Name

ST_Tesselate — Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS

Synopsis

`geometry ST_Tesselate(`geometry geom`)`;

Description

Takes as input a surface such a MULTI(POLYGON) or POLYHEDRALSURFACE and returns a TIN representation via the process of tesselation using triangles.

Availability: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

 ```SELECT ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )');``` Original Cube ```SELECT ST_Tesselate(ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));``` ST_AsText output: ```TIN Z (((0 0 0,0 0 1,0 1 1,0 0 0)),((0 1 0,0 0 0,0 1 1,0 1 0)), ((0 0 0,0 1 0,1 1 0,0 0 0)), ((1 0 0,0 0 0,1 1 0,1 0 0)),((0 0 1,1 0 0,1 0 1,0 0 1)), ((0 0 1,0 0 0,1 0 0,0 0 1)), ((1 1 0,1 1 1,1 0 1,1 1 0)),((1 0 0,1 1 0,1 0 1,1 0 0)), ((0 1 0,0 1 1,1 1 1,0 1 0)),((1 1 0,0 1 0,1 1 1,1 1 0)), ((0 1 1,1 0 1,1 1 1,0 1 1)),((0 1 1,0 0 1,1 0 1,0 1 1)))``` Tesselated Cube with triangles colored `SELECT 'POLYGON (( 10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190 ))'::geometry;` Original polygon ```SELECT ST_Tesselate('POLYGON (( 10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190 ))'::geometry);``` ST_AsText output ```TIN(((80 130,50 160,80 70,80 130)),((50 160,10 190,10 70,50 160)), ((80 70,50 160,10 70,80 70)),((120 160,120 190,50 160,120 160)), ((120 190,10 190,50 160,120 190)))``` Tesselated Polygon