows and need to reference the folder, make sure to include the drive letter such
as C:/workshop/*.tif

You’ll often hear in PostGIS lingo, the term raster tile and raster used somewhat interchangeably. A
raster tile really corresponds to a particular raster in a raster column which is a subset of a bigger raster,
such as this NYC dem data we just loaded. This is because when rasters are loaded into PostGIS from
big raster files, they chopped into many rows to make them manageable. Each raster in each row then is
a part of a bigger raster. Each tile covers same size area denoted by the blocksize you specified. Rasters
are sadly limited by the 1GB PostgreSQL TOAST limit and also the slow process of detoasting and so
we need to chop up in order to achieve decent performance or to even store them.

172 Chapter 30. Rasters

https://www.postgresql.org/docs/current/storage-toast.html

Introduction to PostGIS, Release 1.1

30.3 Viewing Rasters in Browser

Although pgAdmin and psql have no mechanism yet to view postgis rasters, we have a couple of options.
For smallish rasters the easiest is to output to a web-friendly raster format such as PNG using batteries
included postgis raster functions like ST_AsPNG or ST_AsGDALRaster listed in PostGIS Raster output
functions. As your rasters get larger, you’ll want to graduate to a tool such as QGIS to view them in all
their glory or the GDAL family of commandline tools such as gdal_translate to export them to
other raster formats. Remember though, postgis rasters are built for analysis, not for generating pretty
pictures for you to look at.

One caveat, by default all different raster types outputs are disabled. In order to utilize these, you’ll need
to enable drivers, all or a subset as detailed in Enable GDAL Raster drivers

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';

If you don’t want to have to do this for each connection, you can set at the database level using:

ALTER DATABASE nyc SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';

Each new connection to the database will use that setting.

Run the below query and copy and paste the output into the address bar of your web browser.

SELECT 'data:image/png;base64,' ||
encode(ST_AsPNG(rast),'base64')
FROM rasters
WHERE name = 'Hello';

For the rasters created thus far, we didn’t specify the number of bands nor did we even define their
relation to earth. As such our rasters have an unknown spatial reference system (0).

You can think of a rasters exoskeletal as a geometry. A matrix encased in a geometric envelop. In order
to do useful analysis, we need to georeference our rasters, meaning we want each pixel (rectangle) to
represent some meaningful plot of space.

The ST_AsRaster has many overloaded representations. The earlier example used the simplest such
implementation and accepted the default arguments which are 8BUI and 1 band, with no data being 0.
If you need to use the other variants, you should use the named arguments call syntax so that you don’t
accidentally fall into the wrong variant of the function or get function is not unique errors.

If you start with a geometry that has a spatial reference system, you’ll end up with a raster with same
spatial reference system. In this next example, we’ll plop our words in New York in bright cheery colors.

30.3. Viewing Rasters in Browser 173

https://postgis.net/docs/RT_reference.html#Raster_Outputs
https://postgis.net/docs/RT_reference.html#Raster_Outputs
https://postgis.net/docs/postgis_gdal_enabled_drivers.html

Introduction to PostGIS, Release 1.1

We will also use pixel scale instead of width and height so that our raster pixel sizes represent 1 meter x
1 meter of space.

INSERT INTO rasters(name, rast)
SELECT f.word || ' in New York' ,

ST_AsRaster(geom,
scalex => 1.0, scaley => -1.0,
pixeltype => ARRAY['8BUI', '8BUI', '8BUI'],
value => CASE WHEN word = 'Hello' THEN

ARRAY[10,10,100] ELSE ARRAY[10,100,10] END,
nodataval => ARRAY[0,0,0], gridx => NULL, gridy => NULL
) AS rast

FROM (
VALUES ('Hello'), ('Raster')) AS f(word)

, ST_SetSRID(
ST_Translate(ST_Letters(word),586467,4504725), 26918

) AS geom;

If we then look at this, we’ll see a non-squashed colored geometry.

SELECT 'data:image/png;base64,' ||
encode(ST_AsPNG(rast),'base64')
FROM rasters
WHERE name = 'Hello in New York';

Repeat for Raster:

SELECT 'data:image/png;base64,' ||
encode(ST_AsPNG(rast),'base64')
FROM rasters
WHERE name = 'Raster in New York';

What is more telling, if we rerun the

SELECT name, ST_Count(rast) As num_pixels, md.*
FROM rasters, ST_MetaData(rast) AS md;

Observe the metadata of the New York entries. They have the New York state plane meter spatial
reference system. They also have the same scale. Since each unit is 1x1 meter, the width of the word
Raster is now wider than Hello.

174 Chapter 30. Rasters

Introduction to PostGIS, Release 1.1

name | num_pixels | upperleftx | upperlefty | width |
→˓height | scalex | scaley | skewx | skewy | srid
→˓ | numbands
-------------------+------------+------------+-------------------+-------+-
→˓-------+--------------------+---------------------+-------+-------+------
→˓-+----------
Hello | 13926 | 0 | 77.10000000000001 | 150 |
→˓ 150 | 1.226888888888889 | -0.5173333333333334 | 0 | 0 |
→˓0 | 1
Raster | 11967 | 0 | 75.4 | 150 |
→˓ 150 | 1.7226319023207244 | -0.5086666666666667 | 0 | 0 |
→˓0 | 1
Hello in New York | 8786 | 586467 | 4504802.1 | 184 |
→˓ 78 | 1 | -1 | 0 | 0 |
→˓26918 | 3
Raster in New York | 10544 | 586467 | 4504800.4 | 258 |
→˓ 76 | 1 | -1 | 0 | 0 |
→˓26918 | 3
(4 rows)

30.4 Raster Spatial Catalog tables

Similar to the geometry and geography types, raster has a set of catalogs that show you all raster columns
in your database. These are raster_columns and raster_overviews.

30.4.1 raster_columns

The raster_columns view to the sibling to the geometry_columns and geography_columns, providing
much the same data and more, but for raster columns.

SELECT *
FROM raster_columns;

Explore the table, and you’ll find this:

r_table_catalog | r_table_schema | r_table_name | r_raster_column | srid |
→˓scale_x | scale_y | blocksize_x | blocksize_y | same_alignment | regular_
→˓blocking | num_bands | pixel_types | nodata_values | out_db | extent |
→˓spatial_index
----------------+----------------+--------------+-----------------+------+-
→˓--------+---------+-------------+-------------+----------------+---------
→˓---------+-----------+-------------+---------------+--------+--------+---
→˓------------
nyc | public | rasters | rast | 0 |
→˓ | | | | f | f
→˓ | | | | | | t
nyc | public | nyc_dem | rast | 2263 |
→˓ 10 | -10 | 256 | 256 | t | f
→˓ | 1 | {16BUI} | {NULL} | {f} | | t
nyc | public | o_2_nyc_dem | rast | 2263 |
→˓ 20 | -20 | 256 | 256 | t | f
→˓ | 1 | {16BUI} | {NULL} | {f} | | t
nyc | public | o_3_nyc_dem | rast | 2263 |
→˓ 30 | -30 | 256 | 256 | t | f
→˓ | 1 | {16BUI} | {NULL} | {f} | | t

(continues on next page)

30.4. Raster Spatial Catalog tables 175

https://postgis.net/docs/using_raster_dataman.html#RT_Raster_Catalog

Introduction to PostGIS, Release 1.1

(continued from previous page)

(4 rows)

a disappointing row of largely unfilled information for the rasters table.

Unlike geometry and geography, raster does not support type modifiers, because type modifier space is
too limited and there are more critical properties than what can fit in a type modifier.

Raster instead relies on constraints, and reads these constraints back as part of the view.

Look at the other rows from the tables we loaded using raster2pgsql. Because we used the -C
switch raster2pgsql added constraints for the srid and other info it was able to read from the tif
or that we passed in. The overview tables generated with the -l switch o_2_nyc_dem and o_3_nyc_dem
show up as well.

Let’s try to add some constraints to our table.

SELECT AddRasterConstraints('public'::name, 'rasters'::name, 'rast'::name);

And you’ll be bombarded with a whole bunch of notices about how your raster data is a mess and nothing
can be constrained. If you look at raster_columns again, still the same disappointing story of many blank
rows for rasters.

In order for constraints to be applied, all rasters in your table must be constrainable by at least one rule.

We can perhaps do this, let’s just lie and say all our data is in New York State plane.

UPDATE rasters SET rast = ST_SetSRID(rast,26918)
WHERE ST_SRID(rast) <> 26918;

SELECT AddRasterConstraints('public'::name, 'rasters'::name, 'rast'::name);
SELECT r_table_name AS t, r_raster_column AS c, srid,

blocksize_x AS bx, blocksize_y AS by, scale_x AS sx, scale_y AS sy,
ST_AsText(extent) AS e
FROM raster_columns

WHERE r_table_name = 'rasters';

Ah progress:

t | c | srid | bx | by | sx | sy | e
----------+------+-------+-----+-----+----+----+---------------------------
→˓---------------
rasters | rast | 26918 | 150 | 150 | | | POLYGON((0 -0.90000000000.
→˓.
(1 row)

The more you can constrain all your rasters, the more columns you’ll see filled in and also the more
operations you’ll be able to do across all the tiles in your raster. Keep in mind that in some cases, you
may not want to apply all constraints.

For example, if you plan to load more data into your raster table, you’ll want to skip the extent constraint
since that would require that all rasters are within the extent of the extent constraint.

176 Chapter 30. Rasters

Introduction to PostGIS, Release 1.1

30.4.2 raster_overviews

Raster overview columns appear both in the raster_columns meta catalog and another meta catalog
called raster_overviews. Overviews are used mostly to speed up viewing at higher zoom levels. They
can also be used for quick back of the envelop analysis, providing less accurate stats, but at a much faster
speed than applying to the raw raster table.

To inspect the overviews, run:

SELECT *
FROM raster_overviews;

and you’ll see the output:

o_table_catalog | o_table_schema | o_table_name | o_raster_column | r_
→˓table_catalog | r_table_schema | r_table_name | r_raster_column |
→˓overview_factor
----------------+----------------+--------------+-----------------+--------
→˓---------+----------------+--------------+-----------------+-------------
→˓----
nyc | public | o_2_nyc_dem | rast | nyc
→˓ | public | nyc_dem | rast |
→˓ 2
nyc | public | o_3_nyc_dem | rast | nyc
→˓ | public | nyc_dem | rast |
→˓ 3
(2 rows)

The raster_overviews table only provides you the overview_factor and the name of the parent table. All
this information is something you could have figured out yourself by the raster2pgsql naming convention
for overviews.

The overview_factor tells you at what resolution the row is with respect to it’s parent. An
overview_factor of 2 means that 2x2 = 4 tiles can fit into one overview_2 tile. Similarly an
overview_factor of 1 meants that 2x2x2 = 8 tiles of the original can be shoved into an overview_3
tile.

30.5 Common Raster Functions

The postgis_raster extension has over 100 functions to choose from. PostGIS raster function-
ality was patterned after the PostGIS geometry support. You’ll find an overlap of functions between
raster and geometry where it makes sense. Common ones you’ll use that have equivalent in geome-
try world are ST_Intersects, ST_SetSRID, ST_SRID, ST_Union, ST_Intersection, and
ST_Transform.

In addition to those overlapping functions, it supports the && overlap operator between rasters and
between a raster and geometry. It also offers many functions that work in conjunction with geometry or
are very specific to rasters.

You need a function like ST_Union to reconstitute a region. Because performance gets slow, the more
pixels a function needs to analyse, you need a fast acting function ST_Clip to clip the rasters to just
the portions of interest for your analysis.

Finally you need ST_Intersects or && to zoom in on the raster tiles that contain your areas of
interest. The && operator, is a faster process than the ST_Intersects. Both can take advantage of raster

30.5. Common Raster Functions 177

Introduction to PostGIS, Release 1.1

spatial indexes. We’ll cover these bread and butter functions first before moving on to other sections
where we will use them in concert with other raster and geometry functions.

30.5.1 Unioning Rasters with ST_Union

The ST_Union function for raster, just as the geometry equivalent ST_Union, aggregates a set of rasters
together into a single raster. However, just as with geometry, not all rasters can be combined together,
but the rules for raster unioning are more complicated than geometry rules. In the case of geometries,
all you need is to have the same spatial reference system, but for rasters that is not sufficient.

If you were to attempt, the following:

SELECT ST_Union(rast)
FROM rasters;

You’d be summarily punished with an error:

ERROR: rt_raster_from_two_rasters: The two rasters provided do not have the same alignment
SQL state: XX000

What is this same alignment thing, that is preventing you from unioning your precious rasters?

In order for rasters to be combined, they need to be on the same grid so to speak. Meaning they must
have same pixel sizes, same orientation (the skew), same spatial reference system, and their pixels must
not cut into each other, meaning they share the same worldly pixel grid.

If you try the same query, but just with words we carefully placed in New York.

Again, the same error. These are the same spatial ref system, the same pixel sizes, and yet it’s still not
good enough. Because their grids are off.

We can fix this by shifting the upper left y coordinates ever so slightly and then trying again. If our grids
start at integer level since our pixel sizes are whole integer, then the pixels won’t cut into each other.

UPDATE rasters SET rast = ST_SetUpperLeft(rast,
ST_UpperLeftX(rast)::integer,
ST_UpperLeftY(rast)::integer)

WHERE name LIKE '%New York';

SELECT ST_Union(rast ORDER BY name)
FROM rasters
WHERE name LIKE '%New York%';

Voila it worked, and if we were to view, we’d see something like this:

Note: If ever you are unclear why your rasters don’t have the same alignment, you can use the function
ST_SameAlignment, which will compare 2 rasters or a set of rasters and tell you if they have the same
alignment. If you have notices enabled, the NOTICE will tell you what is off with the rasters in question.

178 Chapter 30. Rasters

https://postgis.net/docs/RT_ST_Union.html
https://postgis.net/docs/RT_ST_SameAlignment.html

Introduction to PostGIS, Release 1.1

The ST_NotSameAlignmentReason, instead of just a notice will output the reason. It however only
works with two rasters at a time.

One major way in which the ST_Union(raster) raster function deviates from the ST_Union(geometry)
geometry function is that it allows for an argument called uniontype. This argument by default is set to
LAST if you don’t specify it, which means, take the LAST raster pixel values in occasions where the
raster pixel values overlap. As a general rule, pixels in a band that are marked as no-data are ignored.

Just as with most aggregates in PostgreSQL, you can put a ORDER BY clause as part of the function call
as is done in the prior example. Specifying the order, allows you to control which raster takes priority.
So in our prior example, Raster trumped Hello because Raster is alphabetically last.

Observe, if you switch the order:

SELECT ST_Union(rast ORDER BY name DESC)
FROM rasters
WHERE name LIKE '%New York%';

Then Hello trumps Raster because Hello is now the last overlaid.

The FIRST union type is the reverse of LAST.

But on occassion, LAST may not be the right operation. Let’s suppose our rasters represented two
different sets of observations from two different devices. These devices measure the same thing, and we
aren’t sure which is right when they cross paths, so we’d instead like to take the MEAN of the results.
We’d do this:

SELECT ST_Union(rast, 'MEAN')
FROM rasters
WHERE name LIKE '%New York%';

Voila it worked, and if we were to view, we’d see something like this:

So instead of trumping, we have a blending of the two forces. In the case of MEAN union type, there is
no point in specifying order, because the result would be the average of overlapping pixel values.

Note that for geometries since geometries are vector and thus have no values besides there or not there,
there really isn’t any ambiguity on how to combine two vectors when they intersect.

Another feature of the raster ST_Union we glossed over, is this idea of if you should return all bands or
just some bands. When you don’t specify what bands to union, ST_Union will combine same banded
numbers and use the LAST unioning strategy. If you have multiple bands, this may not be what you

30.5. Common Raster Functions 179

https://postgis.net/docs/RT_ST_NotSameAlignmentReason.html
https://postgis.net/docs/RT_ST_Union.html
https://postgis.net/docs/ST_Union.html

Introduction to PostGIS, Release 1.1

want to do. Perhaps you only want to union, the second band. In this case, the Green Band and you want
the count of pixel values.

SELECT ST_BandPixelType(ST_Union(rast, 2, 'COUNT'))
FROM rasters
WHERE name LIKE '%New York%';

st_bandpixeltype

32BUI
(1 row)

Note in the case of the COUNT union type, which counts the number of pixels filled in and returns that
value, the result is always a 32BUI similar to how when you do a COUNT in sql, the result is always a
bigint, to accommodate large counts.

In other cases, the band pixel type does not change and is set to the max value or rounded if the amounts
exceed the bounds of the type. Why would anyone ever want to count pixels that intersect at a location.
Well suppose each of your rasters represent police squadrons and incidents of arrests in the areas. Each
value, might represent a different kind of arrest reason. You are doing stats on how many arrests in each
region, therefore you only care about the count of arrests.

Or perhaps, you want to do all bands, but you want different strategies.

SELECT ST_Union(rast, ARRAY[(1, 'MAX'),
(2, 'MEAN'),
(3, 'RANGE')]::unionarg[])
FROM rasters
WHERE name LIKE '%New York%';

Using the unionarg[] variant of the ST_Union function, also allows you to shuffle the order of the
bands.

30.5.2 Clipping Rasters with help of ST_Intersects

The ST_Clip function is one of the most widely used functions for PostGIS rasters. The main reason is
the more pixels you need to inspect or do operations on, the slower your processing. ST_Clip clips your
raster to just the area of interest, so you can isolate your operations to just that area.

This function is also special in that it utilizes the power of geometry to help raster analysis. To reduce
the number of pixels, ST_Union has to handle, each raster is clipped first to the area we are interested
in.

SELECT ST_Union(ST_Clip(r.rast, g.geom))
FROM rasters AS r

INNER JOIN
ST_Buffer(ST_Point(586598, 4504816, 26918), 100) AS g(geom)
ON ST_Intersects(r.rast, g.geom)

WHERE r.name LIKE '%New York%';

This example showcases several functions working in unison. The ST_Intersects function em-
ployed is the one packaged with postgis_raster and can intersect 2 rasters or a raster and a geometry.
Similar to the geometry ST_Intersects the raster ST_Intersects can take advantage of spatial in-
dexes on the raster or geometry tables.

180 Chapter 30. Rasters

https://postgis.net/docs/RT_ST_Clip.html
https://postgis.net/docs/RT_ST_Intersects.html

Introduction to PostGIS, Release 1.1

30.6 Converting Rasters to Geometries

Rasters can just as easily be morphed into geometries.

30.6.1 The polygon of a raster with ST_Polygon

Lets start with our prior example, but convert it to a polygon using ST_Polygon function.

SELECT ST_Polygon(ST_Union(ST_Clip(r.rast, g.geom)))
FROM rasters AS r

INNER JOIN
ST_Buffer(ST_Point(586598, 4504816, 26918), 100) AS g(geom)
ON ST_Intersects(r.rast, g.geom)

WHERE r.name LIKE '%New York%';

If you click on the geometry viewer in pgAdmin, you can see this in all it’s glory without any hacks.

ST_Polygon considers all the pixels that have values (not no-data) in a particular band, and converts
them to geometry. Like many other functions in raster, ST_Polygon only considers 1 band. If no band
is specified, it will consider only the first band.

30.6. Converting Rasters to Geometries 181

https://postgis.net/docs/RT_ST_Polygon.html

Introduction to PostGIS, Release 1.1

30.6.2 The pixel rectangles of a raster with ST_PixelAsPolygons

Another popularly used function is the ST_PixelAsPolygons function. You should rarely use
ST_PixelAsPolygons on a large raster without first clipping because you will end up with mil-
lions of rows, one for each pixel.

ST_PixelAsPolygons returns a table consisting of geom, val, x, and y. Where x is the column
number, and y is the row number in the raster.

ST_PixelAsPolygons similar to other raster functions works on one band at a time and works on
band 1 if no band is specified. It also by default returns only pixels that have values.

SELECT gv.*
FROM rasters AS r

CROSS JOIN LATERAL ST_PixelAsPolygons(rast) AS gv
WHERE r.name LIKE '%New York%'
LIMIT 10;

Which outputs:

and if we inspect using the geometry viewer, we’d see:

If we want all pixels of all our bands, we’d need to do something like below. Note the differences in this
example from previous.

1. Setting exclude_nodata_value to make sure all pixels are returned so that our sets
of calls return the same number of rows. The rows out of the function will be naturally in

182 Chapter 30. Rasters

https://postgis.net/docs/RT_ST_PixelAsPolygons.html

Introduction to PostGIS, Release 1.1

the same order.

2. Using the PostgreSQL ROWS FROM constructor , and aliasing each set of columns from
our function output with names. So for example the band 1 columns (geom, val, x, y) are
renamed to g1, v1, x1, x2

SELECT pp.g1, pp.v1, pp.v2, pp.v3
FROM rasters AS r

CROSS JOIN LATERAL
ROWS FROM (
ST_PixelAsPolygons(rast, 1, exclude_nodata_value => false),
ST_PixelAsPolygons(rast, 2, exclude_nodata_value => false),
ST_PixelAsPolygons(rast, 3, exclude_nodata_value => false)
) AS pp(g1, v1, x1, y1,

g2, v2, x2, y2,
g3, v3, x3, y3)

WHERE r.name LIKE '%New York%'
AND (pp.v1 = 0 OR pp.v2 > 0 OR pp.v3 > 0) ;

Note: We used CROSS JOIN LATERAL in these examples because we wanted to be explicit what we
are doing. Since these are all set returning functions, you can replace CROSS JOIN LATERAL with ,
for short-hand. We’ll use a , in the next set of examples

30.6.3 Dumping polygons with ST_DumpAsPolygons

Raster also introduces an additional composite type called a geomval. Consider a geomval as the
offspring of a geometry and raster. It contains a geometry and it contains a pixel value.

You will find several raster functions that return geomvals.

A commonly used function that outputs geomvals is ST_DumpAsPolygons, which returns a set of con-
tiguous pixels with the same value as a polygon. Again this by default will only check band 1 and
exclude no data values unless you override. This example selects only polygons from band 2. You can
also apply filters to the values. For most use cases, ST_DumpAsPolygons is a better option than
ST_PixelAsPolygons as it will return far fewer rows.

This will output 6 rows, and return polygons corresponding to the letters in “Raster”.

SELECT gv.geom , gv.val
FROM rasters AS r,

ST_DumpAsPolygons(rast, 2) AS gv
WHERE r.name LIKE '%New York%'

AND gv.val = 100;

Note that it doesn’t return a single geometry, because it finds continguous set of pixels with the same
value that form a polygon. Even though all these values are the same, they are not continguous.

30.6. Converting Rasters to Geometries 183

https://www.postgresql.org/docs/current/queries-table-expressions.html#QUERIES-TABLEFUNCTIONS
https://postgis.net/docs/RT_ST_DumpAsPolygons.html

Introduction to PostGIS, Release 1.1

A common approach to produce more complex geometries is to group by the values and union.

SELECT ST_Union(gv.geom) AS geom , gv.val
FROM rasters AS r,

ST_DumpAsPolygons(rast, 2) AS gv
WHERE r.name LIKE '%New York%'
GROUP BY gv.val;

This will give you 2 rows back corresponding to the words “Raster” and “Hello”.

30.7 Statistics

The most important thing to understand about rasters is that they are statistical tools for storing data in
arrays, that you may happen to be able to make look pretty on a screen.

You can find a menu of these statistical functions in Raster Band Statistics.

30.7.1 ST_SummaryStatsAgg and ST_SummaryStats

Want all stats for a set or rasters, reach for the function ST_SummaryStatsAgg.

This query takes about 10 seconds and gives you a summary of the whole table:

SELECT (ST_SummaryStatsAgg(rast, 1, true, 1)).* AS sa
FROM o_3_nyc_dem;

Outputs:

count | sum | mean | stddev | min | max
-----------+------------+------------------+------------------+-----+-----
246794100 | 4555256024 | 18.4577184948911 | 39.4416860598687 | 0 | 411
(1 row)

Which tells we have a lot of pixels and our max elevation is 411 ft.

If you have built overviews, and just need a rough estimate of your mins, maxs, and means use one of
your overviews. This next query returns roughly the same values for mins, maxs, and means as the prior
but in about 1 second instead of 10.

SELECT (ST_SummaryStatsAgg(rast, 1, true, 1)).* AS sa
FROM o_3_nyc_dem ;

Now armed with this bit of information, we can ask more questions.

184 Chapter 30. Rasters

https://postgis.net/docs/RT_reference.html#RasterBand_Stats
https://postgis.net/docs/RT_ST_SummaryStatsAgg.html

Introduction to PostGIS, Release 1.1

30.7.2 ST_Histogram

Generally you won’t want stats for your whole table, but instead just stats for a particular area, in
that case, you’ll want to also employ our old friends ST_Intersects and ST_Clip. If you are
also in need of a raster statistics function that doesn’t have an aggregate version, you’ll want to carry
ST_Union along for the ride.

For this next example we’ll use a different stats function ST_Histogram which has no aggregate equiv-
alent, and for this particular variant, is a set returning function. We are using the same area of interest
as some prior examples, but we also need to employ geometry ST_Transform to transform our NY
state plane meters geometry to our NYC State Plane feet rasters. It is almost always more performant to
transform the geometry instead of raster and definitely if your geometry is just a single one.

SELECT (ST_Quantile(ST_Union(ST_Clip(r.rast, g.geom)), ARRAY[0.25,0.50,
→˓0.75, 1.0])).*

FROM nyc_dem AS r
INNER JOIN
ST_Transform(

ST_Buffer(ST_Point(586598, 4504816, 26918), 100),
2263) AS g(geom)

ON ST_Intersects(r.rast, g.geom);

the above query completes in under 60ms and outputs:

quantile | value
----------+-------

0.25 | 52
0.5 | 57
0.75 | 68
1 | 78

(4 rows)

30.8 Creating Derivative Rasters

PostGIS raster comes packaged with a number of functions for editing rasters. These functions are both
used for editing as well as creating derivative raster data sets. You will find these listed in Raster Editors
and Raster Management.

30.8.1 Transforming rasters with ST_Transform

Most of our data is in NY State Plane meters (SRID: 26918), however our DEM raster dataset is in NY
State Plane feet (SRID: 2263). For the least cumbersome workflow, we need our core datasets to be in
the same spatial reference system.

The raster ST_Transform is the function most suited for this job.

In order to create a new nyc dem dataset in NY State Plane meters, we’ll do the following:

CREATE TABLE nyc_dem_26918 AS
WITH ref AS (SELECT ST_Transform(rast,26918) AS rast

FROM nyc_dem LIMIT 1)
SELECT r.rid, ST_Transform(r.rast, ref.rast) AS rast, r.filename
FROM nyc_dem AS r, ref;

30.8. Creating Derivative Rasters 185

https://postgis.net/docs/RT_ST_Histogram.html
https://postgis.net/docs/RT_reference.html#Raster_Editors
https://postgis.net/docs/RT_reference.html#Raster_Management_Functions
https://postgis.net/docs/RT_ST_Transform.html

Introduction to PostGIS, Release 1.1

The above on my system took about 1.5 minutes. For a larger data set it would take much longer.

The aforementioned examples used two variants of the ST_Transform raster function. The first was
to get a reference raster that will be used to transform the other raster tiles to guarantee that all tiles have
the same alignment. Note the second variant of ST_Transform used doesn’t even take an input SRID.
This is because the SRID and all the pixel scale and block sizes are read from the reference raster. If
you used ST_Transform(rast, srid) form, then all your rasters might come out with different alignment
making it impossible to apply an operation such as ST_Union on them.

The only problem with the aforementioned ST_Transform approach is that when you transform, the
transformed often exists in other tiles. If you looked at the above output closely enough by outputting
the convex hull of the rasters, in the next example you’d see annoying overlaps around the borders.

SELECT rast::geometry
FROM nyc_dem_26918
ORDER BY rid

LIMIT 100;

viewed in pgAdmin would look something like:

30.8.2 Using ST_MakeEmptyCoverage to create even tiled rasters

A better approach, albeit a bit slower, is to define your own coverage tile structure from scratch using
ST_MakeEmptyCoverage and then find the intersecting tiles for each new tile, and ST_Union these and
then use ST_Transform(ref, ST_Union. . .) to create each tile.

For this we’ll be using quite a few functions, we learned about earlier.

DROP TABLE IF EXISTS nyc_dem_26918;
CREATE TABLE nyc_dem_26918 AS
SELECT ROW_NUMBER() OVER(ORDER BY t.rast::geometry) AS rid,

ST_Union(ST_Clip(ST_Transform(r.rast, t.rast, 'Bilinear'), t.
→˓rast::geometry), 'MAX') AS rast
FROM (SELECT ST_Transform(

ST_SetSRID(ST_Extent(rast::geometry),2263)
, 26918) AS geom

FROM nyc_dem
) AS g, ST_MakeEmptyCoverage(tilewidth => 256, tileheight => 256,

width => (ST_XMax(g.geom) - ST_XMin(g.geom))::integer,
height => (ST_YMax(g.geom) - ST_YMin(g.geom))::integer,
upperleftx => ST_XMin(g.geom),
upperlefty => ST_YMax(g.geom),
scalex => 3.048,
scaley => -3.048,

(continues on next page)

186 Chapter 30. Rasters

https://postgis.net/docs/RT_ST_MakeEmptyCoverage.html

Introduction to PostGIS, Release 1.1

(continued from previous page)

skewx => 0., skewy => 0., srid => 26918) AS t(rast)
INNER JOIN nyc_dem AS r
ON ST_Transform(t.rast::geometry, 2263) && r.rast

GROUP BY t.rast;

Repeating the same exercise as earlier:

SELECT rast::geometry
FROM nyc_dem_26918
ORDER BY rid

LIMIT 100;

viewed in pgAdmin we no longer have overlaps:

On my system this took ~10 minutes and returned 3879 rows. After the creation of the table, we’ll want
to do the usual of adding a spatial index, primary key, and constraints as follows:

ALTER TABLE nyc_dem_26918
ADD CONSTRAINT pk_nyc_dem_26918 PRIMARY KEY(rid);

CREATE INDEX ix_nyc_dem_26918_st_convexhull_gist
ON nyc_dem_26918 USING gist(ST_ConvexHull(rast));

SELECT AddRasterConstraints('nyc_dem_26918'::name, 'rast'::name);
ANALYZE nyc_dem_26918;

Which should take under 2 minutes for this dataset.

30.8.3 Creating overview tables with ST_CreateOverview

Just as with our original dataset, it would be useful to have overview tables to speed up perfor-
mance of some operations. ST_CreateOverview is a function fit for that purpose. You can use
ST_CreateOverview to create overviews also if you neglected to create one during the raster2pgsql
load or you decided, you need more overviews.

We’ll create level 2 and 3 overviews as we had done with our original using this code.

SELECT ST_CreateOverview('nyc_dem_26918'::regclass, 'rast', 2);
SELECT ST_CreateOverview('nyc_dem_26918'::regclass, 'rast', 3);

This process sadly takes a while, and a longer while the more rows you have so be patient. For this
dataset it took about 3-5 minutes for the overview factor 2 and 1 minute for the overview factor 3.

30.8. Creating Derivative Rasters 187

https://postgis.net/docs/RT_CreateOverview.html

Introduction to PostGIS, Release 1.1

The ST_CreateOverView function also adds in the needed constraints so the columns appear with
full detail in the raster_columns and raster_overviews catalogs. It does not add indexes to them though
and also does not add an rid column. The rid column is probably not necessary unless you need a primary
key to edit with. You would probably want an index which you can create with the following:

CREATE INDEX ix_o_2_nyc_dem_26918_st_convexhull_gist
ON o_2_nyc_dem_26918 USING gist(ST_ConvexHull(rast));

CREATE INDEX ix_o_3_nyc_dem_26918_st_convexhull_gist
ON o_3_nyc_dem_26918 USING gist(ST_ConvexHull(rast));

Note: ST_CreateOverview has an optional argument for denoting the sampling method. If not specified
it uses the default NearestNeighbor which is generally the fastest to compute but may not be ideal.
Resampling methods is beyond the scope of this workshop.

30.9 The intersection of rasters and geometries

There are a couple of functions commonly used to compute intersections of rasters and geometries.
We’ve already seen ST_Clip in action which returns the intersection of a raster and geometry as a
raster, but there are others. For point data, the most commonly used is ST_Value and then there is the
ST_Intersection which has several overloads some returning rasters and some returning a set of
geomval.

30.9.1 Pixel values at a geometric Point

If you need to return values from rasters based on intersection of several ad-hoc geometry points, you’ll
use ST_Value or it’s nearest relative ST_NearestValue.

SELECT g.geom, ST_Value(r.rast, g.geom) AS elev
FROM nyc_dem_26918 AS r

INNER JOIN
(SELECT id, geom

FROM nyc_homicides
WHERE weapon = 'gun') AS g
ON r.rast && g.geom;

This example takes about 1 second to return 2444 rows. If you used ST_Intersects instead of
&&, the process would take about 3 seconds. The reason ST_Intersects is slower is that it performs an
additional recheck in some cases a pixel by pixel check. If you expect all your points to be represented
with data in your raster set and your rasters represent a coverage (a continguous set non-overlapping
raster tiles), then && is generally a speedier option.

If your raster data is not densely populated or you have overlapping rasters (e.g. they represent differ-
ent observations in time), or they are skewed (not axis aligned) then there is an advantage to having
ST_Intersects weed out the false positives.

188 Chapter 30. Rasters

https://postgis.net/docs/RT_ST_Value.html
https://postgis.net/docs/RT_ST_NearestValue.html

Introduction to PostGIS, Release 1.1

30.9.2 ST_Intersection raster style

Just as you can compute the intersection of two geometries using ST_Intersection, you can com-
pute intersection of two rasters or a raster and a geometry using raster ST_Intersection.

What you get out of this beast, are two different kinds of things:

• Intersect a geometry with a raster, and you get a set of geomval offspring. Perhaps one, but most
often many.

• Intersect 2 rasters and you get a single raster back.

The golden rule for both raster intersection and geometry intersection is that both parties involved must
have the same spatial reference system. For raster/raster, they also have to have same alignment.

Here is an example which answers a question you may have been curious about. If we bucket our
elevations into 5 buckets of elevation values, which elevation range results in the most gun fatalities?
We know based on our earlier summary statistics that 0 is the lowest value and 411 is the highest value
for elevation in our nyc dem dataset, so we use that as min and max value for our width_bucket call.

SELECT ST_Transform(ST_Union(gv.geom),4326) AS geom ,
MIN(gv.val) AS min_elev, MAX(gv.val) AS max_elev,

count(g.id) AS count_guns
FROM nyc_dem_26918 AS r

INNER JOIN nyc_homicides AS g
ON ST_Intersects(r.rast, g.geom)

CROSS JOIN
ST_Intersection(g.geom,
ST_Clip(r.rast,ST_Expand(g.geom, 4))
) AS gv

WHERE g.weapon = 'gun'
GROUP BY width_bucket(gv.val, 0, 411, 5)
ORDER BY width_bucket(gv.val, 0, 411, 5);

Is there an important correlation between gun homicides and elevation? Probably not.

Let’s take a look at raster / raster intersection:

SELECT ST_Intersection(r1.rast, 1, r2.rast, 1, 'BAND1')
FROM nyc_dem_26918 AS r1
INNER JOIN

rasters AS r2 ON ST_Intersects(r1.rast,1, r2.rast, 1);

What we get are two rows with NULLLs, and if you have your PostgreSQL set to show notices, you’ll
see:

NOTICE: The two rasters provided do not have the same alignment. Returning NULL

In order to fix this, we can align one to the other as it’s coming out of the gate using ST_Resample.

SELECT ST_Intersection(r1.rast, 1,
ST_Resample(r2.rast, r1.rast), 1,

'BAND1')
FROM nyc_dem_26918 AS r1
INNER JOIN

rasters AS r2 ON ST_Intersects(r1.rast,1, r2.rast, 1);

Let’s also roll it up into a single stats record

30.9. The intersection of rasters and geometries 189

https://postgis.net/docs/RT_ST_Intersection.html
https://www.postgresql.org/docs/current/functions-math.html
https://postgis.net/docs/RT_ST_Resample.html

Introduction to PostGIS, Release 1.1

SELECT (
ST_SummaryStatsAgg(

ST_Intersection(r1.rast, 1,
ST_Resample(r2.rast, r1.rast), 1, 'BAND1'),

1, true)
).*

FROM nyc_dem_26918 AS r1
INNER JOIN

rasters AS r2 ON ST_Intersects(r1.rast,1, r2.rast, 1);

which outputs:

count | sum | mean | stddev | min | max
-------+-------+-----------------+------------------+-----+-----

2075 | 99536 | 47.969156626506 | 9.57974836865737 | 33 | 62
(1 row)

30.10 Map Algebra Functions

Map algebra is the idea that you can do math on your pixel values. The ST_Union and
ST_Intersection functions covered earlier are a special fast case of map algebra. Then there are
the ST_MapAlgebra family of functions which allow you to define your own crazy math, but at cost of
performance.

People have the habit of jumping to ST_MapAlgebra, probably cause the name sounds so cool and
sophisticated. Who wouldn’t want to tell their friends, “I’m using a function called ST_MapAlgebra.”
My advice, explore other functions before you jump for that shot-gun. Your life will be simpler and your
performance will be 100 times better, and your code will be shorter.

Before we showcase ST_MapAlgebra, we’ll explore other functions that fit under the Map Algebra
family of functions and generally have better performance than ST_MapAlgebra.

30.10.1 Reclassify your raster using ST_Reclass

An often overlooked map-algebraish function is the ST_Reclass function, who sits in the background
waiting for someone to discover the power and speed it can offer.

What does ST_Reclass do? It as the name implies, reclassifies your pixel values based on minimalist
range algebra.

Lets revisit our NYC Dems. Perhaps we only care about classifying our elevations as 1) low, 2) medium,
3) high , and 4) really high. We don’t need 411 values, we just need 4. With that said lets do some
reclassifying.

The classification scheme is governed by the reclass expression.

WITH r AS (SELECT ST_Union(newrast) As rast
FROM nyc_dem_26918 AS r

INNER JOIN ST_Buffer(ST_Point(586598, 4504816, 26918), 1000) AS
→˓g(geom)

ON ST_Intersects(r.rast, g.geom)
CROSS JOIN ST_Reclass(ST_Clip(r.rast,g.geom), 1,

'[0-10):1, [10-50):2, [50-100):3,[100-:4','4BUI',0) AS newrast

(continues on next page)

190 Chapter 30. Rasters

https://postgis.net/docs/RT_ST_Polygon.html
https://postgis.net/docs/RT_ST_Reclass.html
https://postgis.net/docs/reclassarg.html

Introduction to PostGIS, Release 1.1

(continued from previous page)

)
SELECT SUM(ST_Area(gv.geom)::numeric(10,2)) AS area, gv.val

FROM r, ST_DumpAsPolygons(rast) AS gv
GROUP BY gv.val
ORDER BY gv.val;

Which would output:

area | val
------------+-----

6754.04 | 1
1753117.51 | 2
1355232.37 | 3

1848.75 | 4
(4 rows)

If this were a classification scheme we preferred, we could create a new table using the ST_Reclass to
recompute each tile.

30.10.2 Coloring your rasters with ST_ColorMap

The ST_ColorMap function is another mapalgebraish function that reclassifies your pixel values. Except
it is band creating. It converts a single band raster such as our Dems into a visually presentable 3 or 4
banded raster.

You could use one of the built-in colormaps as below if you don’t want to fuss with creating one.

SELECT ST_ColorMap(ST_Union(newrast), 'bluered') As rast
FROM nyc_dem_26918 AS r

INNER JOIN
ST_Buffer(

ST_Point(586598, 4504816, 26918), 1000
) AS g(geom)

ON ST_Intersects(r.rast, g.geom)
CROSS JOIN ST_Clip(rast, g.geom) AS newrast;

Which looks like:

30.10. Map Algebra Functions 191

https://postgis.net/docs/RT_ST_ColorMap.html

Introduction to PostGIS, Release 1.1

The bluer the color the lower the elevation and the redder the color the higher the elevation.

192 Chapter 30. Rasters

CHAPTER

THIRTYONE

TOPOLOGY

PostGIS supports the SQL/MM SQL-MM 3 Topo-Geo and Topo-Net 3 specifications via an extension
called postgis_topology. You can learn about all the functions and types provided by this extension in
Manual: PostGIS Topology. The postgis_topology extension includes another kind of core spatial type,
called a topogeometry. In addition to the topogeometry spatial type, you will find functions for building
topologies and populating topologies.

Before you can start using topologies, you must install postgis_topology extension as follows:

CREATE EXTENSION postgis_topology;

After you install the extension, you will see a new schema in your database called topology. The topology
schema catalogs all the topologies in your database.

The topology schema contains two tables and all the helper functions for topology.

• topology - lists all the topologies in your database, and what schema they are stored in

• layer - lists all the table columns in your database that hold topogeometries

The layer table is very similar to the raster_columns, geometry_columns, and geography_columns cat-
alogs we learned about earlier, but specifically for topogeometries.

31.1 Creating topologies

What exactly is a topology and a topogeometry, and how are they related? Before we explain, let’s start
by creating a topology to house our NYC topologically perfect data using the CreateTopology function
and set the tolerance to be 0.5 meters. Note the 0.5 is in meters since our spatial reference system is
State Plany NY meters.

SELECT topology.CreateTopology('nyc_topo', 26918, 0.5);

Which outputs:

1

Which is the id it assigned the new topology. Once you run the above command, you will see a new
schema in your database called nyc_topo. You can name the topology anything you want. My convention
is to add _topo at the end to distinguish it from other schemas I have in my database.

If you explore the topology.topology table,

193

https://postgis.net/docs/Topology.html
https://postgis.net/docs/CreateTopology.html

Introduction to PostGIS, Release 1.1

SELECT * FROM topology.topology;

You will see:

id | name | srid | precision | hasz
----+----------+-------+-----------+------

1 | nyc_topo | 26918 | 0 | f
(1 row)

31.2 Storage of topologies and topogeometries

A topology is implemented as a schema in a PostgreSQL database. If you explore the nyc_topo schema,
you will see these tables and views:

• edge - This is a view built against edge_data, mostly for SQL/MM compliance. It has a sub-
set of the columns in the edge_data table.

• edge_data - Contains all the linestrings that make up the topology

• face - Contains a list of all closed surfaces that can be formed from the edge_data. It does
not contain the actual geometry, but instead just the bounding box of the geometry.

• node - Contains all the start and end points of all edges as well as points not connected to anything
(isolated nodes)

• relation - this defines what elements in a topology make up a topogeometry.

So what is a topogeometry? A topogeometry is a representation of a geometry formed from the edges,
faces, nodes, and other topogeometries in a topology.

Where does a topogeometry reside? It resides somewhere else which references elements of a topology
via the relation table. Although we could throw the topogeometries in our nyc_topo schema, the general
convention, is to define other tables in other schemas that have a topogeometry, and also have any other
kind of data you might be interested in tracking.

31.3 Why use topogeometries?

Using topogeometries keeps your data tidy and connected. Topogeometries are very useful for Cadastral
work, where you want to make sure two parcels of land don’t overlap each other even if you change
the boundaries of one or you want to make sure roads stay connected as you change the geometries that
form them. Geometries live in an island of their own, you can duplicate them, morph them. Geometries
are carefree, not caring about other geometries that share space with them. Topogeometries, in contrast,
follow the rules of their topology; they can’t exist unless there is an edge, node, face, or other topoge-
ometry that defines them. A topogeometry belongs to one and only one topology. A topogeometry is
a relational model of a geometry and as such as each component (edges/faces/nodes) are moved, added
etc, they change not one topogeometry shape, but all topogeometries that have components in common.

We have an nyc_topo topology devoid of any data. Let’s populate it with our NYC data. Topology edges,
faces, and nodes can be created in 2 keys ways.

• Edges, Faces, and Nodes can be created directly using topology primitive functions.

194 Chapter 31. Topology

Introduction to PostGIS, Release 1.1

• Edges, Faces, and Nodes can be formed by creating topogeometries. When a topogeometry is
created from a geometry and their are missing edges, faces, or nodes that match its coordinates,
then new edges, faces, and nodes are created as part of the process.

31.4 Defining topogeometry columns and creating topogeome-
tries

The most common way to populate topologies is to create topogeometries. Lets start by creating a
table to hold neighborhoods and then add a topogeometry column using the AddTopoGeometryColumn
function.

CREATE TABLE nyc_neighborhoods_t(boroname varchar(43), name varchar(67),
CONSTRAINT pk_nyc_neighborhoods_t PRIMARY KEY(boroname,name));

SELECT topology.AddTopoGeometryColumn('nyc_topo', 'public', 'nyc_
→˓neighborhoods_t',
'topo', 'POLYGON') As layer_id;

The output of the above is:

layer_id

1

Now we are ready to populate our table. It’s best to ensure your geometries are valid before adding,
otherwise you’ll get errors such as SQLMM geometry is not simple.

So lets start by adding valid ones. The 1 used here refers to the layer_id generated from the previous
query. If you don’t know the layer id, you would look it up using the FindLayer function which we’ll
use in later examples.

For these examples you’ll use the function toTopoGeom function to convert a geometry to it’s topoge-
ometry equivalent. toTopoGeom function handles a lot of book-keeping for you.

The toTopoGeom function inspects the geometry passed in and injects nodes, edges, and faces as needed
into your topology to form the shape of the geometry. It will then add relationships to the relation table
that defines how this new topogeometry is related to these new and existing topology elements. In some
cases pieces of the geometry may exist or existing pieces need to be split to form the new geometry.

INSERT INTO nyc_neighborhoods_t(boroname,name, topo)
SELECT boroname, name, topology.toTopoGeom(geom, 'nyc_topo', 1)

FROM nyc_neighborhoods
WHERE ST_ISvalid(geom);

The above step should take 3-4 secs. Now lets add the invalid ones:

INSERT INTO nyc_neighborhoods_t(boroname,name, topo)
SELECT boroname, name, topology.toTopoGeom(

ST_UnaryUnion(
ST_CollectionExtract(

ST_MakeValid(geom), 3)
), 'nyc_topo', 1)

FROM nyc_neighborhoods
WHERE NOT ST_ISvalid(geom);

31.4. Defining topogeometry columns and creating topogeometries 195

https://postgis.net/docs/AddTopoGeometryColumn.html
https://postgis.net/docs/FindLayer.html
https://postgis.net/docs/toTopoGeom.html

Introduction to PostGIS, Release 1.1

The above should take about 300-400ms.

Now we have data in our topology. A quick check will show, nyc_topo.edge, nyc_topo.node, and
nyc_topo.face have data:

SELECT 'edge' AS name, count(*)
FROM nyc_topo.edge

UNION ALL
SELECT 'node' AS name, count(*)

FROM nyc_topo.node
UNION ALL
SELECT 'face' AS name, count(*)

FROM nyc_topo.face;

outputs:

name | count
------+-------
edge | 580
node | 396
face | 218
(3 rows)

Now we can express declaritively that boros are formed from a collection of neighborhoods by defin-
ing a column called topo in nyc_boros_t table that is of type POLYGON and is a collection of other
topogeometries from nyc_neighborhoods_t.topo column.

CREATE TABLE nyc_boros_t(boroname varchar(43),
CONSTRAINT pk_nyc_boros_t PRIMARY KEY(boroname));

SELECT topology.AddTopoGeometryColumn('nyc_topo', 'public', 'nyc_boros_t',
'topo', 'POLYGON',

(topology.FindLayer('public', 'nyc_neighborhoods_t', 'topo')).layer_id
) AS layer_id;

Which outputs:

In order to populate this new table, we’ll use the CreateTopoGeom function. Instead of starting with
geometries to form a new topogeometry, the CreateTopoGeom starts with existing topology elements
which may be primitives or other topogeometries to define a new topogeometry.

INSERT INTO nyc_boros_t(boroname, topo)
SELECT n.boroname,

topology.CreateTopoGeom('nyc_topo',
3, (topology.FindLayer('public', 'nyc_boros_t', 'topo')).layer_id ,

topology.TopoElementArray_Agg(ARRAY[(n.topo).id, (n.topo).layer_id
→˓]::topoelement))
FROM nyc_neighborhoods_t AS n

GROUP BY n.boroname;

Which will insert 5 records corresponding to the boroughs of New York.

Note: If you are using PostGIS 3.4 or higher, you can use the new cast to cast a topogeometry to
a topoelement, and replace topology.TopoElementArray_Agg(ARRAY[(n.topo).id, (n.topo).layer_id
]::topoelement)) in the above example with the shorter topology.TopoElementArray_Agg(
n.topo::topoelement)

196 Chapter 31. Topology

https://postgis.net/docs/CreateTopoGeom.html

Introduction to PostGIS, Release 1.1

To view these in pgAdmin, you can cast the topogeometry to a geometry as follows:

SELECT boroname, topo::geometry AS geom
FROM nyc_boros_t;

The output will look like below:

If you are thinking, what a total mess, yes it is a total mess. This is what happens after numerous cycles
of simplification and other geometry processes where each geometry is treated as a separate unit. You
get gaps, you get dangling islands, and neighborhoods encroaching on each other’s territory.

Luckily we can use topology to clean up this mess and to help us maintain good clean connected data.

Let’s put our land surveyor hat on and ask the question, if we are dividing our plots of land into districts
(boros or neighborhoods) such that each district may border other districts but should not share any area
in common, does it make sense for districts to have areas in common? No it does not make sense. And
here we are with our data pointing out some areas belong to more than one neighborhood or more than
one borough.

Lets first look at boros and look for neighborhoods that share elements in common:

31.4. Defining topogeometry columns and creating topogeometries 197

Introduction to PostGIS, Release 1.1

SELECT te, array_agg(DISTINCT b.boroname)
FROM nyc_boros_t AS b, topology.GetTopoGeomelements(topo) AS te
GROUP BY te
HAVING count(DISTINCT b.boroname) > 1;

The output is:

te | array_agg
--------+-------------------
{44,3} | {Brooklyn,Queens}
{51,3} | {Brooklyn,Queens}
{76,3} | {Brooklyn,Queens}
{114,3} | {Brooklyn,Queens}
{117,3} | {Brooklyn,Queens}
(5 rows)

Which tells us that Queens and Brooklyn are in the middle of border wars. In this query we use the
GetTopoGeomElements function to declaritively inspect what components are shared across boroughs.

What is returned are a set of topolements. A topoelement is represented as an array of 2 integers with
the first number being the id of the element, and the second, being the layer (or primitive type) of
the element. PostGIS GetTopoElements returns the primitives of a topogeometry with types number
1-3 corresponding to (1: nodes, 2: edges, and 3: faces). All the topoelements for neighborhoods and
boroughs are type 3, which corresponds to a topological face. We can use the ST_GetFaceGeometry to
get a visual representation of these shared faces as folows:

SELECT te, t.geom, ST_Area(t.geom) AS area, array_agg(DISTINCT d.boroname)
→˓AS shared_boros
FROM nyc_boros_t AS d, topology.GetTopoGeomelements(topo) AS te

, topology.ST_GetFaceGeometry('nyc_topo',te[1]) AS t(geom)
GROUP BY te, t.geom
HAVING count(DISTINCT d.boroname) > 1
ORDER BY area;

The result will be 5 rows corresponding to border disputes between Queens and Brooklyn.

If we look at our neighborhoods, we’ll see a similar story but with 44 border disputes:

SELECT te, t.geom, ST_Area(t.geom) AS area, array_agg(DISTINCT d.name) AS
→˓shared_d
FROM nyc_neighborhoods_t AS d, topology.GetTopoGeomelements(d.topo) AS te

, topology.ST_GetFaceGeometry('nyc_topo',te[1]) AS t(geom)
GROUP BY te, t.geom
HAVING count(DISTINCT d.name) > 1
ORDER BY area;

Because boroughs are an aggregation of neighborhoods, we can fix the borough issue by fixing the
neighborhood border disputes.

There are a number of ways we could fix this. We could go out surveying asking people what neighbhood
do they think they are standing in. Alternatively we could just assign slivers of land to the neighborhood
with the least amount of area or to the highest bidder.

Removing elements from Topogeometries is handled using the TopoGeom_remElement function. So
lets get on with it, removing duplicaed elements from neighborhoods with the most amount of area as
follows:

198 Chapter 31. Topology

https://postgis.net/docs/GetTopoGeomElements.html
https://postgis.net/docs/ST_GetFaceGeometry.html
https://postgis.net/docs/TopoGeom_remElement.html

Introduction to PostGIS, Release 1.1

WITH to_remove AS (SELECT te, MAX(ST_Area(d.topo::geometry)) AS max_area,
→˓ array_agg(DISTINCT d.name) AS shared_d
FROM nyc_neighborhoods_t AS d, topology.GetTopoGeomelements(d.topo) AS te

, topology.ST_GetFaceGeometry('nyc_topo',te[1]) AS t(geom)
GROUP BY te
HAVING count(DISTINCT d.name) > 1)
UPDATE nyc_neighborhoods_t AS d SET topo = TopoGeom_remElement(topo, te)
FROM to_remove
WHERE d.name = ANY(to_remove.shared_d)

AND ST_Area(d.topo::geometry) = to_remove.max_area;

The result of the above is 29 neighborhoods were updated. If you rerun the border dispute queries for
neighborhoods and boroughs, you’ll find you have no more border disputes.

We do still have gaps of empty space between neighborhoods caused by intensive simplication. Such
issues can be fixed by directly editing the topology using the Topology Editor family of functions and/or
filling in the holes and assigning those to neighborhoods.

31.4. Defining topogeometry columns and creating topogeometries 199

https://postgis.net/docs/Topology.html#Topology_Editing

Introduction to PostGIS, Release 1.1

200 Chapter 31. Topology

CHAPTER

THIRTYTWO

TRACKING EDIT HISTORY USING TRIGGERS

A common requirement for production databases is the ability to track history: how has the data changed
between two dates, who made the changes, and where did they occur? Some GIS systems track changes
by including change management in the client interface, but that adds a lot of complexity to editing
tools.

Using the database and the trigger system, it’s possible to add history tracking to any table, while main-
taining simple “direct edit” access to the primary table.

History tracking works by keeping a history table that records, for every edit:

• If a record was created, when it was added and by whom.

• If a record was deleted, when it was deleted and by whom.

• If a record was updated, adding a deletion record (for the old state) and a creation record (for the
new state).

32.1 Using TSTZRANGE

The history table uses a PostgreSQL-specific feature–the “timestamp range” type–to store the time range
that a history record was the “live” record. All the timestamp ranges in the history table for a particular
feature can be expected to be non-overlapping but adjacent.

The range for a new record will start at now() and have an open end point, so that the range covers all
time from the current time into the future.

SELECT tstzrange(current_timestamp, NULL);

tstzrange

["2021-06-01 14:49:40.910074-07",)

Similarly, the time range for a deleted record will be updated to include the current time as the end point
of the time range.

Searching time ranges is much simpler than searching a pair of timestamps, because of the way an open
time range encompasses all time from the start point to infinity. The “contains” operator @> for ranges
is the one we will use.

-- Does the range of "ten minutes ago to the future" include now?
-- It should! :)

(continues on next page)

201

https://www.postgresql.org/docs/current/rangetypes.html

Introduction to PostGIS, Release 1.1

(continued from previous page)

--
SELECT tstzrange(current_timestamp - '10m'::interval, NULL) @> current_
→˓timestamp;

Ranges can be very efficiently indexed using a GIST index, just like spatial data, as we will show below.
This makes history queries very efficient.

32.2 Building the History Table

Using this information it is possible to reconstruct the state of the edit table at any point in time. In this
example, we will add history tracking to our nyc_streets table.

• First, add a new nyc_streets_history table. This is the table we will use to store all the historical
edit information. In addition to all the fields from nyc_streets, we add five more fields.

– hid the primary key for the history table

– created_by the database user that caused the record to be created

– deleted_by the database user that caused the record to be marked as deleted

– valid_range the time range within which the record was “live”

Note that we don’t actually delete any records in the history table, we just mark the time they
ceased to be part of the current state of the edit table.

DROP TABLE IF EXISTS nyc_streets_history;
CREATE TABLE nyc_streets_history (

hid SERIAL PRIMARY KEY,
gid INTEGER,
id FLOAT8,
name VARCHAR(200),
oneway VARCHAR(10),
type VARCHAR(50),
geom GEOMETRY(MultiLinestring,26918),
valid_range TSTZRANGE,
created_by VARCHAR(32),
deleted_by VARCHAR(32)

);

CREATE INDEX nyc_streets_history_geom_x
ON nyc_streets_history USING GIST (geom);

CREATE INDEX nyc_streets_history_tstz_x
ON nyc_streets_history USING GIST (valid_range);

• Next, we import the current state of the active table, nyc_streets into the history table, so we have
a starting point to trace history from. Note that we fill in the creation time and creation user, but
leave the end of the time range and the deleted by information NULL.

INSERT INTO nyc_streets_history
(gid, id, name, oneway, type, geom, valid_range, created_by)
SELECT gid, id, name, oneway, type, geom,

tstzrange(now(), NULL),
(continues on next page)

202 Chapter 32. Tracking Edit History using Triggers

Introduction to PostGIS, Release 1.1

(continued from previous page)

current_user
FROM nyc_streets;

• Now we need three triggers on the active table, for INSERT, DELETE and UPDATE actions. First
we create the trigger functions, then bind them to the table as triggers.

For an insert, we just add a new record into the history table with the creation time/user.

CREATE OR REPLACE FUNCTION nyc_streets_insert() RETURNS trigger AS
$$

BEGIN
INSERT INTO nyc_streets_history

(gid, id, name, oneway, type, geom, valid_range, created_by)
VALUES

(NEW.gid, NEW.id, NEW.name, NEW.oneway, NEW.type, NEW.geom,
tstzrange(current_timestamp, NULL), current_user);

RETURN NEW;
END;

$$
LANGUAGE plpgsql;

CREATE TRIGGER nyc_streets_insert_trigger
AFTER INSERT ON nyc_streets
FOR EACH ROW EXECUTE PROCEDURE nyc_streets_insert();

For a deletion, we just mark the currently active history record (the one with a NULL deletion
time) as deleted.

CREATE OR REPLACE FUNCTION nyc_streets_delete() RETURNS trigger AS
$$

BEGIN
UPDATE nyc_streets_history

SET valid_range = tstzrange(lower(valid_range), current_
→˓timestamp),

deleted_by = current_user
WHERE valid_range @> current_timestamp AND gid = OLD.gid;

RETURN NULL;
END;

$$
LANGUAGE plpgsql;

CREATE TRIGGER nyc_streets_delete_trigger
AFTER DELETE ON nyc_streets
FOR EACH ROW EXECUTE PROCEDURE nyc_streets_delete();

For an update, we first mark the active history record as deleted, then insert a new record for the
updated state.

CREATE OR REPLACE FUNCTION nyc_streets_update() RETURNS trigger AS
$$

BEGIN

UPDATE nyc_streets_history
SET valid_range = tstzrange(lower(valid_range), current_

→˓timestamp),
(continues on next page)

32.2. Building the History Table 203

Introduction to PostGIS, Release 1.1

(continued from previous page)

deleted_by = current_user
WHERE valid_range @> current_timestamp AND gid = OLD.gid;

INSERT INTO nyc_streets_history
(gid, id, name, oneway, type, geom, valid_range, created_by)

VALUES
(NEW.gid, NEW.id, NEW.name, NEW.oneway, NEW.type, NEW.geom,
tstzrange(current_timestamp, NULL), current_user);

RETURN NEW;

END;
$$
LANGUAGE plpgsql;

CREATE TRIGGER nyc_streets_update_trigger
AFTER UPDATE ON nyc_streets
FOR EACH ROW EXECUTE PROCEDURE nyc_streets_update();

32.3 Editing the Table

Now that the history table is enabled, we can make edits on the main table and watch the log entries
appear in the history table.

Note the power of this database-backed approach to history: no matter what tool is used to make the
edits, whether the SQL command line, a web-based JDBC tool, or a desktop tool like QGIS, the
history is consistently tracked.

32.3.1 SQL Edits

Let’s turn the two streets named “Cumberland Walk” to the more stylish “Cumberland Wynde”:

Updating the two streets will cause the original streets to be marked as deleted in the history table, with
a deletion time of now, and two new streets with the new name added, with an addition time of now. You
can inspect the historical records:

32.4 Querying the History Table

Now that we have a history table, what use is it? It’s useful for time travel! To travel to a particular time
T, you need to construct a query that includes:

• All records created before T, and not yet deleted; and also

• All records created before T, but deleted after T.

We can use this logic to create a query, or a view, of the state of the data in the past. Since presumably
all your test edits have happened in the past couple minutes, let’s create a view of the history table that
shows the state of the table 10 minutes ago, before you started editing (so, the original data).

204 Chapter 32. Tracking Edit History using Triggers

Introduction to PostGIS, Release 1.1

-- Records with a valid range that includes 10 minutes ago
-- are the ones valid at that moment.

CREATE OR REPLACE VIEW nyc_streets_ten_min_ago AS
SELECT * FROM nyc_streets_history

WHERE valid_range @> (now() - '10min'::interval)

We can also create views that show just what a particular user has added, for example:

CREATE OR REPLACE VIEW nyc_streets_postgres AS
SELECT * FROM nyc_streets_history

WHERE created_by = 'postgres';

32.5 See Also

• QGIS open source GIS

• PostgreSQL Triggers

• PostgreSQL Range Types

32.5. See Also 205

http://qgis.org
http://www.postgresql.org/docs/current/static/plpgsql-trigger.html
https://www.postgresql.org/docs/current/rangetypes.html

Introduction to PostGIS, Release 1.1

206 Chapter 32. Tracking Edit History using Triggers

CHAPTER

THIRTYTHREE

BASIC POSTGRESQL TUNING

PostgreSQL is a very versatile database system, capable of running efficiently in very low-resource
environments and environments shared with a variety of other applications. In order to ensure it will run
properly for many different environments, the default configuration is very conservative and not terribly
appropriate for a high-performance production database. Add the fact that geospatial databases have
different usage patterns, and the data tend to consist of fewer, much larger records than non-geospatial
databases, and you can see that the default configuration will not be totally appropriate for our purposes.

All of these configuration parameters can edited in the postgresql.conf database configuration file. This
is a regular text file and can be edited using any text editor. The changes will not take effect until the
server is restarted.

This section describes some of the configuration parameters that can be adjusted for a more production-
ready geospatial database.

Note: These values are recommendations only; each environment will differ and testing is required to
determine the optimal configuration. But this section should get you off to a good start.

33.1 shared_buffers

Sets the amount of memory the database server uses for shared memory buffers. These are shared
amongst the back-end processes, as the name suggests. The default values are typically woefully inade-
quate for production databases.

Default value: typically 32MB

Recommended value: about 75% of database memory up to a max of about 2GB

33.2 effective_cache_size

In addition to the memory PostgreSQL sets aside for shared_buffers the query planner also
takes into account how many disk blocks the operating system may have cached as part of its
virtual file system. For systems with large amount of memory, this can be quite large. The
effective_cache_size is approximately the amount of memory on the machine, less the
shared_buffers, less the work_mem times the expected number of connections, less any mem-
ory required for any other processes running on the machine, less about 1GB for other random operating
system needs. The database will not use the extra cache directly, but it will compute plans expecting
that the operating system has cached filesystem data in about that much memory.

207

Introduction to PostGIS, Release 1.1

Default value: typically 4GB

Recommended value: any amount of “free” memory expected to be around under ordinary
operating conditions

33.3 work_mem

Defines the amount of memory that internal sorting operations, indexing operations and hash tables can
consume before the database switches to on-disk files. This value defines the available memory for
each operation; complex queries may have several sort or hash operations running in parallel, and each
connected session may be executing a query.

As such you must consider how many connections and the complexity of expected queries before in-
creasing this value. The benefit to increasing is that the processing of more of these operations, includ-
ing ORDER BY, and DISTINCT clauses, merge and hash joins, hash-based aggregation and hash-based
processing of subqueries, can be accomplished without incurring disk writes. The cost of increasing is
memory that will be used per connection, which can be quite high with production levels of connec-
tions.

Default value: 1MB

Recommended value: 32MB

33.4 maintenance_work_mem

Defines the amount of memory used for maintenance operations, including vacuuming, index and for-
eign key creation. As these operations are not terribly common, a higher value will only exact an
occasional cost, and may substantially speed up maintenance activities This parameter can alternately
be increased for a single session before the execution of a number of CREATE INDEX or VACUUM calls
as shown below.

SET maintenance_work_mem TO '128MB';
VACUUM ANALYZE;
SET maintenance_work_mem TO '16MB';

Default value: 16MB

Recommended value: 128MB

33.5 wal_buffers

Sets the amount of memory used for write-ahead log (WAL) data. Write-ahead logs provide a high-
performance mechanism for insuring data-integrity. During each change command, the effects of the
changes are written first to the WAL files and flushed to disk. Only once the WAL files have been
flushed will the changes be written to the data files themselves. This allows the data files to be written to
disk in an optimal and asynchronous manner while ensuring that, in the event of a crash, all data changes
can be recovered from the WAL.

The size of this buffer only needs to be large enough to hold WAL data for a single typical transac-
tion. While the default value is often sufficient for most data, geospatial data tends to be much larger.
Therefore, it is recommended to increase the size of this parameter.

208 Chapter 33. Basic PostgreSQL Tuning

Introduction to PostGIS, Release 1.1

Default value: 64kB

Recommended value: 1MB

33.6 checkpoint_segments

This value sets the maximum number of log file segments (typically 16MB) that can be filled between
automatic WAL checkpoints. A WAL checkpoint is a point in the sequence of WAL transactions at
which it is guaranteed that the data files have been updated with all information before the checkpoint.
At this time all dirty data pages are flushed to disk and a checkpoint record is written to the log file.
This allows the crash recovery process to find the latest checkpoint record and apply all following log
segments to complete the data recovery.

Because the checkpoint process requires the flushing of all dirty data pages to disk, it creates a significant
I/O load. The same argument from above applies; geospatial data is large enough to unbalance non-
geospatial optimizations. Increasing this value will prevent excessive checkpoints, though it may cause
the server to restart more slowly in the event of a crash.

Default value: 3

Recommended value: 6

33.7 random_page_cost

This is a unit-less value that represents the cost of a random page access from disk. This value is relative
to a number of other cost parameters including sequential page access, and CPU operation costs. While
there is no magic bullet for this value, the default is generally conservative and for databases running on
spinning media. The random access cost for SSD should be set even lower.

This value can be set on a per-session basis using the SET random_page_cost TO 2.0 command,
which can be useful for testing how it effects query plans.

Default value: 4.0

Recommended value: 2.0 for spinning media, 1.0 for SSD

33.8 seq_page_cost

This is the parameter that controls the cost of a sequential page access. This value does not generally
require adjustment but the difference between this value and random_page_cost greatly affects the
choices made by the query planner. This value can also be set on a per-session basis.

Default value: 1.0

Recommended value: 1.0

33.6. checkpoint_segments 209

Introduction to PostGIS, Release 1.1

33.9 Reload configuration

After these changes are made, save changes and reload the configuration. The easiest way to do this is
to restart the PostgreSQL service.

• In pgAdmin, right-click the server PostGIS (localhost:5432) and select Disconnect.

• In Windows Services (services.msc) right-click PostgreSQL and select Restart.

• Back in pgAdmin, click the server again select Disconnect.

210 Chapter 33. Basic PostgreSQL Tuning

CHAPTER

THIRTYFOUR

POSTGRESQL SECURITY

PostgreSQL has a rich and flexible permissions system, with the ability to parcel out particular privileges
to particular roles, and provide users with the powers of one or more of those roles.

In addition, the PostgreSQL server can use multiple different systems to authenticate users. This means
that the database can use the same authentication infrastructure as other architecture components, sim-
plifying password management.

34.1 Users and Roles

In this chapter we will create two useful production users:

• A read-only user for use in a publishing application.

• A read/write user for use by a developer in building a software or analyzing data.

Rather than creating users and granting them the necessary powers, we will create two roles with the
right powers and then create two users and add them to the appropriate roles. That way we can easily
reuse the roles when we create further users.

34.1.1 Creating Roles

A role is a user and a user is a role. The only difference is that a “user” can be said to be a role with the
“login” privilege.

So functionally, the two SQL statements below are the same, they both create a “role with the login
privilege”, which is to say, a “user”.

CREATE ROLE mrbean LOGIN;
CREATE USER mrbean;

34.1.2 Read-only Users

Our read-only user will be for a web application to use to query the nyc_streets table.

The application will have specific access to the nyc_streets table, but will inherit the necessary
system access for PostGIS operations from the postgis_reader role.

211

http://www.postgresql.org/docs/current/static/user-manag.html
http://www.postgresql.org/docs/current/static/user-manag.html

Introduction to PostGIS, Release 1.1

-- A user account for the web app
CREATE USER app1;
-- Web app needs access to specific data tables
GRANT SELECT ON nyc_streets TO app1;

-- A generic role for access to PostGIS functionality
CREATE ROLE postgis_reader INHERIT;
-- Give that role to the web app
GRANT postgis_reader TO app1;

Now, when we login as app1, we can select rows from the nyc_streets table. However, we cannot
run an ST_Transform call! Why not?

-- This works!
SELECT * FROM nyc_streets LIMIT 1;

-- This doesn't work!
SELECT ST_AsText(ST_Transform(geom, 4326))

FROM nyc_streets LIMIT 1;

ERROR: permission denied for relation spatial_ref_sys
CONTEXT: SQL statement "SELECT proj4text FROM spatial_ref_sys WHERE srid
→˓= 4326 LIMIT 1"

The answer is contained in the error statement. Though our app1 user can view the contents of
the nyc_streets table fine, it cannot view the contents of spatial_ref_sys, so the call to
ST_Transform fails.

So, we need to also grant the postgis_reader role read access to all the PostGIS metadata tables:

GRANT SELECT ON geometry_columns TO postgis_reader;
GRANT SELECT ON geography_columns TO postgis_reader;
GRANT SELECT ON spatial_ref_sys TO postgis_reader;

Now we have a nice generic postgis_reader role we can apply to any user that need to read from
PostGIS tables.

-- This works now!
SELECT ST_AsText(ST_Transform(geom, 4326))

FROM nyc_streets LIMIT 1;

34.1.3 Read/write Users

There are two kinds of read/write scenarios we need to consider:

• Web applications and others that need to write to existing data tables.

• Developers or analysts that need to create new tables and geometry columns as part of their work.

For web applications that require write access to data tables, we just need to grant extra permissions to
the tables themselves, and we can continue to use the postgis_reader role.

-- Add insert/update/delete abilities to our web application
GRANT INSERT,UPDATE,DELETE ON nyc_streets TO app1;

212 Chapter 34. PostgreSQL Security

Introduction to PostGIS, Release 1.1

These kinds of permissions would be required for a read/write WFS service, for example.

For developers and analysts, a little more access is needed to the main PostGIS metadata tables. We will
need a postgis_writer role that can edit the PostGIS metadata tables!

-- Make a postgis writer role
CREATE ROLE postgis_writer;

-- Start by giving it the postgis_reader powers
GRANT postgis_reader TO postgis_writer;

-- Add insert/update/delete powers for the PostGIS tables
GRANT INSERT,UPDATE,DELETE ON spatial_ref_sys TO postgis_writer;

-- Make app1 a PostGIS writer to see if it works!
GRANT postgis_writer TO app1;

Now try the table creation SQL above as the app1 user and see how it goes!

34.2 Encryption

PostgreSQL provides a lot of encryption facilities, many of them optional, some of them on by default.

• By default, all passwords are MD5 encrypted. The client/server handshake double encrypts the
MD5 password to prevent re-use of the hash by anyone who intercepts the password.

• SSL connections are optionally available between the client and server, to encrypt all data and
login information. SSL certificate authentication is also available when SSL connections are used.

• Columns inside the database can be encrypted using the pgcrypto module, which includes hashing
algorithms, direct ciphers (blowfish, aes) and both public key and symmetric PGP encryption.

34.2.1 SSL Connections

In order to use SSL connections, both your client and server must support SSL.

• First, turn off PostgreSQL, since activating SSL will require a restart.

• Next, we acquire or generate an SSL certificate and key. The certificate will need to have no
passphrase on it, or the database server won’t be able to start up. You can generate a self-signed
key as follows:

Create a new certificate, filling out the certification info as
→˓prompted
openssl req -new -text -out server.req

Strip the passphrase from the certificate
openssl rsa -in privkey.pem -out server.key

Convert the certificate into a self-signed cert
openssl req -x509 -in server.req -text -key server.key -out server.crt

Set the permission of the key to private read/write
chmod og-rwx server.key

34.2. Encryption 213

http://www.postgresql.org/docs/current/static/encryption-options.html
http://www.postgresql.org/docs/current/static/libpq-ssl.html
http://www.postgresql.org/docs/current/static/pgcrypto.html

Introduction to PostGIS, Release 1.1

• Copy the server.crt and server.key into the PostgreSQL data directory.

• Enable SSL support in the postgresql.conf file by turning the “ssl” parameter to “on”.

• Now re-start PostgreSQL; the server is ready for SSL operation.

With the server enabled for SSL, creating an encrypted connection is easy. In PgAdmin, create a new
server connection (File > Add Server. . .), and set the SSL parameter to “require”.

214 Chapter 34. PostgreSQL Security

Introduction to PostGIS, Release 1.1

Once you connect with the new connection, you can see in its properties that it is using an SSL connec-
tion.

Since the default SSL connection mode is “prefer”, you don’t even need to specify an SSL preference
when connecting. A connection with the command line psql terminal will pick up the SSL option and
use it by default:

psql (8.4.9)
SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.

postgres=#

Note how the terminal reports the SSL status of the connection.

34.2.2 Data Encryption

The pgcrypto module has a huge range of encryption options, so we will only demonstrate the simplest
use case: encrypting a column of data using a symmetric cipher.

• First, enable pgcrypto by loading the contrib SQL file, either in PgAdmin or psql.

pgsql/8.4/share/postgresql/contrib/pgcrypto.sql

• Then, test the encryption function.

-- encrypt a string using blowfish (bf)
SELECT encrypt('this is a test phrase', 'mykey', 'bf');

• And make sure it’s reversible too!

-- round-trip a string using blowfish (bf)
SELECT decrypt(encrypt('this is a test phrase', 'mykey', 'bf'), 'mykey
→˓', 'bf');

34.2. Encryption 215

http://www.postgresql.org/docs/current/static/pgcrypto.html

Introduction to PostGIS, Release 1.1

34.3 Authentication

PostgreSQL supports many different authentication methods, to allow easy integration into existing
enterprise architectures. For production purposes, the following methods are commonly used:

• Password is the basic system where the passwords are stored by the database, with MD5 encryp-
tion.

• Kerberos is a standard enterprise authentication method, which is used by both the GSSAPI and
SSPI schemes in PostgreSQL. Using SSPI, PostgreSQL can authenticate against Windows servers.

• LDAP is another common enterprise authentication method. The OpenLDAP server bundled with
most Linux distributions provides an open source implementation of LDAP.

• Certificate authentication is an option if you expect all client connections to be via SSL and are
able to manage the distribution of keys.

• PAM authentication is an option if you are on Linux or Solaris and use the PAM scheme for
transparent authentication provision.

Authentication methods are controlled by the pg_hba.conf file. The “HBA” in the file name stands
for “host based access”, because in addition to allowing you to specify the authentication method to use
for each database, it allows you to limit host access using network addresses.

Here is an example pg_hba.conf file:

TYPE DATABASE USER CIDR-ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all trust
IPv4 local connections:
host all all 127.0.0.1/32 trust
IPv6 local connections:
host all all ::1/128 trust
remote connections for nyc database only
host nyc all 192.168.1.0/2 ldap

The file consists of five columns

• TYPE determines the kind of access, either “local” for connections from the same server or “host”
for remote connections.

• DATABASE specifies what database the configuration line refers to or “all” for all databases

• USER specifies what users the line refers to or “all” for all users

• CIDR-ADDRESS specifies the network limitations for remote connections, using net-
work/netmask syntax

• METHOD specifies the authentication protocol to use. “trust” skips authentication entirely and
simply accepts any valid username without challenge.

It’s common for local connections to be trusted, since access to the server itself is usually privileged.
Remote connections are disabled by default when PostgreSQL is installed: if you want to connect from
remote machines, you’ll have to add an entry.

The line for nyc in the example above is an example of a remote access entry. The nyc example allows
LDAP authenticated access only to machines on the local network (in this case the 192.168.1. network)

216 Chapter 34. PostgreSQL Security

http://www.postgresql.org/docs/current/static/auth-methods.html
http://en.wikipedia.org/wiki/Kerberos_(protocol)
http://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380493(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380493(v=vs.85).aspx
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
http://www.openldap.org/
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
http://en.wikipedia.org/wiki/Pluggable_authentication_module
http://en.wikipedia.org/wiki/Pluggable_authentication_module

Introduction to PostGIS, Release 1.1

and only to the nyc database. Depending on the security of your network, you will use more or less strict
versions of these rules in your production set-up.

34.4 Links

• PostgreSQL Authentication

• PostgreSQL Encrpyption

• PostgreSQL SSL Support

34.4. Links 217

http://www.postgresql.org/docs/current/static/auth-methods.html
http://www.postgresql.org/docs/current/static/encryption-options.html
http://www.postgresql.org/docs/current/static/libpq-ssl.html

Introduction to PostGIS, Release 1.1

218 Chapter 34. PostgreSQL Security

CHAPTER

THIRTYFIVE

POSTGRESQL SCHEMAS

Production databases inevitably have a large number of tables and views, and managing them all in one
schema can become unwieldy quickly. Fortunately, PostgreSQL includes the concept of a “_Schema”.

Schemas are like folders, and can hold tables, views, functions, sequences and other relations. Every
database starts out with one schema, the public schema.

219

http://www.postgresql.org/

Introduction to PostGIS, Release 1.1

Inside that schema, the default install of PostGIS creates the geometry_columns,
geography_columns and spatial_ref_sys metadata relations, as well as all the types
and functions used by PostGIS. So users of PostGIS always need access to the public schema.

In the public schema you can also see all the tables we have created so far in the workshop.

220 Chapter 35. PostgreSQL Schemas

Introduction to PostGIS, Release 1.1

35.1 Why use Schemas?

There are two very good reasons for using schemas:

• Data that is managed in a schema is easier to apply bulk actions to.

– It’s easier to back-up data that’s in a separate schema: so volatile data can have a different
back-up schedule from non-volatile data.

– It’s easier to restore data that’s in a separate schema: so application-oriented schemas can be
separately restored and backed up for time travel and recovery.

– It’s easier to manage application differences when the application data is in a schema: so a
new version of software can work off a table structure in a new schema, and cut-over involves
a simple change to the schema name.

• Users can be restricted in their work to single schemas to allow isolation of analytical and test
tables from production tables.

So for production purposes, keeping your application data separate in schemas improves management;
and for user purposes, keeping your users in separate schemas keeps them from treading on each other.

35.2 Creating a Data Schema

Let’s create a new schema and move a table into it. First, create a new schema in the database:

CREATE SCHEMA census;

Next, we will move the nyc_census_blocks table to the census schema:

ALTER TABLE nyc_census_blocks SET SCHEMA census;

If you’re using the psql command-line program, you’ll notice that nyc_census_blocks has dis-
appeared from your table listing now! If you’re using PgAdmin, you might have to refresh your view to
see the new schema and the table inside it.

You can access tables inside schemas in two ways:

• by referencing them using schema.table notation

• by adding the schema to your search_path

Explicit referencing is easy, but it gets tiring to type after a while:

SELECT * FROM census.nyc_census_blocks LIMIT 1;

Manipulating the search_path is a nice way to provide access to tables in multiple schemas without
lots of extra typing.

You can set the search_path at run time using the SET command:

SET search_path = census, public;

This ensures that all references to relations and functions are searched in both the census and the
public schemas. Remember that all the PostGIS functions and types are in public so we don’t want
to drop that from the search path.

35.1. Why use Schemas? 221

Introduction to PostGIS, Release 1.1

Setting the search path every time you connect can get tiring too, but fortunately it’s possible to perma-
nently set the search path for a user:

ALTER USER postgres SET search_path = census, public;

Now the postgres user will always have the census schema in their search path.

35.3 Creating a User Schema

Users like to create tables, and PostGIS users do so particularly: analysis operations with SQL demand
temporary tables for visualization or interim results, so spatial SQL tends to require that users have
CREATE privileges more than ordinary database workloads.

By default, every role in Oracle is given a personal schema. This is a nice practice to use for PostgreSQL
users too, and is easy to replicate using PostgreSQL roles, schemas, and search paths.

Create a new user with table creation privileges (see PostgreSQL Security for information about the
postgis_writer role), then create a schema with that user as the authorization:

CREATE USER myuser WITH ROLE postgis_writer;
CREATE SCHEMA myuser AUTHORIZATION myuser;

If you log in as that user, you’ll find the default search_path for PostgreSQL is actually this:

show search_path;

search_path

"$user",public

The first schema on the search path is the user’s named schema! So now the following conditions exist:

• The user exists, with the ability to create spatial tables.

• The user’s named schema exists, and the user owns it.

• The user’s search path has the user schema first, so new tables are automatically created there, and
queries automatically search there first.

That’s all there is to it, the user’s default work area is now nicely separated from any tables in other
schemas.

222 Chapter 35. PostgreSQL Schemas

CHAPTER

THIRTYSIX

POSTGRESQL BACKUP AND RESTORE

There are lots of ways to backup a PostgreSQL database, and the one you choose will depend a great
deal on how you are using the database.

• For relatively static databases, the basic pg_dump/pg_restore tools can be used to take periodic
snapshots of the data.

• For frequently changing data, using an “online backup” scheme allows continuous archiving of
updates to a secure location.

Online backup is the basis for replication and stand-by systems for high availability, particularly for
versions of PostgreSQL >= 9.0.

36.1 Laying Out your Data

As discussed in PostgreSQL Schemas, ensuring that production data is always stored in separate schemas
is a very important best practice in managing data. There are two reasons:

• Backing up and restoring data in schemas is much simpler than managing lists of tables to be
backed up individually.

• Keeping data tables out of the “public” schema allows far easier upgrades, as discussed in Software
Upgrades.

36.2 Basic Backup and Restore

Backing up a full database is easy using the pg_dump utility. The utility is a command-line tool, which
makes it easy to automate with scripting, and it can also be invoke via a GUI in the PgAdmin utility.

To backup our nyc database, we can use the GUI, just right-click the database you want to backup:

223

http://www.postgresql.org/docs/current/static/high-availability.html
http://www.postgresql.org/docs/current/static/app-pgdump.html

Introduction to PostGIS, Release 1.1

Enter the name of the backup file you want to create.

224 Chapter 36. PostgreSQL Backup and Restore

Introduction to PostGIS, Release 1.1

Note that there are three backup format options: compress, tar and plain.

• Plain is just a textual SQL file. This is the simplest format and in many ways the most flexible,
since it can be editing or altered easily and then loaded back into a database, allowing offline
changes to things like ownership or other global information.

• Tar using a UNIX archive format to hold components of the dump in separate files. Using the tar
format allows the pg_restore utility to selectively restore parts of the dump.

• Compress is like the Tar format, but compresses the internal components individually, allowing
them to be selectively restored without decompressing the entire archive.

We’ll check the Compress option and go, saving out a backup file.

The same operation can be done with the command line like this:

pg_dump --file=nyc.backup --format=c --port=54321 --username=postgres nyc

Because the backup file is in Compress format, we can view the contents using the pg_restore command
to list the manifest. In the PgAdmin GUI, “View” is an option in the panel.

36.2. Basic Backup and Restore 225

http://www.postgresql.org/docs/current/static/app-pgrestore.html
http://www.postgresql.org/docs/current/static/app-pgrestore.html

Introduction to PostGIS, Release 1.1

When you look at the manifest, one of the things you might notice is that there are a lot of “FUNCTION”
signatures in there.

226 Chapter 36. PostgreSQL Backup and Restore

Introduction to PostGIS, Release 1.1

That’s because the pg_dump utility dumps every non-system object in the database, and that includes
the PostGIS function definitions.

Note: PostgreSQL 9.1+ includes an “EXTENSION” feature that allows add-on packages like PostGIS
to be installed as registered system components and therefore excluded from pg_dump output. PostGIS
2.0 and higher support installation using this extension system.

We can see the same manifest from the command-line using pg_restore directly:

pg_restore --list nyc.backup

The problem with a dump file full of PostGIS function signatures is that we really wanted a dump of our
data, not our system functions.

Since every object is in the dump file, we can restore to a blank database and get full functionality. In
doing so, we are expecting that system we are restoring to has exactly the same version of PostGIS as
the one we dumped from (since the function signature definitions reference a particular version of the
PostGIS shared library).

From the command-line the restore looks like this:

createdb --port 54321 nyc2
pg_restore --dbname=nyc2 --port 54321 --username=postgres nyc.backup

36.2. Basic Backup and Restore 227

http://www.postgresql.org/docs/current/static/app-pgdump.html
http://www.postgresql.org/docs/current/static/app-pgdump.html
http://www.postgresql.org/docs/current/static/app-pgrestore.html

Introduction to PostGIS, Release 1.1

Dumping just data, without function signatures, is where having data in schemas is handy, because there
is a command-line flag to only dump a particular schema:

pg_dump --port=54321 -format=c --schema=census --file=census.backup

Now when we list the contents of the dump, we see just the data tables we wanted:

pg_restore --list census.backup

;
; Archive created at Thu Aug 9 11:02:49 2012
; dbname: nyc
; TOC Entries: 11
; Compression: -1
; Dump Version: 1.11-0
; Format: CUSTOM
; Integer: 4 bytes
; Offset: 8 bytes
; Dumped from database version: 8.4.9
; Dumped by pg_dump version: 8.4.9
;
;
; Selected TOC Entries:
;
6; 2615 20091 SCHEMA - census postgres
146; 1259 19845 TABLE census nyc_census_blocks postgres
145; 1259 19843 SEQUENCE census nyc_census_blocks_gid_seq postgres
2691; 0 0 SEQUENCE OWNED BY census nyc_census_blocks_gid_seq postgres
2692; 0 0 SEQUENCE SET census nyc_census_blocks_gid_seq postgres
2681; 2604 19848 DEFAULT census gid postgres
2688; 0 19845 TABLE DATA census nyc_census_blocks postgres
2686; 2606 19853 CONSTRAINT census nyc_census_blocks_pkey postgres
2687; 1259 20078 INDEX census nyc_census_blocks_geom_gist postgres

Having just the data tables is handy, because it means we can store to a database with any version of
PostGIS installed, as we talk about in Software Upgrades.

36.2.1 Backing Up Users

The pg_dump utility operates a database at a time (or a schema or table at a time, if you restrict it).
However, information about users is is stored across an entire cluster, it’s not stored in any one database!

To backup your user information, use the pg_dumpall utility, with the “–globals-only” flag.

pg_dumpall --globals-only --port 54321

You can also use pg_dumpall in its default mode to backup an entire cluster, but be aware that, as with
pg_dump, you will end up backing up the PostGIS function signatures, so the dump will have to be
restored against an identical software installation, it can’t be used as part of an upgrade process.

228 Chapter 36. PostgreSQL Backup and Restore

http://www.postgresql.org/docs/current/static/app-pgdump.html
http://www.postgresql.org/docs/current/static/app-pg-dumpall.html
http://www.postgresql.org/docs/current/static/app-pg-dumpall.html
http://www.postgresql.org/docs/current/static/app-pgdump.html

Introduction to PostGIS, Release 1.1

36.3 Online Backup and Restore

Online backup and restore allows an administrator to keep an extremely up-to-date set of backup files
without the overhead of repeatedly dumping the entire database. If the database is under frequent insert
and update load, then online backup might be preferable to basic backup.

Note: The best way to learn about online backup is to read the relevant sections of the PostgreSQL
manual on continuous archiving and point-in-time recovery. This section of the PostGIS workshop will
just provide a brief snapshot of online backup set-up.

36.3.1 How it Works

Rather than continually write to the main data tables, PostgreSQL stores changes initially in “write-
ahead logs” (WAL). Taken together, these logs are a complete record of all changes made to a database.
Online backup consists of taking a copy of the database main data table, then taking a copy of each WAL
that is generated from then on.

When it is time to recover to a new database, the system starts on the main data copy, then replays all
the WAL files into the database. The end result is a restored database in the same state as the original at
the time of the last WAL received.

Because WAL are being written anyways, and transferring copies to an archive server is computationally
cheap, online backup is an effective means of keeping a very up-to-date backup of a system without
resorting to intensive regular full dumps.

36.3. Online Backup and Restore 229

http://www.postgresql.org/docs/current/static/continuous-archiving.html

Introduction to PostGIS, Release 1.1

36.3.2 Archiving the WAL Files

The first thing to do in setting up online backup is to create an archiving method. PostgreSQL archiving
methods are the ultimate in flexibility: the PostgreSQL backend simply calls a script specified in the
archive_command configuration parameter.

That means archiving can be as simple as copying the file to a network-mounted drive, and as complex
as encrypting and emailing the files to the remote archive. Any process you can script you can use to
archive the files.

To turn on archiving we will edit postgresql.conf, first turning on WAL archiving:

wal_level = archive
archive_mode = on

And then setting the archive_command to copy our archive files to a safe location (changing the
destination paths as appropriate):

Unix
archive_command = 'test ! -f /archivedir/%f && cp %p /archivedir/%f'

Windows
archive_command = 'copy "%p" "C:\\archivedir\\%f"'

It is important that the archive command not over-write existing files, so the unix command includes an
initial test to ensure that the files aren’t already there. It is also important that the command returns a
non-zero status if the copy process fails.

Once the changes are made you can re-start PostgreSQL to make them effective.

36.3.3 Taking the Base Backup

Once the archiving process is in place, you need to take a base back-up.

Put the database into backup mode (this doesn’t do anything to alter operation of queries or data updates,
it just forces a checkpoint and writes a label file indicating when the backup was taken).

SELECT pg_start_backup('/archivedir/basebackup.tgz');

For the label, using the path to the backup file is a good practice, as it helps you track down where the
backup was stored.

Copy the database to an archival location:

Unix
tar cvfz /archivedir/basebackup.tgz ${PGDATA}

Then tell the database the backup process is complete.

SELECT pg_stop_backup();

All these steps can of course be scripted for regular base backups.

230 Chapter 36. PostgreSQL Backup and Restore

Introduction to PostGIS, Release 1.1

36.3.4 Restoring from the Archive

These steps are taking from the PostgreSQL manual on continuous archiving and point-in-time recovery.

• Stop the server, if it’s running.

• If you have the space to do so, copy the whole cluster data directory and any tablespaces to a
temporary location in case you need them later. Note that this precaution will require that you
have enough free space on your system to hold two copies of your existing database. If you do not
have enough space, you should at least save the contents of the cluster’s pg_xlog subdirectory, as
it might contain logs which were not archived before the system went down.

• Remove all existing files and subdirectories under the cluster data directory and under the root
directories of any tablespaces you are using.

• Restore the database files from your file system backup. Be sure that they are restored with the
right ownership (the database system user, not root!) and with the right permissions. If you are
using tablespaces, you should verify that the symbolic links in pg_tblspc/ were correctly restored.

• Remove any files present in pg_xlog/; these came from the file system backup and are therefore
probably obsolete rather than current. If you didn’t archive pg_xlog/ at all, then recreate it with
proper permissions, being careful to ensure that you re-establish it as a symbolic link if you had it
set up that way before.

• If you have unarchived WAL segment files that you saved in step 2, copy them into pg_xlog/. (It
is best to copy them, not move them, so you still have the unmodified files if a problem occurs and
you have to start over.)

• Create a recovery command file recovery.conf in the cluster data directory (see Chapter 26). You
might also want to temporarily modify pg_hba.conf to prevent ordinary users from connecting
until you are sure the recovery was successful.

• Start the server. The server will go into recovery mode and proceed to read through the archived
WAL files it needs. Should the recovery be terminated because of an external error, the server can
simply be restarted and it will continue recovery. Upon completion of the recovery process, the
server will rename recovery.conf to recovery.done (to prevent accidentally re-entering recovery
mode later) and then commence normal database operations.

• Inspect the contents of the database to ensure you have recovered to the desired state. If not, return
to step 1. If all is well, allow your users to connect by restoring pg_hba.conf to normal.

36.4 Links

• pg_dump

• pg_dumpall

• pg_restore

• PostgreSQL High Availability

• PostgreSQL High Availability Continuous Archiving and PITR

36.4. Links 231

http://www.postgresql.org/docs/current/static/continuous-archiving.html
http://www.postgresql.org/docs/current/static/app-pgdump.html
http://www.postgresql.org/docs/current/static/app-pg-dumpall.html
http://www.postgresql.org/docs/current/static/app-pgrestore.html
http://www.postgresql.org/docs/current/static/high-availability.html
http://www.postgresql.org/docs/current/static/continuous-archiving.html

Introduction to PostGIS, Release 1.1

232 Chapter 36. PostgreSQL Backup and Restore

CHAPTER

THIRTYSEVEN

SOFTWARE UPGRADES

Because PostGIS resides within PostgreSQL every PostGIS installation actually consists of two versions
of software: the PostgreSQL version and the PostGIS version. As a general principle, each version of
PostGIS can be theoretically run within a number of versions of PostgreSQL, and vice versa.

In practice, the exact version pair available will be dictated by the packager who has built your Post-
greSQL distribution. Most Linux packages includes a couple PostGIS versions for each PostgreSQL
version release, allowing the parts to be upgraded either independently or simultaneously, depending on
your preferences.

Upgrades can be considered in terms of upgrading each component.

37.1 Upgrading PostgreSQL

There are two kinds of PostgreSQL upgrade scenarios:

• A “minor upgrade” when the software version increases at the “patch” level. For example, from
8.4.3 to 8.4.4, or from 9.0.1 to 9.0.3. Increases of more than one patch version are just fine. Minor
upgrades fix bugs but do not add any new features or change behaviour.

• A “major upgrade” when the “major” or “minor” versions increase. For example, from 8.4.5 to
9.0.0, or from 9.0.5 to 9.1.1. Major upgrades add new features and change behavior.

37.1.1 Minor PostgreSQL Upgrades

For “minor upgrades”, no special process is necessary. Simply install the new software, and re-start the
server.

37.1.2 Major PostgreSQL Upgrades

For “major upgrades” there are two ways to carry out the upgrade.

233

Introduction to PostGIS, Release 1.1

Dump/Restore

Dumping and restoring involves converting all the data to a platform neutral format (text representations)
on dump, and back to native representations on restore, so it can be time consuming and CPU intensive.
However, if you are migrating to a new architecture or operating system, it’s a required process. It’s also
a time-tested and well-understood upgrade path, so if your database is not too big, there’s no reason not
to stick with it.

• Dump your data pg_dumpall from the old database.

• Install the new version of PostgreSQL and the same version of PostGIS you are using in your
old database. You need to match the PostGIS version so that the dump file function definitions
reference an expected version of the PostGIS library.

• Initialize the new data area using the initdb program from the new software.

• Start the new server on the new data area.

• Restore the dump file using pg_restore.

pg_upgrade

The pg_upgrade utility allows PostgreSQL data directories to be upgraded without the requirement for a
dump/restore step. The utility cannot handle changes to the data files themselves, but handles the more
common and frequent changes to system tables that occur in PostgreSQL major upgrades.

Note: The full instructions for running the upgrade process are in the pg_upgrade web page at the
PostgreSQL site.

The pg_upgrade program expects to have access to both versions of PostgreSQL it is working with, the
old and the new version, so you will have to install them both.

• Install the new version of PostgreSQL you will be using.

• Install the same version of PostGIS you are using in the old PostgreSQL into the new PostgreSQL.

• Initialize the new PostgreSQL data area with the new copy of initdb.

• Ensure both the old and new PostgreSQL servers are turned off.

• Run pg_upgrade, making sure to use the binary from the new software installation.

pg_upgrade
--old-datadir "/var/lib/postgres/12/data"
--new-datadir "/var/lib/postgres/13/data"
--old-bindir "/usr/pgsql/12/bin"
--new-bindir "/usr/pgsql/13/bin"

• If pg_upgrade generated any .sql files, run them now.

• Start the new server.

234 Chapter 37. Software Upgrades

http://www.postgresql.org/docs/current/static/pgupgrade.html
http://www.postgresql.org/docs/current/static/pgupgrade.html
http://www.postgresql.org/docs/current/static/pgupgrade.html
http://www.postgresql.org/docs/current/static/pgupgrade.html
http://www.postgresql.org/docs/current/static/pgupgrade.html

Introduction to PostGIS, Release 1.1

37.2 Upgrading PostGIS

PostGIS deals with minor and upgrades through the EXTENSION mechanism. If you spatially-enabled
your database using CREATE EXTENSION postgis, you can update your database using the same
functionality.

First, install the new software so it is available to the database.

Then, run the SQL to upgrade your PostGIS extension.

-- If you are upgrading from PostGIS 2.5 or later
-- and want the latest installed version
SELECT postgis_extensions_upgrade();

-- If you are upgrading from an earlier version
-- you have to specifically turn on the version you want
ALTER EXTENSION postgis UPDATE TO '2.5.5';

37.2. Upgrading PostGIS 235

Introduction to PostGIS, Release 1.1

236 Chapter 37. Software Upgrades

CHAPTER

THIRTYEIGHT

ADVANCED GEOMETRY CONSTRUCTIONS

The nyc_subway_stations layer has provided us with lots of interesting examples so far, but there
is something striking about it:

Although it is a database of all the stations, it doesn’t allow easy visualization of routes! In this chapter
we will use advanced features of PostgreSQL and PostGIS to build up a new linear routes layer from the
point layer of subway stations.

Our task is made especially difficult by two issues:

• The routes column of nyc_subway_stations has multiple route identifiers in each row,
so a station that might appear in multiple routes appears only once in the table.

• Related to the previous issue, there is no route ordering information in the stations table, so while
it is possible to find all the stations in a particular route, it’s not possible using the attributes to
determine what the order in which trains travel through the stations.

237

Introduction to PostGIS, Release 1.1

The second problem is the harder one: given an unordered set of points in a route, how do we order them
to match the actual route.

Here are the stops for the ‘Q’ train:

SELECT s.gid, s.geom
FROM nyc_subway_stations s
WHERE (strpos(s.routes, 'Q') <> 0);

In this picture, the stops are labelled with their unique gid primary key.

If we start at one of the end stations, the next station on the line seems to always be the closest. We can
repeat the process each time as long as we exclude all the previously found stations from our search.

There are two ways to run such an iterative routine in a database:

• Using a procedural language, like PL/PgSQL.

• Using recursive common table expressions.

238 Chapter 38. Advanced Geometry Constructions

http://www.postgresql.org/docs/current/static/plpgsql.html
http://www.postgresql.org/docs/current/static/queries-with.html

Introduction to PostGIS, Release 1.1

Common table expressions (CTE) have the virtue of not requiring a function definition to run. Here’s
the CTE to calculate the route line of the ‘Q’ train, starting from the northernmost stop (where gid is
304).

WITH RECURSIVE next_stop(geom, idlist) AS (
(SELECT

geom,
ARRAY[gid] AS idlist

FROM nyc_subway_stations
WHERE gid = 304)
UNION ALL
(SELECT

s.geom,
array_append(n.idlist, s.gid) AS idlist

FROM nyc_subway_stations s, next_stop n
WHERE strpos(s.routes, 'Q') != 0
AND NOT n.idlist @> ARRAY[s.gid]
ORDER BY ST_Distance(n.geom, s.geom) ASC
LIMIT 1)

)
SELECT geom, idlist FROM next_stop;

The CTE consists of two halves, unioned together:

• The first half establishes a start point for the expression. We get the initial geometry and initialize
the array of visited identifiers, using the record of “gid” 304 (the end of the line).

• The second half iterates until it finds no further records. At each iteration it takes in the value
at the previous iteration via the self-reference to “next_stop”. We search every stop on the Q
line (strpos(s.routes,’Q’)) that we have not already added to our visited list (NOT n.idlist @>
ARRAY[s.gid]) and order them by their distance from the previous point, taking just the first one
(the nearest).

Beyond the recursive CTE itself, there are a number of advanced PostgreSQL array features being used
here:

• We are using ARRAY! PostgreSQL supports arrays of any type. In this case we have an array of
integers, but we could also build an array of geometries, or any other PostgreSQL type.

• We are using array_append to build up our array of visited identifiers.

• We are using the @> array operator (“array contains”) to find which of the Q train stations we
have already visited. The @> operators requires ARRAY values on both sides, so we have to turn
the individual “gid” numbers into single-entry arrays using the ARRAY[] syntax.

When you run the query, you get each geometry in the order it is found (which is the route order), as
well as the list of identifiers already visited. Wrapping the geometries into the PostGIS ST_MakeLine
aggregate function turns the set of geometries into a single linear output, constructed in the provided
order.

WITH RECURSIVE next_stop(geom, idlist) AS (
(SELECT

geom,
ARRAY[gid] AS idlist

FROM nyc_subway_stations
WHERE gid = 304)
UNION ALL

(continues on next page)

239

http://postgis.net/docs/ST_MakeLine.html

Introduction to PostGIS, Release 1.1

(continued from previous page)

(SELECT
s.geom,
array_append(n.idlist, s.gid) AS idlist

FROM nyc_subway_stations s, next_stop n
WHERE strpos(s.routes, 'Q') != 0
AND NOT n.idlist @> ARRAY[s.gid]
ORDER BY ST_Distance(n.geom, s.geom) ASC
LIMIT 1)

)
SELECT ST_MakeLine(geom) AS geom FROM next_stop;

Which looks like this:

240 Chapter 38. Advanced Geometry Constructions

Introduction to PostGIS, Release 1.1

Success!

Except, two problems:

• We are only calculating one subway route here, we want to calculate all the routes.

• Our query includes a piece of a priori knowledge, the initial station identifier that serves as the
seed for the search algorithm that builds the route.

Let’s tackle the hard problem first, figuring out the first station on a route without manually eyeballing
the set of stations that make up the route.

Our ‘Q’ train stops can serve as a starting point. What characterizes the end stations of the route?

One answer is “they are the most northerly and southerly stations”. However, imagine if the ‘Q’ train
ran from east to west. Would the condition still hold?

A less directional characterization of the end stations is “they are the furthest stations from the middle
of the route”. With this characterization it doesn’t matter if the route runs north/south or east/west, just
that it run in more-or-less one direction, particularly at the ends.

Since there is no 100% heuristic to figure out the end points, let’s try this second rule out.

Note: An obvious failure mode of the “furthest from middle” rule is a circular line, like the Circle Line
in London, UK. Fortunately, New York doesn’t have any such lines!

To work out the end stations of every route, we first have to work out what routes there are! We find the
distinct routes.

241

Introduction to PostGIS, Release 1.1

WITH routes AS (
SELECT DISTINCT unnest(string_to_array(routes,',')) AS route
FROM nyc_subway_stations ORDER BY route

)
SELECT * FROM routes;

Note the use of two advanced PostgreSQL ARRAY functions:

• string_to_array takes in a string and splits it into an array using a separator character. Post-
greSQL supports arrays of any type, so it’s possible to build arrays of strings, as in this case, but
also of geometries and geographies as we’ll see later in this example.

• unnest takes in an array and builds a new row for each entry in the array. The effect is to take a
“horizontal” array embedded in a single row and turn it into a “vertical” array with a row for each
value.

The result is a list of all the unique subway route identifiers.

route

1
2
3
4
5
6
7
A
B
C
D
E
F
G
J
L
M
N
Q
R
S
V
W
Z

(24 rows)

We can build on this result by joining it back to the nyc_subway_stations table to create a new
table that has, for each route, a row for every station on that route.

WITH routes AS (
SELECT DISTINCT unnest(string_to_array(routes,',')) AS route
FROM nyc_subway_stations ORDER BY route

),
stops AS (

SELECT s.gid, s.geom, r.route
FROM routes r
JOIN nyc_subway_stations s

(continues on next page)

242 Chapter 38. Advanced Geometry Constructions

http://www.postgresql.org/docs/current/static/arrays.html
http://www.postgresql.org/docs/current/static/arrays.html

Introduction to PostGIS, Release 1.1

(continued from previous page)

ON (strpos(s.routes, r.route) <> 0)
)
SELECT * FROM stops;

gid | geom | route
-----+--+-------

2 | 010100002026690000CBE327F938CD21415EDBE1572D315141 | 1
3 | 010100002026690000C676635D10CD2141A0ECDB6975305141 | 1

20 | 010100002026690000AE59A3F82C132241D835BA14D1435141 | 1
22 | 0101000020266900003495A303D615224116DA56527D445141 | 1

...etc...

Now we can find the center point by collecting all the stations for each route into a single multi-point,
and calculating the centroid of that multi-point.

WITH routes AS (
SELECT DISTINCT unnest(string_to_array(routes,',')) AS route
FROM nyc_subway_stations ORDER BY route

),
stops AS (

SELECT s.gid, s.geom, r.route
FROM routes r
JOIN nyc_subway_stations s
ON (strpos(s.routes, r.route) <> 0)

),
centers AS (
SELECT ST_Centroid(ST_Collect(geom)) AS geom, route
FROM stops
GROUP BY route

)
SELECT * FROM centers;

The center point of the collection of ‘Q’ train stops looks like this:

243

Introduction to PostGIS, Release 1.1

So the northern most stop, the end point, appears to also be the stop furthest from the center. Let’s
calculate the furthest point for every route.

WITH routes AS (
SELECT DISTINCT unnest(string_to_array(routes,',')) AS route
FROM nyc_subway_stations ORDER BY route

),
stops AS (

SELECT s.gid, s.geom, r.route
FROM routes r
JOIN nyc_subway_stations s
ON (strpos(s.routes, r.route) <> 0)

),
centers AS (
SELECT ST_Centroid(ST_Collect(geom)) AS geom, route
FROM stops
GROUP BY route

(continues on next page)

244 Chapter 38. Advanced Geometry Constructions

Introduction to PostGIS, Release 1.1

(continued from previous page)

),
stops_distance AS (

SELECT s.*, ST_Distance(s.geom, c.geom) AS distance
FROM stops s JOIN centers c
ON (s.route = c.route)
ORDER BY route, distance DESC

),
first_stops AS (

SELECT DISTINCT ON (route) stops_distance.*
FROM stops_distance

)
SELECT * FROM first_stops;

We’ve added two sub-queries this time:

• stops_distance joins the centers points back to the stations table and calculates the distance be-
tween the stations and center for each route. The result is ordered such that the records come out
in batches for each route, with the furthest station as the first record of the batch.

• first_stops filters the stops_distance output by only taking the first record for each distinct group.
Because of the way we ordered stops_distance the first record is the furthest record, which means
it’s the station we want to use as our starting seed to build each subway route.

Now we know every route, and we know (approximately) what station each route starts from: we’re
ready to generate the route lines!

But first, we need to turn our recursive CTE expression into a function we can call with parameters.

CREATE OR REPLACE function walk_subway(integer, text) returns geometry AS
$$
WITH RECURSIVE next_stop(geom, idlist) AS (

(SELECT
geom AS geom,
ARRAY[gid] AS idlist

FROM nyc_subway_stations
WHERE gid = $1)
UNION ALL
(SELECT

s.geom AS geom,
array_append(n.idlist, s.gid) AS idlist

FROM nyc_subway_stations s, next_stop n
WHERE strpos(s.routes, $2) != 0
AND NOT n.idlist @> ARRAY[s.gid]
ORDER BY ST_Distance(n.geom, s.geom) ASC
LIMIT 1)

)
SELECT ST_MakeLine(geom) AS geom
FROM next_stop;
$$
language 'sql';

And now we are ready to go!

CREATE TABLE nyc_subway_lines AS
-- Distinct route identifiers!
WITH routes AS (

(continues on next page)

245

Introduction to PostGIS, Release 1.1

(continued from previous page)

SELECT DISTINCT unnest(string_to_array(routes,',')) AS route
FROM nyc_subway_stations ORDER BY route

),
-- Joined back to stops! Every route has all its stops!
stops AS (

SELECT s.gid, s.geom, r.route
FROM routes r
JOIN nyc_subway_stations s
ON (strpos(s.routes, r.route) <> 0)

),
-- Collects stops by routes and calculate centroid!
centers AS (
SELECT ST_Centroid(ST_Collect(geom)) AS geom, route
FROM stops
GROUP BY route

),
-- Calculate stop/center distance for each stop in each route.
stops_distance AS (

SELECT s.*, ST_Distance(s.geom, c.geom) AS distance
FROM stops s JOIN centers c
ON (s.route = c.route)
ORDER BY route, distance DESC

),
-- Filter out just the furthest stop/center pairs.
first_stops AS (

SELECT DISTINCT ON (route) stops_distance.*
FROM stops_distance

)
-- Pass the route/stop information into the linear route generation
→˓function!
SELECT

ascii(route) AS gid, -- QGIS likes numeric primary keys
route,
walk_subway(gid, route) AS geom

FROM first_stops;

-- Do some housekeeping too
ALTER TABLE nyc_subway_lines ADD PRIMARY KEY (gid);

Here’s what our final table looks like visualized in QGIS:

246 Chapter 38. Advanced Geometry Constructions

Introduction to PostGIS, Release 1.1

As usual, there are some problems with our simple understanding of the data:

• there are actually two ‘S’ (short distance “shuttle”) trains, one in Manhattan and one in the Rock-
aways, and we join them together because they are both called ‘S’;

• the ‘4’ train (and a few others) splits at the end of one line into two terminuses, so the “follow one
line” assumption breaks and the result has a funny hook on the end.

Hopefully this example has provided a taste of some of the complex data manipulations that are possible
combining the advanced features of PostgreSQL and PostGIS.

247

Introduction to PostGIS, Release 1.1

38.1 See Also

• PostgreSQL Arrays

• PostgreSQL Array Functions

• PostgreSQL Recursive Common TABLE Expressions

• PostGIS ST_MakeLine

248 Chapter 38. Advanced Geometry Constructions

http://www.postgresql.org/docs/current/static/arrays.html
http://www.postgresql.org/docs/current/static/functions-array.html
http://www.postgresql.org/docs/current/static/queries-with.html
http://postgis.net/docs/ST_MakeLine.html

CHAPTER

THIRTYNINE

APPENDIX A: POSTGIS FUNCTIONS

39.1 Constructors

ST_MakePoint(Longitude, Latitude) Returns a new point. Note the order of the coordi-
nates (longitude then latitude).

ST_GeomFromText(WellKnownText, srid) Returns a new geometry from a standard WKT
string and srid.

ST_SetSRID(geometry, srid) Updates the srid on a geometry. Returns the same geometry.
This does not alter the coordinates of the geometry, it just updates the srid. This function is useful
for conditioning geometries created without an srid.

ST_Expand(geometry, Radius) Returns a new geometry that is an expanded bounding box of
the input geometry. This function is useful for creating envelopes for use in indexed searches.

39.2 Outputs

ST_AsText(geometry) Returns a geometry in a human-readable text format.

ST_AsGML(geometry) Returns a geometry in standard OGC GML format.

ST_AsGeoJSON(geometry) Returns a geometry to a standard GeoJSON format.

39.3 Measurements

ST_Area(geometry) Returns the area of the geometry in the units of the spatial reference system.

ST_Length(geometry) Returns the length of the geometry in the units of the spatial reference
system.

ST_Perimeter(geometry) Returns the perimeter of the geometry in the units of the spatial refer-
ence system.

ST_NumPoints(linestring) Returns the number of vertices in a linestring.

ST_NumRings(polygon) Returns the number of rings in a polygon.

ST_NumGeometries(geometry) Returns the number of geometries in a geometry collection.

249

http://geojson.org

Introduction to PostGIS, Release 1.1

39.4 Relationships

ST_Distance(geometry, geometry) Returns the distance between two geometries in the
units of the spatial reference system.

ST_DWithin(geometry, geometry, radius) Returns true if the geometries are within the
radius distance of one another, otherwise false.

ST_Intersects(geometry, geometry) Returns true if the geometries are not disjoint, other-
wise false.

ST_Contains(geometry, geometry) Returns true if the first geometry fully contains the sec-
ond geometry, otherwise false.

ST_Crosses(geometry, geometry) Returns true if a line or polygon boundary crosses another
line or polygon boundary, otherwise false.

250 Chapter 39. Appendix A: PostGIS Functions

CHAPTER

FORTY

APPENDIX B: GLOSSARY

CRS A “coordinate reference system”. The combination of a geographic coordinate system and a
projected coordinate system.

GDAL Geospatial Data Abstraction Library, pronounced “GOO-duhl”, an open source raster access
library with support for a large number of formats, used widely in both open source and proprietary
software.

GeoJSON “Javascript Object Notation”, a text format that is very fast to parse in Javascript virtual
machines. In spatial, the extended specification for GeoJSON is commonly used.

GIS Geographic information system or geographical information system captures, stores, analyzes,
manages, and presents data that is linked to location.

GML Geography Markup Language. GML is the OGC standard XML format for representing spatial
feature information.

JSON “Javascript Object Notation”, a text format that is very fast to parse in Javascript virtual ma-
chines. In spatial, the extended specification for GeoJSON is commonly used.

JSTL “JavaServer Page Template Library”, a tag library for JSP that encapsulates many of the standard
functions handled in JSP (database queries, iteration, conditionals) into a terse syntax.

JSP “JavaServer Pages” a scripting system for Java server applications that allows the interleaving of
markup and Java procedural code.

KML “Keyhole Markup Language”, the spatial XML format used by Google Earth. Google Earth
was originally written by a company named “Keyhole”, hence the (now obscure) reference in the
name.

OGC The Open Geospatial Consortium (OGC) is a standards organization that develops specifications
for geospatial services.

OSGeo The Open Source Geospatial Foundation (OSGeo) is a non-profit foundation dedicated to the
promotion and support of open source geospatial software.

SFSQL The Simple Features for SQL (SFSQL) specification from the OGC defines the types and func-
tions that make up a standard spatial database.

SLD The Styled Layer Descriptor (SLD) specification from the OGC defines an format for describing
cartographic rendering of vector features.

SRID “Spatial reference ID” a unique number assigned to a particular “coordinate reference system”.
The PostGIS table spatial_ref_sys contains a large collection of well-known srid values and text
representations of the coordinate reference systems.

SQL “Structured query language” is the standard means for querying relational databases.

251

http://gdal.org
http://geojson.org
http://en.wikipedia.org/wiki/Geographic_information_system
http://www.opengeospatial.org/standards/gml
http://en.wikipedia.org/wiki/JSON
http://geojson.org
http://opengeospatial.org/
http://osgeo.org
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sld
http://en.wikipedia.org/wiki/SQL

Introduction to PostGIS, Release 1.1

SQL/MM SQL Multimedia; includes several sections on extended types, including a substantial section
on spatial types.

SVG “Scalable vector graphics” is a family of specifications of an XML-based file format for describing
two-dimensional vector graphics, both static and dynamic (i.e. interactive or animated).

WFS The Web Feature Service (WFS) specification from the OGC defines an interface for reading and
writing geographic features across the web.

WMS The Web Map Service (WMS) specification from the OGC defines an interface for requesting
rendered map images across the web.

WKB “Well-known binary”. Refers to the binary representation of geometries described in the Simple
Features for SQL specification (SFSQL).

WKT “Well-known text”. Can refer either to the text representation of geometries, with strings starting
“POINT”, “LINESTRING”, “POLYGON”, etc. Or can refer to the text representation of a CRS,
with strings starting “PROJCS”, “GEOGCS”, etc. Well-known text representations are OGC
standards, but do not have their own specification documents. The first descriptions of WKT (for
geometries and for CRS) appeared in the SFSQL 1.0 specification.

252 Chapter 40. Appendix B: Glossary

http://www.fer.hr/_download/repository/SQLMM_Spatial-_The_Standard_to_Manage_Spatial_Data_in_Relational_Database_Systems.pdf
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wms
http://en.wikipedia.org/wiki/Well-known_text

CHAPTER

FORTYONE

APPENDIX C: LICENSE

This work is licensed under the Creative Commons Attribution-Share Alike, United States License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Our attribution requirement is that you retain the visible copyright notices in all materials.

253

http://creativecommons.org/licenses/by-sa/3.0/us/

Introduction to PostGIS, Release 1.1

254 Chapter 41. Appendix C: License

INDEX

C
CRS, 251

G
GDAL, 251
GeoJSON, 251
GIS, 251
GML, 251

J
JSON, 251
JSP, 251
JSTL, 251

K
KML, 251

O
OGC, 251
OSGeo, 251

S
SFSQL, 251
SLD, 251
SQL, 251
SQL/MM, 252
SRID, 251
SVG, 252

W
WFS, 252
WKB, 252
WKT, 252
WMS, 252

255

	Welcome
	Introduction
	Installation
	Creating a Spatial Database
	Loading spatial data
	About our data
	Simple SQL
	Simple SQL Exercises
	Geometries
	Geometry Exercises
	Spatial Relationships
	Spatial Relationships Exercises
	Spatial Joins
	Spatial Joins Exercises
	Spatial Indexing
	Projecting Data
	Projection Exercises
	Geography
	Geography Exercises
	Geometry Constructing Functions
	Geometry Constructing Exercises
	More Spatial Joins
	Validity
	Equality
	Linear Referencing
	Dimensionally Extended 9-Intersection Model
	Clustering on Indices
	3-D
	Nearest-Neighbour Searching
	Rasters
	Topology
	Tracking Edit History using Triggers
	Basic PostgreSQL Tuning
	PostgreSQL Security
	PostgreSQL Schemas
	PostgreSQL Backup and Restore
	Software Upgrades
	Advanced Geometry Constructions
	Appendix A: PostGIS Functions
	Appendix B: Glossary
	Appendix C: License
	Index

