PostGIS 3.0.0 Handbuch

Die PostGIS Development Group

Abstract

PostGIS ist eine Erweiterung des objektrelationalen Datenbanksystems PostgreSQL. Es ermöglicht die Speicherung von Geoobjekten eines GIS (Geoinformationssystem) in der Datenbank. PostGIS unterstützt räumliche, GIST-basierte R-Tree Indizes, sowie Funktionen zur Analyse und Bearbeitung von Geoobjekten.

Dieses Handbuch beschreibt die Version 3.0.0

Diese Arbeit ist unter der Creative Commons Attribution-Share Alike 3.0 License lizensiert. Sie können den Inhalt ungeniert nutzen, aber wir ersuchen Sie das PostGIS Projekt namentlich aufzuführen und wenn möglich einen Verweis auf http://postgis.net zu setzen.


Table of Contents
1. Einführung
1.1. Projektleitung
1.2. Aktuelle Kernentwickler
1.3. Frühere Kernentwickler
1.4. Weitere Mitwirkende
2. PostGIS Installation
2.1. Kurzfassung
2.2. Raster konfigurieren
2.3. Systemvoraussetzungen
2.4. Nutzung des Quellcodes
2.5. Kompilierung und Installation des Quellcodes: Detaillierte Beschreibung
2.5.1. Konfiguration
2.5.2. Build-Prozess
2.5.3. Build-Prozess für die PostGIS Extensions und deren Bereitstellung
2.5.4. Softwaretest
2.5.5. Installation
2.6. Eine Geodatenbank mit EXTENSIONS anlegen
2.7. Ersellung einer Geodatenbank ohne Extensions
2.8. Installation und Verwendung des Adressennormierers
2.8.1. Installation von Regex::Assemble
2.9. Installation, Aktualisierung des Tiger Geokodierers und Daten laden
2.9.1. Aktivierung des Tiger Geokodierer in Ihrer PostGIS Datenbank: Verwendung von Extension
2.9.2. Den Tiger Geokodierer in der PostGIS Datenbank aktivieren: ohne die Verwendung von Extensions
2.9.3. Die Adressennormierer-Extension zusammen mit dem Tiger Geokodierer verwenden
2.9.4. Tiger-Daten laden
2.9.5. Upgrade Ihrer Tiger Geokodierer Installation
2.10. Erzeugung einer Geodatenbank mit einem Template
2.11. Upgrading
2.11.1. Soft upgrade
2.11.2. Hard upgrade
2.12. Übliche Probleme bei der Installation
2.13. Loader/Dumper
3. Häufige Fragen zu PostGIS
4. PostGIS anwenden: Datenverwaltung und Abfragen
4.1. GIS Objekte
4.1.1. OpenGIS WKB und WKT
4.1.2. PostGIS EWKB, EWKT und Normalformen/kanonische Formen
4.1.3. SQL-MM Part 3
4.2. Der geographische Datentyp von PostGIS
4.2.1. Grundsätzliches zum geographischen Datentyp
4.2.2. Wann sollte man den geographischen Datentyp dem geometrischen Datentyp vorziehen
4.2.3. Fortgeschrittene FAQ's zum geographischen Datentyp
4.3. Verwendung von OGC-Standards
4.3.1. Die SPATIAL_REF_SYS Tabelle und Koordinatenreferenzsysteme
4.3.2. Der View GEOMETRY_COLUMNS
4.3.3. Erstellung einer räumlichen Tabelle
4.3.4. Geometrische Spalten in "geometry_columns" händisch registrieren
4.3.5. Wahrung der OGC-Konformität von Geometrien
4.3.6. DE-9IM-Matrix (DE-9IM)
4.4. GIS (Vektor) Daten laden
4.4.1. Daten via SQL laden
4.4.2. shp2pgsql: Verwendung des ESRI-Shapefile Laders
4.5. Geodaten abrufen
4.5.1. Daten mit SQL abrufen
4.5.2. Verwendung des Dumper
4.6. Erstellung von Indizes
4.6.1. GiST-Indizes
4.6.2. BRIN Indizes
4.6.3. SP-GiST Indizes
4.6.4. Verwendung von Indizes
4.7. Komplexe Abfragen
4.7.1. Vorteile von Indizes nutzen
4.7.2. Beispiele für Spatial SQL
5. Rasterdatenverwaltung, -abfrage und Anwendungen
5.1. Laden und Erstellen von Rastertabellen
5.1.1. Verwendung von raster2pgsql zum Laden von Rastern
5.1.2. Erzeugung von Rastern mit den PostGIS Rasterfunktionen
5.2. Raster Katalog
5.2.1. Rasterspalten Katalog
5.2.2. Raster Übersicht/Raster Overviews
5.3. Eigene Anwendungen mit PostGIS Raster erstellen
5.3.1. PHP Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen
5.3.2. ASP.NET C# Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen
5.3.3. Applikation für die Java-Konsole, welche eine Rasterabfrage als Bilddatei ausgibt
5.3.4. Verwenden Sie PLPython um Bilder via SQL herauszuschreiben
5.3.5. Faster mit PSQL ausgeben
6. Anwendung der PostGIS Geometrie: Applikationsentwicklung
6.1. Verwendung von MapServer
6.1.1. Grundlegende Handhabung
6.1.2. Häufig gestellte Fragen
6.1.3. Erweiterte Verwendung
6.1.4. Beispiele
6.2. Java Clients (JDBC)
6.3. C Clients (libpq)
6.3.1. Text Cursor
6.3.2. Binäre Cursor
7. Performance Tipps
7.1. Kleine Tabellen mit großen Geometrien
7.1.1. Problembeschreibung
7.1.2. Umgehungslösung
7.2. CLUSTER auf die geometrischen Indizes
7.3. Vermeidung von Dimensionsumrechnungen
7.4. Tunen der Konfiguration
7.4.1. Startup/Inbetriebnahme
7.4.2. Runtime/Laufzeit
8. Referenz PostGIS
8.1. PostgreSQL und PostGIS Datentypen - Geometry/Geography/Box
8.2. PostGIS Grand Unified Custom Variables (GUCs)
8.3. Geometrische Managementfunktionen
8.4. Geometrische Konstruktoren
8.5. Geometrische Zugriffsfunktionen
8.6. Geometrische Editoren
8.7. Ausgabe von Geometrie
8.7.1. Well-Known Text (WKT)
8.7.2. Well-Known Binary (WKB)
8.7.3. Other Formats
8.8. Operatoren
8.8.1. Bounding Box Operators
8.8.2. Operatoren
8.9. Measurement Functions
8.10. SFCGAL Funktionen
8.11. Geometrieverarbeitung
8.12. Kilometrierung
8.13. Unterstützung von lang andauernden Transaktionen/Long Transactions
9. Referenz Raster
9.1. Datentypen zur Unterstützung von Rastern.
9.2. Rastermanagement
9.3. Raster Constructors
9.4. Zugriffsfunktionen auf Raster
9.5. Zugriffsfunktionen auf Rasterbänder
9.6. Zugriffsfunktionen und Änderungsmethoden für Rasterpixel
9.7. Raster Editoren
9.8. Editoren für Rasterbänder
9.9. Rasterband Statistik und Analytik
9.10. Rastereingabe
9.11. Ausgabe von Rastern
9.12. Rasterdatenverarbeitung
9.12.1. Map Algebra
9.12.2. Integrierte Map Algebra Callback Funktionen
9.12.3. DHM (Digitales Höhenmodell)
9.12.4. Raster nach Geometrie
9.13. Rasteroperatoren
9.14. Räumliche Beziehungen von Rastern und Rasterbändern
9.15. Raster Tipps
9.15.1. Out-DB Raster
10. Häufige Fragen zu PostGIS Raster
11. Topologie
11.1. Topologische Datentypen
11.2. Topologische Domänen
11.3. Verwaltung von Topologie und TopoGeometry
11.4. Topologie Konstruktoren
11.5. Topologie Editoren
11.6. Zugriffsfunktionen zur Topologie
11.7. Topologie Verarbeitung
11.8. TopoGeometry Konstruktoren
11.9. TopoGeometry Editoren
11.10. TopoGeometry Accessors
11.11. TopoGeometry Ausgabe
11.12. Räumliche Beziehungen einer Topologie
12. Adressennormierer
12.1. Funktionsweise des Parsers
12.2. Adressennormierer Datentypen
12.3. Adressennormierer Tabellen
12.4. Adressennormierer Funktionen
13. PostGIS Extras
13.1. Tiger Geokoder
14. PostGIS Special Functions Index
14.1. PostGIS Aggregate Functions
14.2. PostGIS Window Functions
14.3. PostGIS SQL-MM Compliant Functions
14.4. PostGIS Geography Support Functions
14.5. PostGIS Raster Support Functions
14.6. PostGIS Geometry / Geography / Raster Dump Functions
14.7. PostGIS Box Functions
14.8. PostGIS Functions that support 3D
14.9. PostGIS Curved Geometry Support Functions
14.10. PostGIS Polyhedral Surface Support Functions
14.11. PostGIS Function Support Matrix
14.12. New, Enhanced or changed PostGIS Functions
14.12.1. PostGIS Functions new or enhanced in 3.0
14.12.2. PostGIS Functions new or enhanced in 2.5
14.12.3. PostGIS Functions new or enhanced in 2.4
14.12.4. PostGIS Functions new or enhanced in 2.3
14.12.5. PostGIS Functions new or enhanced in 2.2
14.12.6. PostGIS functions breaking changes in 2.2
14.12.7. PostGIS Functions new or enhanced in 2.1
14.12.8. PostGIS Functions new, behavior changed, or enhanced in 2.0
14.12.9. PostGIS Functions changed behavior in 2.0
14.12.10. PostGIS Functions new, behavior changed, or enhanced in 1.5
14.12.11. PostGIS Functions new, behavior changed, or enhanced in 1.4
14.12.12. PostGIS Functions new in 1.3
15. Meldung von Problemen
15.1. Software Bugs melden
15.2. Probleme mit der Dokumentation melden
A. Anhang
A.1. Release 3.0.0
A.2. Release 3.0.0rc2
A.3. Release 3.0.0rc1
A.4. Release 3.0.0beta1
A.5. Release 3.0.0alpha4
A.6. Release 3.0.0alpha3
A.7. Release 3.0.0alpha2
A.8. Release 3.0.0alpha1
A.9. Release 2.4.0
A.10. Release 2.4.4
A.11. Release 2.4.4
A.12. Release 2.4.3
A.13. Release 2.4.2
A.14. Release 2.4.1
A.15. Release 2.4.0
A.16. Release 2.3.3
A.17. Release 2.3.2
A.18. Release 2.3.1
A.19. Release 2.3.0
A.20. Release 2.2.2
A.21. Release 2.2.1
A.22. Release 2.2.0
A.23. Release 2.1.8
A.24. Release 2.1.7
A.25. Release 2.1.6
A.26. Release 2.1.5
A.27. Release 2.1.4
A.28. Release 2.1.3
A.29. Release 2.1.2
A.30. Release 2.1.1
A.31. Release 2.1.0
A.32. Release 2.0.5
A.33. Release 2.0.4
A.34. Release 2.0.3
A.35. Release 2.0.2
A.36. Release 2.0.1
A.37. Release 2.0.0
A.38. Release 1.5.4
A.39. Release 1.5.3
A.40. Release 1.5.2
A.41. Release 1.5.1
A.42. Release 1.5.0
A.43. Release 1.4.0
A.44. Release 1.3.6
A.45. Release 1.3.5
A.46. Release 1.3.4
A.47. Release 1.3.3
A.48. Release 1.3.2
A.49. Release 1.3.1
A.50. Release 1.3.0
A.51. Release 1.2.1
A.52. Release 1.2.0
A.53. Release 1.1.6
A.54. Release 1.1.5
A.55. Release 1.1.4
A.56. Release 1.1.3
A.57. Release 1.1.2
A.58. Release 1.1.1
A.59. Release 1.1.0
A.60. Release 1.0.6
A.61. Release 1.0.5
A.62. Release 1.0.4
A.63. Release 1.0.3
A.64. Release 1.0.2
A.65. Release 1.0.1
A.66. Release 1.0.0
A.67. Release 1.0.0RC6
A.68. Release 1.0.0RC5
A.69. Release 1.0.0RC4
A.70. Release 1.0.0RC3
A.71. Release 1.0.0RC2
A.72. Release 1.0.0RC1

Chapter 1. Einführung

PostGIS erweitert das relationale Datenbanksystem PostgreSQL zu einer Geodatenbank. PostGIS wurde im Rahmen eines Technologieforschungsprojektes zu Geodatenbanken von Refractions Research Inc gegründet. Refractions ist ein Beratungsunternehmen für GIS und Datenbanken in Viktoria, British Columbia, Kanada, spezialisiert auf Datenintegration und Entwicklung von Individualsoftware.

PostGIS ist ein Projekt der OSGeo Foundation. PostGIS wird von vielen FOSS4G-Entwicklern und Unternehmen auf der ganzen Welt laufend verbessert und finanziert. Diese profitieren ihrerseits von der Funktionsvielfalt und Einsatzflexibilität von PostGIS.

Die PostGIS Project Develpment Group beabsichtigt durch die Unterstützung und Weiterentwicklung von PostGIS eine hohe Funktionsvielfalt zu erreichen. Diese soll wichtige GIS-Funktionalitäten, Kompatibilität mit den spatialen Standards OpenGIS und SQL/MM, hochentwickelte topologische Konstrukte (Coverages, Oberflächen, Netzwerke), Datenquellen für Desktop Benutzeroberflächen zum Darstellen und Bearbeiten von GIS Daten, sowie Werkzeuge für den Zugriff via Internettechnologie beinhalten.

1.1. Projektleitung

Das PostGIS Project Steering Committee (PSC) koordiniert die allgemeine Ausrichtung, den Releasezyklus, die Dokumentation und die Öffentlichkeitsarbeit des PostGIS Projektes. Zusätzlich bietet das PSC allgemeine Unterstützung für Anwender, übernimmt und prüft Patches aus der PostGIS Gemeinschaft und stimmt über sonstige Themen, wie Commit-Zugriff für Entwickler, neue PSC Mitglieder oder entscheidende Änderungen an der API, ab.

Regina Obe

Buildbot Wartung, Kompilierung produktiver und experimenteller Softwarepakete für Windows, Abgleich von PostGIS mit den PostgreSQL Releases, allgemeine Unterstützung von Anwendern auf der PostGIS Newsgroup, Mitarbeit an X3D, Tiger Geokodierer, an Funktionen zur Verwaltung von Geometrien; Smoke testing neuer Funktionalität und wichtige Änderungen am Code.

Bborie Park

Entwicklung im Bereich Raster, Integration mit GDAL, Raster-Lader, Anwender-Support, allgemeine Fehlerbeseitigung, Softwaretests auf verschiedenen Betriebssystemen (Slackware, Mac, Windows und andere).

Paul Ramsey (Vorsitzender)

Mitbegründer des PostGIS Projektes. Allgemeine Fehlerbehebung, geographische Unterstützung, Indizes zur Unterstützung von Geographie und Geometrie (2D, 3D, nD Index und jegliche räumliche Indizes), grundlegende interne geometrische Strukturen, PointCloud (in Entwicklung), Einbindung von GEOS Funktionalität und Abstimmung mit GEOS Releases, Abglech von PostGIS mit den PostgreSQL Releases, Loader/Dumper und die Shapefile Loader GUI.

Sandro Santilli

Bugfixes, Wartung, Git Mirrors Management und Integration neuer GEOS-Funktionalitäten, sowie Abstimmung mit den GEOS Versionen, Topologieunterstützung, Raster Grundstruktur und Funktionen der Low-Level-API.

1.2. Aktuelle Kernentwickler

Jorge Arévalo

Entwicklung von PostGIS Raster, GDAL-Treiberunterstützung, Lader/loader

Nicklas Avén

Verbesserung und Erweiterung von Distanzfunktionen (einschließlich 3D-Distanz und Funktionen zu räumlichen Beziehungen), Tiny WKB Ausgabeformat (TWKB) (in Entwicklung) und allgemeine Unterstützung von Anwendern.

Dan Baston

Beiträge zu den geometrischen Clusterfunktionen, Verbesserung anderer geometrischer Alorithmen, GEOS Erweiterungen und allgemeine Unterstützung von Anwendern.

Olivier Courtin

Ein- und Ausgabefunktionen für XML (KML,GML)/GeoJSON, 3D Unterstützng und Bugfixes.

Martin Davis

GEOS enhancements and documentation

Björn Harrtell

MapBox Vector Tile und GeoBuf Funktionen. Gogs Tests und GitLab Experimente.

Mateusz Loskot

CMake Unterstützung für PostGIS, Entwicklung des ursprünglichen Raster-Laders in Python und systemnahe Funktionen der Raster-API

Raúl Marín Rodríguez

Bugfixes

Darafei Praliaskouski

Index Optimierung, Bugfixes und Verbesserungen von Funktionen für den geometrischen/geographischer Datentyp, GitHub Verwalter und Wartung des Travis Bot.

Pierre Racine

Gesamtarchitektur für Raster, Prototyping, Unterstützung bei der Programmierung

1.3. Frühere Kernentwickler

Mark Cave-Ayland

Koordiniert die Wartung und Fehlerbehebung, die Selektivität und die Anbindung von räumlichen Indizes, den Loader/Dumper und die Shapfile Loader GUI, die Einbindung von neuen Funktionen sowie die Verbesserung von neuen Funktionen.

Chris Hodgson

Ehemaliges PSC Mitglied. Allgemeine Entwicklungsarbeit, Wartung von Buildbot und Homepage, OSGeo Inkubationsmanagement.

Kevin Neufeld

Ehemaliges PSC Mitglied. Dokumentation und Werkzeuge zur Dokumentationsunterstützung, Buildbot Wartung, fortgeschrittene Anwenderunterstützung auf der PostGIS Newsgroup, Verbesserungen an den Funktionen zur Verwaltung von Geometrien.

Dave Blasby

Der ursprüngliche Entwickler und Mitbegründer von PostGIS. Dave schrieb die serverseitigen Bereiche, wie das Binden von Indizes und viele der serverseitiger analytischer Funktionen.

Jeff Lounsbury

Ursprüngliche Entwicklung des Shapefile Loader/Dumper. Aktuell ist er Vertreter der PostGIS Projekt Inhaber.

Mark Leslie

Laufende Wartung und Entwicklung der Kernfunktionen. Erweiterte Unterstützung von Kurven. Shapefile Loader GUI.

David Zwarg

Entwickelt für Raster (in erster Linie analytische Funktionen in Map Algebra)

1.4. Weitere Mitwirkende

Die einzelnen Mitwirkenden

Alex BodnaruGerald FenoyMaxime Guillaud
Alex MayrhoferGino LucreziMaxime van Noppen
Andrea PeriGreg TroxelMichael Fuhr
Andreas Forø TollefsenGuillaume LelargeMike Toews
Andreas NeumannHaribabu KommiNathan Wagner
Anne GhislaHavard TveiteNathaniel Clay
Antoine BajoletIIDA TetsushiNikita Shulga
Artur ZakirovIngvild NystuenNorman Vine
Barbara PhillipotJackie LengPatricia Tozer
Ben JubbJames MarcaRafal Magda
Bernhard ReiterJason SmithRalph Mason
Björn EsserJeff AdamsRémi Cura
Brian HamlinJonne SavolainenRichard Greenwood
Bruce RindahlJose Carlos Martinez LlariRoger Crew
Bruno Wolff IIIJörg HabenichtRon Mayer
Bryce L. NordgrenJulien RouhaudSebastiaan Couwenberg
Carl AndersonKashif RasulSergey Fedoseev
Charlie SavageKlaus FoersterShinichi Sugiyama
Christoph BergKris JurkaShoaib Burq
Christoph Moench-TegederLaurenz AlbeSilvio Grosso
Dane SpringmeyerLars RoessigerSteffen Macke
Dave FuhryLeo HsuStepan Kuzmin
David ZwargLoic DacharyStephen Frost
David ZwargLuca S. PercichTalha Rizwan
David ZwargMaria Arias de ReynaTom Glancy
Dmitry VasilyevMarc DucobuTom van Tilburg
Eduin CarrilloMark SondheimVincent Mora
Eugene AntimirovMarkus SchaberVincent Picavet
Even RouaultMarkus WannerVolf Tomáš
Frank WarmerdamMatt Amos 
George SilvaMatthias Bay 

Gründungs-Sponsoren

Dabei handelt es sich um Unternehmen, die Entwicklungszeit, Hosting, oder direkte finanzielle Förderungen, in das PostGIS Projekt eingebracht haben

Crowd Funding-Kampagnen

Wir starten Crowdfunding Kampagnen, um dringend gewünschte und von vielen Anwendern benötigte Funktionalitäten zu finanzieren. Jede Kampagne konzentriert sich auf eine bestimmte Funktionalität oder eine Gruppe von Funktionen. Jeder Sponsor spendiert einen kleinen Teil des benötigten Geldes und wenn genug Menschen/Organisationen mitmachen, können wir die Arbeit bezahlen, von der dann viele etwas haben. Falls Sie eine Idee für eine Funktionalität haben, bei der Sie glauben, dass viele andere bereit sind diese mitzufinanzieren, dann schicken Sie bitte Ihre Überlegungen an die PostGIS newsgroup - gemeinsam wird es uns gelingen.

PostGIS 2.0.0 war die erste Version, mit der wir diese Strategie verfolgten. Wir benutzten PledgeBank und hatten zwei erfolgreiche Kampagnen.

postgistopology - mehr als 10 Sponsoren förderten mit jeweils $250 USD die Entwicklung von TopoGeometry Funktionen und das Aufmöbeln der Topologie-Unterstützung für 2.0.0.

postgis64windows - 20 Sponsoren förderten die Arbeit an den Problemen mit der 64-bit Version von PostGIS für Windows mit jeweils $100 USD. Es ist tatsächlich geschehen und nun steht eine 64-bit Version von PostGIS 2.0.1 als PostgreSQL Stack-Builder zur Verfügung.

Wichtige Support-Bibliotheken

The GEOS geometry operations library

Die GDAL Geospatial Data Abstraction Library von Frank Warmerdam und anderen ist die Grundlage für einen großen Teil der Rasterfunktionalität, die mit PostGIS 2.0.0 eingeführt wurde. Im Prinzip werden die zur Unterstützung von PostGIS nötigen Neuerungen in GDAL, an das GDAL-Projekt zurückgegeben.

The PROJ cartographic projection library

Zu guter Letzt das PostgreSQL DBMS, der Gigant auf dessen Schultern PostGIS steht. Die Geschwindigkeit und Flexibilität von PostGIS wäre ohne die Erweiterbarkeit, den großartigen Anfrageplaner, den GIST Index, und der Unmenge an SQL Funktionen, die von PostgreSQL bereitgestellt werden, nicht möglich.

Chapter 2. PostGIS Installation

Dieses Kapitel erläutert die notwendigen Schritte zur Installation von PostGIS.

2.1. Kurzfassung

Zum Kompilieren müssen die Abhängigkeiten im Suchpfad eingetragen sein:

tar xvfz postgis-3.0.0.tar.gz
cd postgis-3.0.0
./configure
make
make install

Nachdem PostGIS installiert ist, muss es in jeder Datenbank-Instanz, in der es verwendet werden soll, aktiviert werden.

[Note]

Die Verwendung der Erweiterung wird bevorzugt und ist benutzerfreundlicher. So aktivieren Sie Ihre Datenbank räumlich:

psql -d ihredatenbank -c "CREATE EXTENSION postgis;"

- wenn Sie mit Raster-Unterstützung kompiliert haben und sie installieren möchten -
psql -d ihredatenbank -c "CREATE EXTENSION postgis_raster;"

- wenn Sie die Topologieunterstützung installieren möchten -
psql -d ihredatenbank -c "CREATE EXTENSION postgis_topology;"

- wenn Sie mit Unterstützung von sfcgal erstellt haben und sie installieren möchten -
psql -d ihredatenbank -c "CREATE EXTENSION postgis_sfcgal;"

- wenn Sie eine Tiger-Geokodierung installieren möchten -
psql -d ihredatenbank -c "CREATE EXTENSION fuzzystrmatch"
psql -d ihredatenbank -c "CREATE EXTENSION postgis_tiger_geocoder;"

- wenn Sie mit pcre installiert haben
- sollten Sie auch die Erweiterung zur Adressstandardisierung hinzufügen
psql -d ihredatenbank -c "CREATE EXTENSION address_standardizer;"

Unter Section 2.5.3, “Build-Prozess für die PostGIS Extensions und deren Bereitstellung” sind die Details beschrieben, wie man die installierten/vorhandenen Erweiterungen abfragen und aktualisieren kann, bzw. wie man von einer Installation ohne Erweiterungen zu einer Erweiterungsinstallation kommt.

Für diejenigen, die sich aus irgendeinem Grund entschieden haben, nicht die Erweiterungsinstallation zu verwenden, sind hier die längeren schmerzvolleren Anweisungen:

Nach der Installation befinden sich alle .sql Dateien unter dem Ordner "share/contrib/postgis-3.0" der PostgreSQL Installation.

createdb ihredatenbank
createlang plpgsql ihredatenbank
psql -d ihredatenbank -f postgis.sql
psql -d ihredatenbank -f postgis_comments.sql
psql -d ihredatenbank -f spatial_ref_sys.sql

- wenn Sie die Topologie aktivieren möchten
psql -d ihredatenbank -f topologie.sql
psql -d ihredatenbank -f topology_comments.sql

- wenn Sie Raster aktivieren möchten
- und nur wenn Sie mit Raster (GDAL) kompiliert haben
psql -d ihredatenbank -f rtpostgis.sql
psql -d ihredatenbank -f raster_comments.sql

- wenn Sie das sfcgal-Backend aktivieren möchten
- und nur wenn Sie mit sfcgal Unterstützung kompiliert haben -
psql -d ihredatenbank -f sfcgal.sql
psql -d ihredatenbank -f sfcgal_comments.sql

2.2. Raster konfigurieren

Wenn Sie die Raster-Unterstützung aktiviert haben, sollten Sie im Folgenden nachlesen, wie Sie sie richtig konfigurieren.

Ab PostGIS 2.1.3 sind out-of-db Raster und alle Raster Treiber standardmäßig ausgeschaltet. Um diese zu aktivieren müssen folgende Umgebungsvariablen POSTGIS_GDAL_ENABLED_DRIVERS and POSTGIS_ENABLE_OUTDB_RASTERS am Server gesetzt werden. Für PostGIS 2.2 kann ein plattformübergreifender Ansatz gewählt werden, indem der entsprechende Section 8.2, “PostGIS Grand Unified Custom Variables (GUCs)” gesetzt wird.

Falls Offline-Raster ermöglicht werden sollen:

POSTGIS_ENABLE_OUTDB_RASTERS=1

Jede andere Einstellung oder keine Einstellung deaktiviert out-of-db Raster.

Um alle in der jeweiligen GDAL Installation verfügbaren Treiber zu aktivieren, muss folgende Umgebungsvariable gesetzt werden:

POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL

Falls nur bestimmte Treiber aktiviert werden sollen, kann die Umgebungsvariable auf diese beschränkt werden:

POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"
[Note]

Unter Windows darf die Treiberliste nicht unter Anführungszeichen gesetzt werden.

Die Zuweisung von Umgebungsvariablen wechselt je nach Betriebssystem. Für PostgreSQL Installationen auf Ubuntu oder Debian via apt-postgresql, ist der bevorzugte Weg /etc/postgresql/10/main/environment zu editieren, wobei 10 auf die PostgreSQL Version verweist und main auf den Cluster hinweist.

Als Service unter Windows können Sie die Systemvariablen setzen; diese befinden sich bei Windows 7 mit Rechtsklick auf Computer->Properties Advanced System Settings oder im Explorer unter Control Panel\All Control Panel Items\System. Anschließend auf Advanced System Settings ->Advanced->Environment Variables und die neuen Systemvariablen hinzufügen.

Nachdem die Umgebungsvariablen gesetzt sind, ist ein Neustart des PostgreSQL-Dienstes notwendig, damit die Änderungen wirksam werden.

2.3. Systemvoraussetzungen

Zur Kompilation und Anwendung stellt PostGIS die folgenden Systemanforderungen:

Notwendige Systemvoraussetzungen

  • PostgreSQL 9.5 oder höher. Es wird eine vollständige PostgreSQL Installation (inklusive Server headers) benötigt. PostgreSQL steht unter http://www.postgresql.org zur Verfügung.

    Welche PostgreSQL Version von welcher PostGIS Version unterstützt wird und welche PostGIS Version von welcher GEOS Version unterstützt wird findet sich unter http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS

  • GNU C Compiler (gcc). Es können auch andere ANSI C Compiler zur PostGIS Kompilation verwendet werden, aber die Kompilation mit gcc macht die geringsten Probleme.

  • GNU Make (gmake oder make). Für viele Systeme ist GNU make die Standardversion von make. Überprüfe die Version durch make -v. Andere Versionen von make können das PostGIS Makefile nicht richtig ausführen.

  • Proj4 Projektionsbibliothek, Version 4.9.0 oder höher. Die Proj4 4.9 oder höher wird benötigt um Koordinatentransformationen in PostGIS zu ermöglichen. Proj4 kann von http://trac.osgeo.org/proj/ heruntergeladen werden.

  • Proj4 Projektionsbibliothek, Version 4.9.0 oder höher. Die Proj4 4.9 oder höher wird benötigt um Koordinatentransformationen in PostGIS zu ermöglichen. Proj4 kann von http://trac.osgeo.org/proj/ heruntergeladen werden.

  • LibXML2, Version 2.5.x oder höher. LibXML2 wird derzeit für einige Import Funktionen genutzt (ST_GeomFromGML und ST_GeomFromKML). LibXML2 steht unter http://xmlsoft.org/downloads.html zur Verfügung.

  • JSON-C, Version 0.9 oder höher. JSON-C wird zurzeit benutzt um GeoJSON über die Funktion ST_GeomFromGeoJson zu importieren. JSON-C kann unter https://github.com/json-c/json-c/releases/ bezogen werden.

  • GDAL, Version 1.8 oder höher (Version 1.9 oder höher wird dringend empfohlen, da niedrigere Versionen in manchen Bereichen nicht gut funktionieren oder zu unvorhergesehenen Verhalten führen können). Es ist für die Rasterunterstützung erforderlich. http://trac.osgeo.org/gdal/wiki/DownloadSource.

  • Wenn mit PostgreSQL+JIT kompiliert wird, ist die LLVM-Version >=6 erforderlich https://trac.osgeo.org/postgis/ticket/4125 .

Optionale Systemanforderungen

  • GDAL (pseudo optional) nur wenn Sie kein Rasterunterstützung möchten, können Sie es weglassen. Sorgen Sie außerdem dafür das Treiber, die Sie brauchen wie in Section 2.2, “Raster konfigurieren” beschrieben, aktiviert sind.

  • GTK (benötigt GTK+2.0, 2.8+) um den "shp2pgsql-gui shape file loader" zu kompilieren. http://www.gtk.org/ .

  • SFCGAL, Version 1.1 (oder höher) bietet zusätzliche, hoch entwickelte 2D und 3D Analysefunktionen für PostGIS cf Section 8.10, “SFCGAL Funktionen”. Ermöglicht auch die Anwendung von SFCGAL anstatt von GEOS für einige 2D Funktionen, die von beiden Backends unterstützt werden (wie ST_Intersection oder ST_Area). Eine PostgreSQL Konfigurationsvariable postgis.backend ermöglicht es den Endanwendern zwischen dem Backend zu wählen, falls SFCGAL installiert ist (Standardwert ist GEOS). Anmerkung: SFCGAL 1.2 benötigt mindestens CGAL 4.3 und Boost 1.54 (cf: http://oslandia.github.io/SFCGAL/installation.html) https://github.com/Oslandia/SFCGAL.

  • Um den Chapter 12, Adressennormierer zu kompilieren wird http://www.pcre.org benötigt (ist normalerweise auf Unix-Systemen bereits vorinstalliert). Regex::Assemble perl CPAN package ist nur für eine Neukodierung der Daten in parseaddress-stcities.h erforderlich. Chapter 12, Adressennormierer wird selbsttätig erzeugt, wenn eine PCRE Bibliothek gefunden wird, oder ein gültiger --with-pcre-dir=/path/to/pcre im Konfigurationsschritt angegeben wird.

  • Um ST_AsMVT verwenden zu können, wird die protobuf-c Bibliothek (für die Anwendung) und der protoc-c Kompiler (für die Kompilation) benötigt. Weiters ist pgk-config erforderlich um die korrekte Minimumversion von protobuf-c zu bestimmen. Siehe protobuf-c.

  • CUnit (CUnit). Wird für Regressionstest benötigt. http://cunit.sourceforge.net/

  • DocBook (xsltproc) ist für die Kompilation der Dokumentation notwendig. Docbook steht unter http://www.docbook.org/ zur Verfügung.

  • DBLatex (dblatex) ist zur Kompilation der Dokumentation im PDF-Format nötig. DBLatex liegt unter http://dblatex.sourceforge.net/ vor.

  • ImageMagick (convert) wird zur Erzeugung von Bildern für die Dokumentation benötigt. ImageMagick kann von http://www.imagemagick.org/ bezogen werden.

2.4. Nutzung des Quellcodes

Das PostGIS Quellarchiv kann von der Download Webseite http://download.osgeo.org/postgis/source/postgis-3.0.0.tar.gz bezogen werden.

wget http://download.osgeo.org/postgis/source/postgis-3.0.0.tar.gz
tar -xvzf postgis-3.0.0.tar.gz

Dadurch wird das Verzeichnis postgis-3.0.0 im aktuellen Arbeitsverzeichnis erzeugt.

Alternativ kann der Quellcode auch von svn repository http://svn.osgeo.org/postgis/trunk/ bezogen werden.

svn checkout http://svn.osgeo.org/postgis/trunk/ postgis-3.0.0

Um die Installation fortzusetzen ist in das neu erstellte Verzeichnis postgis-3.0.0 zu wechseln.

2.5. Kompilierung und Installation des Quellcodes: Detaillierte Beschreibung

[Note]

Viele Betriebssysteme stellen heute bereits vorkompilierte Pakete für PostgreSQL/PostGIS zur Verfügung. Somit ist eine Kompilation nur notwendig, wenn man die aktuellsten Versionen benötigt oder für die Paketverwaltung zustänig ist.

Dieser Abschnitt enthält die allgemeinen Installationsanweisungen. Für das Kompilieren unter Windows oder unter einem anderen Betriebssystem findet sich zusätzliche, detailliertere Hilfe unter PostGIS User contributed compile guides und PostGIS Dev Wiki.

Vorkompilierte Pakete für unterschiedliche Betriebssysteme sind unter PostGIS Pre-built Packages aufgelistet.

Wenn Sie ein Windowsbenutzer sind, können Sie stabile Kompilationen mittels Stackbuilder oder die PostGIS Windows download site erhalten. Es gibt auch very bleeding-edge windows experimental builds, die ein oder zweimal pro Woche, bzw. anlassweise kompiliert werden. Damit können Sie mit im Aufbau befindlichen PostGIS Releases experimentieren.

PostGIS ist eine Erweiterung des PostgreSQL Servers. Daher benötigt PostGIS 3.0.0 vollen Zugriff auf die PostgreSQL server headers für die Kompilation. PostGIS kann in Abhängigkeit von PostgreSQL Versionen 9.5 oder höher kompiliert werden. Niedrigere Versionen von PostgreSQL werden nicht unterstützt.

Beziehen Sie sich auf die PostgreSQL Installationshilfe, falls Sie PostgreSQL noch nicht installiert haben. http://www.postgresql.org .

[Note]

Um die GEOS Funktionen nutzen zu können, muss bei der Installation von PostgreSQL explizit gegen die Standard C++ Bibliothek gelinkt werden:

LDFLAGS=-lstdc++ ./configure [IHRE OPTIONEN]

Dies dient als Abhilfe für C++ Fehler bei der Interaktion mit älteren Entwicklungswerkzeugen. Falls eigenartige Probleme auftreten (die Verbindung zum Backend bricht unerwartet ab oder ähnliches) versuchen Sie bitte diesen Trick. Dies verlangt natürlich die Kompilation von PostgreSQL von Grund auf.

Die folgenden Schritte bescheiben die Konfiguration und Kompilation des PostGIS Quellcodes. Sie gelten für Linux Anwender und funktionieren nicht für Windows oder Mac.

2.5.1. Konfiguration

Wie bei den meisten Installationen auf Linux besteht der erste Schritt in der Erstellung eines Makefiles, welches dann zur Kompilation des Quellcodes verwendet wird. Dies wird durch einen Aufruf des Shell Scripts erreicht.

./configure

Ohne zusätzliche Parameter legt dieser Befehl die Komponenten und Bibliotheken fest, welche für die Kompilation des PostGIS Quellcodes auf Ihrem System benötigt werden. Obwohl dies der häufigste Anwendungsfall von ./configure ist, akzeptiert das Skript eine Reihe von Parametern, falls sich die benötigten Bibliotheken und Programme nicht in den Standardverzeichnissen befinden.

Die folgende Liste weist nur die am häufigsten verwendeten Parameter auf. Für eine vollständige Liste benutzen Sie bitte --help oder --help=short .

--with-library-minor-version

Starting with PostGIS 3.0, the library files generated by default will no longer have the minor version as part of the file name. This means all PostGIS 3 libs will end in postgis-3. This was done to make pg_upgrade easier, with downside that you can only install one version PostGIS 3 series in your server. To get the old behavior of file including the minor version: e.g. postgis-3.0 add this switch to your configure statement.

--prefix=PREFIX

Das Verzeichnis, in dem die PostGIS Bibliotheken und SQL-Skripts installiert werden. Standardmäßig ist dies das Verzeichnis in dem auch PostgreSQL installatiert wurde.

[Caution]

Dieser Parameter ist zur Zeit defekt; somit kann PostGIS nur in das PostgreSQL Installationsverzeichnis installiert werden. Dieser Bug kann auf http://trac.osgeo.org/postgis/ticket/635 verfolgt werden.

--with-pgconfig=FILE

PostgreSQL stellt das Dienstprogramm pg_config zur Verfügung um Extensions wie PostGIS die Auffindung des PostgreSQL Installationsverzeichnisses zu ermöglichen. Benutzen Sie bitte diesen Parameter (--with-pgconfig=/path/to/pg_config) um eine bestmmte PostgreSQL Installation zu definieren, gegen die PostGIS kompiliert werden soll.

--with-gdalconfig=FILE

GDAL, eine erforderliche Bibliothek, welche die Funktionalität zur Rasterunterstützung liefert. gdal-config um Software Installationen die Auffindung des GDAL Installationsverzeichnis zu ermöglichen. Benutzen Sie bitte diesen Parameter (--with-gdalconfig=/path/to/gdal-config) um eine bestimmte GDAL Installation zu definieren, gegen die PostGIS kompiliert werden soll.

--with-geosconfig=FILE

GEOS, eine erforderliche Geometriebibliothek, stellt geos-config zur Verfügung, um Software Installationen das Auffinden des GEOS Installationsverzeichnisses zu ermöglichen. Benutzen Sie bitte diesen Parameter (--with-geosconfig=/path/to/geos-config) um eine bestimmte GEOS Installation zu definieren, gegen die PostGIS kompiliert werden soll.

--with-xml2config=FILE

LibXML ist die Bibliothek, welche für die Prozesse GeomFromKML/GML benötigt wird. Falls Sie libxml installiert haben, wird sie üblicherweise gefunden. Falls nicht oder wenn Sie eine bestimmte Version verwenden wollen, müssen Sie PostGIS auf eine bestimmte Konfigurationsdatei xml2-config verweisen, damit Softwareinstallationen das Installationsverzeichnis von LibXML finden können. Verwenden Sie bitte diesen Parameter ( >--with-xml2config=/path/to/xml2-config) um eine bestimmte LibXML Installation anzugeben, gegen die PostGIS kompiliert werden soll.

--with-projdir=DIR

Proj4 ist eine Bibliothek, die von PostGIS zur Koordinatentransformation benötigt wird. Benutzen Sie bitte diesen Parameter (--with-projdir=/path/to/projdir) um ein bestimmtes Proj4 Installationsverzeichnis anzugeben, für das PostGIS kompiliert werden soll.

--with-libiconv=DIR

Das Verzeichnis in dem iconv installiert ist.

--with-jsondir=DIR

JSON-C ist eine MIT-lizensierte JSON Bibliothek, die von PostGIS für ST_GeomFromJSON benötigt wird. Benutzen Sie bitte diesen Parameter (--with-jsondir=/path/to/jsondir), um ein bestimmtes JSON-C Installationsverzeichnis anzugeben, für das PostGIS kompiliert werden soll.

--with-pcredir=DIR

PCRE ist eine BSD-lizensierte Perl compatible Bibliothek für reguläre Ausdrücke, die von der Erweiterung "address_standardizer" benötigt wird. Verwenden Sie diesen Parameter (--with-pcredir=/path/to/pcredir), um ein bestimmtes Installationsverzeichnis von PCRE anzugeben, gegen das PostGIS kompiliert werden soll.

--with-gui

Kompilieren Sie die Datenimport-GUI (benötigt GTK+2.0). Dies erzeugt die graphische Schnittstelle "shp2pgsql-gui" für shp2pgsql.

--without-raster

Ohne Rasterunterstützung kompilieren.

--without-topology

Ausschalten der Topologie Unterstützung. Es existiert keine entsprechende Bibliothek, da sich die gesamte benötigte Logik in der postgis-3.0.0 Bibliothek befindet.

--with-gettext=no

Standardmäßig versucht PostGIS gettext zu detektieren und kompiliert mit gettext Unterstützung. Wenn es allerdings zu Inkompatibilitätsproblemen kommt, die zu einem Zusammenbrechen des Loader führen, so können Sie das mit diesem Befehl zur Gänze deaktivieren. Siehe Ticket http://trac.osgeo.org/postgis/ticket/748 für ein Beispiel wie dieses Problem gelöst werden kann. Sie verpassen nicht viel, wenn Sie dies deaktivieren, da es für die internationale Hilfe zum GUI Loader/Label verwendet wird, welcher nicht dokumentiert und immer noch experimentell ist.

--with-sfcgal=PATH

Ohne diesen Switch wird PostGIS ohne sfcgal Unterstützung installiert. PATH ist ein optionaler Parameter, welcher einen alternativen Pfad zu sfcgal-config angibt.

--without-wagyu

When building with MVT support, Postgis will use Wagyu to clip and validate MVT polygons. Wagyu is the fastest alternative and guarantees producing correct values for this specific case, but it requires a C++-11 compiler. With this optional argument you can disable using this library; GEOS will be used instead.

[Note]

Wenn Sie PostGIS vom Code Repository bezogen haben, müssen Sie zu allererst das Skript ausführen

./autogen.sh

Dieses Skript erzeugt das configure Skript, welches seinerseits zur Anpassung der Installation von PostGIS eingesetzt wird.

Falls Sie stattdessen PostGIS als Tarball vorliegen haben, dann ist es nicht notwendig ./autogen.sh auszuführen, da configure bereits erzeugt wurde.

2.5.2. Build-Prozess

Sobald das Makefile erzeugt wurde, ist der Build-Prozess für PostGIS so einfach wie

make

Die letzte Zeile der Ausgabe sollte "PostGIS was built successfully. Ready to install." enthalten

Seit PostGIS v1.4.0 haben alle Funktionen Kommentare, welche aus der Dokumentation erstellt werden. Wenn Sie diese Kommentare später in die räumliche Datenbank importieren wollen, können Sie den Befehl ausführen der "docbook" benötigt. Die Dateien "postgis_comments.sql", "raster_comments.sql" und "topology_comments.sql" sind im Ordner "doc" der "tar.gz"-Distribution mit paketiert, weshalb Sie bei einer Installation vom "tar ball" her, die Kommentare nicht selbst erstellen müssen. Die Kommentare werden auch als Teil der Installation "CREATE EXTENSION" angelegt.

make comments

Eingeführt in PostGIS 2.0. Erzeugt HTML-Spickzettel, die als schnelle Referenz oder als Handzettel für Studenten geeignet sind. Dies benötigt xsltproc zur Kompilation und erzeugt 4 Dateien in dem Ordner "doc": topology_cheatsheet.html,tiger_geocoder_cheatsheet.html, raster_cheatsheet.html, postgis_cheatsheet.html

Einige bereits Vorgefertigte können von PostGIS / PostgreSQL Study Guides als HTML oder PDF heruntergeladen werden

make cheatsheets

2.5.3. Build-Prozess für die PostGIS Extensions und deren Bereitstellung

Die PostGIS Erweiterungen/Extensions werden ab PostgreSQL 9.1+ automatisch kompiliert und installiert.

Wenn Sie aus dem Quell-Repository kompilieren, müssen Sie zuerst die Beschreibung der Funktionen kompilieren. Diese lassen sich kompilieren, wenn Sie docbook installiert haben. Sie können sie aber auch händisch mit folgender Anweisung kompilieren:

make comments

Sie müssen die Kommentare nicht kompilieren, wenn sie von einem Format "tar" weg kompilieren, da diese in der tar-Datei bereits vorkompilierten sind.

Wenn Sie gegen PostgreSQL 9.1 kompilieren, sollten die Erweiterungen automatisch als Teil des Prozesses "make install" kompilieren. Falls notwendig, können Sie auch vom Ordner mit den Erweiterungen aus kompilieren, oder die Dateien auf einen anderen Server kopieren.

cd extensions
cd postgis
make clean
make
export PGUSER=postgres #overwrite psql variables
make check #to test before install
make install
# to test extensions
make check RUNTESTFLAGS=--extension
[Note]

make check uses psql to run tests and as such can use psql environment variables. Common ones useful to override are PGUSER,PGPORT, and PGHOST. Refer to psql environment variables

Die Erweiterungsdateien sind für dieselbe Version von PostGIS immer ident, unabhängig vom Betriebssystem. Somit ist es in Ordnung, die Erweiterungsdateien von einem Betriebssystem auf ein anderes zu kopieren, solange die Binärdateien von PostGIS bereits installiert sind.

Falls Sie die Erweiterungen händisch auf einen anderen Server installieren wollen, müssen sie folgende Dateien aus dem Erweiterungsordner in den Ordner PostgreSQL / share / extension Ihrer PostgreSQL Installation kopieren. Ebenso die benötigten Binärdateien für das reguläre PostGIS, falls sich PostGIS noch nicht auf dem Server befindet.

  • Dies sind die Kontrolldateien, welche Information wie die Version der zu installierenden Erweiterung anzeigen, wenn diese nicht angegben ist. postgis.control, postgis_topology.control.

  • Alle Dateien in dem Ordner "/sql" der jeweiligen Erweiterung. Diese müssen in das Verzeichnis "share/extension" von PostgreSQL extensions/postgis/sql/*.sql, extensions/postgis_topology/sql/*.sql kopiert werden

Sobald Sie dies ausgeführt haben, sollten Sie postgis, postgis_topology als verfügbare Erweiterungen in PgAdmin -> extensions sehen.

Falls Sie psql verwenden, können Sie die installierten Erweiterungen folgendermaßen abfragen:

SELECT name, default_version,installed_version
FROM pg_available_extensions WHERE name LIKE 'postgis%' or name LIKE 'address%';

             name             | default_version | installed_version
------------------------------+-----------------+-------------------
 address_standardizer         | 3.0.0         | 3.0.0
 address_standardizer_data_us | 3.0.0         | 3.0.0
 postgis                      | 3.0.0         | 3.0.0
 postgis_sfcgal               | 3.0.0         |
 postgis_tiger_geocoder       | 3.0.0         | 3.0.0
 postgis_topology             | 3.0.0         |
(6 rows)

Wenn Sie in der Datenbank, die Sie abfragen, eine Erweiterung installiert haben, dann sehen Sie einen Hinweis in der Spalte installed_version. Wenn Sie keine Datensätze zurückbekommen bedeutet dies, dass Sie überhaupt keine PostGIS Erweiterung auf dem Server installiert haben. PgAdmin III 1.14+ bietet diese Information ebenfalls in der Sparte extensions im Navigationsbaum der Datenbankinstanz an und ermöglicht sogar ein Upgrade oder eine Deinstallation über einen Rechtsklick.

Wenn die Erweiterungen vorhanden sind, können Sie die PostGIS-Extension sowohl mit der erweiterten pgAdmin Oberfläche als auch mittels folgender SQL-Befehle in einer beliebigen Datenbank installieren:

CREATE EXTENSION postgis;
CREATE EXTENSION postgis_sfcgal;
CREATE EXTENSION fuzzystrmatch; --needed for postgis_tiger_geocoder
--optional used by postgis_tiger_geocoder, or can be used standalone
CREATE EXTENSION address_standardizer;
CREATE EXTENSION address_standardizer_data_us;
CREATE EXTENSION postgis_tiger_geocoder;
CREATE EXTENSION postgis_topology;

Sie können psql verwenden, um sich die installierten Versionen und die Datenbankschemen in denen sie installiert sind, anzeigen zu lassen.

\connect mygisdb
\x
\dx postgis*
List of installed extensions
-[ RECORD 1 ]-------------------------------------------------
Name        | postgis
Version     | 3.0.0
Schema      | public
Description | PostGIS geometry, geography, and raster spat..
-[ RECORD 2 ]-------------------------------------------------
Name        | postgis_raster
Version     | 3.0.0dev
Schema      | public
Description | PostGIS raster types and functions
-[ RECORD 3 ]-------------------------------------------------
Name        | postgis_tiger_geocoder
Version     | 3.0.0
Schema      | tiger
Description | PostGIS tiger geocoder and reverse geocoder
-[ RECORD 4 ]-------------------------------------------------
Name        | postgis_topology
Version     | 3.0.0
Schema      | topology
Description | PostGIS topology spatial types and functions
[Warning]

Die Erweiterungstabellen spatial_ref_sys. layer und topology können nicht explizit gesichert werden. Sie können nur mit der entsprechenden postgis oder postgis_topology Erweiterung gesichert werden, was nur geschieht, wenn Sie die ganze Datenbank sichern. Ab PostGIS 2.0.2 werden nur diejenigen Datensätze von SRID beim Backup der Datenbank gesichert, die nicht mit PostGIS paketiert sind. Sie sollten daher keine paketierte SRID ändern und Sie können erwarten, dass Ihre Änderungen gesichert werden. Wenn Sie irgendein Problem finden, reichen Sie bitte ein Ticket ein. Die Struktur der Erweiterungstabellen wird niemals gesichert, da diese mit CREATE EXTENSION erstellt wurde und angenommen wird, dass sie für eine bestimmten Version einer Erweiterung gleich ist. Dieses Verhalten ist in dem aktuellen PostgreSQL Extension Model eingebaut, weshalb wir daran nichts ändern können.

Wenn Sie 3.0.0 ohne unser wunderbares Extension System installiert haben, können Sie auf erweiterungsbasiert wechseln, indem Sie folgende Befehle ausführen, welche die Funktionen in ihre entsprechenden Erweiterungen paketieren.

CREATE EXTENSION postgis FROM unpackaged;
CREATE EXTENSION postgis_raster FROM unpackaged;
CREATE EXTENSION postgis_topology FROM unpackaged;
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.5.4. Softwaretest

Wenn Sie die Kompilation von PostGIS überprüfen wollen:

make check

Obiger Befehl durchläuft mehere Überprüfungen und Regressionstests, indem er die angelegte Bibliothek in einer aktuellen PostgreSQL Datenbank ausführt.

[Note]

Falls Sie PostGIS so konfiguriert haben, dass nicht die Standardverzeichnisse für PostgreSQL, GEOS oder Proj4 verwendet werden, kann es sein, dass Sie die Speicherstellen dieser Bibliotheken in der Umgebungsvariablen "LD_LIBRARY_PATH" eintragen müssen.

[Caution]

Zurzeit beruht make check auf die Umgebungsvariablen PATH undPGPORT beim Ausführen der Überprüfungen - es wird nicht die Version von PostgreSQL verwendet, die mit dem Konfigurationsparameter --with-pgconfig angegeben wurde. Daher stellen Sie sicher, dass die Variable PATH mit der während der Konfiguration dedektierten Installation von PostgreSQL übereinstimmt, oder seien Sie auf drohende Kopfschmerzen vorbereitet.

Wenn der Test erfolgreich war, sollte die Ausgabe etwa so aussehen:

CUnit - A unit testing framework for C - Version 2.1-2
     http://cunit.sourceforge.net/


Suite: computational_geometry
  Test: test_lw_segment_side ...passed
  Test: test_lw_segment_intersects ...passed
  Test: test_lwline_crossing_short_lines ...passed
  Test: test_lwline_crossing_long_lines ...passed
  Test: test_lwline_crossing_bugs ...passed
  Test: test_lwpoint_set_ordinate ...passed
  Test: test_lwpoint_get_ordinate ...passed
  Test: test_point_interpolate ...passed
  Test: test_lwline_clip ...passed
  Test: test_lwline_clip_big ...passed
  Test: test_lwmline_clip ...passed
  Test: test_geohash_point ...passed
  Test: test_geohash_precision ...passed
  Test: test_geohash ...passed
  Test: test_geohash_point_as_int ...passed
  Test: test_isclosed ...passed
  Test: test_lwgeom_simplify ...passed
Suite: buildarea
  Test: buildarea1 ...passed
  Test: buildarea2 ...passed
  Test: buildarea3 ...passed
  Test: buildarea4 ...passed
  Test: buildarea4b ...passed
  Test: buildarea5 ...passed
  Test: buildarea6 ...passed
  Test: buildarea7 ...passed
Suite: geometry_clean
  Test: test_lwgeom_make_valid ...passed
Suite: clip_by_rectangle
  Test: test_lwgeom_clip_by_rect ...passed
Suite: force_sfs
  Test: test_sfs_11 ...passed
  Test: test_sfs_12 ...passed
  Test: test_sqlmm ...passed
Suite: geodetic
  Test: test_sphere_direction ...passed
  Test: test_sphere_project ...passed
  Test: test_lwgeom_area_sphere ...passed
  Test: test_signum ...passed
  Test: test_gbox_from_spherical_coordinates ...passed
  Test: test_gserialized_get_gbox_geocentric ...passed
  Test: test_clairaut ...passed
  Test: test_edge_intersection ...passed
  Test: test_edge_intersects ...passed
  Test: test_edge_distance_to_point ...passed
  Test: test_edge_distance_to_edge ...passed
  Test: test_lwgeom_distance_sphere ...passed
  Test: test_lwgeom_check_geodetic ...passed
  Test: test_gserialized_from_lwgeom ...passed
  Test: test_spheroid_distance ...passed
  Test: test_spheroid_area ...passed
  Test: test_lwpoly_covers_point2d ...passed
  Test: test_gbox_utils ...passed
  Test: test_vector_angle ...passed
  Test: test_vector_rotate ...passed
  Test: test_lwgeom_segmentize_sphere ...passed
  Test: test_ptarray_contains_point_sphere ...passed
  Test: test_ptarray_contains_point_sphere_iowa ...passed
Suite: GEOS
  Test: test_geos_noop ...passed
  Test: test_geos_subdivide ...passed
  Test: test_geos_linemerge ...passed
Suite: Clustering
  Test: basic_test ...passed
  Test: nonsequential_test ...passed
  Test: basic_distance_test ...passed
  Test: single_input_test ...passed
  Test: empty_inputs_test ...passed
Suite: Clustering Union-Find
  Test: test_unionfind_create ...passed
  Test: test_unionfind_union ...passed
  Test: test_unionfind_ordered_by_cluster ...passed
Suite: homogenize
  Test: test_coll_point ...passed
  Test: test_coll_line ...passed
  Test: test_coll_poly ...passed
  Test: test_coll_coll ...passed
  Test: test_geom ...passed
  Test: test_coll_curve ...passed
Suite: encoded_polyline_input
  Test: in_encoded_polyline_test_geoms ...passed
  Test: in_encoded_polyline_test_precision ...passed
Suite: geojson_input
  Test: in_geojson_test_srid ...passed
  Test: in_geojson_test_bbox ...passed
  Test: in_geojson_test_geoms ...passed
Suite: twkb_input
  Test: test_twkb_in_point ...passed
  Test: test_twkb_in_linestring ...passed
  Test: test_twkb_in_polygon ...passed
  Test: test_twkb_in_multipoint ...passed
  Test: test_twkb_in_multilinestring ...passed
  Test: test_twkb_in_multipolygon ...passed
  Test: test_twkb_in_collection ...passed
  Test: test_twkb_in_precision ...passed
Suite: serialization/deserialization
  Test: test_typmod_macros ...passed
  Test: test_flags_macros ...passed
  Test: test_serialized_srid ...passed
  Test: test_gserialized_from_lwgeom_size ...passed
  Test: test_gbox_serialized_size ...passed
  Test: test_lwgeom_from_gserialized ...passed
  Test: test_lwgeom_count_vertices ...passed
  Test: test_on_gser_lwgeom_count_vertices ...passed
  Test: test_geometry_type_from_string ...passed
  Test: test_lwcollection_extract ...passed
  Test: test_lwgeom_free ...passed
  Test: test_lwgeom_flip_coordinates ...passed
  Test: test_f2d ...passed
  Test: test_lwgeom_clone ...passed
  Test: test_lwgeom_force_clockwise ...passed
  Test: test_lwgeom_calculate_gbox ...passed
  Test: test_lwgeom_is_empty ...passed
  Test: test_lwgeom_same ...passed
  Test: test_lwline_from_lwmpoint ...passed
  Test: test_lwgeom_as_curve ...passed
  Test: test_lwgeom_scale ...passed
  Test: test_gserialized_is_empty ...passed
  Test: test_gbox_same_2d ...passed
Suite: measures
  Test: test_mindistance2d_tolerance ...passed
  Test: test_rect_tree_contains_point ...passed
  Test: test_rect_tree_intersects_tree ...passed
  Test: test_lwgeom_segmentize2d ...passed
  Test: test_lwgeom_locate_along ...passed
  Test: test_lw_dist2d_pt_arc ...passed
  Test: test_lw_dist2d_seg_arc ...passed
  Test: test_lw_dist2d_arc_arc ...passed
  Test: test_lw_arc_length ...passed
  Test: test_lw_dist2d_pt_ptarrayarc ...passed
  Test: test_lw_dist2d_ptarray_ptarrayarc ...passed
  Test: test_lwgeom_tcpa ...passed
  Test: test_lwgeom_is_trajectory ...passed
Suite: effectivearea
  Test: do_test_lwgeom_effectivearea_lines ...passed
  Test: do_test_lwgeom_effectivearea_polys ...passed
Suite: miscellaneous
  Test: test_misc_force_2d ...passed
  Test: test_misc_simplify ...passed
  Test: test_misc_count_vertices ...passed
  Test: test_misc_area ...passed
  Test: test_misc_wkb ...passed
  Test: test_grid ...passed
Suite: noding
  Test: test_lwgeom_node ...passed
Suite: encoded_polyline_output
  Test: out_encoded_polyline_test_geoms ...passed
  Test: out_encoded_polyline_test_srid ...passed
  Test: out_encoded_polyline_test_precision ...passed
Suite: geojson_output
  Test: out_geojson_test_precision ...passed
  Test: out_geojson_test_dims ...passed
  Test: out_geojson_test_srid ...passed
  Test: out_geojson_test_bbox ...passed
  Test: out_geojson_test_geoms ...passed
Suite: gml_output
  Test: out_gml_test_precision ...passed
  Test: out_gml_test_srid ...passed
  Test: out_gml_test_dims ...passed
  Test: out_gml_test_geodetic ...passed
  Test: out_gml_test_geoms ...passed
  Test: out_gml_test_geoms_prefix ...passed
  Test: out_gml_test_geoms_nodims ...passed
  Test: out_gml2_extent ...passed
  Test: out_gml3_extent ...passed
Suite: kml_output
  Test: out_kml_test_precision ...passed
  Test: out_kml_test_dims ...passed
  Test: out_kml_test_geoms ...passed
  Test: out_kml_test_prefix ...passed
Suite: svg_output
  Test: out_svg_test_precision ...passed
  Test: out_svg_test_dims ...passed
  Test: out_svg_test_relative ...passed
  Test: out_svg_test_geoms ...passed
  Test: out_svg_test_srid ...passed
Suite: x3d_output
  Test: out_x3d3_test_precision ...passed
  Test: out_x3d3_test_geoms ...passed
  Test: out_x3d3_test_option ...passed
Suite: ptarray
  Test: test_ptarray_append_point ...passed
  Test: test_ptarray_append_ptarray ...passed
  Test: test_ptarray_locate_point ...passed
  Test: test_ptarray_isccw ...passed
  Test: test_ptarray_signed_area ...passed
  Test: test_ptarray_unstroke ...passed
  Test: test_ptarray_insert_point ...passed
  Test: test_ptarray_contains_point ...passed
  Test: test_ptarrayarc_contains_point ...passed
  Test: test_ptarray_scale ...passed
Suite: printing
  Test: test_lwprint_default_format ...passed
  Test: test_lwprint_format_orders ...passed
  Test: test_lwprint_optional_format ...passed
  Test: test_lwprint_oddball_formats ...passed
  Test: test_lwprint_bad_formats ...passed
Suite: SFCGAL
  Test: test_sfcgal_noop ...passed
Suite: split
  Test: test_lwline_split_by_point_to ...passed
  Test: test_lwgeom_split ...passed
Suite: stringbuffer
  Test: test_stringbuffer_append ...passed
  Test: test_stringbuffer_aprintf ...passed
Suite: surface
  Test: triangle_parse ...passed
  Test: tin_parse ...passed
  Test: polyhedralsurface_parse ...passed
  Test: surface_dimension ...passed
Suite: Internal Spatial Trees
  Test: test_tree_circ_create ...passed
  Test: test_tree_circ_pip ...passed
  Test: test_tree_circ_pip2 ...passed
  Test: test_tree_circ_distance ...passed
  Test: test_tree_circ_distance_threshold ...passed
Suite: triangulate
  Test: test_lwgeom_delaunay_triangulation ...passed
Suite: twkb_output
  Test: test_twkb_out_point ...passed
  Test: test_twkb_out_linestring ...passed
  Test: test_twkb_out_polygon ...passed
  Test: test_twkb_out_multipoint ...passed
  Test: test_twkb_out_multilinestring ...passed
  Test: test_twkb_out_multipolygon ...passed
  Test: test_twkb_out_collection ...passed
  Test: test_twkb_out_idlist ...passed
Suite: varint
  Test: test_zigzag ...passed
  Test: test_varint ...passed
  Test: test_varint_roundtrip ...passed
Suite: wkb_input
  Test: test_wkb_in_point ...passed
  Test: test_wkb_in_linestring ...passed
  Test: test_wkb_in_polygon ...passed
  Test: test_wkb_in_multipoint ...passed
  Test: test_wkb_in_multilinestring ...passed
  Test: test_wkb_in_multipolygon ...passed
  Test: test_wkb_in_collection ...passed
  Test: test_wkb_in_circularstring ...passed
  Test: test_wkb_in_compoundcurve ...passed
  Test: test_wkb_in_curvpolygon ...passed
  Test: test_wkb_in_multicurve ...passed
  Test: test_wkb_in_multisurface ...passed
  Test: test_wkb_in_malformed ...passed
Suite: wkb_output
  Test: test_wkb_out_point ...passed
  Test: test_wkb_out_linestring ...passed
  Test: test_wkb_out_polygon ...passed
  Test: test_wkb_out_multipoint ...passed
  Test: test_wkb_out_multilinestring ...passed
  Test: test_wkb_out_multipolygon ...passed
  Test: test_wkb_out_collection ...passed
  Test: test_wkb_out_circularstring ...passed
  Test: test_wkb_out_compoundcurve ...passed
  Test: test_wkb_out_curvpolygon ...passed
  Test: test_wkb_out_multicurve ...passed
  Test: test_wkb_out_multisurface ...passed
  Test: test_wkb_out_polyhedralsurface ...passed
Suite: wkt_input
  Test: test_wkt_in_point ...passed
  Test: test_wkt_in_linestring ...passed
  Test: test_wkt_in_polygon ...passed
  Test: test_wkt_in_multipoint ...passed
  Test: test_wkt_in_multilinestring ...passed
  Test: test_wkt_in_multipolygon ...passed
  Test: test_wkt_in_collection ...passed
  Test: test_wkt_in_circularstring ...passed
  Test: test_wkt_in_compoundcurve ...passed
  Test: test_wkt_in_curvpolygon ...passed
  Test: test_wkt_in_multicurve ...passed
  Test: test_wkt_in_multisurface ...passed
  Test: test_wkt_in_tin ...passed
  Test: test_wkt_in_polyhedralsurface ...passed
  Test: test_wkt_in_errlocation ...passed
Suite: wkt_output
  Test: test_wkt_out_point ...passed
  Test: test_wkt_out_linestring ...passed
  Test: test_wkt_out_polygon ...passed
  Test: test_wkt_out_multipoint ...passed
  Test: test_wkt_out_multilinestring ...passed
  Test: test_wkt_out_multipolygon ...passed
  Test: test_wkt_out_collection ...passed
  Test: test_wkt_out_circularstring ...passed
  Test: test_wkt_out_compoundcurve ...passed
  Test: test_wkt_out_curvpolygon ...passed
  Test: test_wkt_out_multicurve ...passed
  Test: test_wkt_out_multisurface ...passed

Run Summary:    Type  Total    Ran Passed Failed Inactive
              suites     38     38    n/a      0        0
               tests    251    251    251      0        0
             asserts   2468   2468   2468      0      n/a

Elapsed time =    0.298 seconds

Creating database 'postgis_reg'
Loading PostGIS into 'postgis_reg'
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/postgis.sql
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/postgis_comments.sql
Loading SFCGAL into 'postgis_reg'
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/sfcgal.sql
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/sfcgal_comments.sql
PostgreSQL 9.4.4, compiled by Visual C++ build 1800, 32-bit
  Postgis 2.2.0dev - r13980 - 2015-08-23 06:13:07
  scripts 2.2.0dev r13980
  GEOS: 3.5.0-CAPI-1.9.0 r4088
  PROJ: Rel. 4.9.1, 04 March 2015
  SFCGAL: 1.1.0

Running tests

 loader/Point .............. ok
 loader/PointM .............. ok
 loader/PointZ .............. ok
 loader/MultiPoint .............. ok
 loader/MultiPointM .............. ok
 loader/MultiPointZ .............. ok
 loader/Arc .............. ok
 loader/ArcM .............. ok
 loader/ArcZ .............. ok
 loader/Polygon .............. ok
 loader/PolygonM .............. ok
 loader/PolygonZ .............. ok
 loader/TSTPolygon ......... ok
 loader/TSIPolygon ......... ok
 loader/TSTIPolygon ......... ok
 loader/PointWithSchema ..... ok
 loader/NoTransPoint ......... ok
 loader/NotReallyMultiPoint ......... ok
 loader/MultiToSinglePoint ......... ok
 loader/ReprojectPts ........ ok
 loader/ReprojectPtsGeog ........ ok
 loader/Latin1 .... ok
 loader/Latin1-implicit .... ok
 loader/mfile .... ok
 dumper/literalsrid ....... ok
 dumper/realtable ....... ok
 affine .. ok
 bestsrid .. ok
 binary .. ok
 boundary .. ok
 cluster .. ok
 concave_hull .. ok
 ctors .. ok
 dump .. ok
 dumppoints .. ok
 empty .. ok
 forcecurve .. ok
 geography .. ok
 in_geohash .. ok
 in_gml .. ok
 in_kml .. ok
 in_encodedpolyline .. ok
 iscollection .. ok
 legacy .. ok
 long_xact .. ok
 lwgeom_regress .. ok
 measures .. ok
 operators .. ok
 out_geometry .. ok
 out_geography .. ok
 polygonize .. ok
 polyhedralsurface .. ok
 postgis_type_name .. ok
 regress .. ok
 regress_bdpoly .. ok
 regress_index .. ok
 regress_index_nulls .. ok
 regress_management .. ok
 regress_selectivity .. ok
 regress_lrs .. ok
 regress_ogc .. ok
 regress_ogc_cover .. ok
 regress_ogc_prep .. ok
 regress_proj .. ok
 relate .. ok
 remove_repeated_points .. ok
 removepoint .. ok
 setpoint .. ok
 simplify .. ok
 simplifyvw .. ok
 size .. ok
 snaptogrid .. ok
 split .. ok
 sql-mm-serialize .. ok
 sql-mm-circularstring .. ok
 sql-mm-compoundcurve .. ok
 sql-mm-curvepoly .. ok
 sql-mm-general .. ok
 sql-mm-multicurve .. ok
 sql-mm-multisurface .. ok
 swapordinates .. ok
 summary .. ok
 temporal .. ok
 tickets .. ok
 twkb .. ok
 typmod .. ok
 wkb .. ok
 wkt .. ok
 wmsservers .. ok
 knn .. ok
 hausdorff .. ok
 regress_buffer_params .. ok
 offsetcurve .. ok
 relatematch .. ok
 isvaliddetail .. ok
 sharedpaths .. ok
 snap .. ok
 node .. ok
 unaryunion .. ok
 clean .. ok
 relate_bnr .. ok
 delaunaytriangles .. ok
 clipbybox2d .. ok
 subdivide .. ok
 in_geojson .. ok
 regress_sfcgal .. ok
 sfcgal/empty .. ok
 sfcgal/geography .. ok
 sfcgal/legacy .. ok
 sfcgal/measures .. ok
 sfcgal/regress_ogc_prep .. ok
 sfcgal/regress_ogc .. ok
 sfcgal/regress .. ok
 sfcgal/tickets .. ok
 sfcgal/concave_hull .. ok
 sfcgal/wmsservers .. ok
 sfcgal/approximatemedialaxis .. ok
 uninstall .  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/uninstall_sfcgal.sql
  /projects/postgis/branches/2.2/regress/00-regress-install/share/contrib/postgis/uninstall_postgis.sql
. ok (4336)

Run tests: 118
Failed: 0

-- if you built --with-gui, you should see this too

     CUnit - A unit testing framework for C - Version 2.1-2
     http://cunit.sourceforge.net/


Suite: Shapefile Loader File shp2pgsql Test
  Test: test_ShpLoaderCreate() ...passed
  Test: test_ShpLoaderDestroy() ...passed
Suite: Shapefile Loader File pgsql2shp Test
  Test: test_ShpDumperCreate() ...passed
  Test: test_ShpDumperDestroy() ...passed

Run Summary:    Type  Total    Ran Passed Failed Inactive
              suites      2      2    n/a      0        0
               tests      4      4      4      0        0
             asserts      4      4      4      0      n/a

Die Erweiterungen postgis_tiger_geocoder und address_standardizer unterstützen zurzeit nur die standardmäßige Installationsüberprüfung von PostgreSQL. Um diese zu überprüfen siehe unterhalb. Anmerkung: "make install" ist nicht notwendig, wenn Sie bereits ein "make install" im Root des Ordners mit dem PostGIS Quellcode durchgeführt haben.

Für den address_standardizer:

cd extensions/address_standardizer
make install
make installcheck
          

Die Ausgabe sollte folgendermaßen aussehen:

============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== running regression test queries        ==============
test test-init-extensions     ... ok
test test-parseaddress        ... ok
test test-standardize_address_1 ... ok
test test-standardize_address_2 ... ok

=====================
 All 4 tests passed.
=====================

Für den Tiger Geokodierer müssen Sie die Erweiterungen "postgis" und "fuzzystrmatch" in Ihrer PostgreSQL Instanz haben. Die Überprüfungen des "address_standardizer" laufen ebenfalls an, wenn Sie postgis mit "address_standardizer" Unterstützung kompiliert haben:

cd extensions/postgis_tiger_geocoder
make install
make installcheck
          

Die Ausgabe sollte folgendermaßen aussehen:

============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing fuzzystrmatch               ==============
CREATE EXTENSION
============== installing postgis                     ==============
CREATE EXTENSION
============== installing postgis_tiger_geocoder      ==============
CREATE EXTENSION
============== installing address_standardizer        ==============
CREATE EXTENSION
============== running regression test queries        ==============
test test-normalize_address   ... ok
test test-pagc_normalize_address ... ok

=====================
All 2 tests passed.
=====================

2.5.5. Installation

Um PostGIS zu installieren geben Sie bitte folgendes ein

make install

Dies kopiert die Installationsdateien von PostGIS in das entsprechende Unterverzeichnis, welches durch den Konfigurationsparameter --prefix bestimmt wird. Insbesondere:

  • Die Binärdateien vom Loader und Dumper sind unter [prefix]/bin installiert.

  • Die SQL-Dateien, wie postgis.sql sind unter [prefix]/share/contrib installiert.

  • Die PostGIS Bibliotheken sind unter [prefix]/lib installiert.

Falls Sie zuvor den Befehl make comments ausgeführt haben, um die Dateien postgis_comments.sql und raster_comments.sql anzulegen, können Sie die SQL-Dateien folgendermaßen installieren:

make comments-install

[Note]

postgis_comments.sql, raster_comments.sql und topology_comments.sql wurden vom klassischen Build- und Installationsprozess getrennt, da diese mit xsltproc eine zusätzliche Abhängigkeit haben.

2.6. Eine Geodatenbank mit EXTENSIONS anlegen

Wenn Sie PostgreSQL 9.1+ verwenden und das Extensions/PostGIS-Modul installiert haben, können Sie Geodatenbanken auf neue Art und Weise erstellen.

createdb [yourdatabase]

Die Core-Extension installiert PostGIS-Geometrie, -Geographie, die spatial_ref_sys Tabelle und alle Funktionen und Kommentare mit einem einfachen

CREATE EXTENSION postgis;

Befehl.

psql -d [yourdatabase] -c "CREATE EXTENSION postgis;"

Die Raster-Funktionalität ist in einer eigenen Extension paketiert und kann mit folgendem Befehl installiert werden:

psql -d [ihredatenbank] -c "CREATE EXTENSION postgis_raster;"

Die topologische Funktionalität ist in einer eigenen Extension paketiert und kann mit folgendem Befehl installiert werden:

psql -d [yourdatabase] -c "CREATE EXTENSION postgis_topology;"

Falls Sie die Sicherung einer Vorgängerversion in die neue Datenbank einspielen wollen, führen Sie bitte folgendes aus:

psql -d [yourdatabase] -f legacy.sql

[Note]

Wenn Sie veraltete Funktionen benötigen, müssen Sie bei jedem geringfügigen Upgrade von PostGIS auf eine neue Version das Skript legacy.sql neu installieren. Wenn Sie z.B. von 2.4.3 auf 2.5.0 aktualisieren, dann müssen Sie das legacy.sql welches mit 2.5.0 paketiert ist neu installieren, da einige Funktionen auf die Bibliothek referenzieren und diese mit der "Minor Version" bezeichnet ist.

Um die veralteten Funktionen loszuwerden, können Sie anschließend an die Wiederherstellung und Aufräumarbeiten uninstall_legacy.sql ausführen.

2.7. Ersellung einer Geodatenbank ohne Extensions

[Note]

Dies wird grundsätzlich nur benötigt, wenn PostGIS nicht in im PostgreSQL-Extensionverzeichnis installiert werden kann oder soll (z.B. beim Testen, in der Entwicklung oder in beschränken Umgebungen).

Der erste Schritt zur Erstellung einer PostGIS-Datenbank ist das Anlegen einer einfachen PostgreSQL Datenbank.

createdb [yourdatabase]

Viele der PostGIS Funktionen sind in der prozeduralen Sprache PL/pgSQL geschrieben. Daher ist der nächste Schritt zur Erstellung einer PostGIS Datenbank die Aktivierung von PL/pgSQL. Dies wird durch den unten angeführten Befehl erreicht. Ab PostgreSQL 8.4 ist PL/pgSQL üblicherweise bereits installiert.

createlang plpgsql [yourdatabase]

Nun erstellen Sie die Definitionen der PostGIS-Objekte und -Funktionen in Ihrer Datenbank, indem Sie die Definitionen mit der Datei postgis.sql laden (diese befindet sich in dem beim Konfigurationsschritt festgelegten Verzeichnis [prefix]/share/contrib).

psql -d [yourdatabase] -f postgis.sql

Für einen vollständigen Satz an EPSG Koordinatensystemen, können Sie die Definitionen auch über die Datei spatial_ref_sys.sql laden und die spatial_ref_sys Tabelle auf diese Weise befüllen. Diese Tabelle ermöglicht die Ausführung von ST_Transform() auf die Geometrien.

psql -d [yourdatabase] -f spatial_ref_sys.sql

Falls Sie Kommentare zu den PostGIS-Funktionen hinzufügen wollen, ist der letzte Schritt das Laden von postgis_comments.sql in Ihre Geodatenbank. Die Kommentare können mit dem einfachen Aufruf von \dd [function_name] in der psql Konsole angezeigt werden.

psql -d [yourdatabase] -f postgis_comments.sql

Installation der Rasterunterstützung

psql -d [yourdatabase] -f rtpostgis.sql

Die Installation der Kommentare zur Rasterunterstützung stellt eine schnelle Hilfe für jede Rasterfunktion bereit. Diese kann dann über psql, PgAdmin oder andere PostgreSQL Werkzeuge die Funktionskommentare anzeigen können, aufgerufen werden.

psql -d [yourdatabase] -f raster_comments.sql

Installation der Topologieunterstützung

psql -d [yourdatabase] -f topology/topology.sql

Die Installation der Kommentare zur Topologie-Unterstützung stellt eine schnelle Hilfe für jede topologische Funktion und jeden topologischen Datentyp bereit. Diese kann dann über psql, PgAdmin oder andere PostgreSQL Werkzeuge die Funktionskommentare anzeigen können, aufgerufen werden.

psql -d [yourdatabase] -f topology/topology_comments.sql

Falls Sie die Sicherung einer Vorgängerversion in die neue Datenbank einspielen wollen, führen Sie bitte folgendes aus:

psql -d [yourdatabase] -f legacy.sql

[Note]

Es gibt eine alternative legacy_minimal.sql, die Sie stattdessen ausführen können. Dies installiert das Minimum, das benötigt wird um Tabellen wiederherzustellen und um mit Anwendungen wie MapServer oder GeoServer zu arbeiten. Falls Sie Views haben, welche Dinge wie distance / length etc. nutzen, dann benötigen Sie das komplette legacy.sql

Um die veralteten Funktionen loszuwerden, können Sie anschließend an die Wiederherstellung und Aufräumarbeiten uninstall_legacy.sql ausführen.

2.8. Installation und Verwendung des Adressennormierers

Die Erweiterung address_standardizer musste als getrenntes Paket heruntergeladen werden. Ab PostGIS 2.2 ist es mitgebündelt. Für weitere Informationen zu dem address_standardizer, was er kann und wie man ihn für spezielle Bedürfnisse konfigurieren kann, siehe Chapter 12, Adressennormierer.

Dieser Adressennormierer kann in Verbindung mit der in PostGIS paketierten Erweiterung "tiger gecoder" als Ersatz für Normalize_Address verwendet werden. Um diesen als Ersatz zu nutzen, siehe Section 2.9.3, “Die Adressennormierer-Extension zusammen mit dem Tiger Geokodierer verwenden”. Sie können diesen auch als Baustein für Ihren eigenen Geokodierer verwenden oder für die Normierung von Adressen um diese leichter vergleichbar zu machen.

Der Adressennormierer benötigt PCRE, welches üblicherweise auf Nix-Systemen bereits installiert ist. Sie können die letzte Version aber auch von http://www.pcre.org herunterladen. Wenn PCRE während der Section 2.5.1, “Konfiguration” gefunden wird, dann wird die Erweiterung "address standardizer" automatisch kompiliert. Wenn Sie stattdessen eine benutzerdefinierte Installation von PCRE verwenden wollen, können Sie --with-pcredir=/path/to/pcre an "configure" übergeben, wobei /path/to/pcre der Root-Ordner Ihrer Verzeichnisse "include" und "lib" von PCRE ist.

Für Windows Benutzer ist ab PostGIS 2.1+ die Erweiterung "address_standardizer" bereits mitpaketiert. Somit besteht keine Notwendigkeit zu Kompilieren und es kann sofort der Schritt CREATE EXTENSION ausgeführt werden.

Sobald die Installation beendet ist, können Sie sich mit Ihrer Datenbank verbinden und folgenden SQL-Befehl ausführen:

CREATE EXTENSION address_standardizer;

Der folgende Test benötigt keine rules-, gaz- oder lex-Tabellen

SELECT num, street, city, state, zip
 FROM parse_address('1 Devonshire Place PH301, Boston, MA 02109');

Die Ausgabe sollte wie folgt sein:

num |         street         |  city  | state |  zip
-----+------------------------+--------+-------+-------
 1   | Devonshire Place PH301 | Boston | MA    | 02109

2.8.1. Installation von Regex::Assemble

Perl Regex:Assemble wird nicht länger für die Kompiation der Erweiterung "address_standardizer" benötigt, da die generierten Dateien jetzt Teil des Quellcodes sind. Wenn Sie allerdings usps-st-city-orig.txt oder usps-st-city-orig.txt usps-st-city-adds.tx editieren müssen, dann müssen Sie parseaddress-stcities.h neu kompilieren, wozu Regex:Assemble benötigt wird.

cpan Regexp::Assemble

oder wenn Sie auf einer Ubuntu / Debian Distribution arbeiten, müssen Sie möglicherweise folgendes ausführen:

sudo perl -MCPAN -e "install Regexp::Assemble"

2.9. Installation, Aktualisierung des Tiger Geokodierers und Daten laden

Extras wie den Tiger Geokodierer befinden sich möglicherweise nicht in Ihrer PostGIS Distribution. Wenn Sie die Erweiterung "Tiger Geokodierer" vermissen, oder eine neuere Version installieren wollen, dann können Sie die Dateien share/extension/postgis_tiger_geocoder.* aus den Paketen des Abschnitts Windows Unreleased Versions für Ihre Version von PostgreSQL verwenden. Obwohl diese Pakete für Windows sind, funktionieren die Dateien der Erweiterung "postgis_tiger_geocoder" mit jedem Betriebssystem, da die Erweiterung eine reine SQL/plpgsql Anwendung ist.

2.9.1. Aktivierung des Tiger Geokodierer in Ihrer PostGIS Datenbank: Verwendung von Extension

Falls Sie PostgreSQL 9.1+ und PostGIS 2.1+ verwenden, können Sie Vorteil aus dem Extension-Modell ziehen, um den Tiger Geokodierer zu installieren. Um dies zu tun:

  1. Besorgen Sie sich zuerst die Binärdateien für PostGIS 2.1+ oder kompilieren und installieren Sie diese wie üblich. Dies sollte alle notwendigen Extension-Dateien auch für den Tiger Geokodierer installieren.

  2. Verbinden Sie sich zu Ihrer Datenbank über psql, pgAdmin oder ein anderes Werkzeug und führen Sie die folgenden SQL Befehle aus. Wenn Sie in eine Datenbank installieren, die bereits PostGIS beinhaltet, dann müssen Sie den ersten Schritt nicht ausführen. Wenn Sie auch die Erweiterung fuzzystrmatch bereits installiert haben, so müssen Sie auch den zweiten Schritt nicht ausführen.

    CREATE EXTENSION postgis;
    CREATE EXTENSION fuzzystrmatch;
    CREATE EXTENSION postgis_tiger_geocoder;
    --Optional wenn Sir den regelbasierten Adressennormierer verwenden (pagc_normalize_address)
    CREATE EXTENSION address_standardizer;

    Wenn Sie bereits die postgis-tiger-geocoder Extension installiert haben und nur auf den letzten Stand updaten wollen:

    ALTER EXTENSION postgis UPDATE;
    ALTER EXTENSION postgis_tiger_geocoder UPDATE;

    Wenn benutzerdefinierte Einträge oder Änderungen an tiger.loader_platform oder tiger.loader_variables gemacht wurden, müssen diese aktualisiert werden.

  3. Um die Richtigkeit der Installation festzustellen, führen Sie bitte folgenden SQL-Befehl in Ihrer Datenbank aus:

    SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
            FROM normalize_address('1 Devonshire Place, Boston, MA 02109') AS na;

    Dies sollte folgendes ausgeben:

    address | streetname | streettypeabbrev |  zip
    ---------+------------+------------------+-------
               1 | Devonshire | Pl               | 02109
  4. Erstellen Sie einen neuen Datensatz in der Tabelle tiger.loader_platform, welcher die Pfade zu Ihren ausführbaren Dateien und zum Server beinhaltet.

    Um zum Beispiel ein Profil mit dem Namen "debbie" anzulegen. welches der sh Konvention folgt, können Sie folgendes tun:

    INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psql, path_sep,
                       loader, environ_set_command, county_process_command)
    SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psql, path_sep,
               loader, environ_set_command, county_process_command
      FROM tiger.loader_platform
      WHERE os = 'sh';

    Anschließend ändern Sie die Pfade in der Spalte declare_sect, so dass diese mit den Speicherpfaden von Debbie's "pg", "nzip", "shp2pgsql", "psql", etc. übereinstimmen.

    Wenn Sie die Tabelle loader_platform nicht editieren, so beinhaltet diese lediglich die üblichen Ortsangaben und Sie müssen das erzeugte Skript editieren, nachdem es erzeugt wurde.

  5. Ab PostGIS 2.4.1 wurde der Ladevorgang der "Zip code-5 digit tabulation area" zcta5 überarbeitet, um aktuelle zcta5 Daten zu laden und ist nun ein Teil von Loader_Generate_Nation_Script, falls aktiviert. Standardmäßig ausgeschaltet, da der Ladevorgang ziemlich viel Zeit benötigt (20 bis 60 Minuten), ziemlich viel Festplattenspeicher beansprucht wird und es nur selten verwendet wird.

    Folgendermaßen können Sie deise aktivieren:

    UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zcta510';

    Falls vorhanden kann die Funktion Geocode diese verwenden, wenn die zips durch einen Boundary Filter begrenzt sind. Die Funktion Reverse_Geocode verwendet dies wenn eine zurückgegebene Adresse keinen zip-Code enthält, was oft bei der inversen Geokodierung von Highways auftritt.

  6. Erstellen Sie einen Ordner mit der Bezeichnung gisdata im Root des Servers oder auf Ihrem lokalen PC, wenn Sie eine schnelle Netzwerkverbindung zu dem Server haben. In diesen Ordner werden die Dateien von Tiger heruntergeladen und aufbereitet. Wenn Sie den Ordner nicht im Root des Servers haben wollen, oder für die Staging-Umgebung in eine anderen Ordner wechseln wollen, dann können Sie das Attribut staging_fold in der Tabelle tiger.loader_variables editieren.

  7. Erstellen Sie einen Ordner "temp" in dem Ordner gisdata oder wo immer Sie staging_fold haben wollen. Dies wird der Ordner, in dem der Loader die heruntergeladenen Tigerdaten extrahiert.

  8. Anschließend führen Sie die SQL Funktion Loader_Generate_Nation_Script aus, um sicherzustellen dass die Bezeichnung Ihres benutzerdefinierten Profils verwendet wird und kopieren das Skript in eine .sh oder .bat Datei. Um zum Beispiel das Skript zum Laden einer Nation zu erzeugen:

    psql -c "SELECT Loader_Generate_Nation_Script('debbie')" -d geocoder -tA 
    > /gisdata/nation_script_load.sh
  9. Führen Sie die erzeugten Skripts zum Laden der Nation auf der Befehlszeile aus.

    cd /gisdata
    sh nation_script_load.sh
  10. Nachdem Sie das "Nation" Skript ausgeführt haben, sollten sich drei Tabellen in dem Schema tiger_data befinden und mit Daten befüllt sein. Führen Sie die folgenden Abfragen in "psql" oder "pgAdmin" aus, um dies sicher zu stellen

    SELECT count(*) FROM tiger_data.county_all;
    count
    -------
      3233
    (1 row)
    SELECT count(*) FROM tiger_data.state_all;
    count
    -------
        56
    (1 row)
    
  11. Standardmäßig werden die Tabellen, welche bg, tract und tabblock entsprechen, nicht geladen. Diese Tabellen werden vom Geokodierer nicht verwendet, können aber für Bevölkerungsstatistiken genutzt werden. Wenn diese als Teil der Nation geladen werden sollen, können Sie die folgenden Anweisungen ausführen.

    UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN('tract', 'bg', 'tabblock');

    Alternativ können Sie diese Tabellen nach dem Laden der Länderdaten importieren, indem Sie das Loader_Generate_Census_Script verwenden

  12. Für jeden Staat, für den Sie Daten laden wollen, müssen Sie ein Skript Loader_Generate_Script erstellen.

    [Warning]

    Erstellen Sie das Skript für die Bundesstaaten NICHT bevor die Daten zur Nation geladen wurden, da das Skript die Liste "county" verwendet, welche durch das "nation"-Skript geladen wird.

  13. psql -c "SELECT Loader_Generate_Script(ARRAY['MA'], 'debbie')" -d geocoder -tA 
    > /gisdata/ma_load.sh
  14. Die vorher erzeugten, befehlszeilenorientierten Skripts ausführen.

    cd /gisdata
    sh ma_load.sh
  15. Nachdem Sie mit dem Laden der Daten fertig sind, ist es eine gute Idee ein ANALYZE auf die Tigertabellen auszuführen, um die Datenbankstatistik (inklusive vererbter Statistik) zu aktualisieren

    SELECT install_missing_indexes();
    vacuum analyze verbose tiger.addr;
    vacuum analyze verbose tiger.edges;
    vacuum analyze verbose tiger.faces;
    vacuum analyze verbose tiger.featnames;
    vacuum analyze verbose tiger.place;
    vacuum analyze verbose tiger.cousub;
    vacuum analyze verbose tiger.county;
    vacuum analyze verbose tiger.state;
    vacuum analyze verbose tiger.zip_lookup_base;
    vacuum analyze verbose tiger.zip_state;
    vacuum analyze verbose tiger.zip_state_loc;

2.9.1.1. Umwandlung einer normalen Installation des Tiger-Geokodierers in das Extension Modell

Falls Sie den Tiger Geokodierer ohne Extension Modell installiert haben, können Sie wie folgt auf das Extension-Modell wechseln:

  1. Für ein Upgrade ohne Extension-Modell, folgen Sie bitte den Anweisungen unter Section 2.9.5, “Upgrade Ihrer Tiger Geokodierer Installation”.

  2. Verbinden Sie sich über "psql" mit Ihrer Datenbank und führen Sie folgenden Befehl aus:

    CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.9.2. Den Tiger Geokodierer in der PostGIS Datenbank aktivieren: ohne die Verwendung von Extensions

Zuerst installieren Sie PostGIS entsprechend den vorherigen Anweisungen.

Wenn Sie keinen Ordner "extras" haben, können Sie http://download.osgeo.org/postgis/source/postgis-3.0.0.tar.gz herunterladen

tar xvfz postgis-3.0.0.tar.gz

cd postgis-3.0.0/extras/tiger_geocoder

Editieren Sie die Datei tiger_loader_2015.sql (oder die aktuellste Loader Datei die Sie finden, außer Sie wollen ein anderes Jahr laden) um die Pfade zu den ausführbaren Dateien, dem Server etc. richtigzustellen. Alternativ können Sie auch die Tabelle loader_platform nach der Installation editieren. Wenn Sie diese Datei oder die Tabelle loader_platform nicht editieren, dann enthält diese nur die üblichen Ortsangaben und Sie müssen das erzeugte Skript nachträglich bearbeiten, wenn Sie die SQL Funktionen Loader_Generate_Nation_Script und Loader_Generate_Script ausgeführt haben.

Wenn Sie den Tiger Geokodierer zum ersten Mal installieren, dann editierren Sie entweder das Skript create_geocode.bat auf Windows oder create_geocode.sh auf Linux/Unix/Mac OSX entsprechend Ihren spezifischen Einstellungen von PostgreSQL und führen das entsprechende Skript auf der Befehlszeile aus.

Überprüfen sie, ob Sie ein Schema tiger in Ihrer Datenbank haben und sich das Schema in dem "search_path" Ihrer Datenbank befindet. Falls nicht, können Sie das Schema mit folgendem Befehl hinzufügen:

ALTER DATABASE geocoder SET search_path=public, tiger;

Die Funktionalität zur Standardisierung von Adressen funktioniert mehr oder weniger auch ohne Daten, mit Ausnahme von komplizierten Adressen. Führen Sie diese Tests durch und überprüfen Sie, ob das Ergebnis ähnlich wie dieses aussieht:

SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) As pretty_address;
pretty_address
---------------------------------------
202 E Fremont St, Las Vegas, NV 89101
                        

2.9.3. Die Adressennormierer-Extension zusammen mit dem Tiger Geokodierer verwenden

Eine von vielen Beschwerden betrifft die Funktion Normalize_Address des Adressennormierers, die eine Adresse vor der Geokodierung vorbereitend standardisiert. Der Normierer ist bei weitem nicht perfekt und der Versuch seine Unvollkommenheit auszubessern nimmt viele Ressourcen in Anspruch. Daher haben wir ein anderes Projekt integriert, welches eine wesentlich bessere Funktionseinheit für den Adressennormierer besitzt. Um diesen neuen Adressennormierer zu nutzen, können Sie die Erweiterung so wie unter Section 2.8, “Installation und Verwendung des Adressennormierers” beschrieben kompilieren und als Extension in Ihrer Datenbank installieren.

Sobald Sie diese Extension in der gleichen Datenbank installieren, in der Sie auch postgis_tiger_geocoder installiert haben, dann können Sie Pagc_Normalize_Address anstatt Normalize_Address verwenden. Diese Erweiterung ist nicht auf Tiger beschränkt, wodurch sie auch mit anderen Datenquellen, wie internationalen Adressen, genutzt werden kann. Die Tiger Geokodierer Extension enthält eine eigenen Versionen von rules Tabelle (tiger.pagc_rules), gaz Tabelle (tiger.pagc_gaz) und lex Tabelle (tiger.pagc_lex). Diese können Sie hinzufügen und aktualisieren, um die Normierung an die eigenen Bedürfnisse anzupassen.

2.9.4. Tiger-Daten laden

Die Anweisungen zum Laden von Daten sind unter extras/tiger_geocoder/tiger_2011/README detailliert beschrieben. Hier sind nur die allgemeinen Schritte berücksichtigt.

Der Ladeprozess lädt Daten von der Census Webseite für die jeweiligen Nationsdateien und die angeforderten Bundesstaaten herunter, extrahiert die Dateien und lädt anschließlich jeden Bundesstaat in einen eigenen Satz von Bundesstaattabellen. Jede Bundesstaattabelle erbt von den Tabellen im Schema tiger, wodurch es ausreicht nur diese Tabellen abzufragen um auf alle Daten zugreifen zu können. Sie können auch jederzeit Bundesstaattabellen mit Drop_State_Tables_Generate_Script löschen, wenn Sie einen Bundesstaat neu laden müssen oder den Bundesstaat nicht mehr benötigen.

Um Daten laden zu können benötigen Sie folgende Werkzeuge:

  • Ein Werkzeug, um die Zip-Dateien der Census Webseite zu entpacken.

    Auf UNIX-ähnlichen Systemen: Das Programm unzip, das üblicherweise auf den meisten UNIX-ähnlichen Systemen bereits vorinstalliert ist.

    Auf Windows 7-zip, ein freies Werkzeug zum komprimieren/entkomprimieren, das Sie von http://www.7-zip.org/ herunterladen können.

  • Das shp2pgsql Kommandozeilenprogramm, welches standardmäßig mit PostGIS mitinstalliert wird.

  • wget, ein Download-Manager, der üblicherweise auf den meisten UNIX/Linux Systemen vorinstalliert ist.

    Für Windows können Sie vorkompilierte Binärdateien von http://gnuwin32.sourceforge.net/packages/wget.htm herunterladen

Wenn Sie von tiger_2010 her upgraden, müssen Sie zuerst das Skript Drop_Nation_Tables_Generate_Script generieren und ausführen. Bevor Sie irgendwelche Bundesstaatdaten laden, müssen Sie die nationsweiten Daten mit Loader_Generate_Nation_Script laden. Dies erstellt ein Skript zum Laden. Loader_Generate_Nation_Script ist ein einmaliger Schritt, der vor dem Upgrade (von 2010) und vor neuen Installationen aufsgeführt werden sollte.

Wie ein Skript zum Laden der Daten für Ihre Plattform und für die gewünschten Bundesstaaten generiert werden kann siehe Loader_Generate_Script. Sie können diese stückchenweise installieren. Sie müssen nicht alle benötigten Staaten auf einmal laden. Sie können sie laden wenn Sie diese benötigen.

Nachdem die gewünschten Bundesstaaten geladen wurden, führen Sie so wie unter Install_Missing_Indexes beschrieben

SELECT install_missing_indexes();

aus.

Um zu überprüfen, dass alles funktioniert wie es sollte, können Sie eine Geokodierung über eine Adresse Ihres Staates laufen lassen, indem Sie Geocode verwenden

2.9.5. Upgrade Ihrer Tiger Geokodierer Installation

Wenn Sie den Tiger Geokodierer der mit 2.0+ paketiert ist bereits installiert haben, können Sie die Funktionen jederzeit sogar mit einem vorläufigen Tarball aktualisieren, wenn Bugs fixiert wurden oder Sie es unbedingt benötigen. Dies funktioniert nur für einen Tiger Geokodierer, der nicht als Extension installiert wurde.

Wenn Sie keinen Ordner "extras" haben, können Sie http://download.osgeo.org/postgis/source/postgis-3.0.0.tar.gz herunterladen

tar xvfz postgis-3.0.0.tar.gz

cd postgis-3.0.0/extras/tiger_geocoder/tiger_2011

Finden Sie das Skript upgrade_geocoder.bat auf Windows, oder upgrade_geocoder.sh unter Linux/Unix/Mac OSX. Editieren Sie die Datei um die Berechtigungsnachweise für Ihre PostGIS Datenbank zu erhalten.

Wenn Sie von 2010 oder 2011 her upgraden, sollten Sie die Loader-Skriptzeile auskommentieren, um das neueste Skript zum Laden der Daten von 2012 zu erhalten.

Dann führen Sie das dazugehörige Skript von der Befehlszeile aus.

Anschließend löschen Sie alle "nation"-Tabellen und laden die Neuen. Erstellen Sie ein "drop"-Skript mit den unter Drop_Nation_Tables_Generate_Script beschriebenen SQL-Anweisungen

SELECT drop_nation_tables_generate_script();

Führen Sie die erstellten SQL "drop"-Anweisungen aus.

Die untere SELECT Anweisung erstellt ein Skript zum Laden eines Staates. Details dazu finden Sie unter Loader_Generate_Nation_Script.

Auf Windows:

SELECT loader_generate_nation_script('windows'); 

Auf Unix/Linux:

SELECT loader_generate_nation_script('sh');

Siehe Section 2.9.4, “Tiger-Daten laden” für Anleitungen wie das "generate"-Skript auszuführen ist. Dies muss nur einmal ausgeführt werden.

[Note]

Sie können eine Mischung aus Bundesstaattabellen von 2010/2011 haben und jeden Bundesstaat getrennt aktualisieren. Bevor Sie einen Bundesstaat auf 2011 aktualisieren, müssen Sie zuerst die Tabellen von 2010 für diesen Bundesstaat mit Drop_State_Tables_Generate_Script entfernen.

2.10. Erzeugung einer Geodatenbank mit einem Template

Einige Distributionen von PostGIS (insbesondere die Win32 Installers für PostGIS >= 1.1.5) laden die PostGIS Funktionen in eine template Datenbank mit der Bezeichnung template_postgis. Wenn die Datenbank template_postgis in Ihrer PostgreSQL Installation existiert, dann können Anwender und/oder Applikationen eine Geodatenbank mit einem einzigen Befehl erstellen. In beiden Fällen muss der Datenbank Benutzer das Recht zur Erstellung einer neuen Datenbank haben.

Von der Shell aus:

# createdb -T template_postgis my_spatial_db

Mit SQL:

postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis

2.11. Upgrading

Das Upgrade einer bestehenden Geodatenbank kann trickreich sein, wenn der Ersatz oder die Einführung von neuen Objektdefinitionen in PostGIS nötig ist.

Unglücklicherweise können in einer produktiven Datenbank nicht alle Definitionen einfach ersetzt werden, weshalb ein dump/reload Prozess manchmal die bessere Wahl ist.

PostGIS bietet die Prozedur "SOFT UPGRADE" für "minor"- oder "bugfix" Releases und eine Prozedur "HARD UPGRADE" für die "major" Releases.

Bevor Sie versuchen PostGIS zu aktualisieren, sollten Sie eine Sicherung Ihrer Daten vornehmen. Wenn Sie die Flag -Fc von pg_dump verwenden, können Sie die Daten über ein HARD UPGRADE immer wieder herstellen.

2.11.1. Soft upgrade

Wenn Sie Ihre Datenbank mittels Extensions installiert haben, müssen Sie auch mit dem Extension Modell upgraden. Wenn Sie auf die alte Art mit dem SQL-Skript installiert haben, dann sollten Sie auch mit dem SQL-Skript upgraden. Beziehen Sie sich bitte auf das Richtige.

2.11.1.1. Soft Upgrade Pre 9.1+ oder ohne Extensions/Erweiterungen

Dieser Abschnitt bezieht sich lediglich auf die Installation von PostGIS ohne Extensions. Wenn Sie Extensions haben und ein Upgrade auf diese Weise versuchen, dann erhalten Sie Meldungen wie:

can't drop ... because postgis extension depends on it

HINWEIS: Wenn Sie von PostGIS 1. * zu PostGIS 2. * oder von PostGIS 2. * vor r7409 wechseln, können Sie diese Prozedur nicht verwenden, sondern müssen ein schweres Upgrade durchführen.

Nach der Kompilierung und Installation (make install) sollten Sie eine Reihe von *_upgrade.sql-Dateien in den Installationsordnern finden. Y Sie können sie alle auflisten mit:

ls `pg_config --sharedir`/contrib/postgis-3.0.0/*_upgrade.sql
                

Laden Sie sie alle nacheinander, beginnend mit postgis_upgrade.sql.

psql -f postgis_upgrade.sql -d your_spatial_database
                

Dieselbe Vorgangsweise kann auf die Erweiterungen "raster", "topology" und "sfcgal" angewendet werden. Die Dateien für das Upgrade heissen rtpostgis_upgrade.sql, topology_upgrade.sql und sfcgal_upgrade.sql. Wenn Sie diese benötigen:

psql -f rtpostgis_upgrade.sql -d your_spatial_database
psql -f topology_upgrade.sql -d your_spatial_database
psql -f sfcgal_upgrade.sql -d your_spatial_database
[Note]

Wenn Sie die Datei postgis_upgrade.sql für das Upgrade Ihrer spezifischen Version nicht finden können, dann verwenden Sie eine Version, die zu zu alt für ein SOFT UPGRADE ist und müssen ein HARD UPGRADE durchführen.

Die Funktion ??? sollte Sie mit der Meldung "procs need upgrade" darüber informieren, ob Sie diese Art von Upgrade durchführen müssen.

2.11.1.2. Soft Upgrade von PostGIS 9.1+ mittels EXTENSIONS

Wenn Sie PostGIS urspünglich mittels Extensions installiert haben, dan müssen Sie beim Upgrade ebenfalls Extensions verwenden. Ein minor Upgrade mit Extensions ist einigermaßen schmerzlos.

ALTER EXTENSION postgis UPDATE TO "3.0.0";
ALTER EXTENSION postgis_topology UPDATE TO "3.0.0";

Falls eine Fehlermeldung angezeigt wird, unternehemen Sie bitte etwas ähnliches wie:

No migration path defined for ... to 3.0.0

Dann müssen Sie ein Backup Ihrer Datenbank erstellen, eine neue so wie unter Section 2.6, “Eine Geodatenbank mit EXTENSIONS anlegen” beschrieben erstellen und das Backup in dieser neuen Datenbank wiederherstellen.

Falls Sie eine ähnliche Meldung wie folgt bekommen:

Version "3.0.0" of extension "postgis" is already installed

Dann ist alles bereits auf dem letzten Stand und Sie können das bedenkenlos ignorieren. SOFERN NICHT versucht wird, von einer Entwicklungsversion auf die nächste (welche keine neue Versionsnummer bekommt) upzugraden; In diesem Fall können Sie "next" an die Versionszeichenkette anhängen und das nächste Mal das Suffix "next" wieder entfernen:

ALTER EXTENSION postgis UPDATE TO "3.0.0next";
ALTER EXTENSION postgis_topology UPDATE TO "3.0.0next";
[Note]

Wenn Sie PostGIS ursprünglich ohne festgelegte Version installiert haben, dann können Sie die erneute Installation der PostGIS Erweiterungen - vor der Wiederherstellung - überspringen, da im Backup bereits CREATE EXTENSION postgis steht und so die neueste und letzte Version bei der Wiederherstellung aufgegriffen wird.

[Note]

Wenn Sie die PostGIS-Erweiterung von einer Version vor 3.0.0 aktualisieren, erhalten Sie eine unverpackte PostGIS Raster-Unterstützung. Sie können die Raster-Unterstützung mit folgendem Befehl neu packen:

    CREATE EXTENSION postgis_raster FROM unpackaged;
    

Danach, falls Sie es nicht brauchen, löschen Sie es mit:

DROP EXTENSION postgis_raster;
    

2.11.2. Hard upgrade

Unter einem HARD UPGRADE verstehen wir einen vollen Dump/Reload von PostGIS-Datenbanken. Sie benötigen ein HARD UPGRADE, wenn sich die interne Speicherung von PostGIS Objekten geändert hat, oder wenn ein SOFT UPGRADE nicht möglich ist. Der Anhang Release Notes zeigt für jede Version an, ob ein dump/reload (HARD UPGRADE) notwendig ist.

Der Prozess "Dump/Reload" wird von dem Skript "postgis_restore.pl" unterstützt, welches aufpasst dass alle Definitionen, die zu PostGIS gehören (inklusive der alten) beim Dump übersprungen werden. Dies ermöglicht es Ihnen, Ihre Schemata und Daten in einer Datenbank mit PostGIS Erweiterung wiederherzustellen, ohne dass Fehler aufgrund duplizierter Symbole oder überholter Objekte auftreten.

Zusätzliche Anweisungen für Windows Benutzer sind unter Windows Hard upgrade verfügbar.

Die Vorgehensweise ist wie folgt:

  1. Erzeugt einen "custom-format" Dump der Datenbank, die Sie upgraden wollen (nennen wir diese olddb), inklusive Binary Large Objects (-b) und ausführlich (-v). Kann auch vom "owner" der Datenbank durchgeführt werden; Administratorrechte des Superusers "postgres" sind nicht notwendig.

    pg_dump -h localhost -p 5432 -U postgres -Fc -b -v -f "/somepath/olddb.backup" olddb
  2. Eine neue Installation von PostGIS in einer neuen Datenbank erstellen; wir verweisen auf die Datenbank mit newdb. Anleitungen dazu finden Sie unter Section 2.7, “Ersellung einer Geodatenbank ohne Extensions” und Section 2.6, “Eine Geodatenbank mit EXTENSIONS anlegen”.

    Die Einträge der Tabelle "spatial_ref_sys", die sich in Ihrem Dump befinden werden wiederhergestellt; bestehende Einträge in "spatial_ref_sys" werden aber nicht überschrieben. Dies soll sicherstellen, dass Fehler die in dem offiziellen Satz behoben wurden, auch ordnungsgemäß an die wiederhergestellten Datenbanken weitergegeben werden. Wenn Sie aus irgendeinem Grund die Standardeinträge mit Ihren eigenen Einträgen überschreiben wollen, dann können Sie einfach die Datei "spatial_ref_sys.sql" beim Erstellen der neuen Datenbank nicht laden.

    Wenn Ihre Datenbank sehr veraltet ist, oder Sie seit langem überholte Funktionen in Ihren Views und Funktionen verwenden, kann es sein, dass Sie legacy.sql ausführen müssen. Tun Sie das bitte nur, wenn es unbedingt notwendig ist. Überlegen Sie, die Views und Funktionen vor dem Dump upzugraden, wenn möglich. Die überholten Funktionen können zu einem späteren Zeitpunkt mittels uninstall_legacy.sql entfernt werden.

  3. Stellt das Backup in der neuen Datenbank newdb mittels "postgis_restore.pl" wieder her. Falls unvorhergesehene Fehler auftreten, werden diese von psql über die Standardfehlerausgabe angezeigt. Heben Sie sich eine Log-Datei davon auf.

    perl utils/postgis_restore.pl "/somepath/olddb.backup" | psql -h localhost -p 5432 -U postgres newdb 2
    > errors.txt

In folgenden Fällen können Fehler auftreten:

  1. Einige Views oder Funktionen verwenden überholte PostGIS Objekte. Um dies zu beheben, können Sie versuchen das Skript legacy.sql vor dem Restore zu laden, oder Sie müssen eine Version von PostGIS wiederherstellen die diese Objekte noch aufweist, und nach der Portierung Ihres Codes die Migration erneut versuchen. Wenn die Methode mit legacy.sql funktioniert, dann sollten Sie Ihren Code so fixieren, dass keine überholten Funktionen mehr verwendet werden und diese anschließend mit uninstall_legacy.sql löschen.

  2. Einige benutzerdefinierte Datensätze in der Tabelle "spatial_ref_sys" in der Dumpdatei haben einen ungültige SRID Wert. Gültige Werte für SRID sind größer als 0 und kleiner als 999000. Werte zwischen 999000 und 999999 sind für den internen Gebrauch reserviert, während Werte > 999999 gar nicht verwendet werden können. Alle benutzerdefinierten Datensätze mit ungültiger SRID bleiben erhalten, wobei jene > 999999 in den reservierten Bereich verschoben werden. Die Tabelle "spatial_ref_sys" verliert allerdings einen Check-Constraint für die Überwachung dieser Unveränderlichen und möglicherweise den Primärschlüssel (wenn mehrere ungültige SRIDs auf den gleichen reservierten SRID Wert konvertiert werden).

    In order to fix this you should copy your custom SRS to a SRID with a valid value (maybe in the 910000..910999 range), convert all your tables to the new srid (see UpdateGeometrySRID), delete the invalid entry from spatial_ref_sys and re-construct the check(s) with:

    ALTER TABLE spatial_ref_sys ADD CONSTRAINT spatial_ref_sys_srid_check check (srid > 0 AND srid < 999000 );

    ALTER TABLE spatial_ref_sys ADD PRIMARY KEY(srid));

    If you are upgrading an old database containing french IGN cartography, you will have probably SRIDs out of range and you will see, when importing your database, issues like this :

     WARNING: SRID 310642222 converted to 999175 (in reserved zone)

    In this case, you can try following steps : first throw out completely the IGN from the sql which is resulting from postgis_restore.pl. So, after having run :

    perl utils/postgis_restore.pl "/somepath/olddb.backup" > olddb.sql

    run this command :

    grep -v IGNF olddb.sql > olddb-without-IGN.sql

    Create then your newdb, activate the required Postgis extensions, and insert properly the french system IGN with : this script After these operations, import your data :

    psql -h localhost -p 5432 -U postgres -d newdb -f olddb-without-IGN.sql  2> errors.txt

2.12. Übliche Probleme bei der Installation

Falls Ihre Installation/Upgrade nicht so verläuft wie erwartet, gibt es eine ganze Reihe von Dingen zu überprüfen.

  1. Überprüfen Sie, ob Sie PostgreSQL 9.5 oder neuer installiert haben und dass die Version des PostgreSQL Quellcodes, gegen den Sie kompilieren, mit der Version der laufenden PostgreSQL Datenbank übereinstimmt. Ein Wirrwarr kann dann entstehen, wenn die Linux Distribution bereits PostgreSQL installiert hat, oder wenn Sie PostgreSQL in einem anderen Zusammenhang installiert und darauf vergessen haben. PostGIS funktioniert nur mit PostgreSQL 9.5 oder jünger und es kommt zu merkwürdigen, unerwarteten Fehlermeldungen, wenn Sie eine ältere Version verwenden. Um die Version Ihrer laufenden PostgreSQL Datenbank zu überprüfen, können Sie sich mittels psql zur Datenbank verbinden und folgende Anfrage ausführen:

    SELECT version();

    Falls Sie eine RPM-basierte Distribution am Laufen haben, können Sie nach vorinstallierten Paketen mit dem Befehl rpm suchen: rpm -qa | grep postgresql

  2. Wenn das Upgrade schief geht, stellen Sie bitte sicher, dass PostGIS, in der Datenbank die Sie wiederherstellen wollen, installiert ist.

    SELECT postgis_full_version();

Überprüfen Sie bitte auch, ob "configure" den korrekten Speicherort und die korrekte Version von PostgreSQL, sowie der Bibliotheken Proj4 und GEOS gefunden hat.

  1. Die Ausgabe von configure wird verwendet, um die Datei postgis_config.h zu erstellen. Überprüfen Sie bitte, ob die Variablen POSTGIS_PGSQL_VERSION, POSTGIS_PROJ_VERSION und POSTGIS_GEOS_VERSION korrekt gesetzt sind.

2.13. Loader/Dumper

Der Loader und der Dumper werden automatisch, als Teil von PostGIS kompiliert und installiert. Um diese händisch zu kompilieren und zu installieren:

# cd postgis-3.0.0/loader
# make
# make install

Der Loader heisst shp2pgsql und konvertiert ESRI Shapefiles in SQL, das in PostGIS/PostgreSQL geladen werden kann. Der Dumper heisst pgsql2shp2 und kopiert PostGIS Tabellen (oder Abfragen) in ESRI Shapefiles. Für eine ausführlichere Beschreibung, siehe die Online Hilfe und das Handbuch.

Chapter 3. Häufige Fragen zu PostGIS

3.1. Wo kann ich Lernprogramme, Anleitungen und Seminare für die Arbeit mit PostGIS finden?
3.2. Meine Anwendungen und Desktop-Tools funktionierten mit PostGIS 1.5, nicht jedoch mit PostGIS 2.0. Wie kann ich dies beheben?
3.3. Wenn ich OpenStreetMap-Daten mit »osm2pgsql« lade, bekomme ich eine Fehlermeldung: »operator class "gist_geometry_ops" does not exist for access method "gist" Error occurred.« In PostGIS 1.5 klappte das gut.
3.4. Ich führe PostgreSQL 9.0 aus und kann Geometrien nicht länger in OpenJump, Safe FME und einigen anderen Werkzeugen lesen/schreiben.
3.5. Ich habe versucht, meine Geometriespalte mit PgAdmin anzusehen, aber sie ist leer. Was ist los?
3.6. Welche Art geometrischer Objekte kann ich speichern?
3.7. Ich bin verwirrt. Welchen Datenspeicher soll ich verwenden, »geometry« oder »geography«?
3.8. Ich habe tiefergehende Fragen über »geography«, wie beispielsweise welche Größe einer geografischen Region kann ich in eine »geography«-Spalte stopfen und trotzdem noch vernünftige Antworten erhalten. Gibt es Beschränkungen wie Pole, etwas im Feld, das in eine Hemisphäre passen muss (wie bei SQL Server 2008), Geschwindigkeit etc.?
3.9. Wie füge ich ein GIS-Objekt in die Datenbank ein?
3.10. Wie erstelle ich eine räumliche Abfrage?
3.11. Wie kann ich räumliche Abfragen auf großen Tabellen beschleunigen?
3.12. Warum werden keine R-Baum-Indizes von PostgreSQL unterstützt?
3.13. Warum soll ich die Funktion AddGeometryColumn() und all das andere OpenGIS-Zeug verwenden?
3.14. Was ist der beste Weg, alle Objekte innerhalb eines Radius eines anderen Objekts zu finden?
3.15. Wie kann ich die Koordinaten-Rückprojektion als Teil einer Abfrage durchführen?
3.16. Ich führte ein ST_AsEWKT und ST_AsText auf meiner eher großen Geometrie aus und erhielt ein leeres Feld zurück. Was ist passiert?
3.17. ST_Intersects ergibt, dass sich meine beiden geometrischen Objekte nicht überschneiden, obwohl ICH WEISS, DASS SIE DIES TUN. Was ist passiert?
3.18. Ich veröffentliche Software, die PostGIS verwendet. Bedeutet das, dass meine Software wie PostGIS unter der GPL lizenziert werden muss? Muss ich all meinen Code veröffentlichen, falls ich PostGIS benutze?

3.1.

Wo kann ich Lernprogramme, Anleitungen und Seminare für die Arbeit mit PostGIS finden?

OpenGeo hat ein schrittweises Lernprogramm Introduction to PostGIS. Es beinhaltet sowohl paketierte Daten als auch ein Einführung in das Arbeiten mit der OpenGeo-Suite. Es ist wahrscheinlich das beste Lernprogramm für PostGIS.

Außerdem hat BostonGIS ein PostGIS almost idiot's guide on getting started. Dieser ist eher für Windows-Benutzer gedacht.

3.2.

Meine Anwendungen und Desktop-Tools funktionierten mit PostGIS 1.5, nicht jedoch mit PostGIS 2.0. Wie kann ich dies beheben?

Viele überholte Funktionen wurden aus der Codebasis von PostGIS 2.0 entfernt. Dies betraf Anwendungen sowie Werkzeuge von Drittanbietern wie Geoserver, MapServer, QuantumGIS und OpenJump, um nur ein paar zu nennen. Es gibt mehrere Möglichkeiten dieses Problem zu lösen. Bei Anwendungen von Drittanbietern können Sie versuchen diese auf die neuste Version zu aktualisieren, bei der viele dieser Probleme bereits fixiert wurden. Ihren eigenen Code können Sie so ändern, dass er die überholten Funktionen nicht mehr benutzt. Die meisten dieser Funktionen sind Pseudonyme von ST_Union, ST_Length etc. ohne den Präfix "ST_". Als letzten Ausweg können Sie die gesamte legacy.sql oder die benötigten Teile davon ausführen.

Die Datei legacy.sql liegt im selben Verzeichnis wie »postgis.sql«. Sie können diese Datei nach der Installation von »postgis.sql« und »spatial_ref_sys.sql« installieren, um alle 200 alten Funktionen wieder herzustellen, die entfernt wurden.

3.3.

Wenn ich OpenStreetMap-Daten mit »osm2pgsql« lade, bekomme ich eine Fehlermeldung: »operator class "gist_geometry_ops" does not exist for access method "gist" Error occurred.« In PostGIS 1.5 klappte das gut.

In PostGIS 2 wurde die Standardgeometrieoperatorklasse »gist_geometry_ops« in »gist_geometry_ops_2d« geändert und »gist_geometry_ops« wurde vollständig entfernt. Grund ist, dass PostGIS auch räumliche Nd-Indizes für 3D-Unterstützung einführt und der alte Name als verwirrend und fehlerhaft angesehen wurde.

Einige ältere Anwendungen, die als Teil des Prozesses Tabellen und Indizes erstellen, referenzieren explizit den Operatorklassennamen. Dies ist nicht nötig, wenn Sie den Standard-2D-Index wollten. Falls Sie dies erreichen möchten, ändern Sie die Indexerstellung von:

SCHLECHT:

CREATE INDEX idx_my_table_geom ON my_table USING gist(geom gist_geometry_ops);

in GUT:

CREATE INDEX idx_my_table_geom ON my_table USING gist(geom);

Der einzige Fall, in dem Sie die Operatorklasse angeben müssen, ist, wenn Sie einen räumlichen 3D-Index wie folgt möchten:

CREATE INDEX idx_my_super3d_geom ON my_super3d USING gist(geom gist_geometry_ops_nd);

Falls Sie unglücklicherweise kompilierten Code, den Sie nicht mehr ändern können, am Hals haben und bei dem altes »gist_geometry_ops« hart codiert ist, können Sie die alte Klasse mittels des in PostGIS 2.0.2+ paketierten legacy_gist.sql erstellen. Falls Sie jedoch diese Fehlerbehebung verwenden, wird Ihnen dringend empfohlen, zu einem späteren Zeitpunkt den Index zu löschen und ihn ohne die Operatorklasse neu zu erstellen. Dies wird Ihnen in Zukunft Probleme ersparen, wenn Sie erneut ein Upgrade durchführen müssen.

3.4.

Ich führe PostgreSQL 9.0 aus und kann Geometrien nicht länger in OpenJump, Safe FME und einigen anderen Werkzeugen lesen/schreiben.

In PostgreSQL 9.0+ wurde die Standardcodierung für »bytea«-Daten in hexadezimal geändert und ältere JDBC-Treiber gehen immer noch vom Escape-Format aus. Dies beeinflusste einige Anwendungen wie Java-Programme, die ältere JDBC-Treiber benutzen oder .NET-Anwendungen, die ältere »npgsql«-Treiber verwenden, die das frühere Verhalten von ST_AsBinary erwarten. Es gibt zwei Herangehensweisen, dies wieder zum Laufen zu bringen.

Sie können Ihren JDBC-Treiber auf die neuste PostgreSQL-9.0-Version aktualisieren. Diese erhalten Sie unter http://jdbc.postgresql.org/download.html.

Falls Sie eine .NET-Anwendung ausführen, können Sie Npgsql 2.0.11 oder neuer verwenden. Dies können Sie von http://pgfoundry.org/frs/?group_id=1000140, wie im Blog-Eintrag von Francisco Figueiredo zur Veröffentlichung von NpgSQL 2.0.11 beschrieben, herunterladen.

Falls das Aktualisieren Ihres PostgreSQL-Treibers nicht in Frage kommt, können Sie die Voreinstellung mit der folgenden Änderung auf das vorherige Verhalten zurücksetzen:

ALTER DATABASE mypostgisdb SET bytea_output='escape';

3.5.

Ich habe versucht, meine Geometriespalte mit PgAdmin anzusehen, aber sie ist leer. Was ist los?

PgAdmin zeigt bei großen Geometrien nichts an. Was ist der beste Weg, um zu prüfen, ob sich in Ihren Geometriespalten Daten befinden?

-- Wenn alle Geometriefelder ausgefüllt sind, dann sollte diese Abfrage keine Datensätze zurückgeben 
SELECT somefield FROM mytable WHERE geom IS NULL;
-- Um lediglich die Größe einer Geometrie festzustellen, können Sie eine Abfrage in der folgenden Form ausführen.
-- Sie wird Ihnen die Höchstzahl von Punkten mitteilen, die Sie in Ihren Geometriespalten haben.
SELECT MAX(ST_NPoints(geom)) FROM sometable;

3.6.

Welche Art geometrischer Objekte kann ich speichern?

Sie können Punkte, Linien, Polygone, Objekte aus mehreren Punkten, Linien und Polygonen, sowie Geometriesammlungen speichern. In PostGIS 2.0 und höher können Sie auch TINs und Polyederoberflächen im Basistyp »geometry« speichern. Diese werden im »Well-known Text«-Open-GIS-Textformat (mit XYZ-, XYM- und XYZM-Erweiterungen) angegeben. Derzeit werden drei Datentypen unterstützt: Der Standard-OGC-Datentyp »geometry«, der für die Messung ein flaches Koordinatensystem verwendet, der Datentyp »geography«, der ein geodätisches Koordinatensystem benutzt (nicht OGC, aber Sie finden einen ähnlichen Typ in Microsoft SQL Server 2008+). Nur WGS 84 long lat (SRID:4326) wird vom Datentyp »geography« unterstützt. Das neuste Familienmitglied der räumlichen PostGIS-Typenfamilie ist »raster« zum Speichern und Analysieren von Rasterdaten. »raster« hat seine eigene FAQ. Weitere Einzelheiten finden Sie unter Chapter 10, Häufige Fragen zu PostGIS Raster und Chapter 9, Referenz Raster.

3.7.

Ich bin verwirrt. Welchen Datenspeicher soll ich verwenden, »geometry« oder »geography«?

Kurze Antwort: »geography« ist ein neuer Datentyp, der Distanzmessungen über weite Bereiche hinweg unterstützt; allerdings sind die meisten Berechnungen damit derzeit langsamer als bei »geometry«. Wenn Sie den Datentyp »geography« benutzen, dann müssen Sie nicht viel über ebene Koordinatenreferenzsysteme lernen. Der Datentyp »geography« ist im Allgemeinen dann am besten geeignet, wenn Sie weltweite Daten haben und Sie nur am Messen von Entfernungen und Längen interessiert sind. Der Datentyp »geometry« ist ein alter Datentyp, der von wesentlich mehr Funktionen unterstützt wird, der eine größere Unterstützung von Werkzeugen Dritter genießt und mit dem Transaktionen generell schneller sind; bei einer großen Geometrie manchmal bis zum Zehnfachen schneller. Der Datentyp »geometry« ist die beste Wahl, wenn Sie sich in räumlichen Bezugssystemen sicher fühlen oder Sie mit lokalen Daten arbeiten, bei denen alle Ihre Daten in ein einziges räumliches Bezugssystem (spatial reference system/SRID) passen oder falls Sie eine große Menge räumlicher Daten verarbeiten wollen. Hinweis: Es ist ziemlich einfach, einmalige Umwandlungen zwischen den zwei Typen vorzunehmen, um von den Vorteilen beider zu profitieren. Was derzeit unterstützt wird und was nicht, erfahren Sie unter Section 14.11, “PostGIS Function Support Matrix”.

Lange Antwort: Eine ausführlichere Erörterung finden Sie unter Section 4.2.2, “Wann sollte man den geographischen Datentyp dem geometrischen Datentyp vorziehen” und function type matrix.

3.8.

Ich habe tiefergehende Fragen über »geography«, wie beispielsweise welche Größe einer geografischen Region kann ich in eine »geography«-Spalte stopfen und trotzdem noch vernünftige Antworten erhalten. Gibt es Beschränkungen wie Pole, etwas im Feld, das in eine Hemisphäre passen muss (wie bei SQL Server 2008), Geschwindigkeit etc.?

Ihre Fragen sind zu tiefgehend und komplex, um in diesem Abschnitt angemessen beantwortet werden zu können. Bitte lesen Sie unsere Section 4.2.3, “Fortgeschrittene FAQ's zum geographischen Datentyp”.

3.9.

Wie füge ich ein GIS-Objekt in die Datenbank ein?

Zuerst müssen Sie eine Tabelle mit einer Spalte des Typs »geometry« oder »geography« erstellen, die Ihre GIS-Daten bereithält. Das Speichern des Datentyps »geography« unterscheidet sich etwas vom Speichern des Datentyps »geometry«. Einzelheiten über das Speichern von »geography« finden Sie unter Section 4.2.1, “Grundsätzliches zum geographischen Datentyp”.

Für »geometry«: Verbinden Sie Ihre Datenbank mit psql und probieren Sie folgenden SQL-Befehl:

CREATE TABLE gtest (id serial primary key, name varchar(20), geom geometry(LINESTRING));

Falls die Definition der Spalte »geometry« fehlschlägt, haben Sie wahrscheinlich die PostGIS-Funktionen und -Objekte nicht in Ihre Datenbank geladen oder Sie verwenden eine Version von PostGIS vor 2.0. Siehe Section 2.5, “Kompilierung und Installation des Quellcodes: Detaillierte Beschreibung”.

Dann können Sie mittels eines SQL-INSERT-Befehls eine Geometrie in Ihre Tabelle einfügen. Das GIS-Objekt selbst ist mit dem Format »well-known-text« des OpenGIS-Konsortiums formatiert:

INSERT INTO gtest (ID, NAME, GEOM)
VALUES (
  1,
  'First Geometry',
  ST_GeomFromText('LINESTRING(2 3,4 5,6 5,7 8)')
);

Mehr Informationen über weitere GIS-Objekte finden Sie in der Objektreferenz.

So sehen Sie sich Ihre GIS-Daten in der Tabelle an:

SELECT id, name, ST_AsText(geom) AS geom FROM gtest;

Der Rückgabewert sollte etwa so aussehen:

id | name           | geom
----+----------------+-----------------------------
  1 | First Geometry | LINESTRING(2 3,4 5,6 5,7 8)
(1 row)

3.10.

Wie erstelle ich eine räumliche Abfrage?

Auf die gleiche Weise, wie alle anderen Datenbankabfragen erstellt werden, als Kombination von Rückgabewerten, Funktionen und booleschen Tests.

Es gibt bei räumlichen Abfragen zwei Aspekte, die Sie beim Erstellen Ihrer Abfrage im Hinterkopf behalten sollten: Es gibt einen räumlichen Index, von dem Sie Gebrauch machen können, und führen Sie aufwendige Berechnungen auf einer großen Zahl von Geometrien durch?

Im Allgemeinen werden Sie den »Überschneidungsoperator« (&&) benutzen wollen, der prüft, ob sich die Hüllquader der Objekte überschneiden. Der Hauptnutzen des &&-Operators besteht darin, dass er, falls ein räumlicher Index zum Beschleunigen des Tests verfügbar ist, Gebrauch davon macht. Dies kann Abfragen sehr stark beschleunigen.

Sie werden auch von räumlichen Funktionen wie Distance(), ST_Intersects(), ST_Contains() und ST_Within() Gebrauch machen, um die Ergebnisse Ihrer Suche einzugrenzen. Die meisten räumlichen Abfragen enthalten sowohl einen indizierten als auch einen räumlichen Funktionstest. Der Indextest begrenzt die Auswahl von Tupeln auf nur diejenigen Tupel, die die Bedingung, die von Interesse ist, treffen könnten. Die räumlichen Funktionen werden dann verwendet, um die Bedingung genau zu prüfen.

SELECT id, the_geom
FROM thetable
WHERE
  ST_Contains(the_geom,'POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))');

3.11.

Wie kann ich räumliche Abfragen auf großen Tabellen beschleunigen?

Schnelle Abfragen großer Tabellen sind die Daseinsberechtigung räumlicher Datenbanken (neben der Unterstützung von Transaktionen). Daher ist es wichtig, über einen guten Index zu verfügen.

Um einen räumlichen Index für eine Tablle mit einer geometry-Spalte zu erstellen, benutzen Sie die Funktion »CREATE INDEX« wie folgt:

CREATE INDEX [indexname] ON [tabellenname] USING GIST ( [geometry_spalte] );

Die Option »USING GIST« teilt dem Server mit, dass er einen GiST-Index (Generalized Search Tree/Verallgemeinerter Suchbaum) verwenden soll.

[Note]

Es wird von GiST-Indizes angenommen, dass sie verlustbehaftet sind. Verlustbehaftete Indizes verwenden ein Ersatzobjekt (im Fall räumlicher Objekte einen Hüllquader), um einen Index zu erstellen.

Sie sollten außerdem sicherstellen, dass das PostgreSQL-Abfrageplanungsprogramm ausreichende Informationen über Ihren Index hat, um vernünftige Entscheidungen treffen zu können, wann er benutzt wird. Zu diesem Zweck müssen Sie für Ihre Geometrietabellen »Statistiken erstellen«.

Unter PostgeSQL 8.0.x und neuer führen Sie einfach den Befehl VACUUM ANALYZE aus.

Unter PostgreSQL 7.4.x und älter führen Sie den Befehl SELECT UPDATE_GEOMETRY_STATS() aus.

3.12.

Warum werden keine R-Baum-Indizes von PostgreSQL unterstützt?

Ältere Versionen von PostGIS verwendeten die PostgreSQL-R-Baum-Indizes. PostgreSQL-R-Bäume wurden jedoch seit Version 0.6 komplett ausrangiert und räumliche Indizierung wird mit dem Schema »R-Tree-over-GiST« bereitgestellt.

Unsere Tests haben gezeigt, dass die Suchgeschwindigkeit für native R-Bäume und GiST vergleichbar ist. Native PostgreSQL-R-Bäume haben zwei Einschränkungen, wegen der sie für den Gebrauch mit GIS-Objekten unerwünscht sind (beachten Sie, dass diese Einschränkungen aufgrund der Implementierung nativer PostgreSQL-R-Bäume und nicht wegen des Konzepts der R-Bäume im Allgemeinen bestehen):

  • R-Baum-Indizes können in PostgreSQL nicht mit Objekten umgehen, die größer als 8k sind. GiST-Indizes können dies mittels des »verlustbehafteten« Tricks, das Objekt selbst durch seinen Hüllquader zu ersetzen.

  • R-Baum-Indizes sind in PostgreSQL nicht »nullsicher«, daher wird das Bilden eines Index auf einer »geometry«-Spalte, die Null-Geometrien enthält, scheitern.

3.13.

Warum soll ich die Funktion AddGeometryColumn() und all das andere OpenGIS-Zeug verwenden?

Falls Sie keine OpenGIS-Hilfsfunktionen nutzen möchten, müssen Sie dies nicht. Erstellen Sie einfach Ihre Tabellen in älteren Versionen, indem Sie Ihre »geometry«-Spalten im CREATE-Befehl erstellen. Alle Ihre Geometrien werden SRIDs von -1 haben und die OpenGIS-Metadatentabellen werden nicht ordentlich gefüllt. Dies wird jedoch die meistenAnwendungen, die auf PostGIS basieren, zum Abstürzen bringen und es wird generell empfohlen, dass Sie zum Erstellen von »geometry«-Tabellen AddGeometryColumn() verwenden.

MapServer ist eine dieser Anwendungen, die Gebrauch von geometry_columns-Metadaten machen. Insbesondere kann MapServer die SRID der »geometry«-Spalte nutzen, um direkt eine Rückprojektion von Objekten in die korrekte Abbildungsprojektion vorzunehmen.

3.14.

Was ist der beste Weg, alle Objekte innerhalb eines Radius eines anderen Objekts zu finden?

Um die Datenbank möglichst effizient zu nutzen, ist es am besten Radiusabfragen zu verwenden. Diese kombinieren den Radiustest mit einem Hüllquadertest: Der Hüllquadertest benutzt den räumlichen Index, der schnellen Zugriff auf eine Untermenge von Daten gewährt, auf die dann der Radiustest angewendet wird.

Die Funktion ST_DWithin(geometry, geometry, distance) ist eine praktische Art, eine Entfernungssuche per Index durchzuführen. Dazu wird ein Suchrechteck erstellt, das groß genug ist, um den Entfernungsradius einzuschließen. Dann wird in der indizitierten Untermenge der Ergebnisse die genaue Entfernung gesucht.

Um zum Beispiel alle Objekte mit 100 Metern Entfernung zu POINT(1000 1000) zu finden, wäre die folgende Abfrage gut geeignet:

SELECT * FROM geotable
WHERE ST_DWithin(geocolumn, 'POINT(1000 1000)', 100.0);

3.15.

Wie kann ich die Koordinaten-Rückprojektion als Teil einer Abfrage durchführen?

Um eine Rückprojektion durchzuführen, müssen sowohl die Quell- als auch die Zielkoordinatensysteme in einer SPATIAL_REF_SYS-Tabelle definiert sein und und die SRIDs der Geometrien, die rückprojiziert werden, müssen bereits gesetzt sein. Sobald dies erledigt ist, ist die Rückprojektion so einfach wie Bezug auf die gewünschte Ziel-SRID zu nehmen. Nachfolgend wird eine Geometrie auf »NAD 83 long lat« projiziert. Das Folgende funktioniert nur, falls die SRID der Geometrie nicht -1 ist (keine undefinierte räumliche Referenz).

SELECT ST_Transform(die_geometrie,4269) FROM geometrietabelle;

3.16.

Ich führte ein ST_AsEWKT und ST_AsText auf meiner eher großen Geometrie aus und erhielt ein leeres Feld zurück. Was ist passiert?

Sie verwenden vermutlich PgAdmin oder irgendein anderes Werkzeug, das keine großen Texte ausgibt. Falls Ihre Geometrie groß genug ist, wird sie in diesen Werkzeugen leer erscheinen. Falls Sie sie wirklich sehen oder in WKT ausgeben möchten, verwenden Sie PSQL.

--zum Prüfen, ob die Anzahl der Geometrien wirklich leer ist
                                SELECT count(gid) FROM geotable WHERE the_geom IS NULL;

3.17.

ST_Intersects ergibt, dass sich meine beiden geometrischen Objekte nicht überschneiden, obwohl ICH WEISS, DASS SIE DIES TUN. Was ist passiert?

Im Allgemeinen kommt das in zwei Fällen vor. Ihre Geometrie ist ungültig – prüfen Sie dies mit ??? oder Sie gehen davon aus, dass sie sich überschneiden, da ST_AsText die Zahlen rundet und Sie viele Dezimalstellen dahinter haben, die Ihnen nicht angezeigt werden.

3.18.

Ich veröffentliche Software, die PostGIS verwendet. Bedeutet das, dass meine Software wie PostGIS unter der GPL lizenziert werden muss? Muss ich all meinen Code veröffentlichen, falls ich PostGIS benutze?

Höchstwahrscheinlich nicht. Oracle-Datenbanken laufen zum Beispiel unter Linux. Linux steht unter der GPL, Oracles Datenbank nicht. Muss Oracles Datenbank, die unter Linux läuft, unter der GPL verteilt werden? Nein. In ähnlicher Weise kann Ihre Software die PostgreSQL/PostGIS Datenbank soviel nutzen wie sie will, und kann unter irgendeiner, von Ihnen gewünschten Lizenz vorliegen.

Die einzige Ausnahme wäre, wenn Sie Veränderungen am PostGIS-Quellcode vorgenommen hätten und die veränderte Version verteilen würden. In diesem Fall müssten Sie den Code Ihres veränderten PostGIS freigeben (aber nicht den Code von Anwendungen, die darauf laufen). Sogar in diesem begrenzten Fall müssten Sie nur den Quellcode an Leute verteilen, denen Sie Binärcode weitergegeben haben. Die GPL verlangt nicht, dass Sie Ihren Quellcode veröffentlichen, nur dass Sie ihn mit Leuten teilen, denen Sie Binärcode geben.

Die oberen Angaben treffen auch zu, wenn Sie PostGIS in Verbindung mit den optionalen CGAL-aktivierten Funktionen nutzen. Teile von CGAL liegen unter GPL vor, so wie bereits das gesamte PostGIS: die Verwendung von CGAL macht PostGIS nicht mehr GPL als es bereits von vornherein ist.

Chapter 4. PostGIS anwenden: Datenverwaltung und Abfragen

4.1. GIS Objekte

Die Geoobjekte, die von PostGIS unterstützt werden, sind eine Obermenge der durch das OpenGIS Consortium (OGC) festgelegten "Simple Features". PostGIS unterstützt sämtliche Objekte und Funktionen, die in der OGC "Simple Features for SQL" Spezifikation normiert sind.

PostGIS erweitert den Standard mit der Unterstützung von 3DZ-, 3DM -und 4D-Koordinaten.

4.1.1. OpenGIS WKB und WKT

Die OpenGIS Spezifikation standardisiert zwei Möglichkeiten um Geoobjekte darzustellen: die Well-known-Text (WKT) und die Well-Known-Binary (WKB) Darstellung. Sowohl WKT als auch WKB enthalten Information über den Objekttyp und die Koordinaten, die das Objekt bilden.

Beispiele für die Textdarstellung (WKT) von Geoobjekten:

  • POINT(0 0)

  • LINESTRING(0 0,1 1,1 2)

  • POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

  • MULTIPOINT((0 0),(1 2))

  • MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

  • MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

  • GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

Die OpenGIS Spezifikation verlangt auch, dass das der Identifikator des Koordinatenreferenzsystem (SRID) im internen Format der Geoobjekte mit abgespeichert ist.

Für die Ein- und Ausgabe dieser Formate stehen die folgenden Schnittstellen zur Verfügung

bytea WKB = ST_AsBinary(geometry);
text WKT = ST_AsText(geometry);
geometry = ST_GeomFromWKB(bytea WKB, SRID);
geometry = ST_GeometryFromText(text WKT, SRID);

Eine gültige Einfügeanweisung, um ein räumliches OGC-Objekt zu erzeugen und einzufügen, wäre:

INSERT INTO geotable ( the_geom, the_name )
  VALUES ( ST_GeomFromText('POINT(-126.4 45.32)', 312), 'A Place');

4.1.2. PostGIS EWKB, EWKT und Normalformen/kanonische Formen

Das OGC Format unterstützt nur 2D-Geometrien, und die dazugehörige SRID ist *niemals* in den Eingabe/Ausgabe-Darstellungen eingebettet.

Zur Zeit sind die erweiterten Formate von PostGIS eine Obermenge von den OGC-Formaten (jeder gültige WKT/WKB ist auch ein gültiger EWKT/EWKB). Dies kann sich in der Zukunft allerdings ändern, insbesondere dann, wenn OGC ein neues Format einführt, welches mit diesen Erweiterungen im Widerspruch steht. Daher sollten SIE sich BITTE NICHT auf diese Eigenschaft verlassen!

PostGIS EWKB/EWKT add 3DM, 3DZ, 4D coordinates support and embedded SRID information.

Beispiele für die Textdarstellung (EWKT) von erweiterten Geoobjekten:

  • POINT(0 0 0) -- XYZ

  • SRID=32632;POINT(0 0) -- XY mit SRID

  • POINTM(0 0 0) -- XYM

  • POINT(0 0 0 0) -- XYZM

  • SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM mit SRID

  • MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4 1))

  • POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))

  • MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))

  • GEOMETRYCOLLECTIONM( POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5) )

  • MULTICURVE( (0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4) )

  • POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )

  • TRIANGLE ((0 0, 0 9, 9 0, 0 0))

  • TIN( ((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 0 0 0)) )

Für die Konvertierung zwischen diesen Formaten stehen die folgenden Schnittstellen zur Verfügung:

bytea EWKB = ST_AsEWKB(geometry);
text EWKT = ST_AsEWKT(geometry);
geometry = ST_GeomFromEWKB(bytea EWKB);
geometry = ST_GeomFromEWKT(text EWKT);

Zum Beispiel würde eine gültige Eingabeanweisung, um räumliche PostGIS Objekte zu erzeugen und einzufügen, wie folgt lauten:

INSERT INTO geotable ( the_geom, the_name )
  VALUES ( ST_GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)'), 'A Place' )

Die "kanonische Form" eines PostgreSQL Datentyps ist jene Darstellung die man mit einer einfachen Abfrage (ohne Funktionsaufruf) erhält und bei der sichergestellt ist, dass sie von einem einfachen INSERT, UPDATE oder COPY angenommen wird. Beim geometrischen Datentyp von PostGIS sind dies:

- Ausgabe
  - binary: EWKB
        ascii: HEXEWKB (EWKB in hex form)
- Eingabe
  - binary: EWKB
        ascii: HEXEWKB|EWKT 

Zum Beispiel liest die folgende Anweisung EWKT ein und gibt HEXEWKB in Normalform aus:

=# SELECT 'SRID=4;POINT(0 0)'::geometry;

geometry
----------------------------------------------------
01010000200400000000000000000000000000000000000000
(1 row)

4.1.3. SQL-MM Part 3

Die "SQL Multimedia Applications Spatial" Spezifikation erweitert die SQL Spezifikation für Simple Features indem es eine Reihe von kreisförmig interpolierten Kurven definiert.

Die Definitionen in SQL-MM schließen 3DM-, 3DZ- und 4D-Koordinaten ein, erlauben allerdings nicht das Einbinden von Information über SRID.

Die Erweiterungen zur Well-known-Text-Darstellung werden zur Zeit noch nicht zur Gänze unterstützt. Im Folgenden werden Beispiele für einige einfache gekrümmte Geometrien gezeigt:

  • CIRCULARSTRING(0 0, 1 1, 1 0)

    CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)

    CIRCULARSTRING ist der grundlegende Kurventyp, ähnlich wie LINESTRING in der linearen Welt. Ein einziges Segment benötigt drei Punkte, den Anfangs- und den Endpunkt (erster und dritter) und irgendeinen weiterer Punkt auf dem Kreisbogen. Eine Ausnahme ist der geschlossene Kreis, wo Anfangs- und Endpunkt ident sind. In diesem Fall muss der zweite Punkt dem Kreismittelpunkt entsprechen. Um Kreisbögen aneinanderzuketten, wird der Endpunkt des vorangehenden Bogens zum Anfangspunkt des nächstfolgenden Bogens, genauso wie beim LINESTRING. D.h., dass ein Kreisbogen eine ungerade Anzahl an Punkten grösser als 1 aufweisen muss.

  • COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))

    Eine zusammengesetzte Kurve ist eine einzelne, durchgängige Kurve, die sowohl gekrümmte (kreisförmige) als auch gerade Segmente aufweist. Dies bedeutet, daß die Komponenten nicht nur wohlgeformt sein müssen, sondern auch der Endpunkt einer jeden Komponente (außer der letzten) mit dem Anfangspunkt der nachfolgenden Komponente zusammenfallen muss.

  • CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1, 1 1))

    Beispiel einer zusammengesetzten Kurve in einem Kurvenpolygon: CURVEPOLYGON(COMPOUNDCURVE(CIRCULARSTRING(0 0,2 0, 2 1, 2 3, 4 3),(4 3, 4 5, 1 4, 0 0)), CIRCULARSTRING(1.7 1, 1.4 0.4, 1.6 0.4, 1.6 0.5, 1.7 1) )

    Ein CurvePolygon hat, genau wie ein Polygon, einen äußeren Ring und keinen oder mehrere innere Ringe. Der Unterschied liegt darin, dass ein Ring aus Kreisbögen, Geraden oder zusammengesetzten Strecken bestehen kann.

    Ab PostGIS 1.4 werden zusammengesetzte Kurven/CompoundCurve in einem Kurvenpolygon/CurvePolygon unterstützt.

  • MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))

    Eine MultiCurve ist eine Sammelgeometrie von Kurven, welche aus Geraden, Kreisabschnitte oder zusammengesetzten Abschnitten bestehen kann.

  • MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1, 1 1)),((10 10, 14 12, 11 10, 10 10),(11 11, 11.5 11, 11 11.5, 11 11)))

    Dies ist eine Sammelgeometrie von Oberflächen, welche (lineare) Polygone oder Kurvenpolygone sein können.

[Note]

Alle Gleitpunkt Vergleiche der SQL-MM Implementierung werden mit einer bestimmten Toleranz ausgeführt, zurzeit 1E-8.

4.2. Der geographische Datentyp von PostGIS

Der geographische Datentyp bietet native Unterstützung für Geoobjekte die durch "geographische" Koordinaten (manchmal auch als "geodätische" Koordinaten, "Länge/Breite" oder "Breite/Länge" bezeichnet) festgelegt sind. Geographische Koordinaten sind Kugelkoordinaten, die durch Winkel (in Grad) angegeben werden.

Der geometrische Datentyp von PostGIS beruht auf der Ebene. Die kürzeste Entfernung zwischen zwei Punkten einer Ebene entspricht einer Gerade. Das bedeutet, dass geometrische Berechnungen (wie Flächen, Distanzen, Längen, Schnittpunkte, etc.) im kartesischen Koordinatensystem mit geradlinigen Vektoren ausgeführt werden können.

Der geographische Datentyp von PostGIS beruht auf einer Kugel. Die kürzeste Verbindung zwischen zwei Punkten auf einer Kugeloberfläche ist ein Bogenteil eines Großkreises. D.h., dass Berechnungen auf geographische Datentypen (wie Flächen, Distanzen, Längen, Schnittpunkte, etc.) auf der Kugeloberfläche mit einer komplexeren Mathematik durchgeführt werden müssen. Für genauere Messungen müssen die Berechnungen das Rotationsellipsoid der Erde in Betracht ziehen.

Da die zugrunde liegende Mathematik wesentlich schwieriger ist, gibt es weniger Funktionen für den geographischen Datentyp, als für den geometrischen Datentyp. Mit der Zeit werden neue Algorithmen hinugefügt und die Möglichkeiten des geographischen Datentyps erweitert werden.

Es verwendet den Datentyp geography, der allerdings von den Funktionen der Bibliothek GEOS in keiner Weise unterstützt wird. Als provisorische Lösung kann man zwischen dem geometrischen und dem geographischen Datentypen hin- und herkonvertieren.

Vor PostGIS 2.2 hat der geographische Datentyp nur WGS 84 Länge und Breite (SRID:4326) unterstützt. Ab PostGIS 2.2 kann dieser jedes Koordinatenreferenzsystem verwenden, das auf Länge und Breite basiert und in der Tabelle spatial_ref_sysaufgeführt ist. Sie können sogar Ihr eigenes Polarkoordinatenreferenzsystem hinzufügen, wie unter geography type is not limited to earth beschrieben.

Unabhängig vom verwendeten Koordinatenreferenzsystem sind die Einheiten der ausgegebenen Messungen (ST_Distance, ST_Length, ST_Perimeter, ST_Area) und der Eingabe für ??? in Meter.

Der geographische Datentyp verwendet die Typmod-Formatangabe von PostgreSQL, sodass eine Tabelle mit einem geographischen Attribut in einem einzigen Schritt erstellt werden kann. Es werden alle Formate des OGC-Standards unterstützt, mit Ausnahme von Kurven.

4.2.1. Grundsätzliches zum geographischen Datentyp

Der geographische Datentyp unterstützt Geometrien, ausgenommen sind jedoch Kuven, TINS und POLYHEDRALSURFACEs. Daten vom geometrischen Datentyp, welche eine SRID von 4326 aufweisen, werden implizit in den geographischen Datentyp umgewandelt. Sie können Daten auch entsprechend der EWKT- und EWKB-Konvention einfügen.

  • POINT: Erstellung einer 2D-Punkttabelle mit dem geographischen Datentyp. Wenn die SRID nicht festgelegt ist, wird 4326 WGS 84 Länge und Breite angenommen:

    CREATE TABLE ptgeogwgs(gid serial PRIMARY KEY, geog geography(POINT) );

    POINT: Erstellung einer Tabelle mit 2D-Punkten als geographischen Datentyp in NAD83 Länge und Breite:

    CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography(POINT,4269) );

    Erstellung einer Punkttabelle mit Z-Koordinaten und explizit angegebener SRID

    CREATE TABLE ptzgeogwgs84(gid serial PRIMARY KEY, geog geography(POINTZ,4326) );
  • LINESTRING

    CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography(LINESTRING) );
  • POLYGON

    -- Polygon in NAD 1927 Länge und Breite
    CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography(POLYGON,4267) );
  • MULTIPOINT

  • MULTILINESTRING

  • MULTIPOLYGON

  • GEOMETRYCOLLECTION

Die Attribute des geographischen Datentyps werden in dem System View geography_columns registriert.

Nun überprüfen Sie bitte ob Ihre Tabelle in der gespeicherten Abfrage "geography_columns" aufscheint.

Sie können eine neue Tabelle mit einer geographischen Datentypspalte mit der Syntax von CREATE TABLE erstellen.

CREATE TABLE global_points (
    id SERIAL PRIMARY KEY,
    name VARCHAR(64),
    location GEOGRAPHY(POINT,4326)
  );

Beachten Sie bitte, dass die Spalte "location" den geographischen Datentyp verwendet und dieser zwei optionale Modifikatoren unterstützt: Einen Typmodifikator, der die geometrische Form und die Dimension der Geometriespalte festlegt; ein Modifikator für SRID, der den Identifikator für das Koordinatenreferenzsystem auf eine bestimmte Zahl einschränkt.

Für den Typmodifikator sind folgende Werte erlaubt: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON. Der Modifikator unterstützt auch Einschränkungen der Dimensionalität durch Nachsilben: Z, M und ZM. So erlaubt zum Beispiel ein Modifikator mit dem Wert 'LINESTRINGM' nur die Eingabe von Linienzügen mit drei Dimensionen, wobei die dritte Dimension als Kilometrierung/measure behandelt wird. Ebenso verlangt 'POINTZM' die Eingabe von vierdimensionalen Daten.

Wenn Sie keine SRID angeben, dann wird standardmäßig die SRID 4326 WGS84 Länge/Breite verwendet und alle Berechnungen in WGS84 ausgeführt.

Sobald Sie Ihre Tabelle erstellt haben, können Sie diese in der Tabelle "geography_columns" sehen:

-- Metadaten abfragen
SELECT * FROM geography_columns;

Sie können Daten auf dieselbe Art und Weise in die Tabelle einfügen wie Sie dies bei einer Geometriespalte tun würden:

-- Ein paar Daten in die Testtabelle einfügen
INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)');
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)');
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT(0 49)');

Die Erstellung eines Index funktioniert gleich wie beim Datentyp GEOMETRY. PostGIS erkennt, dass es sich um den Datentyp GEOGRAPHY handelt und erzeugt einen entsprechenden, auf einer Kugeloberfläche basierenden Index anstelle des üblichen planaren Index, der für den Datentyp GEOMETRY verwendet wird.

-- Einen sphärischen Index auf die Testtabelle legen
  CREATE INDEX global_points_gix ON global_points USING GIST ( location );

Anfrage und Messfunktionen verwenden die Einheit Meter. Daher sollten Entfernungsparameter in Metern ausgedrückt werden und die Rückgabewerte sollten ebenfalls in Meter (oder Quadratmeter für Flächen) erwartet werden.

-- Eine Distanzabfrage; Beachten Sie bitte, dass London ausserhalb der 1000km Toleranz liegt
  SELECT name FROM global_points WHERE ST_DWithin(location, 'SRID=4326;POINT(-110 29)'::geography, 1000000);

Sie können die Mächtigkeit von GEOGRAPHY erfahren, indem Sie berechnen, wie nahe ein Flugzeug, das von Seattle nach London (LINESTRING(-122.33 47.606, 0.0 51.5)) fliegt, an Reykjavik (POINT(-21.96 64.15)) vorbeikommt.

-- Die Entfernung mittels GEOGRAPHY ausrechnen (122.2km)
  SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15)':: geography);

-- Die Entfernung mittels GEOMETRIE ausrechnen (13.3 "degrees")
  SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geometry, 'POINT(-21.96 64.15)':: geometry);

Ausprobieren von verschiedenen Projektionen in Länge/Breie. Es ist jedes Koordinatenreferenzsystem in Länge und Breite zulässig, das in der Tabelle spatial_ref_sys aufgeführt ist.

-- NAD 83 in Länge und Breite
SELECT 'SRID=4269;POINT(-123 34)'::geography;
                    geography
----------------------------------------------------
 0101000020AD1000000000000000C05EC00000000000004140
(1 row)

-- NAD27  in Länge und Breite
SELECT 'SRID=4267;POINT(-123 34)'::geography;

                    geography
----------------------------------------------------
 0101000020AB1000000000000000C05EC00000000000004140
(1 row)

-- NAD83 UTM Zone in Meter, resultiert in einem Fehler, da metrische Projektion
SELECT 'SRID=26910;POINT(-123 34)'::geography;

ERROR:  Nur Koordinatensysteme in Länge und Breite werden vom geographischen Datentyp unterstützt.
LINE 1: SELECT 'SRID=26910;POINT(-123 34)'::geography;

Mit dem Datentyp GEOGRAPHY wird die wahre, kürzeste Entfernung auf der Kugeloberfläche zwischen Reykjavik und der Flugstrecke entlang des Großkreises von Seattle nach London errechnet.

Great Circle mapper Beim geometrischen Datentyp wird die Entfernung sinnloserweise in einem kartesischen Koordinatensystem zwischen Reykjavik und einer Geraden von Seattle nach London errechnet und auf einer ebenen Weltkarte angezeigt. Dem Namen nach mag das Ergebnis in der Einheit "Grad" angegeben sein, da es aber in keiner Weise irgendeinem wahren Winkel zwischen den Punkten entspricht, ist sogar die Verwendung der Bezeichnung "Grad" falsch.

4.2.2. Wann sollte man den geographischen Datentyp dem geometrischen Datentyp vorziehen

Der geographische Datentyp speichert die Koordinaten in Form von Länge und Breite. Er hat allerdings den Nachteil, dass für den Datentyp GEOGRAPHY weniger Funktionen zur Verfügung stehen, als für den Datentyp GEOMETRY und diese auch mehr CPU-Zeit beanspruchen.

Welchen Datentyp Sie wählen, sollte aufgrund der zu erwartenden Flächenausdehnung ihrer Anwendung festgelegt werden. Erstrecken sich Ihre Daten über den gesamten Globus oder über eine große kontinentale Fläche, oder sind sie auf einen Staat, ein Land oder eine Gemeinde beschränkt.

  • Wenn sich Ihre Daten in einem kleinen Bereich befinden, werden Sie vermutlich eine passende Projektion wählen und den geometrischen Datentyp verwenden, da dies in Bezug auf die Rechenleistung und die verfügbare Funktionalität die bessere Lösung ist.

  • Wenn Ihre Daten global sind oder einen ganzen Kontinent bedecken, ermöglicht der geographische Datentyp ein System aufzubauen, bei dem Sie sich nicht um Projektionsdetails kümmern müssen. Sie speichern die Daten als Länge und Breite und verwenden dann jene Funktionen, die für den geographischen Datentyp definiert sind.

  • Wenn Sie keine Ahnung von Projektionen haben, sich nicht näher damit beschäftigen wollen und die Einschränkungen der verfügbaren Funktionalität für den geographischen Datentyp in Kauf nehmen können, ist es vermutlich einfacher für Sie, den geographischen anstatt des geometrischen Datentyps zu verwenden.

Für einen Vergleich, welche Funktionalität von Geography vs. Geometry unterstützt wird, siehe Section 14.11, “PostGIS Function Support Matrix”. Für eine kurze Liste mit der Beschreibung der geographischen Funktionen, siehe Section 14.4, “PostGIS Geography Support Functions”

4.2.3. Fortgeschrittene FAQ's zum geographischen Datentyp

4.2.3.1. Werden die Berechnungen auf einer Kugel oder auf einem Rotationsellipsoid durchgeführt?
4.2.3.2. Wie schaut das mit der Datumsgrenze und den Polen aus?
4.2.3.3. Wie lang kann ein Bogen sein, damit er noch verarbeitet werden kann?
4.2.3.4. Warum dauert es so lange, die Fläche von Europa / Russland / irgendeiner anderen großen geographischen Region zu berechnen?

4.2.3.1.

Werden die Berechnungen auf einer Kugel oder auf einem Rotationsellipsoid durchgeführt?

Standardmäßig werden alle Entfernungs- und Flächenberechnungen auf dem Referenzellipsoid ausgeführt. Das Ergebnis der Berechnung sollte in lokalen Gebieten gut mit dem planaren Ergebnis zusammenpassen - eine gut gewählte lokale Projektion vorausgesetzt. Bei größeren Gebieten ist die Berechnung über das Referenzellipsoid genauer als eine Berechnung die auf der projizierten Ebene ausgeführt wird.

Alle geographischen Funktionen verfügen über eine Option um die Berechnung auf einer Kugel durchzuführen. Dies erreicht man, indem der letzte boolesche Eingabewert auf 'FALSE' gesetzt wird. Dies beschleunigt die Berechnung einigermaßen, insbesondere wenn die Geometrie sehr einfach gestaltet ist.

4.2.3.2.

Wie schaut das mit der Datumsgrenze und den Polen aus?

Alle diese Berechnungen wissen weder über Datumsgrenzen noch über Pole Bescheid. Da es sich um sphärische Koordinaten handelt (Länge und Breite), unterscheidet sich eine Geometrie, die eine Datumsgrenze überschreitet vom Gesichtspunkt der Berechnung her nicht von irgendeiner anderen Geometrie.

4.2.3.3.

Wie lang kann ein Bogen sein, damit er noch verarbeitet werden kann?

Wir verwenden Großkreisbögen als "Interpolationslinie" zwischen zwei Punkten. Das bedeutet, dass es für den Join zwischen zwei Punkten zwei Möglichkeiten gibt, je nachdem, aus welcher Richtung man den Großkreis überquert. Unser gesamter Code setzt voraus, dass die Punkte von der "kürzeren" der beiden Strecken her durch den Großkreis verbunden werden. Als Konsequenz wird eine Geometrie, welche Bögen von mehr als 180 Grad aufweist nicht korrekt modelliert.

4.2.3.4.

Warum dauert es so lange, die Fläche von Europa / Russland / irgendeiner anderen großen geographischen Region zu berechnen?

Weil das Polygon so verdammt groß ist! Große Flächen sind aus zwei Gründen schlecht: ihre Begrenzung ist riesig, wodurch der Index dazu tendiert, das Geoobjekt herauszuholen, egal wie Sie die Anfrage ausführen; die Anzahl der Knoten ist riesig, und Tests (wie ST_Distance, ST_Contains) müssen alle Knoten zumindest einmal, manchmal sogar n-mal durchlaufen (wobei N die Anzahl der Knoten im beteiligten Geoobjekt bezeichnet).

Wenn es sich um sehr große Polygone handelt, die Abfragen aber nur in kleinen Gebieten stattfinden, empfehlen wir wie beim geometrischen Datentyp, dass Sie die Geometrie in kleinere Stücke "denormalisieren". Dadurch kann der Index effiziente Unterabfragen auf Teile des Geoobjekts ausführen, da eine Abfrage nicht jedesmal das gesamte Geoobjekt herausholen muss. Konsultieren Sie dazu bitte die Dokumentation der FunktionST_Subdivide. Nur weil Sie ganz Europa in einem Polygon speichern *können* heißt das nicht, dass Sie dies auch tun *sollten*.

4.3. Verwendung von OGC-Standards

Die OpenGIS "Simple Features Specification for SQL" standardisert die Datentypen von Geoobjekten, die Funktionen die benötigt werden um diese zu verarbeiten, sowie die Metadatentabellen. Um sicherzustellen, dass die Metadaten konsistent bleiben, werden Vorgänge wie das Erstellen oder das Löschen einer Geometriespalte, durch dafür eigens von OpenGIS festgelegten Prozeduren ausgeführt.

Es gibt zwei OpenGIS Metadatentabellen: SPATIAL_REF_SYS und GEOMETRY_COLUMNS. Die SPATIAL_REF_SYS Tabelle enthält die numerischen Identifikatoren und textlichen Beschreibungen der in der Datenbank verwendeten Koordinatensysteme.

4.3.1. Die SPATIAL_REF_SYS Tabelle und Koordinatenreferenzsysteme

Die Tabelle "spatial_ref_sys" ist eine mit PostGIS kommende und OGC-konforme Datenbanktabelle, die über 3000 bekannte Koordinatenreferenzsysteme enthält, sowie Details zur Koordinatentransformation zwischen diesen.

Obwohl in der PostGIS Tabelle "spatial_ref_sys" über 3000 der gebräuchlichsten Koordinatenreferenzsysteme definiert sind, die mit der Bibliothek "Proj4" gehandhabt werden können, enthält sie nicht alle bekannten Projektionen. Sie können auch ihre eigenen Projektionen in der Tabelle definieren, falls Sie mit den Konstrukten von "Proj4" vertraut sind. Sie sollten nicht außer Acht lassen, dass die meisten Koordinatenreferenzsysteme regional sind und außerhalb des vorgesehenen Bereichs keinen Sinn haben.

Eine hervorragende Quelle zum Auffinden von Koordinatenreferenzsystemen, welche nicht in der Grundmenge enthalten sind, ist http://spatialreference.org/

Einige der häufiger eingesetzten Koordinatenreferenzsysteme sind: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 - WGS 84 World Mercator, 2163 - US National Atlas Equal Area, Koordinatenreferenzsysteme für jede NAD 83, WGS 84 und UTM Zone - UTM Zonen sind ideal für Messungen, decken aber nur 6 Grad breite, vertikale Zonen ab.

Verschiedenste Koordinatenreferenzsysteme "US State Plane" (auf Meter und Fuß basierend) - üblicherweise 2 pro US Staat. Die meisten auf Meter basierten befinden sich in der Grundmenge, aber viele der auf Fuß basierten, oder von ESRI erzeugten müssen von spatialreference.org heruntergeladen werden.

Genauere Angaben zur Ermittlung der UTM Zone für ein bestimmtes Gebiet finden Sie unter utmzone PostGIS plpgsql helper function.

Die SPATIAL_REF_SYS Tabelle ist folgendermaßen definiert:

CREATE TABLE spatial_ref_sys (
  srid       INTEGER NOT NULL PRIMARY KEY,
  auth_name  VARCHAR(256),
  auth_srid  INTEGER,
  srtext     VARCHAR(2048),
  proj4text  VARCHAR(2048)
)

Die SPATIAL_REF_SYS Spalten folgendermaßen:

SRID

Ein ganzzahliger Wert, der das Koordinatenreferenzsystem (SRS) innerhalb der Datenbank eindeutig ausweist.

AUTH_NAME

Der Name des Standards oder der Normungsorganisation, unter dem dieses Koordinatenreferenzsystem zitiert wird. Zum Beispiel ist "EPSG" ein gültiger AUTH_NAME.

AUTH_SRID

Die von der in AUTH_NAME zitierten Quelle festgelegte ID des Koordinatenreferenzsystems. Im Falle von EPSG ist dies der EPSG Projektionscode.

SRTEXT

Die Well-Known-Text Darstellung des Koordinatenreferenzsystems. Ein Beispiel dazu:

PROJCS["NAD83 / UTM Zone 10N",
  GEOGCS["NAD83",
        DATUM["North_American_Datum_1983",
          SPHEROID["GRS 1980",6378137,298.257222101]
        ],
        PRIMEM["Greenwich",0],
        UNIT["degree",0.0174532925199433]
  ],
  PROJECTION["Transverse_Mercator"],
  PARAMETER["latitude_of_origin",0],
  PARAMETER["central_meridian",-123],
  PARAMETER["scale_factor",0.9996],
  PARAMETER["false_easting",500000],
  PARAMETER["false_northing",0],
  UNIT["metre",1]
]

Für eine Auflistung der EPSG Projektionscodes und deren entsprechende WKT Darstellung siehe http://www.opengeospatial.org/. Eine allgemeine Erläuterung zu WKT finden Sie in der OpenGIS "Coordinate Transformation Services Implementation Specification" unter http://www.opengeospatial.org/standards. Information zur European Petroleum Survey Group (EPSG) und deren Datenbank über Koordinatenreferenzsysteme finden Sie unter http://www.epsg.org.

PROJ4TEXT

PostGIS verwendet die Bibliothek "Proj4" zur Koordinatentransformation. Die Spalte PROJ4TEXT enthält eine Proj4 Zeichenfolge mit der Definition des Koordinatensystems für eine bestimmte SRID. Zum Beispiel:

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

Weiterführende Information finden Sie auf der Proj4 Webseite unter http://trac.osgeo.org/proj/. Die Datei spatial_ref_sys.sql enthält sowohl SRTEXT als auch PROJ4TEXT Definitionen aller EPSG Projektionen.

4.3.2. Der View GEOMETRY_COLUMNS

GEOMETRY_COLUMNS ist ein View der den Systemkatalog der Datenbank ausliest. Er hat folgende Struktur:

\d geometry_columns
View "public.geometry_columns"
      Column       |          Type          | Modifiers
-------------------+------------------------+-----------
 f_table_catalog   | character varying(256) |
 f_table_schema    | character varying(256) |
 f_table_name      | character varying(256) |
 f_geometry_column | character varying(256) |
 coord_dimension   | integer                |
 srid              | integer                |
 type              | character varying(30)  |

Die Spalten bedeuten:

F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME

Der vollständige Name der Tabelle, welche die Geometriespalte enthält. Die Bezeichnungen "catalog" und "schema" kommen von Oracle. Es gibt keine Entsprechung in PostgreSQL für "catalog", weshalb diese Spalte leer bleibt - für "schema" wird der Name des Schemas in PostgreSQL verwendet (standardmäßig public).

F_GEOMETRY_COLUMN

Der Name der Geometriespalte in der Feature-Tabelle.

COORD_DIMENSION

Die räumliche Dimension (2-, 3- oder 4-dimensional) der Geometriespalte.

SRID

Der Identifikator des Koordinatenreferenzsystems, welches für die Geometrie in dieser Tabelle verwendet wird. Dieser ist ein Fremdschlüssel, der sich auf die Tabelle SPATIAL_REF_SYS bezieht.

TYPE

Der Datentyp des Geoobjekts. Um die räumliche Spalte auf einen einzelnen Datentyp zu beschränken, benutzen Sie bitte: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION oder die entsprechenden XYM Versionen POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM und GEOMETRYCOLLECTIONM. Für uneinheitliche Kollektionen (gemischete Datentypen) können Sie den Datentyp "GEOMETRY" verwenden.

[Note]

Dieses Attribut gehört (wahrscheinlich) nicht zur OpenGIS Spezifikation, wird aber benötigt um homogene Datentypen zu gewährleisten.

4.3.3. Erstellung einer räumlichen Tabelle

Die Erzeugung einer Tabelle mit räumlichen Daten kann in einem Schritt ausgeführt werden. Dies wird im folgenden Beispiel demonstriert, welches eine Straßentabelle mit einer geometrischen Spalte für 2D Linienzüge in WGS84 Länge/Breite erzeugt

CREATE TABLE ROADS (ID serial, ROAD_NAME text, geom geometry(LINESTRING,4326) );

Wir können zusätzliche Spalten hinzufügen, indem wir den normalen ALTER TABLE Befehl verwenden. Wir zeigen dies im nächsten Beispiel, wo wir einen 3D-Linienzug hinzufügen.

ALTER TABLE roads ADD COLUMN geom2 geometry(LINESTRINGZ,4326);

4.3.4. Geometrische Spalten in "geometry_columns" händisch registrieren

Zwei Fälle bei denen Sie dies benötigen könnten sind SQL-Views und Masseninserts. Beim Fall von Masseninserts können Sie die Registrierung in der Tabelle "geometry_columns" korrigieren, indem Sie auf die Spalte einen CONSTRAINT setzen oder ein "ALTER TABLE" durchführen. Falls Ihre Spalte Typmod basiert ist, geschieht die Registrierung beim Erstellungsprozess auf korrekte Weise, so dass Sie hier nichts tun müssen. Auch Views, bei denen keine räumliche Funktion auf die Geometrie angewendet wird, werden auf gleiche Weise wie die Geometrie der zugrunde liegenden Tabelle registriert.

-- Angenommen Sie erstellen folgenden View
CREATE VIEW  public.vwmytablemercator AS
        SELECT gid, ST_Transform(geom,3395) As geom, f_name
        FROM public.mytable;

-- Für eine korrekte Registrierung
-- wird eine Typumwandlung der Geometrie benötigt
--
DROP VIEW public.vwmytablemercator;
CREATE VIEW  public.vwmytablemercator AS
        SELECT gid, ST_Transform(geom,3395)::geometry(Geometry, 3395) As geom, f_name
        FROM public.mytable;

-- Wenn Sie sicher sind, das es sich bei der Geometrie um ein 2D-Polygon handelt, können Sie folgendes tun
DROP VIEW public.vwmytablemercator;
CREATE VIEW  public.vwmytablemercator AS
        SELECT gid, ST_Transform(geom,3395)::geometry(Polygon, 3395) As geom, f_name
        FROM public.mytable;
-- Angenommen Sie haben eine abgeleitete Tabelle über ein Masseninsert erzeugt
SELECT poi.gid, poi.geom, citybounds.city_name
INTO myschema.my_special_pois
FROM poi INNER JOIN citybounds ON ST_Intersects(citybounds.geom, poi.geom);

-- Einen 2D Index auf die neue Tabelle legen
CREATE INDEX idx_myschema_myspecialpois_geom_gist
  ON myschema.my_special_pois USING gist(geom);

-- Falls Ihre Punkte 3D-Punkte oder 3M-Punkte sind,
-- können Sie einen ND-Index anstatt eines 2D-Indexes erstellen
CREATE INDEX my_special_pois_geom_gist_nd
        ON my_special_pois USING gist(geom gist_geometry_ops_nd);

-- Um die Geometriespalte der neuen Tabelle in geometry_columns händisch zu registrieren.
-- Beachten Sie bitte, dass dies auch die zugrundeliegende Struktur der Tabelle ändert,
-- um die Spalte Typmod basiert zu machen.
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass);

-- Wenn Sie PostGIS 2.0 verwenden und aus welchem Grund auch immer
-- das alte Verhalten mit auf CONSTRAINTs basierender Definition benötigen
-- (wie im Fall von vererbten Tabellen bei denen nicht alle Kindtabellen denselben Datentyp und dieselbe SRID aufweisen),
-- setzen Sie das optionale Argument "use_typmod" auf FALSE
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass, false); 

Obwohl die alte auf CONSTRAINTs basierte Methode immer noch unterstützt wird, wird eine auf Constraints basierende Geometriespalte, die direkt in einem View verwendet wird, nicht korrekt in geometry_columns registriert. Eine Typmod basierte wird korrekt registriert. Im folgenden Beispiel definieren wir eine Spalte mit Typmod und eine andere mit Constraints.

CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry(POINT,4326));
SELECT AddGeometryColumn('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);

In psql:

\d pois_ny;

Wir sehen, das diese Spalten unterschiedlich definiert sind -- eine mittels Typmodifizierer, eine nutzt einen Constraint

Table "public.pois_ny"
  Column   |         Type          |                       Modifiers

-----------+-----------------------+------------------------------------------------------
 gid       | integer               | not null default nextval('pois_ny_gid_seq'::regclass)
 poi_name  | text                  |
 cat       | character varying(20) |
 geom      | geometry(Point,4326)  |
 geom_2160 | geometry              |
Indexes:
    "pois_ny_pkey" PRIMARY KEY, btree (gid)
Check constraints:
    "enforce_dims_geom_2160" CHECK (st_ndims(geom_2160) = 2)
    "enforce_geotype_geom_2160" CHECK (geometrytype(geom_2160) = 'POINT'::text
        OR geom_2160 IS NULL)
    "enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)

Beide registrieren sich korrekt in "geometry_columns"

SELECT f_table_name, f_geometry_column, srid, type
        FROM geometry_columns
        WHERE f_table_name = 'pois_ny';
f_table_name | f_geometry_column | srid | type
-------------+-------------------+------+-------
pois_ny      | geom              | 4326 | POINT
pois_ny      | geom_2160         | 2160 | POINT

Jedoch -- wenn wir einen View auf die folgende Weise erstellen

CREATE VIEW vw_pois_ny_parks AS
SELECT *
  FROM pois_ny
  WHERE cat='park';

SELECT f_table_name, f_geometry_column, srid, type
        FROM geometry_columns
        WHERE f_table_name = 'vw_pois_ny_parks';

Die Typmod basierte geometrische Spalte eines View registriert sich korrekt, die auf Constraint basierende nicht.

f_table_name   | f_geometry_column | srid |   type
------------------+-------------------+------+----------
 vw_pois_ny_parks | geom              | 4326 | POINT
 vw_pois_ny_parks | geom_2160         |    0 | GEOMETRY

Dies kann sich bei zukünftigen Versionen von PostGIS ändern, vorerst müssen Sie aber folgendes ausführen, um die auf Constraint basierende Spalte eines View korrekt zu registrieren:

DROP VIEW vw_pois_ny_parks;
CREATE VIEW vw_pois_ny_parks AS
SELECT gid, poi_name, cat,
  geom,
  geom_2160::geometry(POINT,2160) As geom_2160
  FROM pois_ny
  WHERE cat = 'park';
SELECT f_table_name, f_geometry_column, srid, type
        FROM geometry_columns
        WHERE f_table_name = 'vw_pois_ny_parks';
f_table_name   | f_geometry_column | srid | type
------------------+-------------------+------+-------
 vw_pois_ny_parks | geom              | 4326 | POINT
 vw_pois_ny_parks | geom_2160         | 2160 | POINT

4.3.5. Wahrung der OGC-Konformität von Geometrien

PostGIS ist mit den Open Geospatial Consortium (OGC) OpenGIS Spezifikationen konform. Daher setzen viele PostGIS Methoden voraus, dass die Geometrien mit denen sie rechnen sowohl "Simple" als auch "Valid" sind . Zum Beispiel hat es keinen Sinn, die Fläche eines Polygons zu berechnen, das eine Insel aufweist, die ausserhalb des Polygons festgelegt ist, oder ein Polygon aus einer Begrenzungslinie zu konstruieren, welche nicht "simple" ist.

Entsprechend der OGC Spezifikationen ist eine simple Geometrie eine solche, die sich nicht selbst überschneidet oder berührt und bezieht sich in erster Linie auf 0- und 1-dimensionale Geometrien (insbesondere [MULTI]POINT, [MULTI]LINESTRING). Andererseits bezieht sich die Validität einer Geometrie hauptsächlich auf 2-dimensionale Geometrien (insbesondere [MULTI]POLYGON) und definiert die Menge an Aussagen, welche ein valides/gültiges Polygon auszeichnen. Die Beschreibung einer jeden geometrischen Klasse schließt bestimmte Bedingungen mit ein, welche die Simplizität und Validität von Geometrien näher beschreiben.

Da ein POINT ein 0-dimensionales geometrisches Objekt ist, ist er von vornherein simple.

MULTIPOINTs sind simple, wenn sich keine zwei Koordinaten (POINTs) decken (keine identischen Koordinatenpaare aufweisen).

Ein LINESTRING ist simple, wenn er nicht zweimal durch denselben POINT geht (ausgenommen bei Endpunkten, wo dieser als linearer Ring benannt wird und zusätzlich als geschlossen angesehen wird).

(a)

(b)

(c)

(d)

(a) und (c) sind simple LINESTRINGs, (b) und (d) nicht.

Ein MULTILINESTRING ist nur dann simple, wenn alle seine Elemente "simple" sind und die einzigen Überschneidungen zwischen zwei Elementen nur an jenen POINTs auftreten, die an den Begrenzungen der beiden Elemente liegen.

(e)

(f)

(g)

(e) und (f) sind simple MULTILINESTRINGs, (g) nicht.

Definitionsgemäß ist ein POLYGON immer simple. Es ist valid, wenn sich keine zwei Ringe an der Begrenzung (bestehend aus einem äußeren Ring und inneren Ringen) kreuzen. Die Begrenzung eines POLYGONs darf an einem POINT schneiden, allerdings nur als Tangente (insbesondere nicht an einer Linie). Ein POLYGON darf keine Schnittlinien oder "Spikes" aufweisen und die inneren Ringe müssen zur Gänze im äußeren Ring enthalten sein.

(h)

(i)

(j)

(k)

(l)

(m)

(h) und (i) sind valide POLYGONe, (j-m) können nicht als einzelne POLYGONe dargestellt werden, aber (j) und (m) können als ein valides MULTIPOLYGON dargestellt werden.

Ein MULTIPOLYGON ist dann und nur dann valide, wenn alle seine Elemente valide sind und sich das Innere zweier Elemente nicht überschneidet. Die Begrenzungen zweier Elemente können sich berühren, allerdings nur an einer endlichen Anzahl von POINTs.

(n)

(o)

(p)

(n) und (o) sind keine validen MULTIPOLYGONs. Hingegen ist (p) valid.

Die meisten von der GEOS Bibliothek implementierten Funktionen beruhen auf der Annahme, dass die verwendete Geometrie - entsprechend der OpenGIS Simple Feature Spezifikation - valide ist. Um die Simplizität und Validität einer Geometrie festzustellen, können Sie ST_IsSimple() und ST_IsValid() verwenden.

-- Üblicherweise hat es keinen Sinn lineare Geometrien
-- auf Validität zu überprüfen, da immer TRUE zurückgegeben wird.
-- Aber in diesem Beispiel erweitert PostGIS die OGC Definition von IsValid
-- indem es FALSE zurückgibt, wenn ein LineString weniger als 2 *eindeutige* Stützpunkte aufweist.
gisdb=# SELECT
   ST_IsValid('LINESTRING(0 0, 1 1)'),
   ST_IsValid('LINESTRING(0 0, 0 0, 0 0)');

 st_isvalid | st_isvalid
------------+-----------
      t     |     f

Standardmäßig überprüft PostGIS eine Geometrieeingabe nicht auf Validität, da Validitätstests von komplexen Geometrien, insbesondere Polygonen, viel CPU Zeit beanspruchen. Fall Sie Ihren Datenquellen nicht trauen, können Sie eine Überprüfung Ihrer Tabellen durch eine "Check Constraint"/Prüfbeschränkung erzwingen:

ALTER TABLE mytable
  ADD CONSTRAINT geometry_valid_check
        CHECK (ST_IsValid(the_geom));

Falls Sie irgendwelche seltsamen Fehlermeldungen, wie "GEOS Intersection() threw an error!" erhalten, obwohl sie eine PostGIS Funktion mit validen Eingabegeometrien aufgerufen haben, ist es wahrscheinlich dass Sie einen Fehler in PostGIS oder einer von PostGIS verwendeten Bibliothek gefunden haben. In diesem Fall sollten Sie das PostGIS Entwicklerteam kontaktieren. Dasselbe gilt, wenn eine PostGIS Funktion auf eine valide Eingabegeometrie eine invalide Geometrie zurückgibt.

[Note]

Eine streng konforme OGC-Geometrie hat keine Z- oder M-Werte. Die Funktion ST_IsValid() betrachtet höhere geometrische Dimensionen nicht als invalide! Aufrufe von AddGeometryColumn() fügen einen Check-Constraint für die geometrische Dimension hinzu, weshalb es hier ausreicht 2 anzugeben.

4.3.6. DE-9IM-Matrix (DE-9IM)

Manchmal kommt es vor, dass die typischen räumlichen Aussagen (???, ???, ???, ???, ...) an sich nicht ausreichen, um den verlangten räumlichen Filter auf geeignete Weise zu liefern.

Betrachten Sie zum Beispiel einen linearen Datensatz, der ein Straßennetz darstellt. Es kann sein, dass ein GIS-Analyst die Aufgabe hat, alle Straßenabschnitte herauszufinden, die sich gegenseitig nicht an einem Punkt sondern entlang einer Linie kreuzen, da dies möglicherweise einer Unternehmensvorschrift widerspricht. In diesem Fall liefert ??? nicht den passenden räumlichen Filter, da bei linearen Geoobjekten nur dann TRUE zurückgeben wird, wenn sie sich an einem Punkt kreuzen.

Eine zweistufige Lösung kann sein, dass man zuerst die eigentliche Verschneidung (ST_Intersection) von Straßenabschnittspaaren, die sich räumlich überschneiden (???) ausführt und anschließend den ST_GeometryType der Verschneidung mit 'LINESTRING' vergleicht (vermutlich muss man sich mit Fällen auseinandersetzen die GEOMETRYCOLLECTIONs von [MULTI]POINTs, [MULTI]LINESTRINGs, etc. zurückgeben).

Eine elegantere/schnellere Lösung wäre sicherlich wünschenswert.

Ein zweites (theoretisches) Beispiel wäre, dass ein GIS-Analyst versucht, alle Anlegestellen oder Kais, welche die Begrenzung eines Sees entlang einer Linie überschneiden und bei denen nur ein Ende der Anlegestelle an der Küste liegt. Anders ausgedrückt, wo ein Kai nicht zur Gänze im See liegt, da er den See entlang einer Linie schneidet und seine Endpunkte sowohl zur Gänze in und auf der Begrenzung des Sees liegen. Dazu kann es nötig sein, dass der Analyst eine Kombination von Aussagen ausführen muss, um die gesuchten Geoobjekte herauszufiltern:

Somit stürzen wir uns auf die DE-9IM-Matrix, oder kurz DE-9IM

4.3.6.1. Theorie

Gemäß der OpenGIS Simple Features Implementation Specification for SQL, ist der grundlegende Ansatz für einen Lagevergleich von zwei geometrischen Objekten, die paarweise Überprüfung der Verschneidung des Inneren, der Begrenzung und des Äusseren der beiden geometrischen Objekte und der Einstufung der Beziehung zwischen den beiden geometrischen Objekten an Hand der Einträge in die resultierende 'Verschneidungs'-Matrix.

Boundary

Die Begrenzung einer Geometrie ist die geometrische Grundmenge der nächst kleineren Dimension. Bei POINTs, die die Dimension 0 haben ist die Begrenzung die leere Menge. Die Begrenzung eines LINESTRINGs sind die zwei Endpunkte. Bei POLYGONen entspricht die Begrenzung jenen Linien, die die äußeren und inneren Ringe zusammensetzen.

Interior

Die Innenseite/interior einer Geometrie besteht aus jenen Punkten einer Geometrie, die zurückbleiben, wenn die Außenbegrenzung/boundary entfernt wird. Bei POINTs ist die Innenseite der POINT selbst. Die Innenseite eines LINESTRINGs ist die Menge der echten Punkte zwischen den Endpunkten. Bei POLYGONen entspricht die Innenseite der Fläche innerhalb des Polygons.

Exterior

Die Außenseite/exterior einer Geometrie ist durch die Grundgesamtheit gegeben. Das ist jene Fläche, die nicht auf der Innenseite/interior oder auf der Begrenzung der Geometrie liegt.

Gegeben sei die Geometrie a, wobei I(a), B(a), und E(a) das Innere/Interior, die Begrenzung/Boundary und dasÄussere/Exterior von a sind; die mathematische Formulierung der Matrix lautet:

 InteriorBoundaryExterior
Interiordim( I(a) ∩ I(b) )dim( I(a) ∩ B(b) )dim( I(a) ∩ E(b) )
Boundarydim( B(a) ∩ I(b) )dim( B(a) ∩ B(b) )dim( B(a) ∩ E(b) )
Exteriordim( E(a) ∩ I(b) )dim( E(a) ∩ B(b) )dim( E(a) ∩ E(b) )

Wobei dim(a), so wie von ST_Dimension festgelegt, die Dimension von a ist, aber zu der Domäne von {0,1,2,T,F,*} gehört.

  • 0 => point

  • 1 => line

  • 2 => area

  • T => {0,1,2}

  • F => Leere Menge

  • * => braucht nicht zu kümmern

Bildlich schaut dies für zwei überlappende Polygongeometrien folgendermaßen aus:

 

 InteriorBoundaryExterior
Interior

dim(...) = 2

dim(...) = 1

dim(...) = 2

Boundary

dim(...) = 1

dim(...) = 0

dim(...) = 1

Exterior

dim(...) = 2

dim(...) = 1

dim(...) = 2

Von links nach rechts und von oben nach unten gelesen wird die Dimensionsmatrix durch '212101212' dargestellt.

Eine Beziehungsmatrix, welche das erste Beispiel von zwei Linien, die sich auf einer Linie schneiden, abbildet, würde '102101FF2' entsprechen.

-- Identifizierung der Strassenabschnitte, die eine Linie kreuzen
SELECT a.id
FROM roads a, roads b
WHERE a.id != b.id
AND a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '1*1***1**');

Eine Beziehungsmatrix, welche das zweite Beispiel mit den Kais, die teilweise an der Uferlinie des Sees liegen, abbildet, würde '102101FF2' entsprechen.

-- Ermittlung von Dämmen, die teilweise an der Uferlinie eines Sees liegen
SELECT a.lake_id, b.wharf_id
FROM lakes a, wharfs b
WHERE a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '102101FF2');

Für weiterführende Information siehe:

4.4. GIS (Vektor) Daten laden

Sobald Sie eine räumliche Tabelle erstellt haben, können Sie GIS Daten in die Datenbank laden. Zurzeit gibt es zwei Möglichkeiten, Daten in die PostGIS/PostgreSQL Datenbank zu importieren: die Verwendung von formatierten SQL-Anweisungen oder der Shapefile Loader/Dumper.

4.4.1. Daten via SQL laden

Wenn Sie Ihre Daten in eine Textdarstellung konvertieren können, dann ist möglicherweise die Verwendung von formatiertem SQL der leichteste Weg um die Daten in PostGIS zu importieren. Wie bei Oracle und anderen Datenbanken, können die Daten über Masseninserts geladen werden, indem eine große Textdatei, in der sich zahlreiche SQL "INSERT" Anweisungen befinden, an die SQL-Konsole weitergeleitet wird.

Eine Importdatei (z.B. roads.sql) könnte folgendermaßen aussehen:

BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (1,'LINESTRING(191232 243118,191108 243242)','Jeff Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (2,'LINESTRING(189141 244158,189265 244817)','Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (3,'LINESTRING(192783 228138,192612 229814)','Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (4,'LINESTRING(189412 252431,189631 259122)','Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (5,'LINESTRING(190131 224148,190871 228134)','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (6,'LINESTRING(198231 263418,198213 268322)','Dave Cres');
COMMIT;

Diese Datei kann dann über die "psql" SQL-Konsole sehr leicht nach PostgreSQL weitergeleitet werden:

psql -d [database] -f roads.sql

4.4.2. shp2pgsql: Verwendung des ESRI-Shapefile Laders

Der shp2pgsql Datenlader wandelt ESRI Shapefiles in eine SQL-Datei um, die für das Einfügen in eine PostGIS/PostgreSQL Datenbank mit der "psql"-Konsole, sowohl im Geometrie- als auch im Geographie-Format, geeignet ist. Der Loader besitzt eine Reihe von Betriebsmodi, die durch Flags auf der Befehlszeile ausgewählt werden:

Zusätzlich zu dem befehlszeilenorientierten Lader "shp2pgsql" gibt es auch die graphische Schnittstelle shp2pgssql-gui, welche fast ebensoviele Optionen wie der befehlszeilenorientierte Lader zur Verfügung stellt. Für viele Anwender, die mit der Befehlszeile nicht versiert sind, oder mit PostGIS erst beginnen, ist die GUI möglicherweise einfacher zu bedienen. Sie kann auch in PgAdminIII als Plugin konfiguriert werden.

(c|a|d|p) Dies sind sich gegenseitig ausschließende Optionen:

-c

Erstellt eine neue Tabelle und füllt sie von einem Shapefile her. Dies ist der Standardmodus.

-a

Fügt Daten aus dem Shapefile zu der Datenbanktabelle hinzu. Beachten Sie bitte, falls Sie diese Option verwenden um mehrere Dateien zu laden, dass die Attribute und Datentypen in den Dateien übereinstimmen müssen.

-d

Löscht die Datenbanktabelle, bevor eine neue Tabelle mit den Daten vom Shapefile befüllt wird.

-p

Erzeugt nur den SQL-Code zur Erstellung der Tabelle, ohne irgendwelche Daten hinzuzufügen. Kann verwendet werden, um die Erstellung und das Laden einer Tabelle vollständig zu trennen.

-?

Zeigt die Hilfe an.

-D

Verwendung des PostgreSQL "dump" Formats für die Datenausgabe. Kann mit -a, -c und -d kombiniert werden. Ist wesentlich schneller als das standardmäßige SQL "insert" Format. Verwenden Sie diese Option wenn Sie sehr große Datensätze haben.

-s [<FROM_SRID%gt;:]<SRID>

Erzeugt und befüllt die Geometrietabelle in einer bestimmten SRID. Optional kann FROM_SRID für die Shapedatei angegeben werden, wodurch die Geometrie von FROM_SRID in die Ziel-SRID projiziert wird. FROM_SRID und -D können nicht gleichzeitig angegeben werden.

-k

Erhält die Groß- und Kleinschreibung (Spalte, Schema und Attribute). Beachten Sie bitte, dass die Attributnamen in Shapedateien immer Großbuchstaben haben.

-i

Wandeln Sie alle Ganzzahlen in standard 32-bit Integer um, erzeugen Sie keine 64-bit BigInteger, auch nicht dann wenn der DBF-Header dies unterstellt.

-I

Einen GIST Index auf die Geometriespalte anlegen.

-m

-m a_file_name bestimmt eine Datei, in welcher die Abbildungen der (langen) Spaltennamen in die 10 Zeichen langen DBF Spaltennamen festgelegt sind. Der Inhalt der Datei besteht aus einer oder mehreren Zeilen die jeweils zwei, durch Leerzeichen getrennte Namen enthalten, aber weder vorne noch hinten mit Leerzeichen versehen werden dürfen. Zum Beispiel:

COLUMNNAME DBFFIELD1
AVERYLONGCOLUMNNAME DBFFIELD2

-S

Erzeugt eine Einzel- anstatt einer Mehrfachgeometrie. Ist nur erfolgversprechend, wenn die Geometrie auch tatsächlich eine Einzelgeometrie ist (insbesondere gilt das für ein Mehrfachpolygon/MULTIPOLYGON, dass nur aus einer einzelnen Begrenzung besteht, oder für einen Mehrfachpunkt/MULTIPOINT, der nur einen einzigen Knoten aufweist).

-t <dimensionality>

Zwingt die Ausgabegeometrie eine bestimmte Dimension anzunehmen. Sie können die folgenden Zeichenfolgen verwenden, um die Dimensionalität anzugeben: 2D, 3DZ, 3DM, 4D.

Wenn die Eingabe weniger Dimensionen aufweist als angegeben, dann werden diese Dimensionen bei der Ausgabe mit Nullen gefüllt. Wenn die Eingabe mehr Dimensionen als angegeben aufweist werden diese abgestreift.

-w

Ausgabe im Format WKT anstatt WKB. Beachten Sie bitte, dass es hierbei zu Koordinatenverschiebungen infolge von Genauigkeitsverlusten kommen kann.

-e

Jede Anweisung einzeln und nicht in einer Transaktion ausführen. Dies erlaubt den Großteil auch dann zu laden, also die guten Daten, wenn eine Geometrie dabei ist die Fehler verursacht. Beachten Sie bitte das dies nicht gemeinsam mit der -D Flag angegeben werden kann, da das "dump" Format immer eine Transaktion verwendet.

-W <encoding>

Gibt die Codierung der Eingabedaten (dbf-Datei) an. Wird die Option verwendet, so werden alle Attribute der dbf-Datei von der angegebenen Codierung nach UTF8 konvertiert. Die resultierende SQL-Ausgabe enthält dann den Befehl SET CLIENT_ENCODING to UTF8, damit das Back-end wiederum die Möglichkeit hat, von UTF8 in die, für die interne Nutzung konfigurierte Datenbankcodierung zu decodieren.

-N <policy>

Umgang mit NULL-Geometrien (insert*, skip, abort)

-n

-n Es wird nur die *.dbf-Datei importiert. Wenn das Shapefile nicht Ihren Daten entspricht, wird automatisch auf diesen Modus geschaltet und nur die *.dbf-Datei geladen. Daher müssen Sie diese Flag nur dann setzen, wenn sie einen vollständigen Shapefile-Satz haben und lediglich die Attributdaten, und nicht die Geometrie, laden wollen.

-G

Verwendung des geographischen Datentyps in WGS84 (SRID=4326), anstelle des geometrischen Datentyps (benötigt Längen- und Breitenangaben).

-T <tablespace>

Den Tablespace für die neue Tabelle festlegen. Solange der -X Parameter nicht angegeben wird, benutzen die Indizes weiterhin den standardmäßig festgelegten Tablespace. Die PostgreSQL Dokumentation beinhaltet eine gute Beschreibung, wann es sinnvoll ist, eigene Tablespaces zu verwenden.

-X <tablespace>

Den Tablespace bestimmen, in dem die neuen Tabellenindizes angelegt werden sollen. Gilt für den Primärschlüsselindex und wenn "-l" verwendet wird, auch für den räumlichen GIST-Index.

Eine beispielhafte Sitzung, in welcher der Loader verwendet wird, um eine Eingabedatei zu erzeugen und anschließend hochzuladen, könnte folgendermaßen aussehen:

# shp2pgsql -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sql
# psql -d roadsdb -f roads.sql

Konvertierung und Import können über UNIX-Pipes in einem Schritt erfolgen:

# shp2pgsql shaperoads.shp myschema.roadstable | psql -d roadsdb

4.5. Geodaten abrufen

Daten können entweder über SQL oder mit dem Shapefile Loader/Dumper aus der Datenbank entnommen werden. Im Abschnitt über SQL werden einige Operatoren besprochen, die für Vergleiche und Abfragen von Geotabellen zur Verfügung stehen.

4.5.1. Daten mit SQL abrufen

Die direkteste Methode, um Daten aus der Datenbank abzurufen, ist eine SQL Select-Anfrage. Dadurch kann die Anzahl der resultierenden Datensätze und Attribute reduziert und in eine lesbare Textdatei überspielt werden:

db=# SELECT road_id, ST_AsText(road_geom) AS geom, road_name FROM roads;

road_id | geom                                    | road_name
--------+-----------------------------------------+-----------
          1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
          2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
          3 | LINESTRING(192783 228138,192612 229814) | Paul St
          4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
          5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
          6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
          7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)

Wie auch immer, manchmal wird eine Einschränkung notwendig sein, um die Anzahl der zurückgegebenen Werte zu reduzieren. Falls es sich um eine Beschränkung auf ein Attribut handelt, können Sie dieselbe SQL-Syntax verwenden wie bei jeder anderen Nicht-Geometrietabelle. Für räumliche Beschränkungen sind folgende Operatoren verfügbar/nützlich:

ST_Intersects

Diese Funktion bestimmt ob sich zwei geometrische Objekte einen gemeinsamen Raum teilen

=

Überprüft, ob zwei Geoobjekte geometrisch ident sind. Zum Beispiel, ob 'POLYGON((0 0,1 1,1 0,0 0))' ident mit 'POLYGON((0 0,1 1,1 0,0 0))' ist (ist es).

Beachte: vor PostGIS 2.4 wuden nur die umschreibenden Rechtecke der Geometrie verglichen.

Außerdem können Sie diese Operatoren in Anfragen verwenden. Beachten Sie bitte, wenn Sie eine Geometrie oder eine Box auf der SQL-Befehlszeile eingeben, dass Sie die Zeichensatzdarstellung explizit in eine Geometrie umwandeln müssen. 312 ist ein fiktives Koordinatenreferenzsystem das zu unseren Daten passt. Also, zum Beispiel:

SELECT road_id, road_name
  FROM roads
  WHERE roads_geom='SRID=312;LINESTRING(191232 243118,191108 243242)'::geometry;

Die obere Abfrage würde einen einzelnen Datensatz aus der Tabelle "ROADS_GEOM" zurückgeben, in dem die Geometrie gleich dem angegebenen Wert ist.

Überprüfung ob einige der Strassen in die Polygonfläche hineinreichen:

SELECT road_id, road_name
FROM roads
WHERE ST_Intersects(roads_geom, 'SRID=312;POLYGON((...))');

Die häufigsten räumlichen Abfragen werden vermutlich in einem bestimmten Ausschnitt ausgeführt. Insbesondere von Client-Software, wie Datenbrowsern und Kartendiensten, die auf diese Weise die Daten für die Darstellung eines "Kartenausschnitts" erfassen.

Der Operator "&&" kann entweder mit einer BOX3D oder mit einer Geometrie verwendet werden. Allerdings wird auch bei einer Geometrie nur das Umgebungsrechteck für den Vergleich herangezogen.

Die Abfrage zur Verwendung des "BOX3D" Objekts für einen solchen Ausschnitt sieht folgendermaßen aus:

SELECT ST_AsText(roads_geom) AS geom
FROM roads
WHERE
  roads_geom && ST_MakeEnvelope(191232, 243117,191232, 243119,312);

Achten Sie auf die Verwendung von SRID=312, welche die Projektion Einhüllenden/Enveloppe bestimmt.

4.5.2. Verwendung des Dumper

Der Tabellendumper pgsql2shp verbindet sich direkt mit der Datenbank und konvertiert eine Tabelle (evtl. durch eine Abfrage festgelegt) in eine Shapedatei. Die grundlegende Syntax lautet:

pgsql2shp [<options>] <database> [<schema>.]<table>
pgsql2shp [<options>] <database> <query>

Optionen auf der Befehlszeile:

-f <filename>

Ausgabe in eine bestimmte Datei.

-h <host>

Der Datenbankserver, mit dem eine Verbindung aufgebaut werden soll.

-p <port>

Der Port über den der Verbindungsaufbau mit dem Datenbank Server hergestellt werden soll.

-P <password>

Das Passwort, das zum Verbindungsaufbau mit der Datenbank verwendet werden soll.

-u <user>

Das Benutzername, der zum Verbindungsaufbau mit der Datenbank verwendet werden soll.

-g <geometry column>

Bei Tabellen mit mehreren Geometriespalten jene Geometriespalte, die ins Shapefile geschrieben werden soll.

-b

Die Verwendung eines binären Cursors macht die Berechnung schneller; funktioniert aber nur, wenn alle nicht-geometrischen Attribute in den Datentyp "text" umgewandelt werden können.

-r

RAW-Modus. Das Attribut gid wird nicht verworfen und Spaltennamen werden nicht maskiert.

-m filename

Bildet die Identifikatoren in Namen mit 10 Zeichen ab. Der Inhalt der Datei besteht aus Zeilen von jeweils zwei durch Leerzeichen getrennten Symbolen, jedoch ohne vor- oder nachgestellte Leerzeichen: VERYLONGSYMBOL SHORTONE ANOTHERVERYLONGSYMBOL SHORTER etc.

4.6. Erstellung von Indizes

Indizes ermöglichen das Arbeiten mit großen Datensätzen in einer Geodatenbank. Ohne Indizierung würde jede Featureanfrage einen "Full Table Scan" in der Datenbank benötigen. Die Indizierung beschleunigt die Suche, indem die Daten in einem Suchbaum strukturiert werden, der dann schnell durchlaufen werden kann um einen bestimmten Datensatz zu finden. PostgreSQL unterstützt standardmäßig drei Arten von Indizes: B-Baum, SP-GIST und GIST.

  • Ein B-Baum wird verwendet, wenn die Daten entlang einer Achse sortiert werden können; wie Zahlen, Buchstaben oder Datumsangaben. Geodaten können entlang einer raumfüllenden Kurve, Z-Kurve oder Hilbert-Kurve sortiert werden. Diese Darstellung erlaubt allerdings keine Beschleunigung der üblichen Operationen.

  • GiST (Generalized Search Tree) Indizes unterteilen die Daten in "Dinge auf einer Seite", "Dinge die sich überlagern", "Dinge die innerhalb liegen". Sie können auf eine Vielzahl von Datentypen, inklusive Geodaten angewendet werden. Um Geodaten zu indizieren verwendet PostGIS einen R-Baum der auf dem GIST Index aufsetzt.

4.6.1. GiST-Indizes

GIST (Generalized Search Tree) ist eine generische Datenstruktur. Zusätzlich zur Indizierung von Geodaten wird GIST auch zur Beschleunigung von Abfragen auf unregelmäßige Datenstrukturen (Ganzzahl-Felder, Spektraldaten, etc.) verwendet, welche über gewöhnlicher B-Baum Indizierung nicht zugänglich sind.

Sobald eine Geodatentabelle einige tausend Zeilen überschreitet, werden Sie einen Index erzeugen wollen, um die räumlichen Abfragen auf die Daten zu beschleunigen (außer Ihre Suche basiert lediglich auf Attributen, in diesem Fall werden Sie einen gewöhnlichen Index auf die Attribute setzen).

Die Syntax, mit der ein GIST-Index auf eine Geometriespalte gelegt wird, lautet:

CREATE INDEX [indexname] ON [tablename] USING GIST ( [geometryfield] ); 

Die obere Syntax erzeugt immer einen 2D-Index. Um einen n-dimensionalen Index für den geometrischen Datentyp zu erhalten, können Sie die folgende Syntax verwenden:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);

Die Erstellung eines räumlichen Indizes ist eine rechenintensive Aufgabe. Während der Erstellung wird auch der Schreibzugriff auf die Tabelle blockiert. Bei produktiven Systemen empfiehlt sich daher die langsamere Option CONCURRENTLY:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ( [geometryfield] ); 

Nachdem ein Index aufgebaut wurde sollte PostgreSQL gezwungen werden die Tabellenstatistik zu sammeln, da diese zur Optmierung der Auswertungspläne verwendet wird:

VACUUM ANALYZE [table_name] [(column_name)];

4.6.2. BRIN Indizes

Die Bezeichnung BRIN steht für "Block Range Index", eine generische Form des Indizierens und wurde mit PostgreSQL 9.5 eingeführt. BRIN ist ein verlustbehafteter Index, dessen Hauptzweck ist, einen Kompromiss sowohl bei der Lese- als auch bei der Schreibgeschwindigkeit anzubieten. Der Hauptverwendungszweck liegt bei sehr großen Tabellen, in denen einige Spalten einen natürlichen Bezug zu dem physischen Speicherplatz innerhalb der Tabelle haben. Zusätzlich zur Indizierung von GIS-Daten, werden BRIN-Indizes zur Beschleunigung von Suchabfragen auf unterschiedliche regelmäßige und unregelmäßige Datenstrukturen (Ganzzahlen, Felder etc.) verwendet.

Sobald eine Geodatentabelle ein paar tausend Zeilen überschreitet, werden Sie einen Index erzeugen wollen, um die räumlichen Abfragen auf die Daten zu beschleunigen (außer Ihre Suche basiert lediglich auf Attributen, in diesem Fall werden Sie einen gewöhnlichen Index auf die Attribute setzen). GIST Indizes sind sehr performant, solange ihre Dateigröße den verfügbaren Arbeitsspeicher der Datenbank nicht überschreitet, genügend Festplattenspeicher vorhanden ist und die Systembelastung durch Schreibvorgänge akzeptiert werden kann. Andernfalls bietet der BRIN Index eine Alternative.

Die Idee hinter einem BRIN-Index ist, dass nur das Umgebungsrechteck abgespeichert wird, dass die gesamte Geometrie eines oder mehrerer Tabellenblöcke umschließt; dies wird als "Range" bezeichnet. Es ist klar, dass diese Indizierungsmethode nur dann effizient sein kann, wenn die Daten physikalisch so angeordnet sind, dass sich die resultierenden Umgebungsrechtecke der "Block Ranges" gegenseitig ausschließen. Der resultierende Index ist zwar sehr klein, in vielen Fällen allerdings weniger effizient als ein GIST Index.

Die Erstellung eines BRIN-Index benötigt wesentlich weniger Zeit, als die Erstellung eines GIST-Index. Es ist durchaus üblich, dass die Erstellung des BRIN Index mehr als zehnmal so schnell ist, als die eines GIST Index. Da ein BRIN Index nur ein Umgebungsrechteck für einen oder mehrere Tabellenblöcke speichert, benötigt dieser oft bis zu tausendmal weniger Festplattenspeicher.

Sie können die Anzahl der Blöcke festlegen, die zu einen "Range" aufsummiert werden sollen. Wenn Sie die Anzahl verringern, wird der Index zwar größer, höchstwahrscheinlich aber zu einer besseren Performanz verhelfen.

Der Syntax zur Erstellung eines BRIN-Indizes auf eine geometrische Spalte lautet wie folgt:

CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geometryfield] ); 

Die obere Syntax erzeugt einen 2D-Index. Um einen 3-dimensionalen Index zu erhalten, können Sie die folgende Syntax verwenden:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geometryfield] brin_geometry_inclusion_ops_3d);

Sie können auch einen 4-dimensionalen Index über die 4D-Operatorklasse erstellen

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geometryfield] brin_geometry_inclusion_ops_4d);

Die oberen Syntaxen verwenden die Standardeinstellung für die Anzahl der Blöcke in einem "Range", nämlich 128. Wenn Sie die Anzahl der Blöcke, die in einem Range zusammengefasst werden sollen, selbst festlegen wollen, verwenden Sie bitte die folgende Syntax

CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geometryfield] ) WITH (pages_per_range = [number]); 

Beachten Sie bitte auch, dass ein BRIN Index nur einen Indexwert für eine große Anzahl von Zeilen speichert. Wenn Ihre Tabelle eine Geometrie mit unterschiedlichen Dimensionen speichert, dann ist es wahrscheinlich dass der Index eine schlechte Performanz aufweist. Sie können diesen Performanzrückgang vermeiden, indem Sie die Operatorklasse mit der niedrigsten Dimension der gespeicherten Geometrie wählen.

Der BRIN-Index wird auch vom geographischen Datentyp unterstützt. Die Syntax zur Erstellung eines BRIN-Index auf eine "geographische" Spalte lautet wie folgt:

CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geographyfield] ); 

Die obere Syntax erzeugt den 2D-Index für Geoobjekte auf dem Referenzellipsoid.

Aktuell wird hierbei nur die "Inklusionsunterstützung" betrachtet; d.h. dass nur die Operatoren &&, ~ und @ für 2D (sowohl für den "geometrischen", als auch für den "geographischen" Datentyp) und nur der Operator &&& für 3D-Geometrie verwendet werden kann. Die kNN-Suche wird zur Zeit nicht unterstützt.

4.6.3. SP-GiST Indizes

SP-GiST steht als Abkürzung für "Space-Partitioned Generalized Search Tree", ein generischer Indextyp der partitionierte Baumstrukturen, wie Quadtree, k-d Baum und Radix-Trie unterstützt. Diese Datenstrukturen haben die gemeinsame Eigenschaft, dass sie den Suchraum in mehrere Partitionen unterteilen, die unterschiedlich groß sein können. Zusätzlich zur Indizierung von Geodaten wird der SP-GIST Index zur Beschleunigung der Suche von vielen Datentypen verwendet, wie bei Telefon Routing, IP Routing, String-Matching-Algorithmen, etc.

So wie der GiST Index, ist auch der SP-GiST Index insofern nicht verlustfrei, da nur die umschreibenden Rechtecke der Geoobjekte gespeichert werden. Der SP-GiST Index kann als Alternative zum GiST Index gesehen werden. Die Performanztests zeigten, dass der SP-GiST Index insbesondere bei vielen überlappenden Objekten Vorteile haben, wie dies bei sogenannten "Spaghettidaten" der Fall ist.

Sobald eine Geodatentabelle einige tausend Zeilen überschreitet, kann es sinnvoll sein einen SP-GIST Index zu erzeugen, um die räumlichen Abfragen auf die Daten zu beschleunigen. Die Syntax zur Erstellung eines SP-GIST Index auf eine "Geometriespalte" lautet:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ( [geometryfield] ); 

Die obere Syntax erzeugt einen 2D-Index. Ein 3-dimensionaler Index für den geometrischen Datentyp können Sie mit der 3D Operatorklasse erstellen:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] spgist_geometry_ops_3d);

Die Erstellung eines räumlichen Indizes ist eine rechenintensive Aufgabe. Während der Erstellung wird auch der Schreibzugriff auf die Tabelle blockiert. Bei produktiven Systemen empfiehlt sich daher die langsamere Option CONCURRENTLY:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ( [geometryfield] ); 

Nachdem ein Index aufgebaut wurde sollte PostgreSQL gezwungen werden die Tabellenstatistik zu sammeln, da diese zur Optmierung der Auswertungspläne verwendet wird:

VACUUM ANALYZE [table_name] [(column_name)];

Ein SP-GiST Index kann Abfragen mit folgenden Operatoren beschleunigen:

  • <<, &<, &>, >>, <<|, &<|, |&>, |>>, &&, @>, <@, and ~=, für 2-dimensionale Iindices,

  • &/&, ~==, @>>, and <<@, für 3-dimensionale Indices.

kNN Suche wird zurzeit nicht unterstützt.

4.6.4. Verwendung von Indizes

Üblicherweise beschleunigen Indizes den Datenzugriff: Sobald der Index aufgebaut ist, entscheidet der Anfrageoptimierer, ob der Index den Auswertungsplan bescheunigt. Unglücklicherweise optimiert der Anfrageoptimierer von PostgreSQL die Verwendung von GIST Indizes nicht sehr gut, so dass manchmal eine Suche, welche die Verwendung eines räumlichen Index bedingen sollte, über einen Full Table Scan ausgeführt wird.

Wenn Sie bemerken, dass Ihre räumlichen Indizes (oder Ihre Attributindizes) nicht verwendet werden, gibt es mehrere Möglichkeiten:

  • Zunächst sollten Sie sich den Auswertungsplan ansehen und überprüfen ob Ihre Abfrage tatsächlich das berechnet was Sie benötigen. Eine unkontrollierte Join-Bedingung, entweder vergessen oder auf eine falsche Tabelle gesetzt, kann alle Datensätze Ihrer Tabelle mehrmals hinzuziehen. Fügen Sie das Schlüsselwort EXPLAIN an den Anfang Ihrer bAbfrage, um den Auswertungsplan zu erhalten.

  • Als nächstes sollten Sie sicherstellen, dass eine Statistik über die Anzahl und die Verteilung der Tabellenwerte erfasst wurde, damit dem Anfrageoptimierer bessere Informationen zur Entscheidungsfindung bezüglich zu verwendender Indizes zur Verfügung steht. VACUUM ANALYZE errechnet beide.

    Sie sollten ohnehin regelmäßig ein Vacuum Ihrer Datenbanken durchführen - viele PostgreSQL DBAs führen ein regelmäßigesVACUUM außerhalb der Spitzenzeiten mittels Cronjob aus.

  • Wenn VACUUM nicht hilft, können Sie den Anfrageoptimierer vorübergehend dazu zwingen den Index zu verwenden, indem Sie den Befehl set enable_seqscan to off; ausführen. Auf diese Weise können Sie feststellen, ob es dem Anfrageoptimierer überhaupt möglich ist, einen indexbeschleunigten Auswertungsplan für Ihre Abfrage zu erstellen. Sie sollten diesen Befehl nur zu Testzwecken: d.h. der Anfrageoptimierer weiß am besten Bescheid wann welcher Index verwendet werden soll. Sobald Sie Ihre Abfrage ausgeführt haben, sollten Sie daher ENABLE_SEQSCAN wieder auf ON stellen, damit weitere Abfragen den Anfrageoptimierer wie üblich nutzen können.

  • Wenn set enable_seqscan to off; bei Ihrer Abfrage hilft, dann ist Ihr Postgres vermutlich nicht mit Ihrer Hardware abgestimmt. Wenn Sie herausfinden, daß sich der Anfrageoptimierer bezüglich der Kosten des Full Table Scan im Verhältnis zum Index Scan irrt, können Sie versuchen den Wert von randam_page_cost in "postgresql.conf" zu reduzieren, oder set random_page_cost to 1.1; ausführen. Der Standardwert des Parameters ist 4, versuchen Sie ihn auf 1 (auf einer SSD) oder auf 2 (auf einem schnellen magnetischen Festplattenlaufwerk) zu setzen. Eine Verringerung des Wertes führt dazu, dass der Anfrageoptimierer eher den Index Scan verwendet.

  • Wennset enable_seqscan to off; bei Ihrer Abfrage nicht hilft, kann es sein, dass Sie ein Konstrukt verwenden das Postgres noch nicht entwirren kann. Eine Unterabfrage mit einem Inlineselect wäre so ein Fall -Sie müssen dies in eine Form bringen, die der Anfrageoptimierer nützen kann, z.B. mit einem LATERAL JOIN.

4.7. Komplexe Abfragen

Sinn und Zweck der Geodatenbankfunktionalität ist, Abfragen innerhalb der Datenbank auszuführen, welche üblicherweise die Funktionalität eines Desktop-GIS benötigen würden. Um PostGIS effizient zu nutzen, müssen Sie die verfügbaren räumlichen Funktionen kennen und sicherstellen, dass die geeigneten Indizes vorhanden sind um eine gute Performanz zu gewährleisten. Die SRID von 312, die in diesen Beispielen verwendet wird, ist für bloße Demonstrationszwecke gedacht. Sie sollten eine ECHTE SRID aus der Tabelle "spatial_ref_sys" verwenden, die auch mit der Projektion Ihrer Daten übereinstimmen muss. Falls Ihren Daten kein Koordinatenreferenzsystem zugewiesen ist, sollten Sie genau eruieren warum dies so ist.

Wenn der Grund darin liegt, dass Sie etwas modellieren, für dass kein Koordinatenreferenzsystem festgelegt ist, wie der innere Aufbau eines Moleküls oder der Grundriss eines noch nicht gebauten Vergnügungsparks, so ist dies in Ordnung. Wenn der Standort des Vergnügungsparks bereits geplant wurde, dann ist die Wahl eines geeigneten Koordinatenreferenzsystems sinnvoll, auch wenn es nur darum geht sicherzustellen, dass der Vergnügungspark keine bereits bestehenden Strukturen überdeckt.

Sogar wenn Sie eine Mars Expedition planen, um die menschliche Rasse nach einem nuklearen Holocaust zu transportieren und Sie den Planeten Mars für die Besiedelung kartieren wollen, können Sie ein Koordinatenreferenzsystem wie Mars 2000 erstellen und dieses in die Tabelle spatial_ref_sys einfügen. Obwohl dieses Koordinatensystem für den Mars nicht planar ist (es ist in Grad des Referenzellipsoids), können Sie den geographischen Datentyp nutzen, um Längen- und Abstandsmessungen in Meter anstatt in Grad anzuzeigen.

4.7.1. Vorteile von Indizes nutzen

Wenn Sie eine Abfrage erstellen, müssen Sie beachten, dass nur die auf den umschreibenden Rechtecken basierenden Operatoren wie && die Vorteile eines räumlichen GIST Index ausnutzen können. Funktionen wie ST_Distance() können den Index nicht zur Optimierung heranziehen. Zum Beispiel würde die folgende Abfrage auf eine große Tabelle ziemlich langsam ablaufen:

SELECT the_geom
FROM geom_table
WHERE ST_Distance(the_geom, 'SRID=312;POINT(100000 200000)') < 100

Diese Abfrage wählt die geometrischen Objekte der Tabelle "geom_table" aus, die weniger als 100 Einheiten von dem Punkt (100000, 200000) entfernt liegen. Sie ist sehr langsam, da die Entfernung zwischen jedem Punkt in der Tabelle und dem gegebenen Punkt berechnet werden muss, d.h. eine ST_Distance() Berechnung pro Tabellenzeile. Wir können dies vermeiden, indem wir die indexbeschleunigte Einstufenfunktion ST_DWithin verwenden und so die Anzahl der benötigten Entfernungsberechnungen verringern:

SELECT the_geom
FROM geom_table
WHERE ST_DWithin(the_geom, 'SRID=312;POINT(100000 200000)', 100)

Diese Anfrage wählt dieselben geometrischen Objekte aus, allerdings auf effizientere Weise. Angenommen es existiert ein GIST Index auf der Spalte "the_geom" und der Anfrageoptimierer erkennt, dass der Index angewendet werden kann, um die Zeilenanzahl zu verringern, bevor das Ergebnis durch die Funktion ST_Distance() errechnet wird. Anmerkung: die Geometrie ST_MakeEnvelope, die vom Operator "&&" verwendet wird, ist ein Quadrat mit einer Seitenlänge von 200 Einheiten, dessen Mittelpunkt auf dem ursprünglichen Punkt liegt - dies ist unsere "Abfrage Box". Der Operator "&&" verwendet diesen Index, um die Ergebnismenge rasch auf die Geometrie zu reduzieren, deren Umgebungsrechtecke die "Abfrage Box" überlagern. Falls Unsere "Abfrage Box" wesentlich kleiner als die Gesamtausdehnung der gesamten Geometrietabelle ist, wird dadurch die Anzahl der Entfernungsberechnungen drastisch verringert- dies ist genau das, was wir wollen.

4.7.2. Beispiele für Spatial SQL

Die Beispiele in diesem Abschnitt verwenden zwei Tabellen, eine Tabelle mit linearen Straßen, und eine Tabelle mit polygonalen Verwaltungsgrenzen. Die Tabellendefinition der Tabelle bc_roads lautet:

Column      | Type              | Description
------------+-------------------+-------------------
gid         | integer           | Unique ID
name        | character varying | Road Name
the_geom    | geometry          | Location Geometry (Linestring)

Die Tabellendefinition für die Tabelle bc_municipality lautet:

Column     | Type              | Description
-----------+-------------------+-------------------
gid        | integer           | Unique ID
code       | integer           | Unique ID
name       | character varying | City / Town Name
the_geom   | geometry          | Location Geometry (Polygon)
4.7.2.1. Gesamtlänge aller Straßen in Kilometer?
4.7.2.2. Wieviele Hektar hat die Stadt Prince George?
4.7.2.3. Welche ist die flächengrößte Gemeinde der Provinz?
4.7.2.4. Welche Länge haben die Straßen, die zur Gänze innerhalb einer Gemeinde liegen?
4.7.2.5. Eine neue Tabelle erzeugen, die alle Straßen der Stadt Prince George beinhaltet.
4.7.2.6. Wie lange ist die "Douglas St" in Victoria in Kilometern?
4.7.2.7. Welches ist das größte Gemeindepolygon mit einer Lücke?

4.7.2.1.

Gesamtlänge aller Straßen in Kilometer?

Sie können diese Frage mit einer sehr einfachen SQL Anweisung beantworten:

SELECT sum(ST_Length(the_geom))/1000 AS km_roads FROM bc_roads;

km_roads
------------------
70842.1243039643
(1 row)

4.7.2.2.

Wieviele Hektar hat die Stadt Prince George?

Diese Abfrage kombiniert eine Attributbedingung (auf den Gemeindenamen) mit einer räumlichen Berechnung (der Fläche):

SELECT
  ST_Area(the_geom)/10000 AS hectares
FROM bc_municipality
WHERE name = 'PRINCE GEORGE';

hectares
------------------
32657.9103824927
(1 row)

4.7.2.3.

Welche ist die flächengrößte Gemeinde der Provinz?

Diese Abfrage verwendet eine räumliche Messung als Abfragefilter. Es gibt verschiedene Wege dieses Problem anzugehen, aber die effizienteste Methode ist folgende:

SELECT
  name,
  ST_Area(the_geom)/10000 AS hectares
FROM
  bc_municipality
ORDER BY hectares DESC
LIMIT 1;

name           | hectares
---------------+-----------------
TUMBLER RIDGE  | 155020.02556131
(1 row)

Um diese Anfrage zu beantworten, müssen wir die Fläche eines jeden Polygons berechnen. Wenn wir dies oft machen müssen, kann es aufgrund der Rechenleistung sinnvoll sein, eine eigene Flächenspalte an die Tabelle anzuhängen und mit einem Index zu versehen. Indem wir das Ergebnis in absteigender Reihenfolge sortieren und den PostgreSQL Befehl "LIMIT" einsetzen, können wir die größten Werte herausfiltern, ohne eine Aggregatfunktion wie max() verwenden zu müssen.

4.7.2.4.

Welche Länge haben die Straßen, die zur Gänze innerhalb einer Gemeinde liegen?

Dies ist ein Beispiel für einen "Spatial Join", da wir die Daten aus zwei Tabellen zusammenführen (einen Join ausführen) und als Join-Bedingung eine räumliche Interaktion ("contained") verwenden - anstelle des üblichen relationalen Ansatzes bei dem die Tabellen über einen gemeinsamen Schlüssel verknüpft werden:

SELECT
  m.name,
  sum(ST_Length(r.the_geom))/1000 as roads_km
FROM
  bc_roads AS r,
  bc_municipality AS m
WHERE
  ST_Contains(m.the_geom, r.the_geom)
GROUP BY m.name
ORDER BY roads_km;

name                        | roads_km
----------------------------+------------------
SURREY                      | 1539.47553551242
VANCOUVER                   | 1450.33093486576
LANGLEY DISTRICT            | 833.793392535662
BURNABY                     | 773.769091404338
PRINCE GEORGE               | 694.37554369147
...

Diese Abfrage dauert ein Weilchen, da sämtliche Straßen in der Tabelle in das endgültige Ergebnis aufsummiert werden müssen (über 250k Straßen in Unserem speziellen Beispiel). Bei kleineren Überlagerungen (ein paar tausend Datensätze auf ein paar Hundert) kann die Antwort sehr schnell zurückkommen.

4.7.2.5.

Eine neue Tabelle erzeugen, die alle Straßen der Stadt Prince George beinhaltet.

Dies ist ein Beispiel für ein "Overlay", das zwei Tabellen entgegennimmt und eine neue Tabelle ausgibt, welche die aus- und abgeschnittene Ergebnisgeometrie enthält. Anders als bei dem oben gezeigten "Spatial Join" erzeugt diese Abfrage eine neue Geometrie. Ein "Overlay" ist wie ein "Spatial Join" mit Turbolader und wird für genauere Analysen verwendet:

CREATE TABLE pg_roads as
SELECT
  ST_Intersection(r.the_geom, m.the_geom) AS intersection_geom,
  ST_Length(r.the_geom) AS rd_orig_length,
  r.*
FROM
  bc_roads AS r,
  bc_municipality AS m
WHERE
  m.name = 'PRINCE GEORGE'
        AND ST_Intersects(r.the_geom, m.the_geom);

4.7.2.6.

Wie lange ist die "Douglas St" in Victoria in Kilometern?

SELECT
  sum(ST_Length(r.the_geom))/1000 AS kilometers
FROM
  bc_roads r,
  bc_municipality m
WHERE
        r.name = 'Douglas St'
        AND m.name = 'VICTORIA'
        AND ST_Intersects(m.the_geom, r.the_geom);

kilometers
------------------
4.89151904172838
(1 row)

4.7.2.7.

Welches ist das größte Gemeindepolygon mit einer Lücke?

SELECT gid, name, ST_Area(the_geom) AS area
FROM bc_municipality
WHERE ST_NRings(the_geom) > 1
ORDER BY area DESC LIMIT 1;

gid  | name         | area
-----+--------------+------------------
12   | SPALLUMCHEEN | 257374619.430216
(1 row)

Chapter 5. Rasterdatenverwaltung, -abfrage und Anwendungen

5.1. Laden und Erstellen von Rastertabellen

In den häufigsten Anwendungsfällen werden Sie einen PostGIS-Raster durch das Laden einer bestehenden Rasterdatei, mit Hilfe des Rasterladers raster2pgsql, erstellen.

5.1.1. Verwendung von raster2pgsql zum Laden von Rastern

raster2pgsql ist ein ausführbarer Rasterlader, der die von GDAL unterstützten Rasterformate in SQL umwandelt, um sie anschließend in eine PostGIS Rastertabelle zu laden. Er kann sowohl ganze Verzeichnisse mit Rasterdateien laden, als auch Rasterübersichten erzeugen.

Da "raster2pgsql" meistens als Teil von PostGIS kompiliert ist (solange Sie nicht Ihre eigene GDAL Bibliothek kompilieren), sind die von "raster2pgsql" unterstützten Rastertypen die selben wie in der GDAL Bibliothek. Um eine Liste der Rastertypen, die von Ihrem jeweiligen "raster2pgsql"unterstützt werden, zu erhalten, benutzen Sie bitte den -G Switch. Falls Sie dieselbe GDAL Bibliothek für beide verwenden, sollte diese Liste mit der Ihrer PostGIS Installation, die durch ST_GDALDrivers bereitgestellt wird, ident sein.

[Note]

Die frühere Version dieses Tools war ein Python Skript. Die lauffähige Version hat das Python Skript ersetzt. Sollten Sie weiterhin das Python Skript benötigen, können Sie unter GDAL PostGIS Raster Driver Usage Beispiele für Python finden. Beachten Sie bitte, dass zukünftige Versionen von PostGIS Raster das "raster2pgsql" Pythonskript nicht mehr unterstützen.

[Note]

Bei einem bestimmten Faktor kann es vorkommen, dass die Raster in der Übersicht/Overview nicht bündig angeordnet sind, obwohl sie die Raster selbst dies sind. Siehe http://trac.osgeo.org/postgis/ticket/1764 für ein solches Beispiel.

ANWENDUNGSBEISPIEL:

raster2pgsql raster_options_go_here raster_file someschema.sometable > out.sql

-?

Zeigt die Hilfe an, auch dann, wenn keine Argumente übergeben werden.

-G

Gibt die unterstützten Rasterformate aus.

(c|a|d|p) Dies sind sich gegenseitig ausschließende Optionen:

-c

Eine neue Tabelle anlegen und mit Raster(n) befüllen, this is the default mode

-a

Raster zu einer bestehende Tabelle hinzufügen.

-d

Tabelle löschen, eine Neu erzeugen und mit einem oder mehreren Raster befüllen

-p

Beim vorbereitenden Modus wird ledigliche eine Tabelle erstellt.

Raster-Verarbeitung: Anwendung von Constraint's zur ordnungsgemäßen Registrierung im Rasterkatalog

-C

Anwendung von Raster-Constraints, wie SRID, Zellgröße etc., um die ordnungsgemäße Registrierung des Rasters in der raster_columns View sicherzustellen.

-x

Unterbindet das Setzen der "Max-Extent" Bedingung. Wird nur angewandt, wenn auch die -C Flag gesetzt ist.

-r

Setzt die Constraints (räumlich eindeutig und die Coverage-Kachel) der regelmäßigen Blöcke. Wird nur angewandt, wenn auch die -C Flag gesetzt ist. 

Rasterdaten-Verarbeitung: Optionale Parameter zur Manipulation von Input Raster Datensätzen

-s <SRID>

Dem Output-Raster eine bestimmte SRID zuweisen. Wenn keine SRID oder Null angegeben wird, werden die Raster-Metadaten auf eine geignete SRID hin überprüft.

-b BAND

Die Kennung (1-basiert) des Bandes, das aus dem Raster entnommen werden soll. Um mehrere Bänder anzugeben, trennen Sie die Kennungen bitte durch ein Komma (,).

-t TILE_SIZE

Zerlegt den Raster in Kacheln, um eine Kachel pro Tabellenzeile einzufügen. TILE_SIZE wird entweder in BREITExHöhe ausgedrückt, oder auf den Wert "auto" gesetzt, wodurch der Raster-Lader eine passende Kachelgröße an Hand des ersten Raster's ermittelt und diese dann auf die anderen Raster anwendet.

-P

Die ganz rechts und ganz unten liegenden Kacheln aufstocken, damit für alle Kacheln gleiche Breite und Höhe sichergestellt ist.

-R, --register

Einen im Dateisystem vorliegenden Raster als (out-db) Raster registrieren.

Es werden nur die Metadaten und der Dateipfad des Rasters abgespeichert (nicht die Rasterzellen).

-l OVERVIEW_FACTOR

Erzeugt eine Übersicht/Overview des Rasters. Mehrere Faktoren sind durch einen Beistrich(,) zu trennen. Die Benennung der Übersichtstabelle erfolgt dem Muster o_overview_factor_table, wobei overview_factor ein Platzhalter für den numerischen Wert von "overview_factor" ist und table für den zugrundeliegenden Tabellennamen. Die erstellte Übersicht wird in der Datenbank gespeichert, auch wenn die Option -R gesetzt ist. Anmerkung: die erzeugte SQL-Datei enthält sowohl die Haupttabelle, als auch die Übersichtstabellen.

-N NODATA

Der NODATA-Wert, der für Bänder verwendet wird, die keinen NODATA-Wert definiert haben.

Optionale Parameter zur Manipulation von Datenbankobjekten

-f COLUMN

Gibt den Spaltennamen des Zielrasters an; standardmäßig wird er 'rast' benannt.

-F

Eine Spalte mit dem Dateinamen hinzufügen

-n COLUMN

Gibt die Bezeichnung für die Spalte mit dem Dateinamen an. Schließt -F" mit ein.

-q

Setzt die PostgreSQL-Identifikatoren unter Anführungszeichen.

-I

Einen GIST-Index auf die Rasterspalte anlegen.

-M

VACUUM ANALYZE auf die Rastertabelle.

-k

Überspringt die Überprüfung von NODATA-Werten für jedes Rasterband.

-T tablespace

Bestimmt den Tablespace für die neue Tabelle. Beachten Sie bitte, dass Indizes (einschließlich des Primärschlüssels) weiterhin den standardmäßigen Tablespace nutzen, solange nicht die -X Flag benutzt wird.

-X tablespace

Bestimmt den Tablespace für den neuen Index der Tabelle. Dieser gilt sowohl für den Primärschlüssel als auch für den räumlichen Index, falls die -I Flag gesetzt ist.

-Y

Verwendung von Kopier- anstelle von Eingabe-Anweisungen.

-e

Keine Transaktion verwenden, sondern jede Anweisung einzeln ausführen.

-E ENDIAN

Legt die Byte-Reihenfolge des binär erstellten Rasters fest; geben Sie für XDR 0 und für NDR (Standardwert) 1 an; zurzeit wird nur die Ausgabe von NDR unterstützt.

-V version

Bestimmt die Version des Ausgabeformats. Voreingestellt ist 0. Zur Zeit wird auch nur 0 unterstützt.

Eine Beispielssitzung, wo mit dem Lader eine Eingabedatei erstellt und stückchenweise als 100x100 Kacheln hochgeladen wird, könnte so aussehen:

[Note]

Sie können den Schemanamen weglassen z.B. demelevation anstatt public.demelevation , wodurch die Rastertabelle im Standardschema der Datenbank oder des Anwenders angelegt wird.

raster2pgsql -s 4326 -I -C -M *.tif -F -t 100x100 public.demelevation 
> elev.sql
psql -d gisdb -f elev.sql

Durch die Verwendung von UNIX-Pipes kann die Konvertierung und der Upload in einem Schritt vollzogen werden:

raster2pgsql -s 4326 -I -C -M *.tif -F -t 100x100 public.demelevation | psql -d gisdb

Luftbildkacheln in "Massachusetts State Plane Meters" in das Schema aerial laden. Einen vollständigen View und Übersichtstabellen mit Faktor 2 und 4 erstellen. Verwendet den Modus "copy" für das Insert (keine dazwischengeschaltete Datei, sondern direkt in die Datenbank). Die Option -e bedingt, dass nicht alles innerhalb einer Transaktion abläuft (nützlich, wenn Sie sofort Daten sehen wollen, ohne zu warten). Die Raster werden in 128x128 Pixel große Kacheln zerlegt und Constraints auf die Raster gesetzt. Verwendet den Modus "copy" anstelle eines Tabellen-Inserts. (-F) Erzeugt das Attribut "filename", welches die Bezeichnung der Ausgangsdateien enthält, aus denen die Rasterkacheln ausgeschnitten wurden.

raster2pgsql -I -C -e -Y -F -s 26986 -t 128x128  -l 2,4 bostonaerials2008/*.jpg aerials.boston | psql -U postgres -d gisdb -h localhost -p 5432
--gibt eine Liste der unterstützten Rasterformate aus:
raster2pgsql -G

Der -G Befehl gibt eine ähnliche Liste wie die Folgende aus

Available GDAL raster formats:
  Virtual Raster
  GeoTIFF
  National Imagery Transmission Format
  Raster Product Format TOC format
  ECRG TOC format
  Erdas Imagine Images (.img)
  CEOS SAR Image
  CEOS Image
  JAXA PALSAR Product Reader (Level 1.1/1.5)
  Ground-based SAR Applications Testbed File Format (.gff)
  ELAS
  Arc/Info Binary Grid
  Arc/Info ASCII Grid
  GRASS ASCII Grid
  SDTS Raster
  DTED Elevation Raster
  Portable Network Graphics
  JPEG JFIF
  In Memory Raster
  Japanese DEM (.mem)
  Graphics Interchange Format (.gif)
  Graphics Interchange Format (.gif)
  Envisat Image Format
  Maptech BSB Nautical Charts
  X11 PixMap Format
  MS Windows Device Independent Bitmap
  SPOT DIMAP
  AirSAR Polarimetric Image
  RadarSat 2 XML Product
  PCIDSK Database File
  PCRaster Raster File
  ILWIS Raster Map
  SGI Image File Format 1.0
  SRTMHGT File Format
  Leveller heightfield
  Terragen heightfield
  USGS Astrogeology ISIS cube (Version 3)
  USGS Astrogeology ISIS cube (Version 2)
  NASA Planetary Data System
  EarthWatch .TIL
  ERMapper .ers Labelled
  NOAA Polar Orbiter Level 1b Data Set
  FIT Image
  GRIdded Binary (.grb)
  Raster Matrix Format
  EUMETSAT Archive native (.nat)
  Idrisi Raster A.1
  Intergraph Raster
  Golden Software ASCII Grid (.grd)
  Golden Software Binary Grid (.grd)
  Golden Software 7 Binary Grid (.grd)
  COSAR Annotated Binary Matrix (TerraSAR-X)
  TerraSAR-X Product
  DRDC COASP SAR Processor Raster
  R Object Data Store
  Portable Pixmap Format (netpbm)
  USGS DOQ (Old Style)
  USGS DOQ (New Style)
  ENVI .hdr Labelled
  ESRI .hdr Labelled
  Generic Binary (.hdr Labelled)
  PCI .aux Labelled
  Vexcel MFF Raster
  Vexcel MFF2 (HKV) Raster
  Fuji BAS Scanner Image
  GSC Geogrid
  EOSAT FAST Format
  VTP .bt (Binary Terrain) 1.3 Format
  Erdas .LAN/.GIS
  Convair PolGASP
  Image Data and Analysis
  NLAPS Data Format
  Erdas Imagine Raw
  DIPEx
  FARSITE v.4 Landscape File (.lcp)
  NOAA Vertical Datum .GTX
  NADCON .los/.las Datum Grid Shift
  NTv2 Datum Grid Shift
  ACE2
  Snow Data Assimilation System
  Swedish Grid RIK (.rik)
  USGS Optional ASCII DEM (and CDED)
  GeoSoft Grid Exchange Format
  Northwood Numeric Grid Format .grd/.tab
  Northwood Classified Grid Format .grc/.tab
  ARC Digitized Raster Graphics
  Standard Raster Product (ASRP/USRP)
  Magellan topo (.blx)
  SAGA GIS Binary Grid (.sdat)
  Kml Super Overlay
  ASCII Gridded XYZ
  HF2/HFZ heightfield raster
  OziExplorer Image File
  USGS LULC Composite Theme Grid
  Arc/Info Export E00 GRID
  ZMap Plus Grid
  NOAA NGS Geoid Height Grids

5.1.2. Erzeugung von Rastern mit den PostGIS Rasterfunktionen

Oftmals werden Sie die Raster und die Rastertabellen direkt in der Datenbank erzeugen wollen. Dafür existieren eine Unmenge an Funktionen. Dies verlangt im Allgemeinen die folgende Schritte.

  1. Erstellung einer Tabelle mit einer Rasterspalte für die neuen Rasterdatensätze:

    CREATE TABLE myrasters(rid serial primary key, rast raster);
  2. Es existieren viele Funktionen die Ihnen helfen dieses Ziel zu erreichen. Wenn Sie einen Raster nicht von anderen Rastern ableiten, sondern selbst erzeugen, können Sie mit ST_MakeEmptyRaster beginnen, gefolgt von ST_AddBand

    Sie können Raster auch aus Geometrien erzeugen. Hierzu können Sie ST_AsRaster verwenden, möglicherweise in Verbindung mit anderen Funktionen, wie ST_Union, ST_MapAlgebraFct oder irgendeiner anderen Map Algebra Funktion.

    Es gibt sogar noch viele andere Möglichkeiten, um eine neue Rastertabelle aus bestehenden Tabellen zu erzeugen. Sie können zum Beispiel mit ST_Transform einen Raster in eine andere Projektion transformieren und so eine neue Rastertabelle erstellen.

  3. Wenn Sie mit der Erstbefüllung der Tabelle fertig sind, werden Sie einen räumlichen Index auf die Rasterspalte setzen wollen:

    CREATE INDEX myrasters_rast_st_convexhull_idx ON myrasters USING gist( ST_ConvexHull(rast) );

    Beachten Sie bitte die Verwendung von ST_ConvexHull; der Grund dafür ist, dass die meisten Rasteroperatoren auf der konvexen Hülle des Rasters beruhen.

    [Note]

    Vor der Version 2.0 von PostGIS, basierten die Raster auf der Einhüllenden, anstatt auf der konvexen Hülle. Damit die räumlichen Indizes korrekt funktionieren, müssen Sie diese löschen und mit einem auf der konvexen Hülle basierenden Index ersetzen.

  4. Mittels AddRasterConstraints Bedingungen auf den Raster legen.

5.2. Raster Katalog

Mit PostGIS kommen zwei Views des Rasterkatalogs. Beide Views nützen die Information, welche in den Bedingungen/Constraints der Rastertabellen festgelegt ist. Da die Bedingungen zwingend sind, sind die Views des Rasterkatalogs immer konsistent mit den Daten in den Rastertabellen.

  1. raster_columns diese View/gespeicherte Abfrage katalogisiert alle Rastertabellenspalten Ihrer Datenbank.

  2. raster_overviews Dieser View katalogisiert all jene Spalten einer Rastertabelle in Ihrer Datenbank, die als Übersicht für Rastertabellen mit höherer Auflösung dienen. Tabellen dieses Typs werden mit der -l Option beim Laden erstellt.

5.2.1. Rasterspalten Katalog

raster_columns ist ein Katalog mit allen Rasterspalten Ihrer Datenbanktabellen. Es handelt sich dabei um einen View, der die Constraints auf die Tabellen ausnutzt, um so immer konsistent mit dem aktuellen Stand der Datenbank zu bleiben; sogar dann, wenn Sie den Raster aus einem Backup oder einer anderen Datenbank wiederherstellen. Der raster_columns Katalog beinhaltet die folgenden Spalten.

Falls Sie Ihre Tabellen nicht mit dem Loader erstellt haben, oder vergessen haben, die -C Option während des Ladens anzugeben, können Sie die Constraints auch anschließend erzwingen, indem Sie AddRasterConstraints verwenden, wodurch der raster_columns Katalog die Information über Ihre Rasterkacheln, wie üblich abspeichert.

  • r_table_catalog Die Datenbank, in der sich die Tabelle befindet. Greift immer auf die aktuelle Datenbank zu.

  • r_table_schema Das Datenbankschema in dem sich die Rastertabelle befindet.

  • r_table_name Rastertabelle

  • r_raster_column Die Spalte, in der Tabelle r_table_name, die den Datentyp Raster aufweist. In PostGIS gibt es nichts, was Sie daran hindert, mehrere Rasterspalten in einer Tabelle zu haben. Somit ist es möglich auf unterschiedliche Raster(spalten) in einer einzigen Rastertabelle zuzugreifen.

  • srid Der Identifikator für das Koordinatensystem in dem der Raster vorliegt. Sollte in Section 4.3.1, “Die SPATIAL_REF_SYS Tabelle und Koordinatenreferenzsysteme” eingetragen sein.

  • scale_x Der Skalierungsfaktor zwischen den Koordinaten der Vektoren und den Pixeln. Dieser steht nur dann zur Verfügung, wenn alle Kacheln der Rasterspalte denselben scale_x aufweisen und dieser Constraint auch gesetzt ist. Siehe ST_ScaleX für genauere Angaben.

  • scale_y Der Skalierungsfaktor zwischen den Koordinaten der Vektoren und den Pixeln. Dieser steht nur dann zur Verfügung, wenn alle Kacheln der Rasterspalte denselben scale_y aufweisen und der Constraint scale_y auch gesetzt ist. Siehe ST_ScaleY für genauere Angaben.

  • blocksize_x Die Breite (Anzahl der waagrechten Zellen) einer Rasterkachel. Siehe ST_Width für weitere Details.

  • blocksize_y Die Höhe (Anzahl der senkrechten Zellen) einer Rasterkachel. Siehe ST_Height für weitere Details.

  • same_alignment Eine boolesche Variable, die TRUE ist, wenn alle Rasterkacheln dieselbe Ausrichtung haben. Siehe ST_SameAlignment für genauere Angaben.

  • regular_blocking Wenn auf die Rasterspalte die Constraints für die räumliche Eindeutigkeit und für die Coveragekachel gesetzt sind, ist der Wert TRUE, ansonsten FALSE..

  • num_bands Die Anzahl der Bänder, die jede Kachel des Rasters aufweist. ST_NumBands gibt die gleiche Information aus. ST_NumBands

  • pixel_types Ein Feld das den Pixeltyp für die Bänder festlegt. Die Anzahl der Elemente in diesem Feld entspricht der Anzahl der Rasterbänder. Die "pixel_types" sind unter ST_BandPixelType definiert.

  • nodata_values Ein Feld mit Double Precision Zahlen, welche den nodata_value für jedes Band festlegen. Die Anzahl der Elemente in diesem Feld entspricht der Anzahl der Rasterbänder. Diese Zahlen legen den Pixelwert für jedes Rasterband fest, der bei den meisten Operationen ignoriert wir. Eine ähnliche Information erhalten Sie durch ST_BandNoDataValue.

  • out_db Ein Feld mit booleschen Flags, das anzeigt, ob die Rasterbanddaten außerhalb der Datenbank gehalten werden. Die Anzahl der Elemente in diesem Feld entspricht der Anzahl der Rasterbänder.

  • extent Die Ausdehnung aller Rasterspalten in Ihrem Rasterdatensatz. Falls Sie vor haben Daten zu laden, welche die Ausdehnung des Datensatzes ändern, sollten Sie die Funktion DropRasterConstraints ausführen, bevor Sie die Daten laden und nach dem Laden die Constraints mit der Funktion AddRasterConstraints erneut setzen.

  • spatial_index Eine Boolesche Variable, die TRUE anzeigt, wenn ein räumlicher Index auf das Rasterattribut gelegt ist.

5.2.2. Raster Übersicht/Raster Overviews

raster_overviews Katalogisiert Information über die Rastertabellenspalten die für die Übersichten/Overviews herangezogen wurden, sowie weitere zusätzliche Information bezüglich Overviews. Die Übersichtstabellen werden sowohl in raster_columns als auch in raster_overviews registriert, da sie sowohl eigene Raster darstellen, als auch, als niedriger aufgelöstes Zerrbild einer höher aufgelösten Tabelle, einem bestimmten Zweck dienen. Wenn Sie den -l Switch beim Laden des Rasters angeben, werden diese gemeinsam mit der Rasterhaupttabelle erstellt; sie können aber auch händisch über AddOverviewConstraints erstellt werden.

Übersichtstabellen enthalten dieselben Constraints wie andere Rastertabellen und zusätzliche informative Constraints, spezifisch für die Übersichten.

[Note]

Die Information in raster_overviews befindet sich nicht in raster_columns. Falls Sie die Information der Übersichtstabelle und der raster_columns zusammen benötigen, können Sie einen Join auf raster_overviews und raster_columns ausführen, um die gesamte Information zu erhalten.

Die zwei Hauptgründe für Übersichtsraster sind:

  1. Eine niedrig aufgelöste Darstellung der Basistabellen; wird im Allgemeinen zum schnellen Hinauszoomen verwendet.

  2. Die Berechnungen laufen grundsätzlich schneller ab, als bei den Stammdaten mit höherer Auflösung, da weniger Datensätze vorhanden sind und die Pixel eine größere Fläche abdecken. Obwohl diese Berechnungen nicht so exakt sind, wie jene auf die hochauflösenden Stammtabellen, sind sie doch für viele Überschlagsrechnunen ausreichend.

Der raster_overviews Katalog enthält folgende Attribute an Information.

  • o_table_catalog Die Datenbank, in der sich die Übersichtstabelle befindet. Liest immer die aktuelle Datenbank.

  • o_table_schema Das Datenbankschema dem die Rasterübersichtstabelle angehört.

  • o_table_name Der Tabellenname der Rasterübersicht

  • o_raster_column das Rasterattribut in der Übersichtstabelle.

  • r_table_catalog Die Datenbank, in der sich die Rastertabelle befindet, für die diese Übersicht gilt. Greift immer auf die aktuelle Datenbank zu.

  • r_table_schema Das Datenbankschema, in dem sich die Rastertabelle befindet, zu der der Übersichtsdienst gehört.

  • r_table_name Die Rastertabelle, welche von dieser Übersicht bedient wird.

  • r_raster_column Die Rasterspalte, die diese Overviewspalte bedient.

  • overview_factor - der Pyramidenlevel der Übersichtstabelle. Umso größer die Zahl ist, desto geringer ist die Auflösung. Wenn ein Ordner für die Bilder angegeben ist, rechnet raster2pgsql eine Übersicht für jede Bilddatei und ladet diese einzeln. Es wird Level 1 und die Ursprungsdatei angenommen. Beim Level 2 repräsentiert jede Kachel 4 Originalkacheln. Angenommen Sie haben einen Ordner mit Bilddateien in einer Auflösung von 5000x5000 Pixel, die Sie auf 125x125 große Kacheln zerlegen wollen. Für jede Bilddattei enthält die Basistabelle (5000*5000)/(125*125) Datensätze = 1600, Ihre (l=2) o_2 Tabelle hat dann eine Obergrenze von (1600/Power(2,2)) = 400 Zeilen, Ihre (l=3) o_3 (1600/Power(2,3) ) = 200 Zeilen. Wenn sich die Pixel nicht durch die Größe Ihrer Kacheln teilen lassen, erhalten Sie einige Ausschusskacheln (Kacheln die nicht zur Gänze gefüllt sind). Beachten Sie bitte, dass jede durch raster2pgsql erzeugte Übersichtskachel dieselbe Pixelanzahl hat wie die ursprüngliche Kachel, aber eine geringere Auflösung, wo ein Pixel (Power(2,overview_factor) Pixel der Ursprungsdatei) repräsentiert.

5.3. Eigene Anwendungen mit PostGIS Raster erstellen

Da PostGIS-Raster SQL-Funktionen für die bekannten Bildformate zur Verfügung stellt, haben Sie bei der Ausgabe von Rastern eine Reihe von Möglichkeiten. Zum Beispiel können Sie OpenOffice/LibreOffice für die Darstellung nutzen, so wie unter Rendering PostGIS Raster graphics with LibreOffice Base Reports dargestellt. Zusätzlich steht Ihnen eine Vielzahl an Sprachen zur Verfügung, wie in diesem Abschnitt gezeigt wird.

5.3.1. PHP Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen

In diesem Abschnitt zeigen wir die Anwendung des PHP PostgreSQL Treibers und der Funktion ST_AsGDALRaster, um die Bänder 1,2,3 eines Rasters an einen PHP Request-Stream zu übergeben. Dieser kann dann in einen "img src" HTML Tag eingebunden werden.

Dieses Beispiel zeigt, wie Sie ein ganzes Bündel von Rasterfunktionen kombinieren können, um jene Kacheln zu erhalten, die ein bestimmtes WGS84 Umgebungsrechteck schneiden. Anschließend werden alle Bänder dieser Kacheln mit ST_Union vereinigt, mit ST_Transform in die vom Benutzer vorgegebene Projektion transformiert und das Ergebnis mit ST_AsPNG als PNG ausgegeben.

Sie können das unten angeführte Programm über

http://mywebserver/test_raster.php?srid=2249

aufrufen, um den Raster in "Massachusetts State Plane Feet" zu erhalten.

<?php
/** Inahlt von test_raster.php **/
$conn_str ='dbname=mydb host=localhost port=5432 user=myuser password=mypwd';
$dbconn = pg_connect($conn_str);
header('Content-Type: image/png');
/**Wenn eine bestimmte Projektion angefragt ist, wird diese verwendet, ansonsten wird "Mass State Plane Meters" verwendet **/
if (!empty( $_REQUEST['srid'] ) && is_numeric( $_REQUEST['srid']) ){
                $input_srid = intval($_REQUEST['srid']);
}
else { $input_srid = 26986; }
/**  "set bytea_output" für PostgreSQL 9.0+, wird für 8.4 nicht benötigt**/
$sql = "set bytea_output='escape';
SELECT ST_AsPNG(ST_Transform(
                        ST_AddBand(ST_Union(rast,1), ARRAY[ST_Union(rast,2),ST_Union(rast,3)])
                                ,$input_srid) ) As new_rast
 FROM aerials.boston
        WHERE
         ST_Intersects(rast, ST_Transform(ST_MakeEnvelope(-71.1217, 42.227, -71.1210, 42.218,4326),26986) )";
$result = pg_query($sql);
$row = pg_fetch_row($result);
pg_free_result($result);
if ($row === false) return;
echo pg_unescape_bytea($row[0]);
?>

5.3.2. ASP.NET C# Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen

In diesem Abschnitt zeigen wir die Anwendung des Npgsql PostgreSQL .NET Treibers und der Funktion ST_AsGDALRaster, um die Bänder 1,2,3 eines Rasters an einen PHP Request-Stream zu übergeben. Dieser kann dann in einen "img src" HTML Tag eingebunden werden.

Für dieses Beispiel benötigen Sie den npgsql .NET PostgreSQL Treiber. Um loslegen zu können, reicht es aus, dass Sie die neueste Version von http://npgsql.projects.postgresql.org/ in Ihren ASP.NET Ordner laden.

Dieses Beispiel zeigt, wie Sie ein ganzes Bündel von Rasterfunktionen kombinieren können, um jene Kacheln zu erhalten, die ein bestimmtes WGS84 Umgebungsrechteck schneiden. Anschließend werden alle Bänder dieser Kacheln mit ST_Union vereinigt, mit ST_Transform in die vom Benutzer vorgegebene Projektion transformiert und das Ergebnis mit ST_AsPNG als PNG ausgegeben.

Dasselbe Beispiel wie Section 5.3.1, “PHP Beispiel: Ausgabe mittels ST_AsPNG in Verbindung mit anderen Rasterfunktionen” nur in C# implementiert.

Sie können das unten angeführte Programm über

http://mywebserver/TestRaster.ashx?srid=2249

aufrufen, um den Raster in "Massachusetts State Plane Feet" zu bekommen.

-- web.config Verbindungsaufbau --
<connectionStrings>
    <add name="DSN"
        connectionString="server=localhost;database=mydb;Port=5432;User Id=myuser;password=mypwd"/>
</connectionStrings
>
// Code für TestRaster.ashx
<%@ WebHandler Language="C#" Class="TestRaster" %>
using System;
using System.Data;
using System.Web;
using Npgsql;

public class TestRaster : IHttpHandler
{
        public void ProcessRequest(HttpContext context)
        {

                context.Response.ContentType = "image/png";
                context.Response.BinaryWrite(GetResults(context));

        }

        public bool IsReusable {
                get { return false; }
        }

        public byte[] GetResults(HttpContext context)
        {
                byte[] result = null;
                NpgsqlCommand command;
                string sql = null;
                int input_srid = 26986;
        try {
                    using (NpgsqlConnection conn = new NpgsqlConnection(System.Configuration.ConfigurationManager.ConnectionStrings["DSN"].ConnectionString)) {
                            conn.Open();

                if (context.Request["srid"] != null)
                {
                    input_srid = Convert.ToInt32(context.Request["srid"]);
                }
                sql = @"SELECT ST_AsPNG(
                            ST_Transform(
                                        ST_AddBand(
                                ST_Union(rast,1), ARRAY[ST_Union(rast,2),ST_Union(rast,3)])
                                                    ,:input_srid) ) As new_rast
                        FROM aerials.boston
                                WHERE
                                    ST_Intersects(rast,
                                    ST_Transform(ST_MakeEnvelope(-71.1217, 42.227, -71.1210, 42.218,4326),26986) )";
                            command = new NpgsqlCommand(sql, conn);
                command.Parameters.Add(new NpgsqlParameter("input_srid", input_srid));


                            result = (byte[]) command.ExecuteScalar();
                conn.Close();
                        }

                }
        catch (Exception ex)
        {
            result = null;
            context.Response.Write(ex.Message.Trim());
        }
                return result;
        }
}

5.3.3. Applikation für die Java-Konsole, welche eine Rasterabfrage als Bilddatei ausgibt

Eine einfache Java Applikation, die eine Abfrage entgegennimmt, ein Bild erzeugt und in eine bestimmte Datei ausgibt.

Sie können die neuesten PostgreSQL JDBC Treiber unter http://jdbc.postgresql.org/download.html herunterladen.

Sie können den unten angegebenen Code mit einem Befehl wie folgt kompilieren:

set env CLASSPATH .:..\postgresql-9.0-801.jdbc4.jar
javac SaveQueryImage.java
jar cfm SaveQueryImage.jar Manifest.txt *.class

Und ihn von der Befehlszeile wie folgt aufrufen:

java -jar SaveQueryImage.jar "SELECT ST_AsPNG(ST_AsRaster(ST_Buffer(ST_Point(1,5),10, 'quad_segs=2'),150, 150, '8BUI',100));" "test.png" 
-- Manifest.txt --
Class-Path: postgresql-9.0-801.jdbc4.jar
Main-Class: SaveQueryImage
// Code für SaveQueryImage.java
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.io.*;

public class SaveQueryImage {
  public static void main(String[] argv) {
      System.out.println("Checking if Driver is registered with DriverManager.");

      try {
        //java.sql.DriverManager.registerDriver (new org.postgresql.Driver());
        Class.forName("org.postgresql.Driver");
      }
      catch (ClassNotFoundException cnfe) {
        System.out.println("Couldn't find the driver!");
        cnfe.printStackTrace();
        System.exit(1);
      }

      Connection conn = null;

      try {
        conn = DriverManager.getConnection("jdbc:postgresql://localhost:5432/mydb","myuser", "mypwd");
        conn.setAutoCommit(false);

        PreparedStatement sGetImg = conn.prepareStatement(argv[0]);

        ResultSet rs = sGetImg.executeQuery();

                FileOutputStream fout;
                try
                {
                        rs.next();
                        /** Output to file name requested by user **/
                        fout = new FileOutputStream(new File(argv[1]) );
                        fout.write(rs.getBytes(1));
                        fout.close();
                }
                catch(Exception e)
                {
                        System.out.println("Can't create file");
                        e.printStackTrace();
                }

        rs.close();
                sGetImg.close();
        conn.close();
      }
      catch (SQLException se) {
        System.out.println("Couldn't connect: print out a stack trace and exit.");
        se.printStackTrace();
        System.exit(1);
      }
  }
}

5.3.4. Verwenden Sie PLPython um Bilder via SQL herauszuschreiben

Diese als plpython gespeicherte Prozedur erzeugt eine Datei pro Datensatz im Serververzeichnis. Benötigt die Installation von plpython. Funktioniert sowohl mit plpythonu als auch mit plpython3u.

CREATE OR REPLACE FUNCTION write_file (param_bytes bytea, param_filepath text)
RETURNS text
AS $$
f = open(param_filepath, 'wb+')
f.write(param_bytes)
return param_filepath
$$ LANGUAGE plpythonu;
-- 5 Bilder in verschiedenen Größen nach PostgreSQL schreiben
-- der Account des PostgreSQL Daemons benötigt Schreibrechte auf den Ordner
-- die Namen der erzeugten Dateien werden ausgegeben;
 SELECT write_file(ST_AsPNG(
        ST_AsRaster(ST_Buffer(ST_Point(1,5),j*5, 'quad_segs=2'),150*j, 150*j, '8BUI',100)),
         'C:/temp/slices'|| j || '.png')
         FROM generate_series(1,5) As j;

     write_file
---------------------
 C:/temp/slices1.png
 C:/temp/slices2.png
 C:/temp/slices3.png
 C:/temp/slices4.png
 C:/temp/slices5.png

5.3.5. Faster mit PSQL ausgeben

Leider hat PSQL keine einfach zu benützende Funktion für die Ausgabe von Binärdateien eingebaut. Dieser Hack baut auf der etwas veralteten "Large Object" Unterstützung von PostgreSQL auf. Um ihn anzuwenden verbinden Sie sich bitte zuerst über die Befehlszeile "psql" mit Ihrer Datenbank.

Anders als beim Ansatz mit Python, wird die Datei bei diesem Ansatz auf Ihrem lokalen Rechner erzeugt.

SELECT oid, lowrite(lo_open(oid, 131072), png) As num_bytes
 FROM
 ( VALUES (lo_create(0),
   ST_AsPNG( (SELECT rast FROM aerials.boston WHERE rid=1) )
  ) ) As v(oid,png);
-- die Ausgabe sieht ungefähr so aus --
   oid   | num_bytes
---------+-----------
 2630819 |     74860

-- beachten Sie die OID und ersetzen Sie c:/test.png mit dem tatsächlichen Pfad
-- auf Ihrem Rechner
 \lo_export 2630819 'C:/temp/aerial_samp.png'

-- löscht die Datei aus dem "large object" Speicher der Datenbank
SELECT lo_unlink(2630819);
                        

Chapter 6. Anwendung der PostGIS Geometrie: Applikationsentwicklung

6.1. Verwendung von MapServer

Der Minnesota MapServer ist ein Kartendienstserver für das Internet, der die "OpenGIS Web Map Service (WMS) Implementation Specification" erfüllt.

6.1.1. Grundlegende Handhabung

Um PostGIS mit MapServer zu verwenden müssen Sie wissen, wie Sie MapServer konfigurieren, da dies den Rahmens dieser Dokumentation sprengen würde. Dieser Abschnitt deckt PostGIS-spezifische Themen und Konfigurationsdetails ab.

Um PostGIS mit MapServer zu verwenden, benötigen Sie:

  • Die PostGIS Version 0.6, oder höher.

  • Die MapServer Version 3.5, oder höher.

MapServer greift auf die PostGIS/PostgreSQL-Daten, so wie jeder andere PostgreSQL-Client, über die libpq Schnittstelle zu. Dies bedeutet, dass MapServer auf jedem Server, der Netzwerkzugriff auf den PostgreSQL Server hat, installiert werden kann und PostGIS als Datenquelle nutzen kann. Je schneller die Verbindung zwischen den beiden Systemen, desto besser.

  1. Es spielt keine Rolle, mit welchen Optionen Sie MapServer kompilieren, solange sie bei der Konfiguration die "--with-postgis"-Option angeben.

  2. Fügen Sie einen PostGIS Layer zu der MapServer *.map Datei hinzu. Zum Beispiel:

    LAYER
      CONNECTIONTYPE postgis
      NAME "widehighways"
      # Verbindung zu einer remote Geodatenbank
      CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
      PROCESSING "CLOSE_CONNECTION=DEFER"
      # Um die Zeilen der 'geom'-Spalte aus der 'roads'-Tabelle zu erhalten
      DATA "geom from roads using srid=4326 using unique gid"
      STATUS ON
      TYPE LINE
      # Von den im Ausschnitt vorhandenen Linien nur die breiten Hauptstraßen/Highways
      FILTER "type = 'highway' and numlanes >= 4"
      CLASS
        # Autobahnen heller und 2Pixel stark machen
        EXPRESSION ([numlanes] >= 6)
        STYLE
          COLOR 255 22 22
          WIDTH 2
        END
      END
      CLASS
        # Der ganze Rest ist dunkler und nur 1 Pixel stark
        EXPRESSION ([numlanes] < 6)
        STYLE
          COLOR 205 92 82
        END
      END
    END

    Im oberen Beispiel werden folgende PostGIS-spezifische Anweisungen verwendet:

    CONNECTIONTYPE

    Für PostGIS Layer ist dies immer "postgis".

    CONNECTION

    Die Datenbankverbindung wird durch einen "Connection String" bestimmt, welcher aus einer standardisierten Menge von Schlüsseln und Werten zusammengesetzt ist (Standardwerte zwischen <>):

    user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>

    Ein leerer "Connection String" ist ebenfalls gültig, sodass jedes Key/Value Paar weggelassen werden kann. Üblicherweise wird man zumindest den Datenbanknamen und den Benutzernamen, mit dem man sich verbinden will, angeben.

    DATA

    Dieser Parameter hat die Form "<geocolumn> from <tablename> using srid=<srid> using unique <primary key>", wobei "geocolumn" dem räumlichen Attribut entspricht, mit dem die Bildsynthese/rendern durchgeführt werden soll. "srid" entspricht der SRID des räumlichen Attributs und "primary key" ist der Primärschlüssel der Tabelle (oder ein anderes eindeutiges Attribut mit einem Index).

    Sie können sowohl "using srid" als auch "using unique" weglassen. Wenn möglich, bestimmt MapServer die korrekten Werte dann automatisch, allerdings zu den Kosten einiger zusätzlichen serverseitigen Abfragen, die bei jedem Kartenaufruf ausgeführt werden.

    PROCESSING

    Wenn Sie mehrere Layer darstellen wollen, fügen Sie CLOSE_CONNECTION=DEFER ein, dadurch wird eine bestehende Verbindung wiederverwendet anstatt geschlossen. Dies erhöht die Geschwindigkeit. Unter MapServer PostGIS Performance Tips findet sich eine detailierte Erklärung.

    FILTER

    Der Filter muss ein gültiger SQL-Text sein, welcher der Logik, die normalerweise dem "WHERE" Schlüsselwort in der SQL-Abfrage folgt, entspricht. Z.B.: um nur die Straßen mit 6 oder mehr Spuren zu rendern, können Sie den Filter "num_lanes >= 6" verwenden.

  3. Stellen Sie bitte sicher, das für alle zu zeichnenden Layer, ein räumlicher Index (GIST) in der Geodatenbank angelegt ist.

    CREATE INDEX [indexname] ON [tabellenname] USING GIST ( [geometry_spalte] );
  4. Wenn Sie Ihre Layer über MapServer abfragen wollen, benötigen Sie auch die "using unique" Klausel in Ihrer "DATA" Anweisung.

    MapServer benötigt für jeden räumlichen Datensatz, der abgefragt werden soll, eindeutige Identifikatoren. Das PostGIS Modul von MapServer benützt den von Ihnen festgelegten, eindeutigen Wert, um diese eindeutige Identifikatoren zur Verfügung zu stellen. Den Primärschlüssel zu verwenden gilt als Erfolgsrezept.

6.1.2. Häufig gestellte Fragen

6.1.2.1. Wenn Ich EXPRESSION in meiner *.map Datei verwende, gibt die WHERE Bedingung niemals TRUE zurück, obwohl Ich weiß, dass sich die Werte in meiner Tabelle befinden.
6.1.2.2. Der FILTER, den ich bei meinen Shapefiles verwende, funktioniert nicht für meine PostGIS Tabelle, obwohl diese die gleichen Daten aufweist.
6.1.2.3. Mein PostGIS Layer wird viel langsamer dargestellt als mein Shapefile Layer. Ist das normal?
6.1.2.4. Mein PostGIS Layer wird ausgezeichnet dargestellt, aber die Abfragen sind sehr langsam. Was läuft falsch?
6.1.2.5. Kann Ich "Geography" Spalten (neu in PostGIS 1.5) als Quelle für MapServer Layer verwenden?

6.1.2.1.

Wenn Ich EXPRESSION in meiner *.map Datei verwende, gibt die WHERE Bedingung niemals TRUE zurück, obwohl Ich weiß, dass sich die Werte in meiner Tabelle befinden.

Anders als bei Shapefiles müssen die PostGIS-Feldnamen in EXPRESSION mit Kleinbuchstaben eingetragen werden.

EXPRESSION ([numlanes] >= 6)

6.1.2.2.

Der FILTER, den ich bei meinen Shapefiles verwende, funktioniert nicht für meine PostGIS Tabelle, obwohl diese die gleichen Daten aufweist.

Anders als bei Shapefiles, nutzen die Filter bei PostGIS-Layern die SQL Syntax (sie werden an die SQL-Anweisung, die vom PostGIS Konnektor für die Darstellung der Layer im Mapserver erzeugt wird, angehängt).

FILTER "type = 'highway' and numlanes >= 4"

6.1.2.3.

Mein PostGIS Layer wird viel langsamer dargestellt als mein Shapefile Layer. Ist das normal?

Je mehr Features eine bestimmte Karte aufweist, umso wahrscheinlicher ist es, dass PostGIS langsamer ist als Shapefiles. Bei Karten mit relativ wenigen Features (100te) ist PostGIS meist schneller. Bei Karten mit einer hohen Feature Dichte (1000e) wird PostGIS immer langsamer sein.

Falls erhebliche Probleme mit der Zeichenperformance auftreten, haben Sie eventuell keinen räumlichen Index auf die Tabelle gelegt.

postgis# CREATE INDEX geotable_gix ON geotable USING GIST ( geocolumn );
postgis# VACUUM ANALYZE;

6.1.2.4.

Mein PostGIS Layer wird ausgezeichnet dargestellt, aber die Abfragen sind sehr langsam. Was läuft falsch?

Damit Abfragen schnell gehen, müssen Sie einen eindeutigen Schlüssel in Ihrer Tabelle haben und einen Index auf diesen eindeutigen Schlüssell legen.

Sie können den von MapServer zu verwendenden eindeutigen Schlüssel mit der USING UNIQUE Klausel in Ihrer DATA Zeile angeben:

DATA "geom FROM geotable USING UNIQUE gid"

6.1.2.5.

Kann Ich "Geography" Spalten (neu in PostGIS 1.5) als Quelle für MapServer Layer verwenden?

Ja! Für MapServer sind "Geography" Attribute und "Geometry" Attriute dasselbe. Es kann allerdings nur die SRID 4325 verwendet werden. Stellen Sie bitte sicher, dass sich eine "using srid=4326" Klausel in Ihrer DATA Anweisung befindet. Alles andere funktioniert genau so wie bei "Geometry".

DATA "geog FROM geogtable USING SRID=4326 USING UNIQUE gid"

6.1.3. Erweiterte Verwendung

Die SQL-Pseudoklausel USING wird verwendet, um MapServer zusätzliche Information über komplexere Abfragen zukommen zu lassen. Genauer gesagt, wenn entweder ein View oder ein Subselect als Ursprungstabelle verwendet wird (der Ausdruck rechts von "FROM" bei einer DATA Definition) ist es für MapServer schwieriger einen eindeutigen Identifikator für jede Zeile und die SRID der Tabelle automatisch zu bestimmen. Die USINGKlausel kann MapServer die Information über diese beiden Teile wie folgt zukommen lassen:

DATA "geom FROM (
  SELECT
    table1.geom AS geom,
    table1.gid AS gid,
    table2.data AS data
  FROM table1
  LEFT JOIN table2
  ON table1.id = table2.id
) AS new_table USING UNIQUE gid USING SRID=4326"
USING UNIQUE <uniqueid>

MapServer benötigt eine eindeutige ID für jede Zeile um die Zeile bei Kartenabfragen identifizieren zu können. Normalerweise wird der Primärschlüssel aus den Systemtabellen ermittelt. Views und Subselects haben jedoch nicht automatisch eine bekannte eindeutige Spalte. Wenn Sie MapServer's Abfragefunktionalität nutzen wollen, müssen Sie sicherstellen, dass Ihr View oder Subselect eine mit eindeutigen Werten versehene Spalte enthält und diese mit USING UNIQUE gekennzeichnet ist. Zum Beispiel können Sie hierfür die Werte des Primärschlüssels verwenden, oder irgendeine andere Spalte bei der sichergestellt ist dass sie eindeutige Werte für die Ergebnismenge aufweist.

[Note]

"eine Karte abfragen" ist jene Aktion, bei der man auf die Karte klickt und nach Information über Kartenfeatures an dieser Stelle fragt. Verwechseln Sie bitte nicht "Kartenabfragen" mit der SQL Abfrage in der DATA Definition.

USING SRID=<srid>

PostGIS muss wissen, welches Koordinatenreferenzsystem von der Geometrie verwendet wird, um korrekte Daten an MapServer zurückzugeben. Üblicherweise kann man diese Information in der Tabelle "geometry_columns" in der PostGIS Datenbank finden. Dies ist jedoch nicht möglich bei Tabellen die On-the-fly erzeugt wurden, wo wie bei Subselects oder Views. Hierfür erlaubt die Option USING SRID= die Festlegung der richtigen SRID in der DATA Definition.

6.1.4. Beispiele

Beginnen wir mit einem einfachen Beispiel und arbeiten uns dann langsam vor. Betrachten Sie die nachfolgende MapServer Layerdefinition:

LAYER
  CONNECTIONTYPE postgis
  NAME "roads"
  CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
  DATA "geom from roads"
  STATUS ON
  TYPE LINE
  CLASS
    STYLE
      COLOR 0 0 0
    END
  END
END

Dieser Layer stellt alle Straßengeometrien der "roads"-Tabelle schwarz dar.

Angenommen, wir wollen bis zu einem Maßstab von 1:100000 nur die Autobahnen anzeigen - die nächsten zwei Layer erreichen diesen Effekt:

LAYER
  CONNECTIONTYPE postgis
  CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
  PROCESSING "CLOSE_CONNECTION=DEFER"
  DATA "geom from roads"
  MINSCALE 100000
  STATUS ON
  TYPE LINE
  FILTER "road_type = 'highway'"
  CLASS
    COLOR 0 0 0
  END
END
LAYER
  CONNECTIONTYPE postgis
  CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
  PROCESSING "CLOSE_CONNECTION=DEFER"
  DATA "geom from roads"
  MAXSCALE 100000
  STATUS ON
  TYPE LINE
  CLASSITEM road_type
  CLASS
    EXPRESSION "highway"
    STYLE
      WIDTH 2
      COLOR 255 0 0
    END
  END
  CLASS
    STYLE
      COLOR 0 0 0
    END
  END
END

Der erste Layer wird verwendet, wenn der Maßstab größer als 1:100000 ist und es werden nur die Straßen vom Typ "highway"/Autobahn als schwarze Linien dargestellt. Die Option FILTER bedingt, dass nur Straßen vom Typ "highway" angezeigt werden.

Der zweite Layer wird angezeigt, wenn der Maßstab kleiner als 1:100000 ist. Er zeigt die Autobahnen als doppelt so dicke rote Linien an, die anderen Straßen als normale schwarze Linien.

Wir haben eine Reihe von interessanten Aufgaben lediglich mit der von MapServer zur Verfügung gestellten Funktionalität durchgeführt, und unsere SQL-Anweisung unter DATA ist trotzdem einfach geblieben. Angenommen, die Namen der Straßen sind in einer anderen Tabelle gespeichert (wieso auch immer) und wir müssen einen Join ausführen, um sie für die Straßenbeschriftung verwenden zu können.

LAYER
  CONNECTIONTYPE postgis
  CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
  DATA "geom FROM (SELECT roads.gid AS gid, roads.geom AS geom,
        road_names.name as name FROM roads LEFT JOIN road_names ON
        roads.road_name_id = road_names.road_name_id)
        AS named_roads USING UNIQUE gid USING SRID=4326"
  MAXSCALE 20000
  STATUS ON
  TYPE ANNOTATION
  LABELITEM name
  CLASS
    LABEL
      ANGLE auto
      SIZE 8
      COLOR 0 192 0
      TYPE truetype
      FONT arial
    END
  END
END

Dieser Beschriftungslayer fügt grüne Beschriftungen zu allen Straßen hinzu, wenn der Maßstab 1:20000 oder weniger wird. Es zeigt auch wie man einen SQL-Join in einer DATA Definition verwenden kann.

6.2. Java Clients (JDBC)

Java Clients können auf die PostGIS Geoobjekte in der PostgreSQL Datenbank entweder direkt über die Textdarstellung zugreifen oder über die Objekte der JDBC Erweiterung, die mit PostGIS gebündelt sind. Um die Objekte der Erweiterung zu nutzen, muss sich die Datei "postgis.jar" zusammen mit dem JDBC Treiberpaket "postgresql.jar" in Ihrem CLASSPATH befinden.

import java.sql.*;
import java.util.*;
import java.lang.*;
import org.postgis.*;

public class JavaGIS {

public static void main(String[] args) {

  java.sql.Connection conn;

  try {
    /*
    * Den JDBC Treiber laden und eine Verbindung herstellen.
    */
    Class.forName("org.postgresql.Driver");
    String url = "jdbc:postgresql://localhost:5432/database";
    conn = DriverManager.getConnection(url, "postgres", "");
    /*
    * Die geometrischen Datentypen zu der Verbindung hinzufügen. Beachten Sie bitte,
    * dass Sie die Verbindung in eine pgsql-specifische Verbindung umwandeln
    * bevor Sie die Methode addDataType() aufrufen.
    */
    ((org.postgresql.PGConnection)conn).addDataType("geometry",Class.forName("org.postgis.PGgeometry"));
    ((org.postgresql.PGConnection)conn).addDataType("box3d",Class.forName("org.postgis.PGbox3d"));
    /*
    * Eine Anweisung erzeugen und eine Select Abfrage ausführen.
    */
    Statement s = conn.createStatement();
    ResultSet r = s.executeQuery("select geom,id from geomtable");
    while( r.next() ) {
      /*
      * Die Geometrie als Objekt abrufen und es in einen geometrischen Datentyp umwandeln.
      * Ausdrucken.
      */
      PGgeometry geom = (PGgeometry)r.getObject(1);
      int id = r.getInt(2);
      System.out.println("Row " + id + ":");
      System.out.println(geom.toString());
    }
    s.close();
    conn.close();
  }
catch( Exception e ) {
  e.printStackTrace();
  }
}
}

Das Objekt "PGgeometry" ist ein Adapter, der abhängig vom Datentyp ein bestimmtes topologisches Geoobjekt (Unterklassen der abstrakten Klasse "Geometry") enthält: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon.

PGgeometry geom = (PGgeometry)r.getObject(1);
if( geom.getType() == Geometry.POLYGON ) {
  Polygon pl = (Polygon)geom.getGeometry();
  for( int r = 0; r < pl.numRings(); r++) {
    LinearRing rng = pl.getRing(r);
    System.out.println("Ring: " + r);
    for( int p = 0; p < rng.numPoints(); p++ ) {
      Point pt = rng.getPoint(p);
      System.out.println("Point: " + p);
      System.out.println(pt.toString());
    }
  }
}

Das JavaDoc der Erweiterung liefert eine Referenz für die verschiedenen Zugriffsfunktionen auf die Geoobjekte.

6.3. C Clients (libpq)

...

6.3.1. Text Cursor

...

6.3.2. Binäre Cursor

...

Chapter 7. Performance Tipps

7.1. Kleine Tabellen mit großen Geometrien

7.1.1. Problembeschreibung

Aktuelle PostgreSQL Versionen (inklusive 9.6) haben eine Schwäche des Optimizers in Bezug auf TOAST Tabellen. TOAST Tabellen bieten eine Art "Erweiterungsraum", der benutzt wird um große Werte (im Sinne der Datengröße), welche nicht in die üblichen Datenspeicherseiten passen (wie lange Texte, Bilder oder eine komplexe Geometrie mit vielen Stützpunkten) auszulagern, siehe the PostgreSQL Documentation for TOAST für mehr Information).

Das Problem tritt bei Tabellen mit relativ großen Geometrien, aber wenigen Zeilen auf (z.B. eine Tabelle welche die europäischen Ländergrenzen in hoher Auflösung beinhaltet). Dann ist die Tabelle selbst klein, aber sie benützt eine Menge an TOAST Speicherplatz. In unserem Beispiel hat die Tabelle um die 80 Zeilen und nutzt dafür nur 3 Speicherseiten, während die TOAST Tabelle 8225 Speicherseiten benützt.

Stellen Sie sich nun eine Abfrage vor, die den geometrischen Operator && verwendet, um ein Umgebungsrechteck mit nur wenigen Zeilen zu ermitteln. Der Abfrageoptimierer stellt fest, dass die Tabelle nur 3 Speicherseiten und 80 Zeilen aufweist. Er nimmt an, das ein sequentieller Scan bei einer derart kleinen Tabelle wesentlich schneller abläuft als die Verwendung eines Indizes. Und so entscheidet er den GIST Index zu ignorieren. Normalerweise stimmt diese Annahme. Aber in unserem Fall, muss der && Operator die gesamte Geometrie von der Festplatte lesen um den BoundingBox-Vergleich durchführen zu können, wodurch auch alle TOAST-Speicherseiten gelesen werden.

Um zu sehen, ob dieses Problem auftritt, können Sie den "EXPLAIN ANALYZE" Befehl von PostgreSQL anwenden. Mehr Information und die technischen Feinheiten entnehmen Sie bitte dem Thread auf der Postgres Performance Mailing List: http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php

und einem neueren Thread über PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

7.1.2. Umgehungslösung

Die PostgreSQL Entwickler versuchen das Problem zu lösen, indem sie die Abschätzung der Abfragen TOAST-gewahr machen. Zur Überbrückung zwei Workarounds:

Der erste Workaround besteht darin den Query Planer zu zwingen, den Index zu nutzen. Setzen Sie "SET enable_seqscan TO off;" am Server bevor Sie die Abfrage ausführen. Dies zwingt den Query Planer grundsätzlich dazu sequentielle Scans, wann immer möglich, zu vermeiden. Womit der GIST Index wie üblich verwendet wird. Aber dieser Parameter muss bei jeder Verbindung neu gesetzt werden, und er verursacht das der Query Planer Fehleinschätzungen in anderen Fällen macht. Daher sollte "SET enable_seqscan TO on;" nach der Abfrage ausgeführt werden.

Der zweite Workaround besteht darin, den sequentiellen Scan so schnell zu machen wie der Query Planer annimmt. Dies kann durch eine zusätzliche Spalte, welche die BBOX "zwischenspeichert" und über die abgefragt wird, erreicht werden. In Unserem Beispiel sehen die Befehle dazu folgendermaßen aus:

SELECT AddGeometryColumn('myschema','mytable','bbox','4326','GEOMETRY','2');
UPDATE mytable SET bbox = ST_Envelope(ST_Force2D(the_geom));

Nun ändern Sie bitte Ihre Abfrage so, das der && Operator gegen die bbox anstelle der geom_column benutzt wird:

SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);

Selbstverständlich muss man die BBOX synchron halten. Die transparenteste Möglichkeit dies zu erreichen wäre über Trigger. Sie können Ihre Anwendung derart abändern, das die BBOX Spalte aktuell bleibt oder ein UPDATE nach jeder Änderung durchführen.

7.2. CLUSTER auf die geometrischen Indizes

Für Tabelle die hauptsächlich read-only sind und bei denen ein einzelner Index für die Mehrheit der Abfragen verwendet wird, bietet PostgreSQL den CLUSTER Befehl. Dieser Befehl ordnet alle Datenzeilen in derselben Reihenfolge an wie die Kriterien bei der Indexerstellung, was zu zwei Performance Vorteilen führt: Erstens wird für die Index Range Scans die Anzahl der Suchabfragen über die Datentabelle stark reduziert. Zweitens, wenn sich der Arbeitsbereich auf einige kleine Intervale des Index beschränkt ist das Caching effektiver, da die Datenzeilen über weniger data pages verteilt sind. (Sie dürfen sich nun eingeladen fühlen, die Dokumentation über den CLUSTER Befehl in der PostgreSQL Hilfe nachzulesen.)

Die aktuelle PostgreSQL Version erlaubt allerdings kein clustern an Hand von PostGIS GIST Indizes, da GIST Indizes NULL Werte einfach ignorieren. Sie erhalten eine Fehlermeldung wie:

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "the_geom" NOT NULL.

Wie die HINT Meldung mitteilt, kann man diesen Mangel umgehen indem man eine "NOT NULL" Bedingung auf die Tabelle setzt:

lwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null;
ALTER TABLE

Dies funktioniert natürlich nicht, wenn Sie tatsächlich NULL Werte in Ihrer Geometriespalte benötigen. Außerdem müssen Sie die obere Methode zum Hinzufügen der Bedingung verwenden. Die Verwendung einer CHECK Bedingung wie "ALTER TABLE blubb ADD CHECK (geometry is not null);" wird nicht klappen.

7.3. Vermeidung von Dimensionsumrechnungen

Manchmal kann es vorkommen, das Sie 3D- oder 4D-Daten in Ihrer Tabelle haben, aber immer mit den OpenGIS compliant ST_AsText() oder ST_AsBinary() Funktionen, die lediglich 2D Geometrien ausgeben, zugreifen. Dies geschieht indem intern die ST_Force2D() Funktion aufgerufen wird, welche einen wesentlichen Overhead für große Geometrien aufweist. Um diesen Overhead zu vermeiden kann es praktikabel sein diese zusätzlichen Dimensionen ein für alle mal im Voraus zu löschen:

UPDATE mytable SET the_geom = ST_Force2D(the_geom);
VACUUM FULL ANALYZE mytable;

Beachten Sie bitte, falls Sie die Geometriespalte über AddGeometryColumn() hinzugefügt haben, das dadurch eine Bedingung auf die Dimension der Geometrie gesetzt ist. Um dies zu Überbrücken löschen Sie die Bedingung. Vergessen Sie bitte nicht den Eintrag in die geometry_columns Tabelle zu erneuern und die Bedingung anschließend erneut zu erzeugen.

Bei großen Tabellen kann es vernünftig sein, diese UPDATE in mehrere kleinere Portionen aufzuteilen, indem man das UPDATE mittels WHERE Klausel und eines Primärschlüssels, oder eines anderen passenden Kriteriums, beschränkt und ein einfaches "VACUUM;" zwischen den UPDATEs aufruft. Dies verringert den Bedarf an temporären Festplattenspeicher drastisch. Außerdem, falls die Datenbank gemischte Dimensionen der Geometrie aufweist, kann eine Einschränkung des UPDATES mittels "WHERE dimension(the_geom)>2" das wiederholte Schreiben von Geometrien, welche bereits in 2D sind, vermeiden.

7.4. Tunen der Konfiguration

Die Feinabstimmung von PostGIS ist dem Tunen für jeglichen PostgreSQL workload sehr ähnlich. Die einzige zusätzliche Anmerkung, die Sie im Kopf behalten müssen ist, das Geometrien und Raster groß sind, so das auf den Arbeitsspeicher bezogene Optimierungen im allgemeinen einen größeren Einfluß auf PostGIS haben als andere Arten von PostgreSQL Abfragen.

Für allgemeine Details zur PostgreSQL Optimierung, siehe Tuning your PostgreSQL Server.

Für PostgreSQL 9.4+ kann dies alles auf der Serverebene gesetzt werden, ohne das postgresql.conf oder postgresql.auto.conf angerührt werden müssen, indem man den ALTER SYSTEM.. Befehl nützt.

ALTER SYSTEM SET work_mem = '256MB';
-- dies erzwingt die non-startup Konfiguration für neue Verbindungen
SELECT pg_reload_conf();
-- zeige aktuelle Einstellungen
-- benutzen Sie bitte SHOW ALL um alle Einstellungen anzuzeigen
SHOW work_mem;

Zusätzlich zu diesen Einstellungen verfügt PostGIS über einige eigene Einstellungen welche unter Section 8.2, “PostGIS Grand Unified Custom Variables (GUCs)” aufgeführt sind.

7.4.1. Startup/Inbetriebnahme

Folgende Einstellungen werden in der postgresql.conf konfiguriert:

constraint_exclusion

  • Default: partition

  • Dies wird im allgemeinen zur Tabellenpartitionierung verwendet. Die Standardeinstellung ist "partition". Dies ist ideal für PostgreSQL 8.4 oder höher, da es den Query Planer veranlasst nur jene Tabellen, die sich in einer vererbten Hierarchie befinden, in Hinblick auf Bedingungen zu analysieren.

shared_buffers

  • Standard: ~128MB in PostgreSQL 9.6

  • Auf ca. 25% bis 40% des verfügbaren RAM setzen. Unter Windows können Sie nicht so hoch ansetzen.

max_worker_processes Diese Einstellung ist erst ab PostgreSQL 9.4+ verfügbar. Ab PostgreSQL 9.6+ hat diese Einstellung eine zusätzliche Bedeutung, da sie die maximale Anzahl von Prozessen bestimmt, die bei parallel ablaufenden Abfragen verwendet werden können.

  • Default: 8

  • Bestimmt die maximale Anzahl von Hintergrundprozessen die das System unterstützen kann. Dieser Parameter kann nur beim Serverstart gesetzt werden.

7.4.2. Runtime/Laufzeit

work_mem (jener Arbeitsspeicher der für Sortieroperationen und komplexe Abfragen benutzt wird)

  • Default: 1-4MB

  • Nach oben setzen für große Datenbanken, komplexe Abfragen und wenn große Mengen an Arbeitsspeicher zur Verfügung stehen.

  • Nach unten setzen bei vielen gleichzeitigen Anwendern oder wenn wenig Arbeitsspeicher zur Verfügung steht

  • Falls sie viel Arbeitsspeicher aber wenig Entwickler zur Verfügung haben:

    SET work_mem TO '256MB';

maintenance_work_mem (wird für VACUUM, CREATE INDEX, etc. genutzt)

  • Default: 16-64MB

  • Ist im allgemeinen zu niedrig gesetzt - bindet I/O, sperrt Objekte während es den Speicher auslagert

  • Es werden 32MB bis 1GB auf Produktionsservern mit viel Hauptspeicher empfohlen, was allerdings von der Anzahl der Anwender abhängt. Falls Sie eine Menge an Arbeitsspeicher und wenige Entwickler haben:

    SET maintenance_work_mem TO '1GB';

max_parallel_workers_per_gather

max_parallel_workers_per_gather Diese Enstellung ist erst ab PostgreSQL 9.6+ verfügbar und wirkt sich erst ab PostGIS 2.3+ aus, da nur PostGIS 2.3+ parallel laufende Abfragen unterstützt. Wenn der Parameter auf einen höheren Wert als 0 gestellt wird können manche Abfragen, wie jene die Relationsfunktionen wie ST_Intersects verwenden, mehrere Prozesse benutzen und mehr als doppelt so schnell ablaufen. Falls Sie eine große Anzahl an Prozessoren zur Verfügung haben, sollten Sie diesen Wert auf die Anzahl der Prozessoren setzen. Stellen Sie bitte auch sicher die max_worker_processes auf zumindest die gleiche Anzahl zu erhöhen.

  • Default: 0

  • Setzt die maximale Anzahl von Workern, die durch einen einzelnen Gather Knoten aufgerufen werden können. Parallele Worker werden aus einem Pool von Prozessen, welche von max_worker_processes aufgespannt sind, entnommen. Beachten Sie bitte, das die angeforderte Anzahl von Workern zur Laufzeit nicht tatsächlich zur Verfügung stehen kann. Falls dies auftritt wird der Plan mit weniger Workern als erwartet ausgeführt, was leistungsschwach sein kann. Setzt man den Wert auf 0, was der Standardeinstellung entspricht, wird die parallele Ausführung von Abfragen unterbunden.

Chapter 8. Referenz PostGIS

Nachfolgend sind jene Funktionen aufgeführt, die ein PostGIS Anwender am ehesten benötigt. Es gibt weitere Funktionen, die jedoch keinen Nutzen für den allgemeinen Anwender haben, da es sich um Hilfsfunktionen für PostGIS Objekte handelt.

[Note]

PostGIS hat begonnen die bestehende Namenskonvention in eine SQL-MM orientierte Konvention zu ändern. Daher wurden die meisten Funktionen, die Sie kennen und lieben gelernt haben, mit dem Standardpräfix (ST) für spatiale Datentypen umbenannt. Vorhergegangene Funktionen sind noch verfügbar; wenn es aber entsprechende aktualisierte Funktionen gibt, dann werden sie in diesem Dokument nicht mehr aufgeführt. Wenn Funktionen kein ST_ Präfix aufweisen und in dieser Dokumentation nicht mehr angeführt sind, dann gelten sie als überholt und werden in einer zukünftigen Release entfernt. Benutzten Sie diese daher BITTE NICHT MEHR.

8.1. PostgreSQL und PostGIS Datentypen - Geometry/Geography/Box

Abstract

Dieser Abschnitt listet die von PostGIS installierten PostgreSQL-Datentypen auf. Beachten Sie bitte die hier beschriebene Verhaltensweise bei der Typumwandlung. Diese ist insbesondere dann sehr wesentlich, wenn Sie Ihre eigenen Funktionen entwerfen.

Each data type describes its type casting behaviour. A type cast converts values of one data type into another type. PostgreSQL allows defining casting behavior for custom types, along with the functions used to convert type values. Casts can have automatic behaviour, which allows automatic conversion of a function argument to a type supported by the function.

Some casts have explicit behaviour, which means the cast must be specified using the syntax CAST(myval As sometype) or myval::sometype. Explicit casting avoids the issue of ambiguous casts, which can occur when using an overloaded function which does not support a given type. For example, a function may accept a box2d or a box3d, but not a geometry. Since geometry has an automatic cast to both box types, this produces an "ambiguous function" error. To prevent the error use an explicit cast to the desired box type.

All data types can be cast to text, so this does not need to be specified explicitly.

box2d — Ein Quader der aus Xmin, Ymin, Zmin, Xmax, Ymax und Zmax gebildet wird. Wird oft verwendet, um die 3D Ausdehnung einer Geometrie oder einer Sammelgeometrie zu erhalten.
box3d — Ein Quader der aus Xmin, Ymin, Zmin, Xmax, Ymax und Zmax gebildet wird. Wird oft verwendet, um die 3D Ausdehnung einer Geometrie oder einer Sammelgeometrie zu erhalten.
geometry — Der geographische Datentyp "Geography" wird zur Abbildung eines Geoobjektes im geographischen Kugelkoordinatensystem verwendet.
geometry_dump — A composite type used to describe the parts of complex geometry.
geography — The type representing spatial features with geodetic (ellipsoidal) coordinate systems.

Name

box2d — Ein Quader der aus Xmin, Ymin, Zmin, Xmax, Ymax und Zmax gebildet wird. Wird oft verwendet, um die 3D Ausdehnung einer Geometrie oder einer Sammelgeometrie zu erhalten.

Beschreibung

Box3D ist ein geometrischer Datentyp, der den umschreibenden Quader einer oder mehrerer geometrischer Objekte abbildet. ST_3DExtent gibt ein Box3D-Objekt zurück.

The representation contains the values xmin, ymin, xmax, ymax. These are the minimum and maxium values of the X and Y extents.


Name

box3d — Ein Quader der aus Xmin, Ymin, Zmin, Xmax, Ymax und Zmax gebildet wird. Wird oft verwendet, um die 3D Ausdehnung einer Geometrie oder einer Sammelgeometrie zu erhalten.

Beschreibung

Box3D ist ein geometrischer Datentyp, der den umschreibenden Quader einer oder mehrerer geometrischer Objekte abbildet. ST_3DExtent gibt ein Box3D-Objekt zurück.

The representation contains the values xmin, ymin, zmin, xmax, ymax, zmax. These are the minimum and maxium values of the X, Y and Z extents.

Typumwandlung

Dieser Abschnitt beschreibt sowohl die automatischen, als auch die expliziten Typumwandlungen, die für diesen Datentyp erlaubt sind.

Typumwandlung nachVerhaltensweise
boxautomatisch
box2dautomatisch
geometryautomatisch

Name

geometry — Der geographische Datentyp "Geography" wird zur Abbildung eines Geoobjektes im geographischen Kugelkoordinatensystem verwendet.

Beschreibung

Der Datentyp "geometry" ist der elementare räumliche Datentyp von PostGIS zur Abbildung eines Geoobjektes in das kartesische Koordinatensystem.

Alle räumlichen Operationen an einer Geometrie verwenden die Einheiten des Koordinatenreferenzsystems in dem die Geometrie vorliegt.

Typumwandlung

Dieser Abschnitt beschreibt sowohl die automatischen, als auch die expliziten Typumwandlungen, die für diesen Datentyp erlaubt sind.

Typumwandlung nachVerhaltensweise
boxautomatisch
box2dautomatisch
box3dautomatisch
Byteaautomatisch
geographyautomatisch
Textautomatisch

Name

geometry_dump — A composite type used to describe the parts of complex geometry.

Beschreibung

geometry_dump is a composite data type containing the fields:

  • geom - a references to a component geometry

  • path[] - a 1-dimensional integer array that defines the navigation path within the dumped geometry to the geom component. The path array starts at 1 (e.g. path[1] is the first element.)

It is used by the ST_Dump* family of functions as an output type to explode a complex geometry into its constituent parts.


Name

geography — The type representing spatial features with geodetic (ellipsoidal) coordinate systems.

Beschreibung

Der geographische Datentyp "Geography" wird zur Abbildung eines Geoobjektes im geographischen Kugelkoordinatensystem verwendet.

Spatial operations on the geography type provide more accurate results by taking the ellipsoidal model into account.

Typumwandlung

Dieser Abschnitt beschreibt sowohl die automatischen, als auch die expliziten Typumwandlungen, die für diesen Datentyp erlaubt sind.

Typumwandlung nachVerhaltensweise
geometryexplizit

8.2. PostGIS Grand Unified Custom Variables (GUCs)

Abstract

Dieser Abschnitt listet die PostGIS-spezifischen Grand Unified Custom Variables (GUC) auf. Diese können global, pro Datenbank, Session oder Transaktion gesetzt werden. Am Besten werden diese global oder auf Datenbankebene gesetzt.

postgis.backend — Dieses Backend stellt eine Funktion zur Auswahl zwischen GEOS und SFCGAL zur Verfügung.
postgis.gdal_datapath — Eine Konfigurationsmöglichkeit um den Wert von GDAL's GDAL_DATA Option zu setzen. Wenn sie nicht gesetzt ist, wird die Umgebungsvariable GDAL_DATA verwendet.
postgis.gdal_enabled_drivers — Eine Konfigurationsmöglichkeit um einen GDAL Treiber in der PostGIS Umgebung zu aktivieren. Beeinflusst die Konfigurationsvariable GDAL_SKIP von GDAL.
postgis.enable_outdb_rasters — Eine boolesche Konfigurationsmöglichkeit um den Zugriff auf out-db Rasterbänder zu ermöglichen

Name

postgis.backend — Dieses Backend stellt eine Funktion zur Auswahl zwischen GEOS und SFCGAL zur Verfügung.

Beschreibung

Diese GUC hat nur Bedeutung, wenn Sie PostGIS mit SFCGAL Unterstützung kompiliert haben. Funktionen, welche sowohl bei GEOS als auch bei SFCGAL die gleiche Bezeichnung haben, werden standardmäßig mit dem geos Backend ausgeführt. Die Standardeinstellung wird mit dieser Variablen überschrieben und SFCGAL für den Aufruf verwendet.

Verfügbarkeit: 2.1.0

Beispiele

Setzt das Backend für die Dauer der Verbindung

set postgis.backend = sfcgal;

Setzt das Backend für neue Verbindungen zur Datenbank

ALTER DATABASE mygisdb SET postgis.backend = sfcgal;

Name

postgis.gdal_datapath — Eine Konfigurationsmöglichkeit um den Wert von GDAL's GDAL_DATA Option zu setzen. Wenn sie nicht gesetzt ist, wird die Umgebungsvariable GDAL_DATA verwendet.

Beschreibung

Eine PostgreSQL GUC Variable zum setzten von GDAL's GDAL_DATA Option. Der postgis.gdal_datapath Wert sollte dem gesamten physischen Pfad zu den Datendateien von GDAL entsprechen.

Diese Konfigurationsmöglichkeit ist am nützlichsten auf Windows Plattformen, wo der Dateipfad von "data" nicht fest kodiert ist. Diese Option sollte auch gesetzt werden, wenn sich die Datendateien nicht in dem von GDAL erwarteten Pfad befinden.

[Note]

Diese Option kann in der Konfigurationsdatei "postgresql.conf" gesetzt werden. Sie kann auch pro Verbindung oder pro Transaktion gesetzt werden.

Verfügbarkeit: 2.2.0

[Note]

Zusätzliche Informationen über GDAL_DATA ist unter den Konfigurationsmöglichkeiten für GDAL zu finden.

Beispiele

Den postgis.gdal_datapath setzen oder zurücksetzen

SET postgis.gdal_datapath TO '/usr/local/share/gdal.hidden';
SET postgis.gdal_datapath TO default;
                                

Auf Windows für eine bestimmte Datenbank setzen

ALTER DATABASE gisdb
SET postgis.gdal_datapath = 'C:/Program Files/PostgreSQL/9.3/gdal-data';

Name

postgis.gdal_enabled_drivers — Eine Konfigurationsmöglichkeit um einen GDAL Treiber in der PostGIS Umgebung zu aktivieren. Beeinflusst die Konfigurationsvariable GDAL_SKIP von GDAL.

Beschreibung

Eine Konfigurationsmöglichkeit um einen GDAL Treiber in der PostGIS Umgebung zu aktivieren. Beeinflusst die Konfigurationsvariable GDAL_SKIP von GDAL. Diese Option kann in der PostgreSQL Konfigurationsdatei "postgresql.conf" gesetzt werden. Sie kann aber auch pro Verbindung oder pro Transaktion gesetzt werden. 

Der Ausgangswert von postgis.gdal_enabled_drivers kann auch beim Startprozess von PostgreSQL gesetzt werden, nämlich durch die Übergabe der Umgebungsvariablen POSTGIS_GDAL_ENABLED_DRIVERS, welche die Liste der aktivierten Treiber enthält.

Aktivierte GDAL Treiber können auch über die Kurzbezeichnung oder den Code des Treibers bestimmt werden. Kurzbezeichnungen und Codes für die Treiber finden sich unter GDAL Raster Formate Es können mehrere, durch Leerzeichen getrennte Treiber angegeben werden.

[Note]

Für postgis.gdal_enabled_drivers sind drei spezielle, case-sensitive Codes verfügbar.

  • DISABLE_ALL deaktiviert alle GDAL-Treiber. Falls vorhanden, überschreibt DISABLE_ALL alle anderen Werte in postgis.gdal_enabled_drivers.

  • ENABLE_ALL aktiviert alle GDAL-Treiber.

  • VSICURL aktiviert GDAL's /vsicurl/ virtuelles Dateisystem.

Falls postgis.gdal_enabled_driversauf DISABLE_ALL gesetzt ist, kommt es bei der Anwendung von out-db Rastern, ST_FromGDALRaster(), ST_AsGDALRaster(), ST_AsTIFF(), ST_AsJPEG() und ST_AsPNG() zu Fehlermeldungen.

[Note]

postgis.gdal_enabled_drivers wird bei der Standardinstallation von PostGIS auf DISABLE_ALL gesetzt.

[Note]

Weiterführende Informationen über GDAL_SKIP ist auf GDAL's Configuration Options zu finden.

Verfügbarkeit: 2.2.0

Beispiele

postgis.gdal_enabled_drivers setzen und zurücksetzen

Bestimmt das Backend, das für alle neuen Verbindungen zur Datenbank verwendet wird

ALTER DATABASE mygisdb SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';

Setzt die standardmäßig aktivierten Treiber für alle neuen Verbindungen zum Server. Benötigt Administratorrechte und PostgreSQL 9.4+. Beachten Sie aber bitte, dass die Datenbank-, Sitzungs- und Benutzereinstellungen dies überschreiben.

ALTER SYSTEM SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SELECT pg_reload_conf();
                                
SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SET postgis.gdal_enabled_drivers = default;
                                

Aktiviert alle GDAL-Treiber

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
                                

Deaktiviert alle GDAL-Treiber

SET postgis.gdal_enabled_drivers = 'DISABLE_ALL';
                                

Name

postgis.enable_outdb_rasters — Eine boolesche Konfigurationsmöglichkeit um den Zugriff auf out-db Rasterbänder zu ermöglichen

Beschreibung

Eine boolesche Konfigurationsmöglichkeit um den Zugriff auf out-db Rasterbänder zu ermöglichen. Diese Option kann in der PostgreSQL Konfigurationsdatei "postgresql.conf" gesetzt werden. Kann aber auch pro Verbindung oder pro Transaktion gesetzt werden.

Der Ausgangswert von postgis.enable_outdb_rasters kann auch beim Startprozess von PostgreSQL gesetzt werden, nämlich durch die Übergabe der Umgebungsvariablen POSTGIS_ENABLE_OUTDB_RASTERS, welche ungleich null sein muss.

[Note]

Auch wenn postgis.enable_outdb_rasters True ist, bestimmt die GUC postgis.enable_outdb_rasters die zugänglichen Rasterformate.

[Note]

Bei der Standardinstallation von PostGIS ist postgis.enable_outdb_rasters auf False gesetzt.

Verfügbarkeit: 2.2.0

Beispiele

postgis.enable_outdb_rasters setzen oder zurücksetzen

SET postgis.enable_outdb_rasters TO True;
SET postgis.enable_outdb_rasters = default;
SET postgis.enable_outdb_rasters = True;
SET postgis.enable_outdb_rasters = False;
                                

8.3. Geometrische Managementfunktionen

Abstract

These functions assist in defining tables containing geometry columns.

AddGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
DropGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
DropGeometryTable — Löscht eine Tabelle und alle Referenzen in dem geometry_columns View.
Find_SRID — Returns the SRID defined for a geometry column.
Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.
UpdateGeometrySRID — Updates the SRID of all features in a geometry column, and the table metadata.

Name

AddGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.

Synopsis

text AddGeometryColumn(varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true);

text AddGeometryColumn(varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true);

text AddGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true);

Beschreibung

Fügt eine Geometriespalte zu den Attributen einer bestehende Tabelle hinzu. Der schema_name ist der Name des Schemas, in dem sich die Tabelle befindet. Bei der srid handelt es sich um eine Ganzzahl, welche auf einen entsprechenden Eintrag in der SPATIAL_REF_SYS Tabelle verweist. Beim type handelt es sich um eine Zeichenkette, welche dem Geometrietyp entsprechen muss, z.B.: 'POLYGON' oder 'MULTILINESTRING'. Falls der Name des Schemas nicht existiert (oder im aktuellen search_path nicht sichtbar ist), oder die angegebene SRID, der Geometrietyp, oder die Dimension ungültig sind, wird ein Fehler angezeigt.

[Note]

Änderung: 2.0.0 Diese Funktion aktualisiert die geometry_columns Tabelle nicht mehr, da geometry_columns jetzt ein View ist, welcher den Systemkatalog ausliest. Standardmäßig werden auch keine Bedingungen/constraints erzeugt, sondern es wird der in PostgreSQL integrierte Typmodifikaor verwendet. So entspricht zum Beispiel die Erzeugung einer wgs84 POINT Spalte mit dieser Funktion: ALTER TABLE some_table ADD COLUMN geom geometry(Point,4326);

Änderung: 2.0.0 Falls Sie das alte Verhalten mit Constraints wünschen, setzen Sie bitte use_typmod vom standardmäßigen true auf false.

[Note]

Änderung: 2.0.0 Views können nicht mehr händisch in "geometry_columns" registriert werden. Views auf eine Geometrie in Typmod-Tabellen, bei denen keine Adapterfunktion verwendet wird, registrieren sich selbst auf korrekte Weise, da sie die Typmod-Verhaltensweise von der Spalte der Stammtabelle erben. Views die ein geometrische Funktion ausführen die eine andere Geometrie ausgibt, benötigen die Umwandlung in eine Typmod-Geometrie, damit die Geometrie des Views korrekt in "geometry_columns" registriert wird. Siehe Section 4.3.4, “Geometrische Spalten in "geometry_columns" händisch registrieren”.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Verbesserung: 2.0.0 use_typmod Argument eingeführt. Standardmäßig wird eine typmod Geometrie anstelle einer Constraint-basierten Geometrie erzeugt.

Beispiele

-- Ein Schema für die Daten erzeugen
CREATE SCHEMA my_schema;
-- Eine neue einfache PostgreSQL Tabelle ersellen
CREATE TABLE my_schema.my_spatial_table (id serial);

-- Die Beschreibung der Tabelle zeigt eine einfache Tabelle mit einer einzigen "id" Spalte Describing the table shows a simple table with a single "id" column.
postgis=# \d my_schema.my_spatial_table
                                                         Table "my_schema.my_spatial_table"
 Column |  Type   |                                Modifiers
--------+---------+-------------------------------------------------------------------------
 id     | integer | not null default nextval('my_schema.my_spatial_table_id_seq'::regclass)

-- Fügt eine Geometriespalte an die Tabelle an
SELECT AddGeometryColumn ('my_schema','my_spatial_table','geom',4326,'POINT',2);

-- Hinzufügen einer Punktgeometrie mit dem alten, auf Bedingungen basierten Verhalten/old constraint behavior
SELECT AddGeometryColumn ('my_schema','my_spatial_table','geom_c',4326,'POINT',2, false);

--Hinzufügen eines Kurvenpolygons/curvepolygon mittels old constraint behavior
SELECT AddGeometryColumn ('my_schema','my_spatial_table','geomcp_c',4326,'CURVEPOLYGON',2, false);

-- Die neuerliche Beschreibung der Tabelle zeigt die hinzugefügten Geometriespalten an.
\d my_schema.my_spatial_table
                            addgeometrycolumn
-------------------------------------------------------------------------
 my_schema.my_spatial_table.geomcp_c SRID:4326 TYPE:CURVEPOLYGON DIMS:2
(1 row)

                                    Table "my_schema.my_spatial_table"
  Column  |         Type         |                                Modifiers
----------+----------------------+-------------------------------------------------------------------------
 id       | integer              | not null default nextval('my_schema.my_spatial_table_id_seq'::regclass)
 geom     | geometry(Point,4326) |
 geom_c   | geometry             |
 geomcp_c | geometry             |
Check constraints:
    "enforce_dims_geom_c" CHECK (st_ndims(geom_c) = 2)
    "enforce_dims_geomcp_c" CHECK (st_ndims(geomcp_c) = 2)
    "enforce_geotype_geom_c" CHECK (geometrytype(geom_c) = 'POINT'::text OR geom_c IS NULL)
    "enforce_geotype_geomcp_c" CHECK (geometrytype(geomcp_c) = 'CURVEPOLYGON'::text OR geomcp_c IS NULL)
    "enforce_srid_geom_c" CHECK (st_srid(geom_c) = 4326)
    "enforce_srid_geomcp_c" CHECK (st_srid(geomcp_c) = 4326)

-- Der geometry_columns View registriert die neuen Spalten --
SELECT f_geometry_column As col_name, type, srid, coord_dimension As ndims
    FROM geometry_columns
    WHERE f_table_name = 'my_spatial_table' AND f_table_schema = 'my_schema';

 col_name |     type     | srid | ndims
----------+--------------+------+-------
 geom     | Point        | 4326 |     2
 geom_c   | Point        | 4326 |     2
 geomcp_c | CurvePolygon | 4326 |     2

Name

DropGeometryColumn — Entfernt eine Geometriespalte aus einer räumlichen Tabelle.

Synopsis

text DropGeometryColumn(varchar table_name, varchar column_name);

text DropGeometryColumn(varchar schema_name, varchar table_name, varchar column_name);

text DropGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name);

Beschreibung

Entfernt eine geometrische Spalte aus der Geometrietabelle. Der "schema_name" muss mit dem Feld "f_table_schema" in der Tabelle "geometry_columns" übereinstimmen.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

[Note]

Änderung: 2.0.0 Diese Funktion wurde zwecks Abwärtskompatibilität eingeführt. Seit geometry_columns ein View auf den Systemkatalog ist, können Sie die Geometriespalte, so wie jede andere Tabellenspalte, mit ALTER TABLE löschen.

Beispiele

SELECT DropGeometryColumn ('my_schema','my_spatial_table','geom');
                        ----RESULT output ---
                                          dropgeometrycolumn
------------------------------------------------------
 my_schema.my_spatial_table.geom effectively removed.

-- In PostGIS 2.0+ entspricht das oben angeführte Aufruf ebenfalls dem Standard
-- Der standardmäßige ALTER TABLE Aufruf.  Beide Aufrufe entfernen die Tabelle aus dem  geometry_columns Register.
ALTER TABLE my_schema.my_spatial_table DROP column geom;
                

Name

DropGeometryTable — Löscht eine Tabelle und alle Referenzen in dem geometry_columns View.

Synopsis

boolean DropGeometryTable(varchar table_name);

boolean DropGeometryTable(varchar schema_name, varchar table_name);

boolean DropGeometryTable(varchar catalog_name, varchar schema_name, varchar table_name);

Beschreibung

Löscht eine Tabelle und deren Verweise in "geometry_columns". Anmerkung: verwendet current_schema() wenn kein Schema angegeben wird, eine Schema erkennende pgsql Installation vorausgesetzt.

[Note]

Änderung: 2.0.0 Diese Funktion wurde zwecks Abwärtskompatibilität eingeführt. Seit geometry_columns ein View auf den Systemkatalog ist, können Sie eine Tabelle mit einer Geometriespalte, so wie jede andere Tabelle, mit DROP TABLE löschen.

Beispiele

SELECT DropGeometryTable ('my_schema','my_spatial_table');
---- RESULT output ---
my_schema.my_spatial_table dropped.

-- Obiges ist nun gleichbedeund mit --
DROP TABLE my_schema.my_spatial_table;
                

Name

Find_SRID — Returns the SRID defined for a geometry column.

Synopsis

text Populate_Geometry_Columns(boolean use_typmod=true);

int Populate_Geometry_Columns(oid relation_oid, boolean use_typmod=true);

Beschreibung

Returns the integer SRID of the specified geometry column by searching through the GEOMETRY_COLUMNS table. If the geometry column has not been properly added (e.g. with the AddGeometryColumn function), this function will not work.

Beispiele

SELECT Find_SRID('public', 'tiger_us_state_2007', 'the_geom_4269');
find_srid
----------
4269

Siehe auch

???


Name

Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.

Synopsis

text Populate_Geometry_Columns(boolean use_typmod=true);

int Populate_Geometry_Columns(oid relation_oid, boolean use_typmod=true);

Beschreibung

Sorgt dafür, dass die Geometriespalten mit Typmodifikatoren oder mit passenden räumlichen Constraints versehen sind. Dadurch wird die korrekte Registrierung im View geometry_columns sichergestellt. Standardmäßig werden alle Geometriespalten, die keinen Typmodifikator aufweisen, mit Typmodifikatoren versehen. Für die alte Verhaltensweise setzen Sie bitte use_typmod=false

Aus Gründen der Abwärtskompatibilität und für räumliche Anwendungen, wie eine Tabellenvererbung bei denen jede Kindtabelle einen anderen geometrischen Datentyp aufweist, wird die alte Verhaltensweise mit Check-Constraints weiter unterstützt. Wenn Sie diese alte Verhaltensweise benötigen, können Sie den neuen Übergabewert auf FALSE setzen - use_typmod=false. Wenn Sie dies tun, so werden die Geometriespalten anstelle von Typmodifikatoren mit 3 Constraints erstellt. Insbesondere bedeutet dies, dass jede Geometriespalte, die zu einer Tabelle gehört, mindestens drei Constraints aufweist:

  • enforce_dims_the_geom - stellt sicher, dass jede Geometrie dieselbe Dimension hat (siehe ST_NDims)

  • enforce_geotype_the_geom - stellt sicher, dass jede Geometrie vom selben Datentyp ist (siehe GeometryType)

  • enforce_srid_the_geom - stellt sicher, dass jede Geometrie die selbe Projektion hat (siehe ???)

Wenn die oid einer Tabelle übergeben wird, so versucht diese Funktion, die SRID, die Dimension und den Datentyp der Geometrie in der Tabelle zu bestimmen und fügt, falls notwendig, Constraints hinzu. Bei Erfolg wird eine entsprechende Spalte in die Tabelle "geometry_columns" eingefügt, andernfalls wird der Fehler abgefangen und eine Fehlermeldung ausgegeben, die das Problem beschreibt.

Wenn die oid eines Views übergeben wird, so versucht diese Funktion, die SRID, die Dimension und den Datentyp der Geometrie in dem View zu bestimmen und die entsprechenden Einträge in die Tabelle geometry_columns vorzunehmen. Constraints werden allerdings nicht erzwungen.

Die parameterlose Variante ist ein einfacher Adapter für die parametrisierte Variante, welche die Tabelle "geometry_columns" zuerst entleert und dann für jede räumliche Tabelle oder View in der Datenbank wiederbefüllt. Wo es passend ist, werden räumliche Constraints auf die Tabellen gelegt. Es wird die Anzahl der in der Datenbank gefundenen Geometriespalten und die Anzahl der in die Tabelle geometry_columns eingefügten Zeilen ausgegeben. Die parametrisierte Version gibt lediglich die Anzahl der Zeilen aus, die in die Tabelle geometry_columns eingefügt wurden.

Verfügbarkeit: 1.4.0

Änderung: 2.0.0 Standardmäßig werden nun Typmodifikatoren anstelle von Check-Constraints für die Beschränkung des Geometrietyps verwendet. Sie können nach wie vor stattdessen die Verhaltensweise mit Check-Constraints verwenden, indem Sie die neu eingeführte Variable use_typmod auf FALSE setzen.

Erweiterung: 2.0.0 Der optionale Übergabewert use_typmod wurde eingeführt, um bestimmen zu können, ob die Spalten mit Typmodifikatoren oder mit Check-Constraints erstellt werden sollen.

Beispiele

CREATE TABLE public.myspatial_table(gid serial, geom geometry);
INSERT INTO myspatial_table(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326) );
-- Hier werden nun Typmodifikatoren verwendet. Damit dies funktioniert, müssen Daten vorhanden sein
SELECT Populate_Geometry_Columns('public.myspatial_table'::regclass);

populate_geometry_columns
--------------------------
                        1


\d myspatial_table

                                   Table "public.myspatial_table"
 Column |           Type            |                           Modifiers
--------+---------------------------+---------------------------------------------------------------
 gid    | integer                   | not null default nextval('myspatial_table_gid_seq'::regclass)
 geom   | geometry(LineString,4326) |
-- Dies stellt die Geometriespalten auf die Verwendung von Constraints um. Allerdings nur, wenn sie sich nicht in typmod befinden oder nicht bereits Constraints aufweisen.
-- Damit dies funktioniert müssen Daten vorhanden sein
CREATE TABLE public.myspatial_table_cs(gid serial, geom geometry);
INSERT INTO myspatial_table_cs(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326) );
SELECT Populate_Geometry_Columns('public.myspatial_table_cs'::regclass, false);
populate_geometry_columns
--------------------------
                        1
\d myspatial_table_cs

                          Table "public.myspatial_table_cs"
 Column |   Type   |                            Modifiers
--------+----------+------------------------------------------------------------------
 gid    | integer  | not null default nextval('myspatial_table_cs_gid_seq'::regclass)
 geom   | geometry |
Check constraints:
    "enforce_dims_geom" CHECK (st_ndims(geom) = 2)
    "enforce_geotype_geom" CHECK (geometrytype(geom) = 'LINESTRING'::text OR geom IS NULL)
    "enforce_srid_geom" CHECK (st_srid(geom) = 4326)

Name

UpdateGeometrySRID — Updates the SRID of all features in a geometry column, and the table metadata.

Synopsis

text UpdateGeometrySRID(varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar schema_name, varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer srid);

Beschreibung

Erneuert die SRID aller Features in einer Geometriespalte; erneuert die Constraints und die Referenz in "geometry_columns". Anmerkung: verwendet current_schema() wenn kein Schema angegeben wird, eine Schema erkennende pgsql Installation vorausgesetzt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

Insert geometries into roads table with a SRID set already using EWKT format:

COPY roads (geom) FROM STDIN;
SRID=4326;LINESTRING(0 0, 10 10)
SRID=4326;LINESTRING(10 10, 15 0)
\.
                

Ändert die SRID der Straßentabelle auf 4326

SELECT UpdateGeometrySRID('roads','geom',4326);

Das vorhergegangene Beispiel ist gleichbedeutend mit diesr DDL Anweisung

ALTER TABLE roads
  ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 4326)
    USING ST_SetSRID(geom,4326);

Falls Sie sich in der Projektion geirrt haben (oder sie als "unknown" importiert haben) und sie in einem Aufwaschen in die Web Mercator Projektion transformieren wollen, so können Sie dies mit DDL bewerkstelligen. Es gibt jedoch keine äquivalente PostGIS Managementfunktion, die dies in einem Schritt bewerkstelligen könnte.

ALTER TABLE roads
 ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 3857) USING ST_Transform(ST_SetSRID(geom,4326),3857) ;

Siehe auch

UpdateRasterSRID, ???, ???

8.4. Geometrische Konstruktoren

ST_GeomCollFromText — Creates a GeometryCollection or Multi* geometry from a set of geometries.
ST_LineFromMultiPoint — Erzeugt einen LineString aus einer MultiPoint Geometrie.
ST_MakeEnvelope — Erzeugt ein rechteckiges Polygon aus den gegebenen Minimum- und Maximumwerten. Die Eingabewerte müssen in dem Koordinatenreferenzsystem sein, welches durch die SRID angegeben wird.
ST_MakeLine — Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.
ST_MakePoint — Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie.
ST_MakePointM — Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.
ST_MakePolygon — Creates a Polygon from a shell and optional list of holes.
ST_Point — Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein OGC-Alias für ST_MakePoint.
ST_Polygon — Creates a Polygon from a LineString with a specified SRID.
ST_MakeEnvelope — Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

Name

ST_GeomCollFromText — Creates a GeometryCollection or Multi* geometry from a set of geometries.

Synopsis

geometry ST_GeomFromGeoJSON(text geomjson);

geometry ST_GeomFromGeoJSON(json geomjson);

geometry ST_GeomFromGeoJSON(jsonb geomjson);

Beschreibung

Collects geometries into a geometry collection. The result is either a Multi* or a GeometryCollection, depending on whether the input geometries have the same or different types (homogeneous or heterogeneous). The input geometries are left unchanged within the collection.

Variant 1: accepts two input geometries

Variant 2: accepts an array of geometries

Variant 3: aggregate function accepting a rowset of geometries.

[Note]

If any of the input geometries are collections (Multi* or GeometryCollection) ST_Collect returns a GeometryCollection (since that is the only type which can contain nested collections). To prevent this, use ST_Dump in a subquery to expand the input collections to their atomic elements (see example below).

[Note]

ST_Collect and ST_Union appear similar, but in fact operate quite differently. ST_Collect aggregates geometries into a collection without changing them in any way. ST_Union geometrically merges geometries where they overlap, and splits linestrings at intersections. It may return single geometries when it dissolves boundaries.

Verfügbarkeit: 1.4.0 - ST_MakeLine(geomarray) wurde eingeführt. ST_MakeLine Aggregatfunktion wurde verbessert, um mehr Punkte schneller handhaben zu können.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele - Verwendung von XLink

Collect 2D points.

SELECT ST_AsText( ST_Collect( ST_GeomFromText('POINT(1 2)'),
        ST_GeomFromText('POINT(-2 3)') ));

st_astext
----------
MULTIPOINT(1 2,-2 3)

Collect 3D points.

SELECT ST_AsEWKT( ST_Collect( ST_GeomFromEWKT('POINT(1 2 3)'),
                ST_GeomFromEWKT('POINT(1 2 4)') ) );

                st_asewkt
-------------------------
 MULTIPOINT(1 2 3,1 2 4)
 

Collect curves.

SELECT ST_AsText( ST_Collect( 'CIRCULARSTRING(220268 150415,220227 150505,220227 150406)',
                'CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)'));

                st_astext
------------------------------------------------------------------------------------
MULTICURVE(CIRCULARSTRING(220268 150415,220227 150505,220227 150406),
 CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))

Beispiele: Verwendung der Feld-Version

Using an array constructor for a subquery.

SELECT ST_Collect( ARRAY( SELECT the_geom FROM sometable ) );

Using an array constructor for values.

SELECT ST_AsText(  ST_Collect(
                ARRAY[ ST_GeomFromText('LINESTRING(1 2, 3 4)'),
                        ST_GeomFromText('LINESTRING(3 4, 4 5)') ] )) As wktcollect;

--wkt collect --
MULTILINESTRING((1 2,3 4),(3 4,4 5))

Beispiele: Spatiale Aggregatversion

Creating multiple collections by grouping geometries in a table.

SELECT stusps, ST_Collect(f.the_geom) as geom
         FROM (SELECT stusps, (ST_Dump(the_geom)).geom As the_geom
                                FROM
                                somestatetable ) As f
        GROUP BY stusps

Siehe auch

ST_Dump, ST_AsBinary


Name

ST_LineFromMultiPoint — Erzeugt einen LineString aus einer MultiPoint Geometrie.

Synopsis

geometry ST_LineFromMultiPoint(geometry aMultiPoint);

Beschreibung

Erzeugt einen LineString aus einer MultiPoint Geometrie.

Für Punkt mit X-, Y- und M-Koordinaten verwenden Sie bitte ST_MakePointM .

This function supports 3d and will not drop the z-index.

Beispiele

Erzeugt einen LineString aus einer MultiPoint Geometrie.

--ERzeugt die Zeichenkette einer 3D-Linie aus einem 3D-MultiPoint
SELECT ST_AsEWKT(ST_LineFromMultiPoint(ST_GeomFromEWKT('MULTIPOINT(1 2 3, 4 5 6, 7 8 9)')));
--result--
LINESTRING(1 2 3,4 5 6,7 8 9)

Siehe auch

ST_AsEWKT, ST_AsKML


Name

ST_MakeEnvelope — Erzeugt ein rechteckiges Polygon aus den gegebenen Minimum- und Maximumwerten. Die Eingabewerte müssen in dem Koordinatenreferenzsystem sein, welches durch die SRID angegeben wird.

Synopsis

geometry ST_MakeEnvelope(double precision xmin, double precision ymin, double precision xmax, double precision ymax, integer srid=unknown);

Beschreibung

Erzeugt ein rechteckiges Polygon das durch die Minima und Maxima angegeben wird. durch die gegebene Hülle. Die Eingabewerte müssen in dem Koordinatenreferenzsystem sein, welches durch die SRID angegeben wird. Wenn keine SRID angegeben ist, so wird das Koordinatenreferenzsystem "unknown" angenommen

Verfügbarkeit: 1.5

Erweiterung: 2.0: es wurde die Möglichkeit eingeführt, eine Einhüllende/Envelope festzulegen, ohne dass die SRID spezifiziert ist.

Beispiel: Ein Umgebungsrechteck Polygon erzeugen

SELECT ST_AsText(ST_MakeEnvelope(10, 10, 11, 11, 4326));

st_asewkt
-----------
POLYGON((10 10, 10 11, 11 11, 11 10, 10 10))

Name

ST_MakeLine — Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.

Synopsis

geometry ST_MakeLine(geometry set geoms);

geometry ST_MakeLine(geometry geom1, geometry geom2);

geometry ST_MakeLine(geometry[] geoms_array);

Beschreibung

Creates a LineString containing the points of Point, MultiPoint, or LineString geometries. Other geometry types cause an error.

Variant 1: accepts two input geometries

Variant 2: accepts an array of geometries

Variant 3: aggregate function accepting a rowset of geometries. To ensure the order of the input geometries use ORDER BY in the function call, or a subquery with an ORDER BY clause.

Repeated nodes at the beginning of input LineStrings are collapsed to a single point. Repeated points in Point and MultiPoint inputs are not collapsed. ST_RemoveRepeatedPoints can be used to collapse repeated points from the output LineString.

This function supports 3d and will not drop the z-index.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung zur Eingabe von MultiPoint Elementen eingeführt

Verfügbarkeit: 2.0.0 - Unterstützung zur Eingabe von LineString Elementen eingeführt

Verfügbarkeit: 1.4.0 - ST_MakeLine(geomarray) wurde eingeführt. ST_MakeLine Aggregatfunktion wurde verbessert, um mehr Punkte schneller handhaben zu können.

Beispiele: Verwendung der Feld-Version

Create a line composed of two points.

SELECT ST_AsText( ST_MakeLine(ST_MakePoint(1,2), ST_MakePoint(3,4)) );

          st_astext
---------------------
 LINESTRING(1 2,3 4)

Erzeugt eine BOX3D, die durch 2 geometrische 3D-Punkte definiert wird.

SELECT ST_AsEWKT( ST_MakeLine(ST_MakePoint(1,2,3), ST_MakePoint(3,4,5) ));

                st_asewkt
-------------------------
 LINESTRING(1 2 3,3 4 5)

Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.

select ST_AsText( ST_MakeLine( 'LINESTRING(0 0, 1 1)', 'LINESTRING(2 2, 3 3)' ) );

          st_astext
-----------------------------
 LINESTRING(0 0,1 1,2 2,3 3)

Beispiele: Verwendung der Feld-Version

Create a line from an array formed by a subquery with ordering.

SELECT ST_MakeLine( ARRAY( SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY visit_time) );

Create a 3D line from an array of 3D points

SELECT ST_MakeLine(ARRAY(SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY visit_time));

--Making a 3d line with 3 3-d points
SELECT ST_AsEWKT(ST_MakeLine(ARRAY[ST_MakePoint(1,2,3),
                                ST_MakePoint(3,4,5), ST_MakePoint(6,6,6)]));
                st_asewkt
-------------------------
LINESTRING(1 2 3,3 4 5,6 6 6)

Beispiele: Spatiale Aggregatversion

Diese Beispiel nimmt eine Abfolge von GPS Punkten entgegen und erzeugt einen Datensatz für jeden GPS Pfad, wobei das Geometriefeld ein Linienzug ist, welcher in der Reihenfolge der Aufnahmeroute aus den GPS Punkten zusammengesetzt wird.

Using aggregate ORDER BY provides a correctly-ordered linestring.

SELECT gps.track_id, ST_MakeLine(gps.geom ORDER BY gps_time) As geom
        FROM gps_points As gps
        GROUP BY track_id;

Prior to PostgreSQL 9, ordering in a subquery can be used. However, sometimes the query plan may not respect the order of the subquery.

-- Bei Vorgängerversionen von PostgreSQL 9.0 funktioniert dies üblicherweise,
-- allerdings kann es der Anfrageoptimierer gelegentlich vorziehen, die Reihenfolge der Unterabfrage zu missachten.
SELECT gps.gps_track, ST_MakeLine(gps.the_geom) As newgeom
        FROM (SELECT gps_track,gps_time, the_geom
                        FROM gps_points ORDER BY gps_track, gps_time) As gps
        GROUP BY gps.gps_track;

Name

ST_MakePoint — Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie.

Synopsis

geometry ST_Point(float x_lon, float y_lat);

geometry ST_MakePointM(float x, float y, float m);

geometry ST_MakePoint(double precision x, double precision y, double precision z, double precision m);

Beschreibung

Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie.

Für Punkt mit X-, Y- und M-Koordinaten verwenden Sie bitte ST_MakePointM .

Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie (Geometrie mit Kilometrierung). ST_MakePoint ist zwar nicht OGC-konform, ist aber im Allgemeinen schneller und genauer als ??? oder??? und auch leichter anzuwenden wenn Sie mit rohen Koordinaten anstatt mit WKT arbeiten.

[Note]

For geodetic coordinates, X is longitude and Y is latitude

This function supports 3d and will not drop the z-index.

Beispiele

--Gibt einen Punkt mit unbekannter SRID aus
SELECT ST_MakePoint(-71.1043443253471, 42.3150676015829);

--Gibt einen Punkt in geographischer Länge und Breite im WGS84 aus
SELECT ST_SetSRID(ST_MakePoint(-71.1043443253471, 42.3150676015829),4326);

--Gibt einen 3D-Punkt zurück (z.B.: wenn der Punkt eine Höhe aufweist)
SELECT ST_MakePoint(1, 2,1.5);

--Gibt die Z-Koordinate des Punktes zurück
SELECT ST_Z(ST_MakePoint(1, 2,1.5));
result
-------
1.5

Siehe auch

???, ???, ???, ST_MakePointM


Name

ST_MakePointM — Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.

Synopsis

geometry ST_MakePointM(float x, float y, float m);

Beschreibung

Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.

Für Punkt mit X-, Y- und M-Koordinaten verwenden Sie bitte ST_MakePointM .

[Note]

For geodetic coordinates, X is longitude and Y is latitude

Beispiele

[Note]

ST_AsEWKT is used for text output because ST_AsText does not support M values.

Create point with unknown SRID.

SELECT ST_AsEWKT(  ST_MakePointM(-71.1043443253471, 42.3150676015829, 10)  );

                                   st_asewkt
-----------------------------------------------
 POINTM(-71.1043443253471 42.3150676015829 10)

Erzeugt einen Punkt mit x, y und measure/Kilometrierungs Koordinaten.

SELECT ST_AsEWKT( ST_SetSRID(  ST_MakePointM(-71.104, 42.315, 10),  4326));

                                                st_asewkt
---------------------------------------------------------
SRID=4326;POINTM(-71.104 42.315 10)

Get measure of created point.

SELECT ST_M(  ST_MakePointM(-71.104, 42.315, 10)  );

result
-------
10

Name

ST_MakePolygon — Creates a Polygon from a shell and optional list of holes.

Synopsis

geometry ST_MakePolygon(geometry linestring);

geometry ST_MakePolygon(geometry outerlinestring, geometry[] interiorlinestrings);

Beschreibung

Erzeugt ein Polygon, das durch die gegebene Hülle gebildet wird. Die Eingabegeometrie muss aus geschlossenen Linienzügen bestehen.

Variant 1: Accepts one shell LineString.

Variant 2: Accepts a shell LineString and an array of inner (hole) LineStrings. A geometry array can be constructed using the PostgreSQL array_agg(), ARRAY[] or ARRAY() constructs.

[Note]

Diese Funktion akzeptiert keine MULTILINESTRINGs. Verwenden Sie bitte ST_LineMerge oder ST_Dump um Linienzüge zu erzeugen.

This function supports 3d and will not drop the z-index.

Beispiele: Verwendung der Feld-Version

Erzeugt einen LineString aus einem codierten Linienzug.

SELECT ST_MLineFromText('MULTILINESTRING((1 2, 3 4), (4 5, 6 7))');

Create a Polygon from an open LineString, using ST_StartPoint and ST_AddPoint to close it.

SELECT ST_MakePolygon( ST_AddPoint(foo.open_line, ST_StartPoint(foo.open_line)) )
FROM (
  SELECT ST_GeomFromText('LINESTRING(75 29,77 29,77 29, 75 29)') As open_line) As foo;

Erzeugt einen LineString aus einem codierten Linienzug.

SELECT ST_AsEWKT( ST_MakePolygon( 'LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, 75.15 29.53 1)'));

st_asewkt
-----------
POLYGON((75.15 29.53 1,77 29 1,77.6 29.5 1,75.15 29.53 1))

Create a Polygon from a LineString with measures

SELECT ST_AsEWKT( ST_MakePolygon( 'LINESTRINGM(75.15 29.53 1,77 29 1,77.6 29.5 2, 75.15 29.53 2)' ));

st_asewkt
----------
POLYGONM((75.15 29.53 1,77 29 1,77.6 29.5 2,75.15 29.53 2))

Beispiele: Außenhülle mit inneren Ringen

Erzeugung eines Donuts mit einem Ameisenloch

SELECT ST_MakePolygon(
                ST_ExteriorRing(ST_Buffer(foo.line,10)),
        ARRAY[ST_Translate(foo.line,1,1),
                ST_ExteriorRing(ST_Buffer(ST_MakePoint(20,20),1)) ]
        )
FROM
        (SELECT ST_ExteriorRing(ST_Buffer(ST_MakePoint(10,10),10,10))
                As line )
                As foo;

Ausgehend von Polygonen/Mehrfachpolygonen der Provinz und Linienzügen für die Gewässer werden die Landesgrenzen erzeugt, wobei Lücken die Seen des Gebietes darstellen. Dies ist ein Beispiel für die Verwendung von ST_Accum in PostGIS.

[Note]

Das Konstrukt mit CASE wird verwendet, da die Übergabe eines NULL-Feldes an ST_MakePolygon NULL ergibt.

SELECT p.gid, p.province_name,
                CASE WHEN array_agg(w.the_geom) IS NULL
                THEN p.the_geom
                ELSE  ST_MakePolygon( ST_LineMerge(ST_Boundary(p.the_geom)), array_agg(w.the_geom)) END
        FROM
                provinces p LEFT JOIN waterlines w
                        ON (ST_Within(w.the_geom, p.the_geom) AND ST_IsClosed(w.the_geom))
        GROUP BY p.gid, p.province_name, p.the_geom;

Another technique is to utilize a correlated subquery and the ARRAY() constructor that converts a row set to an array.

SELECT p.gid, p.province_name,
                CASE WHEN
                        ST_Accum(w.the_geom) IS NULL THEN p.the_geom
                ELSE  ST_MakePolygon(ST_LineMerge(ST_Boundary(p.the_geom)), ST_Accum(w.the_geom)) END
        FROM
                provinces p LEFT JOIN waterlines w
                        ON (ST_Within(w.the_geom, p.the_geom) AND ST_IsClosed(w.the_geom))
        GROUP BY p.gid, p.province_name, p.the_geom;

        --Gleiches Beispiel wie oben, nur mit einer korrespondierenden Unterabfrage
        --und der PostgreSQL interen ARRAY() Funktion, welche eine Menge von Zeilen in ein Feld/Array umwandelt

        SELECT p.gid,  p.province_name, CASE WHEN
                EXISTS(SELECT w.the_geom
                        FROM waterlines w
                        WHERE ST_Within(w.the_geom, p.the_geom)
                        AND ST_IsClosed(w.the_geom))
                THEN
                ST_MakePolygon(ST_LineMerge(ST_Boundary(p.the_geom)),
                        ARRAY(SELECT w.the_geom
                                FROM waterlines w
                                WHERE ST_Within(w.the_geom, p.the_geom)
                                AND ST_IsClosed(w.the_geom)))
                ELSE p.the_geom END As the_geom
        FROM
                provinces p;

Name

ST_Point — Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein OGC-Alias für ST_MakePoint.

Synopsis

geometry ST_Point(float x_lon, float y_lat);

Beschreibung

Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein SQL/MM kompatibler Alias für ST_MakePoint, der nur ein X und ein Y entgegennimmt.

[Note]

For geodetic coordinates, X is longitude and Y is latitude

This method implements the SQL/MM specification. SQL-MM 3: 6.1.2

Beispiele: Geometrie

SELECT ST_SetSRID(ST_Point(-71.1043443253471, 42.3150676015829),4326)

Beispiele: Geographie

SELECT CAST(ST_SetSRID(ST_Point(-71.1043443253471, 42.3150676015829),4326) As geography);

PostgreSQL also provides the :: short-hand for casting

SELECT CAST(ST_SetSRID(ST_Point(-71.1043443253471, 42.3150676015829),4326) As geography);

If the point coordinates are not in a geodetic coordinate system (such as WGS84), then they must be reprojected before casting to a geography. In this example a point in Pennsylvania State Plane feet (SRID 2273) is projected to WGS84 (SRID 4326).

SELECT CAST(ST_SetSRID(ST_Point(-71.1043443253471, 42.3150676015829),4326) As geography);

Name

ST_Polygon — Creates a Polygon from a LineString with a specified SRID.

Synopsis

geometry ST_Polygon(geometry aLineString, integer srid);

Beschreibung

Returns a polygon built from the given LineString and sets the spatial reference system from the srid.

ST_Polygon is similar to ST_MakePolygon Variant 1 with the addition of setting the SRID.

, ST_MakePoint, ???

[Note]

Diese Funktion akzeptiert keine MULTILINESTRINGs. Verwenden Sie bitte ST_LineMerge oder ST_Dump um Linienzüge zu erzeugen.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.3.2

This function supports 3d and will not drop the z-index.

Beispiele

Create a 2D polygon.

SELECT ST_AsText( ST_Polygon('LINESTRING(75 29, 77 29, 77 29, 75 29)'::geometry, 4326) );

-- result --
POLYGON((75 29, 77 29, 77 29, 75 29))

Create a 3D polygon.

SELECT ST_AsEWKT( ST_Polygon( ST_GeomFromEWKT('LINESTRING(75 29 1, 77 29 2, 77 29 3, 75 29 1)'), 4326) );

-- result --
SRID=4326;POLYGON((75 29 1, 77 29 2, 77 29 3, 75 29 1))

Name

ST_MakeEnvelope — Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

Synopsis

geometry ST_MakePoint(double precision x, double precision y, double precision z, double precision m);

Beschreibung

Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system. By default, the bounds are the in EPSG:3857 using the standard range of the Web Mercator system (-20037508.342789, 20037508.342789). The optional bounds parameter can be used to generate envelopes for any tiling scheme: provide a geometry that has the SRID and extent of the initial "zoom level zero" square within which the tile system is to be inscribed.

Verfügbarkeit: 2.1.0

Beispiel: Ein Umgebungsrechteck Polygon erzeugen

SELECT ST_AsText( ST_TileEnvelope(2, 1, 1) );

 st_astext
------------------------------
 POLYGON((-10018754.1713945 0,-10018754.1713945 10018754.1713945,0 10018754.1713945,0 0,-10018754.1713945 0))

SELECT ST_AsText( ST_TileEnvelope(3, 1, 1, ST_MakeEnvelope(-180, -90, 180, 90, 4326) ) );

                      st_astext                       
------------------------------------------------------
 POLYGON((-135 45,-135 67.5,-90 67.5,-90 45,-135 45))

Siehe auch

ST_MakeEnvelope

8.5. Geometrische Zugriffsfunktionen

GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
ST_Boundary — Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück.
ST_CoordDim

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

ST_Dimension

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

ST_Dump — Returns a set of geometry_dump rows for the components of a geometry.
ST_NumPoints — Returns a set of geometry_dump rows for the points in a geometry.
ST_NRings — Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.
ST_EndPoint — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
ST_Envelope — Gibt eine Geometrie in doppelter Genauigkeit (float8) zurück, welche das Umgebungsrechteck der beigestellten Geometrie darstellt.
ST_BoundingDiagonal — Gibt die Diagonale des Umgebungsdreiecks der angegebenen Geometrie zurück.
ST_ExteriorRing — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
ST_GeometryN — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
ST_GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
ST_HasArc — Tests if a geometry contains a circular arc
ST_InteriorRingN — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
ST_IsPolygonCCW — Gibt TRUE zurück, wenn alle äußeren Ringe gegen den Uhrzeigersinn orientiert sind und alle inneren Ringe im Uhrzeigersinn ausgerichtet sind.
ST_IsPolygonCW — Gibt den Wert TRUE zurück, wenn alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn ausgerichtet sind.
ST_IsClosed — Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind.
ST_IsCollection — Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.
ST_IsEmpty — Tests if a geometry is empty.
ST_IsRing — Tests if a LineString is closed and simple.
ST_IsSimple — Gibt den Wert (TRUE) zurück, wenn die Geometrie keine irregulären Stellen, wie Selbstüberschneidungen oder Selbstberührungen, aufweist.
ST_M — Returns the M coordinate of a Point.
ST_MemSize — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
ST_NDims

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

ST_NPoints — Gibt die Anzahl der Punkte (Knoten) einer Geometrie zurück.
ST_NRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
ST_NumGeometries — Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.
ST_NumInteriorRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
ST_NumInteriorRing — Gibt die Anzahl der inneren Ringe eines Polygons in der Geometrie aus. Ist ein Synonym für ST_NumInteriorRings.
ST_NumPatches — Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich nicht um polyedrische Geometrien handelt.
ST_NumPoints — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
ST_PatchN — Gibt den Geometrietyp des ST_Geometry Wertes zurück.
ST_PointN — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
ST_Points — Gibt einen MultiPoint zurück, welcher alle Koordinaten einer Geometrie enthält.
ST_StartPoint — Returns the first point of a LineString.
ST_Summary

Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.

ST_X — Returns the X coordinate of a Point.
ST_Y — Returns the Y coordinate of a Point.
ST_Z — Returns the Z coordinate of a Point.
ST_Zmflag — Gibt die Dimension der Koordinaten von ST_Geometry zurück.

Name

GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.

Synopsis

text GeometryType(geometry geomA);

Beschreibung

Gibt den Geometrietyp als Zeichenkette zurück. z.B.: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.

OGC SPEC s2.1.1.1 - Gibt den Namen des instanziierbaren Subtyps der Geometrie zurück, von dem die geometrische Instanz ein Mitglied ist. Der Name des instanziierbaren Subtyps der Geometrie wird als Zeichenkette ausgegeben.

[Note]

Die Funktion zeigt auch an ob die Geometrie eine Maßzahl aufweist, indem eine Zeichenkette wie 'POINTM' zurückgegeben wird.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
 geometrytype
--------------
 LINESTRING
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
                        --result
                        POLYHEDRALSURFACE
                        
SELECT GeometryType(geom) as result
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
 result
--------
 TIN    

Siehe auch

ST_GeometryType


Name

ST_Boundary — Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück.

Synopsis

geometry ST_Boundary(geometry geomA);

Beschreibung

Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück. Die Definition der kombinierte Begrenzung ist in Abschnitt 3.12.3.2 der OGC SPEC beschrieben. Da das Ergebnis dieser Funktion eine abgeschlossene Hülle und daher topologisch geschlossen ist, kann die resultierende Begrenzung durch geometrische Primitive, wie in Abschnitt 3.12.2. der OGC SPEC erörtert, dargestellt werden.

Wird durch das GEOS Modul ausgeführt

[Note]

Vor 2.0.0 meldete diese Funktion einen Fehler, falls sie auf eine GEOMETRYCOLLECTION angewandt wurde. Ab 2.0.0 wird stattdessen NULL (nicht unterstützte Eingabe) zurückgegeben.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. OGC SPEC s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.14

This function supports 3d and will not drop the z-index.

Erweiterung: mit 2.1.0 wurde die Unterstützung von Dreiecken eingeführt

Beispiele

Linienzug mit überlagerten Begrenzungspunkten

SELECT ST_Boundary(geom)
FROM (SELECT 'LINESTRING(100 150,50 60, 70 80, 160 170)'::geometry As geom) As f;
                                

-- Ausgabe als ST_AsText
MULTIPOINT(100 150,160 170)

Polygon mit Lücke und der Abgrenzung/Boundary als Multilinestring

SELECT ST_Boundary(geom)
FROM (SELECT
'POLYGON (( 10 130, 50 190, 110 190, 140 150, 150 80, 100 10, 20 40, 10 130 ),
        ( 70 40, 100 50, 120 80, 80 110, 50 90, 70 40 ))'::geometry As geom) As f;
                                

-- Ausgabe als ST_AsText
MULTILINESTRING((10 130,50 190,110 190,140 150,150 80,100 10,20 40,10 130),
        (70 40,100 50,120 80,80 110,50 90,70 40))

SELECT ST_AsText(ST_Boundary(ST_GeomFromText('LINESTRING(1 1,0 0, -1 1)')));
st_astext
-----------
MULTIPOINT(1 1,-1 1)

SELECT ST_AsText(ST_Boundary(ST_GeomFromText('POLYGON((1 1,0 0, -1 1, 1 1))')));
st_astext
----------
LINESTRING(1 1,0 0,-1 1,1 1)

--Verwendung eines 3D Polygons
SELECT ST_AsEWKT(ST_Boundary(ST_GeomFromEWKT('POLYGON((1 1 1,0 0 1, -1 1 1, 1 1 1))')));

st_asewkt
-----------------------------------
LINESTRING(1 1 1,0 0 1,-1 1 1,1 1 1)

--Verwendung eines 3D Multilinestrings
SELECT ST_AsEWKT(ST_Boundary(ST_GeomFromEWKT('MULTILINESTRING((1 1 1,0 0 0.5, -1 1 1),(1 1 0.5,0 0 0.5, -1 1 0.5, 1 1 0.5) )')));

st_asewkt
----------
MULTIPOINT(-1 1 1,1 1 0.75)

Name

ST_CoordDim —

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Synopsis

integer ST_CoordDim(geometry geomA);

Beschreibung

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Dies ist der MM konforme Alias für ST_NDims

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.3

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_CoordDim('CIRCULARSTRING(1 2 3, 1 3 4, 5 6 7, 8 9 10, 11 12 13)');
                        ---result--
                                3

                                SELECT ST_CoordDim(ST_Point(1,2));
                        --result--
                                2

                

Siehe auch

ST_NDims


Name

ST_Dimension —

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Synopsis

integer ST_Dimension(geometry g);

Beschreibung

Die inhärente Dimension eines geometrischen Objektes, welche kleiner oder gleich der Dimension der Koordinaten sein muss. Nach OGC SPEC s2.1.1.1 wird 0 für POINT, 1 für LINESTRING, 2 for POLYGON, und die größte Dimension der Teile einer GEOMETRYCOLLECTION zurückgegeben. Wenn die Dimension nicht bekannt ist (leereGEOMETRYCOLLECTION) wird 0 zurückgegeben.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.2

Erweiterung: 2.0.0 - Unterstützung für polyedrische Oberflächen und TIN eingeführt.

[Note]

Vor 2.0.0 meldete diese Funktion einen Fehler, falls sie auf eine leere Geometrie angewandt wurde.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_Dimension('GEOMETRYCOLLECTION(LINESTRING(1 1,0 0),POINT(0 0))');
ST_Dimension
-----------
1

Siehe auch

ST_NDims


Name

ST_Dump — Returns a set of geometry_dump rows for the components of a geometry.

Synopsis

geometry ST_Envelope(geometry g1);

Beschreibung

This is a set-returning function (SRF). It returns a set of geometry_dump rows, formed by a geometry (geom) and an array of integers (path). When the input geometry is a simple type (POINT,LINESTRING,POLYGON) a single record will be returned with an empty path array and the input geometry as geom. When the input geometry is a collection or multi it will return a record for each of the collection components, and the path will express the position of the component inside the collection.

ST_Dump is useful for expanding geometries. It is the reverse of a GROUP BY in that it creates new rows. For example it can be use to expand MULTIPOLYGONS into POLYGONS.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Availability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.

[Note]

Vor 1.3.4 ist diese Funktion abgestürzt, wenn die Geometrien CURVES enthalten. Dies wurde mit 1.3.4+ behoben

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Standard Beispiele

SELECT sometable.field1, sometable.field1,
      (ST_Dump(sometable.the_geom)).geom AS the_geom
FROM sometable;

-- Break a compound curve into its constituent linestrings and circularstrings
SELECT ST_AsEWKT(a.geom), ST_HasArc(a.geom)
  FROM ( SELECT (ST_Dump(p_geom)).geom AS geom
         FROM (SELECT ST_GeomFromEWKT('COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))') AS p_geom) AS b
        ) AS a;
          st_asewkt          | st_hasarc
-----------------------------+----------
 CIRCULARSTRING(0 0,1 1,1 0) | t
 LINESTRING(1 0,0 1)         | f
(2 rows)

Beispiele für polyedrische Oberflächen, TIN und Dreieck

-- Beispiel für eine polyedrische Oberfläche
-- Auftrennung einer polyedrischen Oberfläche in Teilflächen/Faces
SELECT ST_AsEWKT(ST_GeometryN(p_geom,3)) As geom_ewkt
  FROM (SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE(
((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))
)')  AS p_geom )  AS a;

                geom_ewkt
------------------------------------------
 POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0))
-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
-- result --
                 wkt
-------------------------------------
 TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))

Name

ST_NumPoints — Returns a set of geometry_dump rows for the points in a geometry.

Synopsis

geometry ST_Points( geometry geom );

Beschreibung

This set-returning function (SRF) returns a set of geometry_dump rows formed by a geometry (geom) and an array of integers (path).

The geom component of geometry_dump are all the POINTs that make up the supplied geometry

The path component of geometry_dump (an integer[]) is an index reference enumerating the POINTs of the supplied geometry. For example, if a LINESTRING is supplied, a path of {i} is returned where i is the nth coordinate in the LINESTRING. If a POLYGON is supplied, a path of {i,j} is returned where i is the ring number (1 is outer; inner rings follow) and j enumerates the POINTs (again 1-based index).

Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Verfügbarkeit: 1.2.2

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Classic Explode a Table of LineStrings into nodes

SELECT edge_id, (dp).path[1] As index, ST_AsText((dp).geom) As wktnode
FROM (SELECT 1 As edge_id
        , ST_DumpPoints(ST_GeomFromText('LINESTRING(1 2, 3 4, 10 10)')) AS dp
     UNION ALL
     SELECT 2 As edge_id
        , ST_DumpPoints(ST_GeomFromText('LINESTRING(3 5, 5 6, 9 10)')) AS dp
   ) As foo;
 edge_id | index |    wktnode
---------+-------+--------------
       1 |     1 | POINT(1 2)
       1 |     2 | POINT(3 4)
       1 |     3 | POINT(10 10)
       2 |     1 | POINT(3 5)
       2 |     2 | POINT(5 6)
       2 |     3 | POINT(9 10)

Standard Beispiele

SELECT path, ST_AsText(geom)
FROM (
  SELECT (ST_DumpPoints(g.geom)).*
  FROM
    (SELECT
       'GEOMETRYCOLLECTION(
          POINT ( 0 1 ),
          LINESTRING ( 0 3, 3 4 ),
          POLYGON (( 2 0, 2 3, 0 2, 2 0 )),
          POLYGON (( 3 0, 3 3, 6 3, 6 0, 3 0 ),
                   ( 5 1, 4 2, 5 2, 5 1 )),
          MULTIPOLYGON (
                  (( 0 5, 0 8, 4 8, 4 5, 0 5 ),
                   ( 1 6, 3 6, 2 7, 1 6 )),
                  (( 5 4, 5 8, 6 7, 5 4 ))
          )
        )'::geometry AS geom
    ) AS g
  ) j;

   path    | st_astext
-----------+------------
 {1,1}     | POINT(0 1)
 {2,1}     | POINT(0 3)
 {2,2}     | POINT(3 4)
 {3,1,1}   | POINT(2 0)
 {3,1,2}   | POINT(2 3)
 {3,1,3}   | POINT(0 2)
 {3,1,4}   | POINT(2 0)
 {4,1,1}   | POINT(3 0)
 {4,1,2}   | POINT(3 3)
 {4,1,3}   | POINT(6 3)
 {4,1,4}   | POINT(6 0)
 {4,1,5}   | POINT(3 0)
 {4,2,1}   | POINT(5 1)
 {4,2,2}   | POINT(4 2)
 {4,2,3}   | POINT(5 2)
 {4,2,4}   | POINT(5 1)
 {5,1,1,1} | POINT(0 5)
 {5,1,1,2} | POINT(0 8)
 {5,1,1,3} | POINT(4 8)
 {5,1,1,4} | POINT(4 5)
 {5,1,1,5} | POINT(0 5)
 {5,1,2,1} | POINT(1 6)
 {5,1,2,2} | POINT(3 6)
 {5,1,2,3} | POINT(2 7)
 {5,1,2,4} | POINT(1 6)
 {5,2,1,1} | POINT(5 4)
 {5,2,1,2} | POINT(5 8)
 {5,2,1,3} | POINT(6 7)
 {5,2,1,4} | POINT(5 4)
(29 rows)

Beispiele für polyedrische Oberflächen, TIN und Dreieck

-- Polyhedral surface cube --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
  FROM
    (SELECT
       ST_DumpPoints(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )') ) AS gdump
    ) AS g;
-- result --
  path   |     wkt
---------+--------------
 {1,1,1} | POINT(0 0 0)
 {1,1,2} | POINT(0 0 1)
 {1,1,3} | POINT(0 1 1)
 {1,1,4} | POINT(0 1 0)
 {1,1,5} | POINT(0 0 0)
 {2,1,1} | POINT(0 0 0)
 {2,1,2} | POINT(0 1 0)
 {2,1,3} | POINT(1 1 0)
 {2,1,4} | POINT(1 0 0)
 {2,1,5} | POINT(0 0 0)
 {3,1,1} | POINT(0 0 0)
 {3,1,2} | POINT(1 0 0)
 {3,1,3} | POINT(1 0 1)
 {3,1,4} | POINT(0 0 1)
 {3,1,5} | POINT(0 0 0)
 {4,1,1} | POINT(1 1 0)
 {4,1,2} | POINT(1 1 1)
 {4,1,3} | POINT(1 0 1)
 {4,1,4} | POINT(1 0 0)
 {4,1,5} | POINT(1 1 0)
 {5,1,1} | POINT(0 1 0)
 {5,1,2} | POINT(0 1 1)
 {5,1,3} | POINT(1 1 1)
 {5,1,4} | POINT(1 1 0)
 {5,1,5} | POINT(0 1 0)
 {6,1,1} | POINT(0 0 1)
 {6,1,2} | POINT(1 0 1)
 {6,1,3} | POINT(1 1 1)
 {6,1,4} | POINT(0 1 1)
 {6,1,5} | POINT(0 0 1)
(30 rows)
-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
-- result --
                 wkt
-------------------------------------
 TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
-- result --
                 wkt
-------------------------------------
 TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))

Name

ST_NRings — Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.

Synopsis

geometry ST_ExteriorRing(geometry a_polygon);

Beschreibung

This is a set-returning function (SRF). It returns a set of geometry_dump rows, defined as an integer[] and a geometry, aliased "path" and "geom" respectively. The "path" field holds the polygon ring index containing a single integer: 0 for the shell, >0 for holes. The "geom" field contains the corresponding ring as a polygon.

Availability: PostGIS 1.1.3. Requires PostgreSQL 7.3 or higher.

[Note]

Dies funktioniert nicht mit MULTIPOLYGONen. Verwenden Sie die Funktion bitte in Zusammenhang mit ST_Dump um sie auf MULTIPOLYGONe anzuwenden.

This function supports 3d and will not drop the z-index.

Beispiele

SELECT sometable.field1, sometable.field1,
          (ST_DumpRings(sometable.the_geom)).geom As the_geom
FROM sometableOfpolys;

SELECT ST_AsEWKT(geom) As the_geom, path
        FROM ST_DumpRings(
                ST_GeomFromEWKT('POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 1,-8148958 5132508 1,-8148941 5132466 1,-8148924 5132394 1,
                -8148903 5132210 1,-8148930 5131967 1,-8148992 5131978 1,-8149237 5132093 1,-8149404 5132211 1,-8149647 5132310 1,-8149757 5132394 1,
                -8150305 5132788 1,-8149064 5133092 1),
                (-8149362 5132394 1,-8149446 5132501 1,-8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))')
                )  as foo;
 path |                                            the_geom
----------------------------------------------------------------------------------------------------------------
  {0} | POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 1,-8148958 5132508 1,
          |          -8148941 5132466 1,-8148924 5132394 1,
          |          -8148903 5132210 1,-8148930 5131967 1,
          |          -8148992 5131978 1,-8149237 5132093 1,
          |          -8149404 5132211 1,-8149647 5132310 1,-8149757 5132394 1,-8150305 5132788 1,-8149064 5133092 1))
  {1} | POLYGON((-8149362 5132394 1,-8149446 5132501 1,
          |          -8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))

Name

ST_EndPoint — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.

Synopsis

geometry ST_Points( geometry geom );

Beschreibung

Gibt den Endpunkt einer LINESTRING Geometrie als POINT oder NULL zurück, falls der Eingabewert nicht ein LINESTRING ist.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.4

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

[Note]

Änderung: 2.0.0 unterstützt die Verarbeitung von MultiLinestring's die nur aus einer einzelnen Geometrie bestehen, nicht mehr. In früheren Versionen von PostGIS gab die Funktion bei einem aus einer einzelnen Linie bestehender MultiLinestring den Anfangspunkt zurück. Ab 2.0.0 gibt sie nur NULL zurück, so wie bei jedem anderen MultiLinestring. Die alte Verhaltensweise war undokumentiert, aber Anwender, die annahmen, dass Sie Ihre Daten als LINESTRING vorliegen haben, könnten in 2.0 dieses zurückgegebene NULL bemerken.

Beispiele

postgis=# SELECT ST_AsText(ST_EndPoint('LINESTRING(1 1, 2 2, 3 3)'::geometry));
 st_astext
------------
 POINT(3 3)
(1 row)

postgis=# SELECT ST_EndPoint('POINT(1 1)'::geometry) IS NULL AS is_null;
  is_null
----------
 t
(1 row)

--3D Endpunkt
SELECT ST_AsEWKT(ST_EndPoint('LINESTRING(1 1 2, 1 2 3, 0 0 5)'));
  st_asewkt
--------------
 POINT(0 0 5)
(1 row)

Name

ST_Envelope — Gibt eine Geometrie in doppelter Genauigkeit (float8) zurück, welche das Umgebungsrechteck der beigestellten Geometrie darstellt.

Synopsis

geometry ST_Envelope(geometry g1);

Beschreibung

Gibt das kleinstmögliche Umgebungsrechteck der bereitgestellten Geometrie als Geometrie im Float8-Format zurück. Das Polygon wird durch die Eckpunkte des Umgebungsrechteckes beschrieben ((MINX, MINY), (MINX, MAXY), (MAXX, MAXY), (MAXX, MINY), (MINX, MINY)). (PostGIS fügt auch die ZMIN/ZMAX Koordinaten hinzu).

Spezialfälle (vertikale Linien, Punkte) geben eine Geometrie geringerer Dimension zurück als POLYGON, insbesondere POINT oder LINESTRING.

Verfügbarkeit: 1.5.0 Änderung der Verhaltensweise insofern, das die Ausgabe in Double Precision anstelle von Float4 erfolgt

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.15

Beispiele

SELECT ST_AsText(ST_Envelope('POINT(1 3)'::geometry));
 st_astext
------------
 POINT(1 3)
(1 row)


SELECT ST_AsText(ST_Envelope('LINESTRING(0 0, 1 3)'::geometry));
                   st_astext
--------------------------------
 POLYGON((0 0,0 3,1 3,1 0,0 0))
(1 row)


SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000001 1, 1.0000001 0, 0 0))'::geometry));
                                                  st_astext
--------------------------------------------------------------
 POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000000001 1, 1.0000000001 0, 0 0))'::geometry));
                                                  st_astext
--------------------------------------------------------------
 POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)

SELECT Box3D(geom), Box2D(geom), ST_AsText(ST_Envelope(geom)) As envelopewkt
        FROM (SELECT 'POLYGON((0 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, 0 0))'::geometry As geom) As foo;


        

Einhüllende von Punkt und Linienzug.

SELECT ST_AsText(ST_Envelope(
                ST_Collect(
                        ST_GeomFromText('LINESTRING(55 75,125 150)'),
                                ST_Point(20, 80))
                                )) As wktenv;
wktenv
-----------
POLYGON((20 75,20 150,125 150,125 75,20 75))

Name

ST_BoundingDiagonal — Gibt die Diagonale des Umgebungsdreiecks der angegebenen Geometrie zurück.

Synopsis

geometry ST_BoundingDiagonal(geometry geom, boolean fits=false);

Beschreibung

Gibt für eine angegebenen Geometrie die Diagonale des Umgebungsrechtecks als Linienzug zurück. Wenn die Geometrie leer ist, so ist auch die Diagonale Linie leer. Anderenfalls wird ein Linienzug aus 2 Punkten mit den kleinsten xy-Werten am Anfangspunkt und den größten xy-Werten am Endpunkt ausgegeben.

Die zurückgegebene Linienzug-Geometrie beinhaltet immer die SRID und die Dimensionalität (Anwesenheit von Z und M) der eingegebenen Geometrie.

Der fits Parameter bestimmt ob die bestmögliche Anpassung notwendig ist. Wenn er FALSE ist, so kann auch die Diagonale eines etwas größeren Umgebungsrechtecks akzeptiert werden (dies ist für Geometrien mit vielen Knoten schneller). Auf jeden Fall wird immer die gesamte Eingabegeometrie durch das von der Diagonale bestimmten Umgebungsrechtecks abgedeckt.

[Note]

Bei Spezialfällen (ein einzelner Knoten als Eingabewert) ist der zurückgegebene Linienzug topologisch ungültig (kein Inneres/Interior). Das Ergebnis ist dadurch jedoch nicht semantisch ungültig.

Verfügbarkeit: 2.2.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

Beispiele

-- Gibt die kleinste X-Koordinate eines Buffers um einen Punkt aus
SELECT ST_X(ST_StartPoint(ST_BoundingDiagonal(
  ST_Buffer(ST_MakePoint(0,0),10)
)));
 st_x
------
  -10
                

Name

ST_ExteriorRing — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.

Synopsis

geometry ST_ExteriorRing(geometry a_polygon);

Beschreibung

Gibt einen Linienzug zurück, welcher den äußeren Ring der POLYGON Geometrie darstellt. Gibt NULL zurück wenn es sich bei der Geometrie um kein Polygon handelt.

[Note]

Funktioniert nur mit dem Geometrietyp POLYGON

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3

This function supports 3d and will not drop the z-index.

Beispiele

--Wenn Sie eine Tabelle mit Polygonen haben
SELECT gid, ST_ExteriorRing(the_geom) AS ering
FROM sometable;

--Wenn Sie eine Tabelle mit MULTIPOLYGONen haben
--und Sie wollen als Ergebnis einen MULTILINESTRING der aus Außenringen der Polygone zusammengesetzt ist
SELECT gid, ST_Collect(ST_ExteriorRing(the_geom)) AS erings
        FROM (SELECT gid, (ST_Dump(the_geom)).geom As the_geom
                        FROM sometable) As foo
GROUP BY gid;

--3D Beispiel
SELECT ST_AsEWKT(
        ST_ExteriorRing(
        ST_GeomFromEWKT('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))')
        )
);

st_asewkt
---------
LINESTRING(0 0 1,1 1 1,1 2 1,1 1 1,0 0 1)

Name

ST_GeometryN — Gibt den Geometrietyp des ST_Geometry Wertes zurück.

Synopsis

geometry ST_GeometryN(geometry geomA, integer n);

Beschreibung

Gibt die auf 1-basierende n-te Geometrie zurück, wenn es sich bei der Geometrie um eine GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE oder (MULTI)POLYGON, POLYHEDRALSURFACE handelt. Anderenfalls wird NULL zurückgegeben.

[Note]

Seit Version 0.8.0 basiert der Index auf 1, so wie in der OGC Spezifikation. Vorhergegangene Versionen waren 0-basiert.

[Note]

Falls Sie alle Geometrien einer Geometrie entnehmen wollen, so ist ST_Dump wesentlich leistungsfähiger und es funktioniert auch mit Einzelgeometrien.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Änderung: 2.0.0 Vorangegangene Versionen geben bei Einzelgeometrien NULL zurück. Dies wurde geändert um die Geometrie für den ST_GeometrieN(..,1) Fall zurückzugeben.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 9.1.5

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Standard Beispiele

--Entnahme einer Teilmenge von Punkten aus einem 3D Multipoint
SELECT n, ST_AsEWKT(ST_GeometryN(the_geom, n)) As geomewkt
FROM (
VALUES (ST_GeomFromEWKT('MULTIPOINT(1 2 7, 3 4 7, 5 6 7, 8 9 10)') ),
( ST_GeomFromEWKT('MULTICURVE(CIRCULARSTRING(2.5 2.5,4.5 2.5, 3.5 3.5), (10 11, 12 11))') )
        )As foo(the_geom)
        CROSS JOIN generate_series(1,100) n
WHERE n <= ST_NumGeometries(the_geom);

 n |               geomewkt
---+-----------------------------------------
 1 | POINT(1 2 7)
 2 | POINT(3 4 7)
 3 | POINT(5 6 7)
 4 | POINT(8 9 10)
 1 | CIRCULARSTRING(2.5 2.5,4.5 2.5,3.5 3.5)
 2 | LINESTRING(10 11,12 11)


--Entnahme aller Geometrien (sinnvoll, wenn Sie einen Schlüssel/ID zuweisen wollen)
SELECT gid, n, ST_GeometryN(the_geom, n)
FROM sometable CROSS JOIN generate_series(1,100) n
WHERE n <= ST_NumGeometries(the_geom);

Beispiele für polyedrische Oberflächen, TIN und Dreieck

-- Beispiel für eine polyedrische Oberfläche
-- Auftrennung einer polyedrischen Oberfläche in Teilflächen/Faces
SELECT ST_AsEWKT(ST_GeometryN(p_geom,3)) As geom_ewkt
  FROM (SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE(
((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))
)')  AS p_geom )  AS a;

                geom_ewkt
------------------------------------------
 POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0))
-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
-- result --
                 wkt
-------------------------------------
 TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))

Name

ST_GeometryType — Gibt den Geometrietyp des ST_Geometry Wertes zurück.

Synopsis

text ST_GeometryType(geometry g1);

Beschreibung

Gibt den Geometrietyp als Zeichenkette zurück. Z.B.: 'ST_Linestring', 'ST_Polygon','ST_MultiPolygon' etc. Diese Funktion unterscheidet sich von GeometryType(geometry) durch den Präfix ST_ und dadurch, das nicht angezeigt wird, ob die Geometrie eine Maßzahl besitzt.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.4

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
                        --result
                        ST_LineString
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
                        --result
                        ST_PolyhedralSurface
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
                        --result
                        ST_PolyhedralSurface
SELECT ST_GeometryType(geom) as result
  FROM
    (SELECT
       ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')  AS geom
    ) AS g;
 result
--------
 ST_Tin    

Siehe auch

GeometryType


Name

ST_HasArc — Tests if a geometry contains a circular arc

Synopsis

boolean ST_IsEmpty(geometry geomA);

Beschreibung

Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.

Verfügbarkeit: 1.2.2

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_HasArc(ST_Collect('LINESTRING(1 2, 3 4, 5 6)', 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 7, 5 6)'));
                st_hasarc
                --------
                t
                

Name

ST_InteriorRingN — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.

Synopsis

geometry ST_InteriorRingN(geometry a_polygon, integer n);

Beschreibung

Gibt den Nten innenliegenden Linienzug des Ringes der Polygongeometrie zurück. Gibt NULL zurück, falls es sich bei der Geometrie nicht um ein Polygon handelt, oder sich das angegebene N außerhalb des zulässigen Bereiches befindet. Der Zeiger beginnt mit der Zahl 1.

[Note]

Dies funktioniert nicht mit MULTIPOLYGONen. Verwenden Sie die Funktion bitte in Zusammenhang mit ST_Dump um sie auf MULTIPOLYGONe anzuwenden.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsText(ST_InteriorRingN(the_geom, 1)) As the_geom
FROM (SELECT ST_BuildArea(
                ST_Collect(ST_Buffer(ST_Point(1,2), 20,3),
                        ST_Buffer(ST_Point(1, 2), 10,3))) As the_geom
                )  as foo
                

Name

ST_IsPolygonCCW — Gibt TRUE zurück, wenn alle äußeren Ringe gegen den Uhrzeigersinn orientiert sind und alle inneren Ringe im Uhrzeigersinn ausgerichtet sind.

Synopsis

boolean ST_IsPolygonCCW ( geometry geom );

Beschreibung

Gibt TRUE zurück, wenn für alle Bestandteile der angegebenen Geometrie gilt: die äußeren Ringe sind gegen den Uhrzeigersinn und die inneren Ringe im Uhrzeigersinn ausgerichtet.

Gibt TRUE zurück, wenn die Geometrie keine Polygonbestandteile aufweist.

[Note]

Da geschlossene Linienzüge nicht als Polygonbestandteile betrachtet werden, erhalten Sie auch dann TRUE, wenn Sie einen einzelnen geschlossenen Linienzug eingeben und zwar unabhängig von dessen Ausrichtung.

[Note]

Wenn bei einer Polygongeometrie die inneren Ringe nicht entgegengesetzt orientiert sind (insbesondere, wenn einer oder mehrere innere Ringe die selbe Ausrichtung wie die äußeren Ringe haben), dann geben sowohl ST_IsPolygonCW als auch ST_IsPolygonCCW den Wert FALSE zurück.

Verfügbarkeit: 2.2.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.


Name

ST_IsPolygonCW — Gibt den Wert TRUE zurück, wenn alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn ausgerichtet sind.

Synopsis

boolean ST_IsPolygonCW ( geometry geom );

Beschreibung

Gibt den Wert TRUE zurück, wenn für alle Polygonbestandteile der eingegebenen Geometrie gilt: die äußeren Ringe sind im Uhrzeigersinn orientiert, die inneren Ringe entgegen dem Uhrzeigersinn.

Gibt TRUE zurück, wenn die Geometrie keine Polygonbestandteile aufweist.

[Note]

Da geschlossene Linienzüge nicht als Polygonbestandteile betrachtet werden, erhalten Sie auch dann TRUE, wenn Sie einen einzelnen geschlossenen Linienzug eingeben und zwar unabhängig von dessen Ausrichtung.

[Note]

Wenn bei einer Polygongeometrie die inneren Ringe nicht entgegengesetzt orientiert sind (insbesondere, wenn einer oder mehrere innere Ringe die selbe Ausrichtung wie die äußeren Ringe haben), dann geben sowohl ST_IsPolygonCW als auch ST_IsPolygonCCW den Wert FALSE zurück.

Verfügbarkeit: 2.2.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.


Name

ST_IsClosed — Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind.

Synopsis

boolean ST_IsClosed(geometry g);

Beschreibung

Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen wird angezeigt, ob die Oberfläche eine Fläche (offen) oder ein Volumen (geschlossen) beschreibt.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.5, 9.3.3

[Note]

SQL-MM gibt vor, daß das Ergebnis von ST_IsClosed(NULL) 0 ergeben soll, während PostGIS NULL zurückgibt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

This function supports Polyhedral surfaces.

Beispiele für Linienzüge und Punkte

postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 1 1)'::geometry);
 st_isclosed
-------------
 f
(1 row)

postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 0 1, 1 1, 0 0)'::geometry);
 st_isclosed
-------------
 t
(1 row)

postgis=# SELECT ST_IsClosed('MULTILINESTRING((0 0, 0 1, 1 1, 0 0),(0 0, 1 1))'::geometry);
 st_isclosed
-------------
 f
(1 row)

postgis=# SELECT ST_IsClosed('POINT(0 0)'::geometry);
 st_isclosed
-------------
 t
(1 row)

postgis=# SELECT ST_IsClosed('MULTIPOINT((0 0), (1 1))'::geometry);
 st_isclosed
-------------
 t
(1 row)

Beispiel für eine polyedrische Oberfläche

-- Ein Würfel --
                SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));

 st_isclosed
-------------
 t


 -- Ein Würfel, bei dem eine Seite fehlt --
 SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)) )'));

 st_isclosed
-------------
 f

Siehe auch

ST_IsRing


Name

ST_IsCollection — Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.

Synopsis

boolean ST_IsCollection(geometry g);

Beschreibung

Gibt den Wert TRUE zurück, wenn der Geometrietyp einer der folgenden Gemetrietypen entspricht:

  • GEOMETRYCOLLECTION

  • MULTI{POINT,POLYGON,LINESTRING,CURVE,SURFACE}

  • COMPOUNDCURVE

[Note]

Diese Funktion wertet den Geometrietyp aus. D.h.: sie gibt den Wert TRUE für Geometriekollektionen zurück, wenn diese leer sind, oder nur ein einziges Element aufweisen.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

postgis=# SELECT ST_IsCollection('LINESTRING(0 0, 1 1)'::geometry);
 st_iscollection
-------------
 f
(1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT EMPTY'::geometry);
 st_iscollection
-------------
 t
(1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0))'::geometry);
 st_iscollection
-------------
 t
(1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0), (42 42))'::geometry);
 st_iscollection
-------------
 t
(1 row)

postgis=# SELECT ST_IsCollection('GEOMETRYCOLLECTION(POINT(0 0))'::geometry);
 st_iscollection
-------------
 t
(1 row)

Name

ST_IsEmpty — Tests if a geometry is empty.

Synopsis

boolean ST_IsEmpty(geometry geomA);

Beschreibung

Gibt den Wert TRUE zurück, wenn es sich um eine leere Geometrie handelt. Falls TRUE, dann repräsentiert diese Geometrie eine leere GeometryCollection, Polygon, Point etc.

[Note]

SQL-MM gibt vor, daß das Ergebnis von ST_IsEmpty(NULL) der Wert 0 ist, während PostGIS den Wert NULL zurückgibt.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.7

This method supports Circular Strings and Curves

[Warning]

Änderung: 2.0.0 - In Vorgängerversionen von PostGIS war ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') erlaubt. Um eine bessere Übereinstimmung mit der SQL/MM Norm zu erreichen, ist dies nun nicht mehr gestattet.

Beispiele

SELECT ST_IsEmpty(ST_GeomFromText('GEOMETRYCOLLECTION EMPTY'));
 st_isempty
------------
 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON EMPTY'));
 st_isempty
------------
 t
(1 row)

SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));

 st_isempty
------------
 f
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))')) = false;
 ?column?
----------
 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('CIRCULARSTRING EMPTY'));
  st_isempty
------------
 t
(1 row)


                

Name

ST_IsRing — Tests if a LineString is closed and simple.

Synopsis

boolean ST_IsRing(geometry g);

Beschreibung

Gibt den Wert TRUE zurück, wenn der LINESTRING sowohl ST_IsClosed (ST_StartPoint(g) ~= ST_Endpoint(g)) als auch ST_IsSimple (sich nicht selbst überschneidet) ist.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 7.1.6

[Note]

SQL-MM gibt vor, daß das Ergebnis vonST_IsRing(NULL) der Wert 0 sein soll, während PostGIS den Wert NULL zurückgibt.

Beispiele

SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 1, 1 0, 0 0)'::geometry AS the_geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 t         | t           | t
(1 row)

SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 0, 1 1, 0 0)'::geometry AS the_geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 f         | t           | f
(1 row)

Name

ST_IsSimple — Gibt den Wert (TRUE) zurück, wenn die Geometrie keine irregulären Stellen, wie Selbstüberschneidungen oder Selbstberührungen, aufweist.

Synopsis

boolean ST_IsSimple(geometry geomA);

Beschreibung

Gibt TRUE zurück, wenn keine regelwidrigen geometrischen Merkmale, wie Geometrien die sich selbst kreuzen oder berühren, auftreten. Für weiterführende Information zur OGC-Definition von Simplizität und Gültigkeit von Geometrien, siehe "Ensuring OpenGIS compliancy of geometries"

[Note]

SQL-MM definiert das Ergebnis von ST_IsSimple(NULL) als 0, während PostGIS NULL zurückgibt.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.8

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_IsSimple(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));
 st_issimple
-------------
 t
(1 row)

 SELECT ST_IsSimple(ST_GeomFromText('LINESTRING(1 1,2 2,2 3.5,1 3,1 2,2 1)'));
 st_issimple
-------------
 f
(1 row)

Siehe auch

???


Name

ST_M — Returns the M coordinate of a Point.

Synopsis

float ST_M(geometry a_point);

Beschreibung

Gibt die M-Koordinate des Punktes zurück, oder NULL wenn keine vorhanden ist. Der Einabewert muss ein Punkt sein.

[Note]

Dies ist (noch) kein Teil der OGC Spezifikation, wird aber hier aufgeführt um die Liste von Funktionen zum Auslesen von Punktkoordinaten zu vervollständigen.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification.

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_M(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_m
------
        4
(1 row)

                

Siehe auch

???, ST_X, ST_Y, ST_Z


Name

ST_MemSize — Gibt den Geometrietyp des ST_Geometry Wertes zurück.

Synopsis

integer ST_NRings(geometry geomA);

Beschreibung

Gibt den Geometrietyp des ST_Geometry Wertes zurück.

This complements the PostgreSQL built-in database object functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size.

[Note]

pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.

pg_total_relation_size - includes, the table, the toasted tables, and the indexes.

pg_column_size returns how much space a geometry would take in a column considering compression, so may be lower than ST_MemSize

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Changed: 2.2.0 name changed to ST_MemSize to follow naming convention. In prior versions this function was called ST_Mem_Size, old name deprecated though still available.

Beispiele

--Return how much byte space Boston takes up  in our Mass data set
SELECT pg_size_pretty(SUM(ST_MemSize(the_geom))) as totgeomsum,
pg_size_pretty(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(the_geom) ELSE 0 END)) As bossum,
CAST(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(the_geom) ELSE 0 END)*1.00 /
                SUM(ST_MemSize(the_geom))*100 As numeric(10,2)) As perbos
FROM towns;

totgeomsum        bossum        perbos
----------        ------        ------
1522 kB                30 kB        1.99


SELECT ST_MemSize(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'));

---
73

--What percentage of our table is taken up by just the geometry
SELECT pg_total_relation_size('public.neighborhoods') As fulltable_size, sum(ST_MemSize(the_geom)) As geomsize,
sum(ST_MemSize(the_geom))*1.00/pg_total_relation_size('public.neighborhoods')*100 As pergeom
FROM neighborhoods;
fulltable_size geomsize  pergeom
------------------------------------------------
262144         96238         36.71188354492187500000
        

Name

ST_NDims —

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Synopsis

integer ST_NDims(geometry g1);

Beschreibung

Gibt die Koordinatendimension der Geometrie zurück. PostGIS unterstützt 2- (x,y), 3- (x,y,z) oder 2D mit Kilometrierung - x,y,m, und 4- dimensionalen Raum - 3D mit Kilometrierung x,y,z,m .

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_NDims(ST_GeomFromText('POINT(1 1)')) As d2point,
        ST_NDims(ST_GeomFromEWKT('POINT(1 1 2)')) As d3point,
        ST_NDims(ST_GeomFromEWKT('POINTM(1 1 0.5)')) As d2pointm;

         d2point | d3point | d2pointm
---------+---------+----------
           2 |       3 |        3
                        

Name

ST_NPoints — Gibt die Anzahl der Punkte (Knoten) einer Geometrie zurück.

Synopsis

integer ST_NPoints(geometry g1);

Beschreibung

Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

[Note]

Vor 1.3.4 ist diese Funktion abgestürzt, wenn die Geometrien CURVES enthalten. Dies wurde mit 1.3.4+ behoben

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_NPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
--result
4

--Polygon im 3D Raum
SELECT ST_NPoints(ST_GeomFromEWKT('LINESTRING(77.29 29.07 1,77.42 29.26 0,77.27 29.31 -1,77.29 29.07 3)'))
--result
4

Siehe auch

ST_NumPoints


Name

ST_NRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.

Synopsis

integer ST_NRings(geometry geomA);

Beschreibung

Wenn es sich bei der Geometrie um ein Polygon oder um ein MultiPolygon handelt, wird die Anzahl der Ringe zurückgegeben. Anders als NumInteriorRings werden auch die äußeren Ringe gezählt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_NRings(the_geom) As Nrings, ST_NumInteriorRings(the_geom) As ninterrings
                                        FROM (SELECT ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))') As the_geom) As foo;
         nrings | ninterrings
--------+-------------
          1 |           0
(1 row)

Name

ST_NumGeometries — Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.

Synopsis

integer ST_NumGeometries(geometry geom);

Beschreibung

Gibt die Anzahl an Geometrien aus. Wenn es sich bei der Geometrie um eine GEOMETRYCOLLECTION (oder MULTI*) handelt, wird die Anzahl der Geometrien zurückgegeben, bei Einzelgeometrien wird 1, ansonsten NULL zurückgegeben.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Änderung: 2.0.0 Bei früheren Versionen wurde NULL zurückgegeben, wenn die Geometrie nicht vom Typ GEOMETRYCOLLECTION/MULTI war. 2.0.0+ gibt nun 1 für Einzelgeometrien, wie POLYGON, LINESTRING, POINT zurück.

This method implements the SQL/MM specification. SQL-MM 3: 9.1.4

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

--Frühere Versionen gaben hier den Wert NULL zurück -- ab 2.0.0 wird der Wert 1 zurückgegeben
SELECT ST_NumGeometries(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
--result
1

--Beispiel einer Geometriekollektion - Multis zählen als eine Geometrie in einer Kollektion
SELECT ST_NumGeometries(ST_GeomFromEWKT('GEOMETRYCOLLECTION(MULTIPOINT(-2 3 , -2 2),
LINESTRING(5 5 ,10 10),
POLYGON((-7 4.2,-7.1 5,-7.1 4.3,-7 4.2)))'));
--result
3

Name

ST_NumInteriorRings — Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.

Synopsis

integer ST_NumInteriorRings(geometry a_polygon);

Beschreibung

Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus. Gibt NULL zurück, wenn die Geometrie kein Polygon ist.

This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

Änderung: 2.0.0 - In füheren Versionen war ein MULTIPOLYGON als Eingabe erlaubt, wobei die Anzahl der inneren Ringe des ersten Polygons ausgegeben wurde.

Beispiele

--Falls Sie ein normales Polygon haben
SELECT gid, field1, field2, ST_NumInteriorRings(the_geom) AS numholes
FROM sometable;

--Falls Sie Multipolygone haben
--und die Gesamtzahl der inneren Ringe im MULTIPOLYGON wissen wollen
SELECT gid, field1, field2, SUM(ST_NumInteriorRings(the_geom)) AS numholes
FROM (SELECT gid, field1, field2, (ST_Dump(the_geom)).geom As the_geom
        FROM sometable) As foo
GROUP BY gid, field1,field2;
                        

Name

ST_NumInteriorRing — Gibt die Anzahl der inneren Ringe eines Polygons in der Geometrie aus. Ist ein Synonym für ST_NumInteriorRings.

Synopsis

integer ST_NumInteriorRing(geometry a_polygon);


Name

ST_NumPatches — Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich nicht um polyedrische Geometrien handelt.

Synopsis

integer ST_NumPatches(geometry g1);

Beschreibung

Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich um keine polyedrische Geometrie handelt. Ist ein Synonym für ST_NumGeometries zur Unterstützung der MM Namensgebung. Wenn Ihnen die MM-Konvention egal ist, so ist die Verwendung von ST_NumGeometries schneller.

Verfügbarkeit: 2.0.0

This function supports 3d and will not drop the z-index.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: ?

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_NumPatches(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
                --result
                6
                

Name

ST_NumPoints — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.

Synopsis

integer ST_NumPoints(geometry g1);

Beschreibung

Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück. Vor 1.4 funktionierte dies nur mit ST_LineString, wie von der Spezifikation festgelegt. Ab 1.4 aufwärts handelt es sich um einen Alias für ST_NPoints, das die Anzahl der Knoten nicht nur für Linienzüge ausgibt. Erwägen Sie stattdessen die Verwendung von ST_NPoints, das vielseitig ist und mit vielen Geometrietypen funktioniert.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.2.4

Beispiele

SELECT ST_NumPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
                --result
                4
                

Siehe auch

ST_NPoints


Name

ST_PatchN — Gibt den Geometrietyp des ST_Geometry Wertes zurück.

Synopsis

geometry ST_PatchN(geometry geomA, integer n);

Beschreibung

>Gibt die auf 1-basierende n-te Geometrie (Masche) zurück, wenn es sich bei der Geometrie um ein POLYHEDRALSURFACE, oder ein POLYHEDRALSURFACEM handelt. Anderenfalls wird NULL zurückgegeben. Gibt bei polyedrischen Oberflächen das selbe Ergebnis wie ST_GeometryN. Die Verwendung von ST_GeometryN ist schneller.

[Note]

Der Index ist auf 1 basiert.

[Note]

Falls Sie alle Geometrien einer Geometrie entnehmen wollen, so ist ST_Dump wesentlich leistungsfähiger.

Verfügbarkeit: 2.0.0

This method implements the SQL/MM specification. SQL-MM 3: ?

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

--Entnimmt die 2te Fläche einer polyedrischen Oberfläche
SELECT ST_AsEWKT(ST_PatchN(geom, 2)) As geomewkt
FROM (
VALUES (ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
        ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
        ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
        ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')) ) As foo(geom);

              geomewkt
---+-----------------------------------------
 POLYGON((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0))

Name

ST_PointN — Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.

Synopsis

geometry ST_PointN(geometry a_linestring, integer n);

Beschreibung

Gibt den n-ten Punkt des ersten LineString's oder des kreisförmigen LineStrings's einer Geometrie zurück. Negative Werte werden rückwärts, vom Ende des LineString's her gezählt, sodass -1 der Endpunkt ist. Gibt NULL aus, wenn die Geometrie keinen LineString enthält.

[Note]

Seit Version 0.8.0 ist der Index 1-basiert, so wie in der OGC Spezifikation. Rückwärtiges Indizieren (negativer Index) findet sich nicht in der OGC Spezifikation. Vorhergegangene Versionen waren 0-basiert.

[Note]

Falls Sie den n-ten Punkt eines jeden LineString's in einem MultiLinestring wollen, nutzen Sie diese Funktion gemeinsam mit ST_Dump.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.2.5, 7.3.5

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

[Note]

Änderung: 2.0.0 arbeitet nicht mehr mit MultiLinestring's, die nur eine einzelne Geometrie enthalten. In früheren Versionen von PostGIS gab die Funktion bei einem, aus einer einzelnen Linie bestehender MultiLinestring, den Anfangspunkt zurück. Ab 2.0.0 wird, so wie bei jedem anderen MultiLinestring auch, NULL zurückgegeben.

Änderung: 2.3.0 : negatives Indizieren verfügbar (-1 entspricht dem Endpunkt)

Beispiele

-- Entnimmt alle POINTs eines LINESTRINGs
SELECT ST_AsText(
   ST_PointN(
          column1,
          generate_series(1, ST_NPoints(column1))
   ))
FROM ( VALUES ('LINESTRING(0 0, 1 1, 2 2)'::geometry) ) AS foo;

 st_astext
------------
 POINT(0 0)
 POINT(1 1)
 POINT(2 2)
(3 rows)

--Beispiel für einen Kreisbogen
SELECT ST_AsText(ST_PointN(ST_GeomFromText('CIRCULARSTRING(1 2, 3 2, 1 2)'),2));

st_astext
----------
POINT(3 2)

SELECT st_astext(f)
FROM ST_GeometryFromtext('LINESTRING(0 0 0, 1 1 1, 2 2 2)') as g
        ,ST_PointN(g, -2) AS f -- 1 based index

st_astext
----------
"POINT Z (1 1 1)"

Siehe auch

ST_NPoints


Name

ST_Points — Gibt einen MultiPoint zurück, welcher alle Koordinaten einer Geometrie enthält.

Synopsis

geometry ST_Points( geometry geom );

Beschreibung

Gibt einen MultiPoint zurück, welcher alle Koordinaten einer Geometrie enthält. Duplizierte Punkte in der Eingabegeometrie, einschließlich der Anfangs- und Endpunkte von Ringgeometrien, werden nicht entfernt. (Wenn diese Verhaltensweise unerwünscht ist, können die Duplikate mit ST_RemoveRepeatedPoints entfernt werden).

Vorhandene M- und Z-Ordinaten werden erhalten.

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

Verfügbarkeit: 2.3.0

Beispiele

SELECT ST_AsText(ST_Points('POLYGON Z ((30 10 4,10 30 5,40 40 6, 30 10))'));

--result
MULTIPOINT Z (30 10 4,10 30 5,40 40 6, 30 10 4)
                        

Name

ST_StartPoint — Returns the first point of a LineString.

Synopsis

geometry ST_StartPoint(geometry geomA);

Beschreibung

Gibt den Anfangspunkt einer LINESTRING oder CIRCULARLINESTRING Geometrie als POINT oder NULL zurück, falls es sich beim Eingabewert nicht um einen LINESTRING oder CIRCULARLINESTRING handelt.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.3

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

[Note]

Änderung: 2.0.0 unterstützt die Verarbeitung von MultiLinestring's die nur aus einer einzelnen Geometrie bestehen, nicht mehr. In früheren Versionen von PostGIS gab die Funktion bei einem aus einer einzelnen Linie bestehender MultiLinestring den Anfangspunkt zurück. Ab 2.0.0 gibt sie nur NULL zurück, so wie bei jedem anderen MultiLinestring. Die alte Verhaltensweise war undokumentiert, aber Anwender, die annahmen, dass Sie Ihre Daten als LINESTRING vorliegen haben, könnten in 2.0 dieses zurückgegebene NULL bemerken.

Beispiele

SELECT ST_AsText(ST_StartPoint('LINESTRING(0 1, 0 2)'::geometry));
 st_astext
------------
 POINT(0 1)
(1 row)

SELECT ST_StartPoint('POINT(0 1)'::geometry) IS NULL AS is_null;
  is_null
----------
 t
(1 row)

--3D Linie
SELECT ST_AsEWKT(ST_StartPoint('LINESTRING(0 1 1, 0 2 2)'::geometry));
 st_asewkt
------------
 POINT(0 1 1)
(1 row)

-- kreisförmiger Linienzug --
SELECT ST_AsText(ST_StartPoint('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 5 2)'::geometry));
 st_astext
------------
 POINT(5 2)

Name

ST_Summary —

Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.

Synopsis

text ST_Summary(geometry g);

text ST_Summary(geography g);

Beschreibung

Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.

Die Bedeutung der Flags, welche in eckigen Klammern hinter dem Geometrietyp angezeigt werden, ist wie folgt:

  • M: besitzt eine M-Ordinate

  • Z: besitzt eine Z-Ordinate

  • B: besitzt ein zwischengespeichertes Umgebungsrechteck

  • G: ist geodätisch (Geographie)

  • S: besitzt ein räumliches Koordinatenreferenzsystem

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Verfügbarkeit: 1.2.2

Erweiterung: 2.0.0 Unterstützung für geographische Koordinaten hinzugefügt

Erweiterung: 2.1.0 S-Flag, diese zeigt an ob das Koordinatenreferenzsystem bekannt ist

Erweiterung: 2.2.0 Unterstützung für TIN und Kurven

Beispiele

=# SELECT ST_Summary(ST_GeomFromText('LINESTRING(0 0, 1 1)')) as geom,
        ST_Summary(ST_GeogFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) geog;
            geom             |          geog
-----------------------------+--------------------------
 LineString[B] with 2 points | Polygon[BGS] with 1 rings
                             | ring 0 has 5 points
                             :
(1 row)


=# SELECT ST_Summary(ST_GeogFromText('LINESTRING(0 0 1, 1 1 1)')) As geog_line,
        ST_Summary(ST_GeomFromText('SRID=4326;POLYGON((0 0 1, 1 1 2, 1 2 3, 1 1 1, 0 0 1))')) As geom_poly;
;
           geog_line             |        geom_poly
-------------------------------- +--------------------------
 LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings
                                :    ring 0 has 5 points
                                :
(1 row)


Name

ST_X — Returns the X coordinate of a Point.

Synopsis

float ST_X(geometry a_point);

Beschreibung

Gibt die X-Koordinate eines Punktes, oder NULL wenn diese nicht vorhanden ist, zurück. Die Eingabe muss ein Punkt sein.

[Note]

To get the minimum and maximum X value of geometry coordinates use the functions ??? and ???.

This method implements the SQL/MM specification. SQL-MM 3: 6.1.3

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_X(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_x
------
        1
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y
------
  1.5
(1 row)

                

Siehe auch

ST_Centroid, ???, ST_M, ???, ???, ST_Y, ST_Z


Name

ST_Y — Returns the Y coordinate of a Point.

Synopsis

float ST_Y(geometry a_point);

Beschreibung

Gibt die Y-Koordinate eines Punktes, oder NULL wenn diese nicht vorhanden ist, zurück. Die Eingabe muss ein Punkt sein.

[Note]

To get the minimum and maximum Y value of geometry coordinates use the functions ??? and ???.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 6.1.4

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_Y(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_y
------
        2
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y
------
  1.5
(1 row)


                

Siehe auch

ST_Centroid, ???, ST_M, ST_X, ???, ???, ST_Z


Name

ST_Z — Returns the Z coordinate of a Point.

Synopsis

float ST_Z(geometry a_point);

Beschreibung

Gibt die Z-Koordinate eines Punktes, oder NULL wenn diese nicht vorhanden ist, zurück. Die Eingabe muss ein Punkt sein.

[Note]

To get the minimum and maximum Z value of geometry coordinates use the functions ??? and ???.

This method implements the SQL/MM specification.

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_Z(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_z
------
        3
(1 row)

                

Siehe auch

???, ST_M, ST_X, ST_Y, ???, ???


Name

ST_Zmflag — Gibt die Dimension der Koordinaten von ST_Geometry zurück.

Synopsis

smallint ST_Zmflag(geometry geomA);

Beschreibung

Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.

Values are: 0 = 2D, 1 = 3D-M, 2 = 3D-Z, 3 = 4D.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRING(1 2, 3 4)'));
 st_zmflag
-----------
                 0

SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRINGM(1 2 3, 3 4 3)'));
 st_zmflag
-----------
                 1

SELECT ST_Zmflag(ST_GeomFromEWKT('CIRCULARSTRING(1 2 3, 3 4 3, 5 6 3)'));
 st_zmflag
-----------
                 2
SELECT ST_Zmflag(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_zmflag
-----------
                 3

8.6. Geometrische Editoren

ST_AddPoint — Fügt einem Linienzug einen Punkt hinzu.
ST_CollectionExtract — Von einer gegebenen (Sammel)Geometrie wird eine (Sammel)Geometrie zurückgegeben, welche nur die Elemente des vorgegebenen Datentyps enthält.
ST_CollectionHomogenize — Von einer gegebenen Sammelgeometrie wird die "einfachste" Darstellung der Inhalte zurückgegeben.
ST_Force2D — Die Geometrien in einen "2-dimensionalen Modus" zwingen.
ST_Force3D — Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ.
ST_Force3DZ — Zwingt die Geometrien in einen XYZ Modus.
ST_Force3DM — Zwingt die Geometrien in einen XYM Modus.
ST_Force4D — Zwingt die Geometrien in einen XYZM Modus.
ST_ForcePolygonCCW — Richtet alle äußeren Ringe gegen den Uhrzeigersinn und alle inneren Ringe mit dem Uhrzeigersinn aus.
ST_ForceCollection — Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um.
ST_ForcePolygonCW — Richtet alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn aus.
ST_ForceSFS — Erzwingt, dass Geometrien nur vom Typ SFS 1.1 sind.
ST_ForceRHR — Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen.
ST_ForceCurve — Wandelt einen geometrischen in einen Kurven Datentyp um, soweit anwendbar.
ST_LineMerge — Gibt einen (Satz von) LineString(s) zurück, der aus einem MultiLinestring "zusammengebastelt" wird.
ST_Multi — Gibt die Geometrie als MULTI* Geometrie zurück.
ST_Normalize — Gibt die Geometrie in Normalform zurück.
ST_QuantizeCoordinates — Setzt die niedrigwertigsten Bits der Koordinaten auf Null
ST_RemovePoint — Entfernt einen Punkt aus einem Linienzug.
ST_Reverse — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
ST_Segmentize — Gibt eine veränderte Geometrie/Geographie zurück, bei der kein Sement länger als der gegebene Abstand ist.
ST_SetPoint — Einen Punkt eines Linienzuges durch einen gegebenen Punkt ersetzen.
ST_SnapToGrid — Fängt alle Punkte der Eingabegeometrie auf einem regelmäßigen Gitter.
ST_Snap — Fängt die Segmente und Knoten einer Eingabegeometrie an den Knoten einer Referenzgeometrie.
ST_QuantizeCoordinates — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

Name

ST_AddPoint — Fügt einem Linienzug einen Punkt hinzu.

Synopsis

geometry ST_AddPoint(geometry linestring, geometry point);

geometry ST_AddPoint(geometry linestring, geometry point, integer position);

Beschreibung

Fügt einen Punkt zu einem Linienzug hinzu; vor point <position> (Index zählt von 0 weg). Der dritte Parameter kann weggelassen werden oder zum Anhängen auf -1 gesetzt werden.

Verfügbarkeit: 1.1.0

This function supports 3d and will not drop the z-index.

Beispiele

--sicherstellen, das alle Linienzüge in einer Tabelle geschlossen sind,
--indem zu jedem nicht geschlossenen Linienzug, der Anfangspunkt als Endpunkt hinzugefügt wird
                UPDATE sometable
                SET the_geom = ST_AddPoint(the_geom, ST_StartPoint(the_geom))
                FROM sometable
                WHERE ST_IsClosed(the_geom) = false;

                --Einen Punkt zu einer 3-D Linie hinzufügen
                SELECT ST_AsEWKT(ST_AddPoint(ST_GeomFromEWKT('LINESTRING(0 0 1, 1 1 1)'), ST_MakePoint(1, 2, 3)));

                --result
                st_asewkt
                ----------
                LINESTRING(0 0 1,1 1 1,1 2 3)
                        

Name

ST_CollectionExtract — Von einer gegebenen (Sammel)Geometrie wird eine (Sammel)Geometrie zurückgegeben, welche nur die Elemente des vorgegebenen Datentyps enthält.

Synopsis

geometry ST_CollectionExtract(geometry collection, integer type);

Beschreibung

Von einer (Sammel)Geometrie wird eine (Mehrfach)Geometrie zurückgegeben, welche nur die Elemente des vorgegebenen Datentyps enthält. Teilgeometrien, die nicht dem vorgegebenen Datentyp entsprechen, werden ausgelassen. Wenn keine der Teilgeometrien den richtigen Datentyp aufweist, wird eine LEERE Geometrie zurückgegeben. Es werden nur Punkte, Linien und Polygone unterstützt. Die Kennungen sind 1 == POINT, 2 == LINESTRING, 3 == POLYGON.

Verfügbarkeit: 1.5.0

[Note]

Vor 1.5.3 gab diese Funktion, wenn die Eingabe keine Sammelgeometrie war, diese unabhängig vom Datentyp unangetastet zurück. Bei 1.5.3 wurde bei unpassenden Einzelgeometrien NULL zurückgegeben. Ab 2.0.0 wird bei fehlender Übereinstimmung immer eine LEERE Ausgabe zurückgegeben.

[Warning]

Wenn 3 == POLYGON angegeben ist, wird ein Mehrfachpolygon zurückgegeben, sogar dann wenn die Kanten gemeinsam genutzt werden. Dies endet in vielen Fällen einem invaliden Mehrfachpolygon, zum Beispiel wenn diese Funktion auf ein ST_Split Ergebnis angewendet wird.

Beispiele

-- Konstante: 1 == POINT, 2 == LINESTRING, 3 == POLYGON
SELECT ST_AsText(ST_CollectionExtract(ST_GeomFromText('GEOMETRYCOLLECTION(GEOMETRYCOLLECTION(POINT(0 0)))'),1));
st_astext
---------------
MULTIPOINT(0 0)
(1 row)

SELECT ST_AsText(ST_CollectionExtract(ST_GeomFromText('GEOMETRYCOLLECTION(GEOMETRYCOLLECTION(LINESTRING(0 0, 1 1)),LINESTRING(2 2, 3 3))'),2));
st_astext
---------------
MULTILINESTRING((0 0, 1 1), (2 2, 3 3))
(1 row)
                        

Name

ST_CollectionHomogenize — Von einer gegebenen Sammelgeometrie wird die "einfachste" Darstellung der Inhalte zurückgegeben.

Synopsis

geometry ST_CollectionHomogenize(geometry collection);

Beschreibung

Von einer Sammelgeometrie wird die "einfachste" Darstellung der Inhalte zurückgegeben. Einelementige Geometrien werden ebenso zurückgegeben. Einheitliche Sammelgeometrien werden, entsprechend dem Datentyp, als Mehrfachgeometrien ausgegeben

[Warning]

Wenn 3 == POLYGON angegeben ist, wird ein Mehrfachpolygon zurückgegeben, sogar dann wenn die Kanten gemeinsam genutzt werden. Dies endet in vielen Fällen einem invaliden Mehrfachpolygon, zum Beispiel wenn diese Funktion auf ein ST_Split Ergebnis angewendet wird.

Verfügbarkeit: 2.0.0

Beispiele

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0))'));

        st_astext
        ------------
         POINT(0 0)
        (1 row)

  SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0),POINT(1 1))'));

        st_astext
        ---------------------
         MULTIPOINT(0 0,1 1)
        (1 row)

                                

Name

ST_Force2D — Die Geometrien in einen "2-dimensionalen Modus" zwingen.

Synopsis

geometry ST_Force2D(geometry geomA);

Beschreibung

Zwingt die Geometrien in einen "2-dimensionalen Modus", sodass in der Ausgabe nur die X- und Y-Koordinaten dargestellt werden. Nützlich um eine OGC-konforme Ausgabe zu erhalten (da OGC nur 2-D Geometrien spezifiziert).

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_2D bezeichnet.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsEWKT(ST_Force2D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                st_asewkt
-------------------------------------
CIRCULARSTRING(1 1,2 3,4 5,6 7,5 6)

SELECT  ST_AsEWKT(ST_Force2D('POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))'));

                                  st_asewkt
----------------------------------------------
 POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))

                

Siehe auch

ST_Force3D


Name

ST_Force3D — Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ.

Synopsis

geometry ST_Force3D(geometry geomA);

Beschreibung

Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ. Wenn die Geometrie keine Z-Komponente aufweist, wird eine Z-Koordinate mit dem Wert 0 angeheftet.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_3D bezeichnet.

This function supports Polyhedral surfaces.

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

Beispiele

--Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts
                SELECT ST_AsEWKT(ST_Force3D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                                   st_asewkt
-----------------------------------------------
 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)


SELECT  ST_AsEWKT(ST_Force3D('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

                                                 st_asewkt
--------------------------------------------------------------
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
                

Name

ST_Force3DZ — Zwingt die Geometrien in einen XYZ Modus.

Synopsis

geometry ST_Force3DZ(geometry geomA);

Beschreibung

Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ. Wenn die Geometrie keine Z-Komponente aufweist, wird eine Z-Koordinate mit dem Wert 0 angeheftet.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_3DZ bezeichnet.

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

--Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts 
SELECT ST_AsEWKT(ST_Force3DZ(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                                   st_asewkt
-----------------------------------------------
 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)


SELECT  ST_AsEWKT(ST_Force3DZ('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

                                                 st_asewkt
--------------------------------------------------------------
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
                

Name

ST_Force3DM — Zwingt die Geometrien in einen XYM Modus.

Synopsis

geometry ST_Force3DM(geometry geomA);

Beschreibung

Zwingt die Geometrien in einen XYM Modus. Wenn die Geometrie keine M-Komponente aufweist, wird eine M-Koordinate mit dem Wert 0 angeheftet. Falls die Geometrie eine Z-Komponente aufweist, wird diese gelöscht.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_3DM bezeichnet.

This method supports Circular Strings and Curves

Beispiele

----Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts
SELECT ST_AsEWKT(ST_Force3DM(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                                   st_asewkt
------------------------------------------------
 CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)


SELECT  ST_AsEWKT(ST_Force3DM('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))'));

                                                  st_asewkt
---------------------------------------------------------------
 POLYGONM((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))

                

Name

ST_Force4D — Zwingt die Geometrien in einen XYZM Modus.

Synopsis

geometry ST_Force4D(geometry geomA);

Beschreibung

Zwingt die Geometrien in einen XYZM Modus. Fehlenden Z- und M-Dimensionen wird eine 0 angeheftet.

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_4D bezeichnet.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

--Wenn bereits eine 3D-Geometrie vorliegt, geschieht nichts
SELECT ST_AsEWKT(ST_Force4D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
                                                st_asewkt
---------------------------------------------------------
 CIRCULARSTRING(1 1 2 0,2 3 2 0,4 5 2 0,6 7 2 0,5 6 2 0)



SELECT  ST_AsEWKT(ST_Force4D('MULTILINESTRINGM((0 0 1,0 5 2,5 0 3,0 0 4),(1 1 1,3 1 1,1 3 1,1 1 1))'));

                                                                          st_asewkt
--------------------------------------------------------------------------------------
 MULTILINESTRING((0 0 0 1,0 5 0 2,5 0 0 3,0 0 0 4),(1 1 0 1,3 1 0 1,1 3 0 1,1 1 0 1))

                

Name

ST_ForcePolygonCCW — Richtet alle äußeren Ringe gegen den Uhrzeigersinn und alle inneren Ringe mit dem Uhrzeigersinn aus.

Synopsis

geometry ST_ForcePolygonCCW ( geometry geom );

Beschreibung

Zwingt (Multi)Polygone, den äusseren Ring gegen den Uhrzeigersinn und die inneren Ringe im Uhrzeigersinn zu orientieren. Andere Geometrien werden unverändert zurückgegeben.

Verfügbarkeit: 2.0.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.


Name

ST_ForceCollection — Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um.

Synopsis

geometry ST_ForceCollection(geometry geomA);

Beschreibung

Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um. Nützlich um eine WKB-Darstellung zu vereinfachen.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Verfügbarkeit: 1.2.2, Vor 1.3.4 ist diese Funktion bei CURVES abgestürzt. Dies wurde mit 1.3.4+ behoben

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Force_Collection bezeichnet.

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT  ST_AsEWKT(ST_ForceCollection('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))'));

                                                                   st_asewkt
----------------------------------------------------------------------------------
 GEOMETRYCOLLECTION(POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1)))


  SELECT ST_AsText(ST_ForceCollection('CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)'));
                                                                   st_astext
--------------------------------------------------------------------------------
 GEOMETRYCOLLECTION(CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))
(1 row)

                
-- Beispiel für eine polyedrische Oberfläche --
SELECT ST_AsEWKT(ST_ForceCollection('POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
 ((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
 ((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
 ((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
 ((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
 ((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)))'))

                                                                   st_asewkt
----------------------------------------------------------------------------------
GEOMETRYCOLLECTION(
  POLYGON((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
  POLYGON((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
  POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
  POLYGON((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
  POLYGON((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
  POLYGON((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1))
)
                

Name

ST_ForcePolygonCW — Richtet alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn aus.

Synopsis

geometry ST_ForcePolygonCW ( geometry geom );

Beschreibung

Zwingt (Multi)Polygone, den äusseren Ring im Uhrzeigersinn und die inneren Ringe gegen den Uhrzeigersinn zu orientieren. Andere Geometrien werden unverändert zurückgegeben.

Verfügbarkeit: 2.0.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.


Name

ST_ForceSFS — Erzwingt, dass Geometrien nur vom Typ SFS 1.1 sind.

Synopsis

geometry ST_ForceSFS(geometry geomA);

geometry ST_ForceSFS(geometry geomA, text version);

Beschreibung

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.


Name

ST_ForceRHR — Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen.

Synopsis

geometry ST_ForceRHR(geometry g);

Beschreibung

Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen. Dadurch kommt die durch das Polygon begrenzte Fläche auf der rechten Seite der Begrenzung zu liegen. Insbesondere sind der äussere Ring im Uhrzeigersinn und die inneren Ringe gegen den Uhrzeigersinn orientiert. Diese Funktion ist ein Synonym für ST_ForcePolygonCW

[Note]

Die obere Definition mit der Drei-Finger-Regel widerspricht den Definitionen, die in anderen Zusammenhängen verwendet werden. Um Verwirrung zu vermeiden, wird die Verwendung von ST_ForcePolygonCW empfohlen.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_AsEWKT(
  ST_ForceRHR(
        'POLYGON((0 0 2, 5 0 2, 0 5 2, 0 0 2),(1 1 2, 1 3 2, 3 1 2, 1 1 2))'
  )
);
                                                  st_asewkt
--------------------------------------------------------------
 POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))
(1 row)

Name

ST_ForceCurve — Wandelt einen geometrischen in einen Kurven Datentyp um, soweit anwendbar.

Synopsis

geometry ST_ForceCurve(geometry g);

Beschreibung

Wandelt eine Geometrie in eine Kurvendarstellung um, soweit anwendbar: Linien werden CompundCurves, MultiLines werden MultiCurves, Polygone werden zu CurvePolygons, Multipolygons werden MultiSurfaces. Wenn die Geometrie bereits in Kurvendarstellung vorliegt, wird sie unverändert zurückgegeben.

Verfügbarkeit: 2.2.0

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_AsText(
  ST_ForceCurve(
        'POLYGON((0 0 2, 5 0 2, 0 5 2, 0 0 2),(1 1 2, 1 3 2, 3 1 2, 1 1 2))'::geometry
  )
);
                              st_astext
----------------------------------------------------------------------
 CURVEPOLYGON Z ((0 0 2,5 0 2,0 5 2,0 0 2),(1 1 2,1 3 2,3 1 2,1 1 2))
(1 row)

Siehe auch

ST_LineToCurve


Name

ST_LineMerge — Gibt einen (Satz von) LineString(s) zurück, der aus einem MultiLinestring "zusammengebastelt" wird.

Synopsis

geometry ST_LineMerge(geometry amultilinestring);

Beschreibung

Gibt einen (Satz von) LineString(s) zurück, der aus den Bestandteilen eines MultiLinestring zusammengesetzt wird.

[Note]

Ist nur mit MULTILINESTRING/LINESTRING verwendbar. Wenn Sie ein Polygon oder eine Sammelgeometrie in diese Funktion einspeisen, wird eine leere GEOMETRYCOLLECTION zurückgegeben

Performed by the GEOS module.

Verfügbarkeit: 1.1.0

[Warning]

Schneidet die Dimension M ab.

Beispiele

SELECT ST_AsText(ST_LineMerge(
ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45 -33,-46 -32))')
                )
);
st_astext
--------------------------------------------------------------------------------------------------
LINESTRING(-29 -27,-30 -29.7,-36 -31,-45 -33,-46 -32)
(1 row)

--Wenn eine Vereinigung nicht möglich ist, wird der urspüngliche MULTILINESTRING zurückgegeben
SELECT ST_AsText(ST_LineMerge(
ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45.2 -33.2,-46 -32))')
)
);
st_astext
----------------
MULTILINESTRING((-45.2 -33.2,-46 -32),(-29 -27,-30 -29.7,-36 -31,-45 -33))

-- Beispiel mit Dimension Z
SELECT ST_AsText(ST_LineMerge(
ST_GeomFromText('MULTILINESTRING((-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 6), (-29 -27 12,-30 -29.7 5), (-45 -33 1,-46 -32 11))')
                )
);
st_astext
--------------------------------------------------------------------------------------------------
LINESTRING Z (-30 -29.7 5,-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 1,-46 -32 11)
(1 row)
                        

Name

ST_Multi — Gibt die Geometrie als MULTI* Geometrie zurück.

Synopsis

geometry ST_Multi(geometry g1);

Beschreibung

Gibt die Geometrie als MULTI* Geometrie zurück. Falls es sich bereits um eine MULTI* Geometrie handelt, bleibt diese unverändert.

Beispiele

SELECT ST_AsText(ST_Multi(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,
                        743265 2967450,743265.625 2967416,743238 2967416))')));
                        st_astext
                        --------------------------------------------------------------------------------------------------
                        MULTIPOLYGON(((743238 2967416,743238 2967450,743265 2967450,743265.625 2967416,
                        743238 2967416)))
                        (1 row)
                        

Siehe auch

ST_AsText


Name

ST_Normalize — Gibt die Geometrie in Normalform zurück.

Synopsis

geometry ST_Normalize(geometry geom);

Beschreibung

Gibt die Geometrie in Normalform aus. Möglicherweise werden die Knoten der Polygonringe, die Ringe eines Polygons oder die Elemente eines Komplexes von Mehrfachgeometrien neu gereiht.

Hauptsächlich für Testzwecke sinnvoll (zum Vergleich von erwarteten und erhaltenen Ergebnissen).

Verfügbarkeit: 2.3.0

Beispiele

SELECT ST_AsText(ST_Normalize(ST_GeomFromText(
  'GEOMETRYCOLLECTION(
    POINT(2 3),
    MULTILINESTRING((0 0, 1 1),(2 2, 3 3)),
    POLYGON(
      (0 10,0 0,10 0,10 10,0 10),
      (4 2,2 2,2 4,4 4,4 2),
      (6 8,8 8,8 6,6 6,6 8)
    )
  )'
)));
                                                                     st_astext
----------------------------------------------------------------------------------------------------------------------------------------------------
 GEOMETRYCOLLECTION(POLYGON((0 0,0 10,10 10,10 0,0 0),(6 6,8 6,8 8,6 8,6 6),(2 2,4 2,4 4,2 4,2 2)),MULTILINESTRING((2 2,3 3),(0 0,1 1)),POINT(2 3))
(1 row)
                        

Siehe auch

???,


Name

ST_QuantizeCoordinates — Setzt die niedrigwertigsten Bits der Koordinaten auf Null

Synopsis

geometry ST_QuantizeCoordinates ( geometry g , int prec_x , int prec_y , int prec_z , int prec_m );

Beschreibung

ST_QuantizeCoordinates bestimmt die Anzahl der Bits ( N ), die zur Darstellung eines Koordinatenwerts mit einer angegebenen Anzahl von Stellen nach dem Dezimalpunkt erforderlich sind, und setzt dann alle außer dem N höchstwertige Bits zu Null. Der resultierende Koordinatenwert wird immer noch auf den ursprünglichen Wert abgerundet, hat jedoch eine verbesserte Komprimierbarkeit. Dies kann zu einer erheblichen Reduzierung der Festplattenbelegung führen, wenn die Geometrie-Spalte einen komprimierbarer Speichertyp verwendet. Die Funktion ermöglicht unterschiedliche Angabe für die Anzahl von Nachkommastellen je Dimension. Bei nicht angegebenen Dimensionen wird davon ausgegangen, dass sie die Dimension x haben. Negative Ziffern werden so interpretiert, dass sie die Ziffern vor dem Komma geziehen (d. h. prec_x = -2 rundet auf die nächste Hundert).

Die von ST_QuantizeCoordinates erzeugten Koordinaten sind unabhängig von der Geometrie, die diese Koordinaten und die relative Position dieser Koordinaten in der Geometrie enthält. Daher sind vorhandene topologische Beziehungen zwischen Geometrien durch die Verwendung dieser Funktion nicht betroffen. Die Funktion erzeugt möglicherweise ungültige Geometrie, wenn sie mit einer Anzahl von Stellen aufgerufen wird, die Koordinaten innerhalb der Geometrie zusammenfallen lassen.

Verfügbarkeit: 2.5.0

Technischer Hintergrund

PostGIS speichert alle Koordinatenwerte als Gleitkommazahlen mit doppelter Genauigkeit, die 15 signifikante Stellen zuverlässig darstellen können. PostGIS kann jedoch verwendet werden, um Daten zu verwalten, die weniger als 15 signifikante Ziffern enthalten. Ein Beispiel sind TIGER-Daten, die als geografische Koordinaten mit sechs Nachkommastellen zur Verfügung gestellt werden (so dass nur neun signifikante Ziffern des Längengrads und acht signifikante Breitengrade erforderlich sind).

Wenn 15 signifikante Ziffern verfügbar sind, gibt es viele mögliche Darstellungen einer Zahl mit 9 signifikanten Ziffern. Eine Gleitkommazahl mit doppelter Genauigkeit verwendet 52 explizite Bits, um den Mantisse der Koordinate darzustellen. Nur 30 Bits werden benötigt, um eine Mantisse mit 9 signifikanten Ziffern darzustellen, wobei 22 unbedeutende Bits übrig bleiben; Wir können ihren Wert auf alles setzen, was wir wollen, und erhalten trotzdem eine zum Eingabewert passende Zahl. Beispielsweise kann der Wert 100.123456 durch die nächstliegenden Zahlen 100.123456000000, 100.123456000001 und 100.123456432199 dargestellt werden. Alle sind gleichermaßen gültig, da ST_AsText (geom, 6) bei allen dieser Eingaben das gleiche Ergebnis liefert. Da wir diese Bits auf einen beliebigen Wert setzen können, setzt ST_QuantizeCoordinates die 22 nicht signifikanten Bits auf Null. Für eine lange Koordinatensequenz wird dadurch ein Muster aus Blöcken von aufeinanderfolgenden Nullen erzeugt, das von PostgreSQL effizienter komprimiert wird.

[Note]

Von ST_QuantizeCoordinates ist möglicherweise nur die Größe der Geometrie auf der Festplatte betroffen. ST_MemSize, das die speicherinterne Verwendung der Geometrie meldet, gibt unabhängig vom von einer Geometrie belegten Speicherplatz den gleichen Wert zurück.

Beispiele

SELECT ST_AsText(ST_QuantizeCoordinates('POINT (100.123456 0)'::geometry, 4));
st_astext
-------------------------
POINT(100.123455047607 0)
                        
WITH test AS (SELECT 'POINT (123.456789123456 123.456789123456)'::geometry AS geom)
SELECT
  digits,
  encode(ST_QuantizeCoordinates(geom, digits), 'hex'),
  ST_AsText(ST_QuantizeCoordinates(geom, digits))
FROM test, generate_series(15, -15, -1) AS digits;

digits  |                   encode                   |                st_astext
--------+--------------------------------------------+------------------------------------------
15      | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
14      | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
13      | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
12      | 01010000005c9a72083cdd5e405c9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
11      | 0101000000409a72083cdd5e40409a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
10      | 0101000000009a72083cdd5e40009a72083cdd5e40 | POINT(123.456789123455 123.456789123455)
9       | 0101000000009072083cdd5e40009072083cdd5e40 | POINT(123.456789123418 123.456789123418)
8       | 0101000000008072083cdd5e40008072083cdd5e40 | POINT(123.45678912336 123.45678912336)
7       | 0101000000000070083cdd5e40000070083cdd5e40 | POINT(123.456789121032 123.456789121032)
6       | 0101000000000040083cdd5e40000040083cdd5e40 | POINT(123.456789076328 123.456789076328)
5       | 0101000000000000083cdd5e40000000083cdd5e40 | POINT(123.456789016724 123.456789016724)
4       | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375)
3       | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375)
2       | 01010000000000000038dd5e400000000038dd5e40 | POINT(123.45654296875 123.45654296875)
1       | 01010000000000000000dd5e400000000000dd5e40 | POINT(123.453125 123.453125)
0       | 01010000000000000000dc5e400000000000dc5e40 | POINT(123.4375 123.4375)
-1      | 01010000000000000000c05e400000000000c05e40 | POINT(123 123)
-2      | 01010000000000000000005e400000000000005e40 | POINT(120 120)
-3      | 010100000000000000000058400000000000005840 | POINT(96 96)
-4      | 010100000000000000000058400000000000005840 | POINT(96 96)
-5      | 010100000000000000000058400000000000005840 | POINT(96 96)
-6      | 010100000000000000000058400000000000005840 | POINT(96 96)
-7      | 010100000000000000000058400000000000005840 | POINT(96 96)
-8      | 010100000000000000000058400000000000005840 | POINT(96 96)
-9      | 010100000000000000000058400000000000005840 | POINT(96 96)
-10     | 010100000000000000000058400000000000005840 | POINT(96 96)
-11     | 010100000000000000000058400000000000005840 | POINT(96 96)
-12     | 010100000000000000000058400000000000005840 | POINT(96 96)
-13     | 010100000000000000000058400000000000005840 | POINT(96 96)
-14     | 010100000000000000000058400000000000005840 | POINT(96 96)
-15     | 010100000000000000000058400000000000005840 | POINT(96 96)

Siehe auch

ST_SnapToGrid


Name

ST_RemovePoint — Entfernt einen Punkt aus einem Linienzug.

Synopsis

geometry ST_RemovePoint(geometry linestring, integer offset);

Beschreibung

Entfernt einen Punkt aus einem LineString; der Index beginnt mit 0. Nützlich, um einen geschlossenen Ring in einen offenen Linienzug umzuwandeln

Verfügbarkeit: 1.1.0

This function supports 3d and will not drop the z-index.

Beispiele

--stellt sicher, dass keine LINESTRINGS geschlossen sind,
--indem der Endpunkt entfernt wird. Unten wird angenommen, dass the_geom vom Datentyp LINESTRING ist
UPDATE sometable
        SET the_geom = ST_RemovePoint(the_geom, ST_NPoints(the_geom) - 1)
        FROM sometable
        WHERE ST_IsClosed(the_geom) = true;
                

Name

ST_Reverse — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

Synopsis

geometry ST_Reverse(geometry g1);

Beschreibung

Kann mit jedem geometrischen Datentyp verwendet werden; kehrt die Reihenfolge der Knoten um

Erweiterung: mit 2.4.0 wurde die Unterstützung für Kurven eingeführt.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_AsText(the_geom) as line, ST_AsText(ST_Reverse(the_geom)) As reverseline
FROM
(SELECT ST_MakeLine(ST_MakePoint(1,2),
                ST_MakePoint(1,10)) As the_geom) as foo;
--result
                line         |     reverseline
---------------------+----------------------
LINESTRING(1 2,1 10) | LINESTRING(1 10,1 2)

Name

ST_Segmentize — Gibt eine veränderte Geometrie/Geographie zurück, bei der kein Sement länger als der gegebene Abstand ist.

Synopsis

geometry ST_Segmentize(geometry geom, float max_segment_length);

geography ST_Segmentize(geography geog, float max_segment_length);

Beschreibung

Gibt eine veränderte Geometrie/Geographie zurück, bei der kein Sement länger als die gegebene max_segment_length ist. Die Entfernungsberechnung wird nur in 2D ausgeführt. Beim geometrischen Datentyp ist die Längeneinheit die Einheit des Koordinatenreferenzsystems. Beim geographischen Datentyp ist die Einheit Meter.

Verfügbarkeit: 1.2.2

Erweiterung: 3.0.0 - Das Segmentieren des geometrischen Datentyps ergibt nun Segmente gleicher Länge

Erweiterung: 2.3.0 - Das Segmentieren des geographischen Datentyps ergibt nun Segmente gleicher Länge

Erweiterung: mit 2.1.0 wurde die Unterstützung des geographischen Datentyps eingeführt.

Änderung: 2.1.0 Als Ergebnis der eingeführten Unterstützung für den geographischen Datentyp: Das Konstrukt SELECT ST_Segmentize('LINESTRING(1 2, 3 4)',0.5); resultiert in einen Funktionsfehler aufgrund von Mehrdeutigkeit. Sie benötigen korrekt typisierte Geoobjekte; Verwenden Sie z.B. ST_GeomFromText, ST_GeogFromText oder SELECT ST_Segmentize('LINESTRING(1 2, 3 4)'::geometry,0.5); für Ihre Geometrie-/Geographiespalte.

[Note]

Segmente werden lediglich verlängert. Die Länge von Segmenten, die kürzer als max_segment_length sind, wird nicht verändert.

Beispiele

SELECT ST_AsText(ST_Segmentize(
ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45 -33,-46 -32))')
                ,5)
);
st_astext
--------------------------------------------------------------------------------------------------
MULTILINESTRING((-29 -27,-30 -29.7,-34.886615700134 -30.758766735029,-36 -31,
-40.8809353009198 -32.0846522890933,-45 -33),
(-45 -33,-46 -32))
(1 row)

SELECT ST_AsText(ST_Segmentize(ST_GeomFromText('POLYGON((-29 28, -30 40, -29 28))'),10));
st_astext
-----------------------
POLYGON((-29 28,-29.8304547985374 37.9654575824488,-30 40,-29.1695452014626 30.0345424175512,-29 28))
(1 row)

                        

Name

ST_SetPoint — Einen Punkt eines Linienzuges durch einen gegebenen Punkt ersetzen.

Synopsis

geometry ST_SetPoint(geometry linestring, integer zerobasedposition, geometry point);

Beschreibung

Ersetzt den Punkt N eines Linienzuges mit dem gegebenen Punkt. Der Index beginnt mit 0. Negative Indizes werden rückwärts gezählt, sodasss -1 der letzte Punkt ist. Dies findet insbesondere bei Triggern verwendung, wenn man die Beziehung zwischen den Verbindungsstücken beim Verschieben von Knoten erhalten will

Verfügbarkeit: 1.1.0

Änderung: 2.3.0 : negatives Indizieren

This function supports 3d and will not drop the z-index.

Beispiele

--Ändert den ersten Punkt eines Linienzuges von -1 3 auf -1 1
SELECT ST_AsText(ST_SetPoint('LINESTRING(-1 2,-1 3)', 0, 'POINT(-1 1)'));
           st_astext
-----------------------
 LINESTRING(-1 1,-1 3)

---Ändert den Endpunkt eines Linienzuges (diesmal ein 3D-Linienzug)
SELECT ST_AsEWKT(ST_SetPoint(foo.the_geom, ST_NumPoints(foo.the_geom) - 1, ST_GeomFromEWKT('POINT(-1 1 3)')))
FROM (SELECT ST_GeomFromEWKT('LINESTRING(-1 2 3,-1 3 4, 5 6 7)') As the_geom) As foo;
           st_asewkt
-----------------------
LINESTRING(-1 2 3,-1 3 4,-1 1 3)

SELECT ST_AsText(ST_SetPoint(g, -3, p))
FROM ST_GEomFromText('LINESTRING(0 0, 1 1, 2 2, 3 3, 4 4)') AS g
        , ST_PointN(g,1) as p;
           st_astext
-----------------------
LINESTRING(0 0,1 1,0 0,3 3,4 4)

                        

Name

ST_SnapToGrid — Fängt alle Punkte der Eingabegeometrie auf einem regelmäßigen Gitter.

Synopsis

geometry ST_SnapToGrid(geometry geomA, float originX, float originY, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float size);

geometry ST_SnapToGrid(geometry geomA, geometry pointOrigin, float sizeX, float sizeY, float sizeZ, float sizeM);

Beschreibung

Variante 1, 2 und 3: Fängt alle Punkte der Eingabegeometrie auf den Gitterpunkten, die durch Ursprung und Gitterkästchengröße festgelegt sind. Aufeinanderfolgende Punkte, die in dasselbe Gitterkästchen fallen, werden gelöscht, wobei NULL zurückgegeben wird, wenn nicht mehr genug Punkte für den jeweiligen geometrischen Datentyp vorhanden sind. Collapsed geometries in a collection are stripped from it. Kollabierte Geometrien einer Kollektion werden von dieser entfernt. Nützlich um die Genauigkeit zu verringern.

Variante 4: wurde mit 1.1.0 eingeführt - Fängt alle Punkte der Eingabegeometrie auf den Gitterpunkten, welche durch den Ursprung des Gitters (der zweite Übergabewert muss ein Punkt sein) und die Gitterkästchengröße bestimmt sind. Geben Sie 0 als Größe für jene Dimension an, die nicht auf den Gitterpunkten gefangen werden soll.

[Note]

Die zurückgegebene Geometrie kann ihre Simplizität verlieren (siehe ST_IsSimple).

[Note]

Vor Release 1.1.0 gab diese Funktion immer eine 2D-Geometrie zurück. Ab 1.1.0 hat die zurückgegebene Geometrie dieselbe Dimensionalität wie die Eingabegemetrie, wobei höhere Dimensionen unangetastet bleiben. Verwenden Sie die Version, welche einen zweiten geometrischen Übergabewert annimmt, um sämtliche Grid-Dimensionen zu bestimmen.

Verfügbarkeit: 1.0.0RC1

Verfügbarkeit: 1.1.0, Unterstützung für Z und M

This function supports 3d and will not drop the z-index.

Beispiele

--Fängt die Geometrien an einem Gitter mit einer Genauigkeit von 10^-3
UPDATE mytable
   SET the_geom = ST_SnapToGrid(the_geom, 0.001);

SELECT ST_AsText(ST_SnapToGrid(
                        ST_GeomFromText('LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667)'),
                        0.001)
                );
                          st_astext
-------------------------------------
 LINESTRING(1.112 2.123,4.111 3.237)
 --Fängt eine 4D-Geometrie
SELECT ST_AsEWKT(ST_SnapToGrid(
        ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 2.3456 1.11111,
                4.111111 3.2374897 3.1234 1.1111, -1.11111112 2.123 2.3456 1.1111112)'),
 ST_GeomFromEWKT('POINT(1.12 2.22 3.2 4.4444)'),
 0.1, 0.1, 0.1, 0.01) );
                                                                  st_asewkt
------------------------------------------------------------------------------
 LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144)


--Bei einer 4D-Geometrie - ST_SnapToGrid(geom,size) behandelt nur die X- und Y-Koordinaten und belässt die M- und Z-Koordinaten
SELECT ST_AsEWKT(ST_SnapToGrid(ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 3 2.3456,
                4.111111 3.2374897 3.1234 1.1111)'),
           0.01)      );
                                                st_asewkt
---------------------------------------------------------
 LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)

                

Name

ST_Snap — Fängt die Segmente und Knoten einer Eingabegeometrie an den Knoten einer Referenzgeometrie.

Synopsis

geometry ST_Snap(geometry input, geometry reference, float tolerance);

Beschreibung

Fängt die Knoten und Segmente einer Geometrie an den Knoten einer anderen Geometrie. Eine Entfernungstoleranz bestimmt, wo das Fangen durchgeführt wird. Die Ergebnisgeometrie ist die Eingabegeometrie mit gefangenen Knoten. Wenn kein Fangen auftritt, wird die Eingabegeometrie unverändert ausgegeben..

Eine Geometrie an einer anderen zu fangen, kann die Robustheit von Überlagerungs-Operationen verbessern, indem nahe zusammenfallende Kanten beseitigt werden (diese verursachen Probleme bei der Knoten- und Verschneidungsberechnung).

Übermäßiges Fangen kann zu einer invaliden Topologie führen. Die Anzahl und der Ort an dem Knoten sicher gefangen werden können wird mittels Heuristik bestimmt. Dies kann allerdings dazu führen, dass einige potentielle Knoten nicht gefangen werden.

[Note]

Die zurückgegebene Geometrie kann ihre Simplizität (see ST_IsSimple) und Valididät (see ???) verlieren.

Performed by the GEOS module.

Verfügbarkeit: 2.0.0

Beispiele

Ein Mehrfachpolygon mit einem Linienzug (vor dem Fangen)

Ein Mehrfachpolygon das an einem Linienzug gefangen wird; die Toleranz beträgt 1.01 der Entfernung. Das neue Mehrfachpolygon wird mit dem betreffenden Linienzug angezeigt.

SELECT ST_AsText(ST_Snap(poly,line, ST_Distance(poly,line)*1.01)) AS polysnapped
FROM (SELECT
   ST_GeomFromText('MULTIPOLYGON(
     ((26 125, 26 200, 126 200, 126 125, 26 125 ),
      ( 51 150, 101 150, 76 175, 51 150 )),
      (( 151 100, 151 200, 176 175, 151 100 )))') As poly,
       ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line

        ) As foo;

                             polysnapped
---------------------------------------------------------------------
 MULTIPOLYGON(((26 125,26 200,126 200,126 125,101 100,26 125),
 (51 150,101 150,76 175,51 150)),((151 100,151 200,176 175,151 100)))
                                

Ein Mehrfachpolygon das an einem Linienzug gefangen wird; die Toleranz beträgt 1.25 der Entfernung. Das neue Mehrfachpolygon wird mit dem betreffenden Linienzug angezeigt.

SELECT ST_AsText(
    ST_Snap(poly,line, ST_Distance(poly,line)*1.25)
  ) AS polysnapped
FROM (SELECT
  ST_GeomFromText('MULTIPOLYGON(
    (( 26 125, 26 200, 126 200, 126 125, 26 125 ),
      ( 51 150, 101 150, 76 175, 51 150 )),
      (( 151 100, 151 200, 176 175, 151 100 )))') As poly,
       ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line

        ) As foo;

                             polysnapped
---------------------------------------------------------------------
MULTIPOLYGON(((5 107,26 200,126 200,126 125,101 100,54 84,5 107),
(51 150,101 150,76 175,51 150)),((151 100,151 200,176 175,151 100)))
                                

Ein Linienzug der an dem ursprünglichen Mehrfachpolygon gefangen wird; die Toleranz beträgt 1.01 der Entfernung. Das neue Linienzug wird mit dem betreffenden Mehrfachpolygon angezeigt.

SELECT ST_AsText(
   ST_Snap(line, poly, ST_Distance(poly,line)*1.01)
  ) AS linesnapped
FROM (SELECT
  ST_GeomFromText('MULTIPOLYGON(
     ((26 125, 26 200, 126 200, 126 125, 26 125),
      (51 150, 101 150, 76 175, 51 150 )),
      ((151 100, 151 200, 176 175, 151 100)))') As poly,
       ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
        ) As foo;

              linesnapped
----------------------------------------
 LINESTRING(5 107,26 125,54 84,101 100)
                                

Ein Linienzug der an dem ursprünglichen Mehrfachpolygon gefangen wird; die Toleranz beträgt 1.25 der Entfernung. Das neue Linienzug wird mit dem betreffenden Mehrfachpolygon angezeigt.

SELECT ST_AsText(
 ST_Snap(line, poly, ST_Distance(poly,line)*1.25)
  ) AS linesnapped
FROM (SELECT
  ST_GeomFromText('MULTIPOLYGON(
     (( 26 125, 26 200, 126 200, 126 125, 26 125 ),
      (51 150, 101 150, 76 175, 51 150 )),
      ((151 100, 151 200, 176 175, 151 100 )))') As poly,
       ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
        ) As foo;
              linesnapped
---------------------------------------
LINESTRING(26 125,54 84,101 100)
                                

Siehe auch

ST_SnapToGrid


Name

ST_QuantizeCoordinates — Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

Synopsis

geometry ST_SetSRID(geometry geom, integer srid);

Beschreibung

Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.

The ords parameter is a 2-characters string naming the ordinates to swap. Valid names are: x,y,z and m.

Verfügbarkeit: 2.2.0

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

-- Scale M value by 2
SELECT ST_AsText(
  ST_SwapOrdinates(
    ST_Scale(
      ST_SwapOrdinates(g,'xm'),
      2, 1
    ),
  'xm')
) FROM ( SELECT 'POINT ZM (0 0 0 2)'::geometry g ) foo;
     st_astext
--------------------
 POINT ZM (0 0 0 4)
                 

Siehe auch

ST_FlipCoordinates

8.7. Ausgabe von Geometrie

Abstract

These functions convert geometry objects into various textual or binary formats.

8.7.1. Well-Known Text (WKT)

ST_AsEWKT — Gibt die Well-known-Text(WKT) Darstellung der Geometrie mit den SRID-Metadaten zurück.
ST_AsText — Gibt die Well-known-Text(WKT) Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.

Name

ST_AsEWKT — Gibt die Well-known-Text(WKT) Darstellung der Geometrie mit den SRID-Metadaten zurück.

Synopsis

text ST_AsEWKT(geometry g1);

text ST_AsEWKT(geography g1);

Beschreibung

Gibt die Well-known-Text Darstellung der Geometrie mit vorausgestellter SRID zurück.

[Note]

Die WKT Spezifikation bezieht die SRID nicht mit ein. Für die OGC WKT-Darstellung verwenden Sie bitte ST_AsText.

[Warning]

Das WKT Format erhält die Genauigkeit von Fließpunktzahlen nicht. Um das Abschneiden von Kommastellen zu verhindern, benutzen Sie bitte das ST_AsBinary oder das ST_AsEWBK Format für die Übertragung.

[Note]

ST_AsEWKT ist die Umkehrfunktion von ???. Verwenden Sie bitte ??? um eine PostGIS Geometrie aus einer ST_AsEWKT Darstellung zu erstellen.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für den geographischen Datentyp, polyedrische Oberflächen, Dreiecke und TIN eingeführt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_AsEWKT('0103000020E61000000100000005000000000000
                        000000000000000000000000000000000000000000000000000000
                        F03F000000000000F03F000000000000F03F000000000000F03
                        F000000000000000000000000000000000000000000000000'::geometry);

                   st_asewkt
--------------------------------
SRID=4326;POLYGON((0 0,0 1,1 1,1 0,0 0))
(1 row)

SELECT ST_AsEWKT('0108000080030000000000000060E30A4100000000785C0241000000000000F03F0000000018
E20A4100000000485F024100000000000000400000000018
E20A4100000000305C02410000000000000840')

--st_asewkt---
CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)

Name

ST_AsText — Gibt die Well-known-Text(WKT) Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.

Synopsis

bytea ST_AsBinary(geometry g1);

bytea ST_AsBinary(geometry g1, text NDR_or_XDR);

bytea ST_AsBinary(geography g1);

bytea ST_AsBinary(geography g1, text NDR_or_XDR);

Beschreibung

Das dritte Argument kann verwendet werden um die maximale Anzahl der Dezimalstellen in der Ausgabe zu beschränken (Sandardwert ist 15).

[Note]

Die WKT Spezifikation bezieht die SRID nicht mit ein. Um SRID als einen Teil der Daten zu erhalten, verwenden Sie bitte die nicht standardkonforme PostGIS Funktion ST_AsEWKT

[Warning]

Das WKT Format erhält die Genauigkeit von Fließpunktzahlen nicht. Um das Abschneiden von Kommastellen zu verhindern, benutzen Sie bitte das ST_AsBinary oder das ST_AsEWBK Format für die Übertragung.

[Note]

ST_AsText ist die Umkehrfunktion von ???. Verwenden Sie bitte ??? um eine PostGIS Geometrie aus einer ST_AsText Darstellung zu konvertieren.

Verfügbarkeit: 1.5 - Unterstützung von geograpischen Koordinaten.

Erweiterung: 2.0.0 - Unterstützung für höherdimensionale Koordinatensysteme eingeführt.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

This method supports Circular Strings and Curves

Beispiele

SELECT ST_AsText('01030000000100000005000000000000000000
000000000000000000000000000000000000000000000000
F03F000000000000F03F000000000000F03F000000000000F03
F000000000000000000000000000000000000000000000000');

                   st_astext
--------------------------------
 POLYGON((0 0,0 1,1 1,1 0,0 0))
(1 row)

Providing the precision is optional.

SELECT ST_AsText(GeomFromEWKT('SRID=4326;POINT(111.1111111 1.1111111)'))
          st_astext
------------------------------
 POINT(111.1111111 1.1111111)
(1 row)
SELECT ST_AsText(GeomFromEWKT('SRID=4326;POINT(111.1111111 1.1111111)'),2)
st_astext
--------------------
POINT(111.11 1.11)
(1 row)

8.7.2. Well-Known Binary (WKB)

ST_AsBinary — Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.
ST_AsEWKB — Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie mit den SRID Metadaten zurück.
ST_AsHEXEWKB — Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung.

Name

ST_AsBinary — Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.

Synopsis

bytea ST_AsBinary(geometry g1);

bytea ST_AsBinary(geometry g1, text NDR_or_XDR);

bytea ST_AsBinary(geography g1);

bytea ST_AsBinary(geography g1, text NDR_or_XDR);

Beschreibung

Gibt die Well-known Binary Darstellung der Geometrie aus. Die Funktion hat 2 Varianten. Die erste Variante nimmt einen nicht als Endian kodierten Parameter entgegen und setzt diesen in das Endian der Rechnerarchitektur um. Die zweite Variante nimmt ein zweites Argument, welches die Zeichenkodierung festlegt - nämlich Little-Endian ('NDR') oder Big-Endian ('XDR') Zeichenkodierung.

Dies ist nützlich mit binären Cursor, um Daten aus der Datenbank zu holen ohne dass diese in eine Zeichenkette-Darstellung konvertiert werden.

[Note]

Die WKB Spezifikation bezieht die SRID nicht mit ein. Um eine WKB-Darstellung im SRID-Format zu erhalten verwenden Sie bitte ST_AsEWKB.

[Note]

ST_AsBinary ist das Gegenstück von ??? für Geometrie. Verwenden Sie ??? um eine ST_AsBinary Darstellung in eine PostGIS Geometrie zu konvertieren.

[Note]

Das Standardverhalten von PostgreSQL 9.0 wurde dahingegen geändert, dass die Ausgabe von BYTEA jetzt in hexadezimaler Kodierung erfolgt. ST_AsBinary ist das Gegenteil von ??? für Geometrie. Falls Ihre graphischen Werkzeuge die alte Verhaltensweise benötigen, dann führen Sie bitte SET bytea_output='excape' in Ihrer Datenbank aus.

Erweiterung: 2.0.0 - Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

Erweiterung: 2.0.0 - Unterstützung für höherdimensionale Koordinatensysteme eingeführt.

Erweiterung: 2.0.0 Unterstützung zum Festlegen des Endian beim geographischen Datentyp eingeführt.

Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.

Änderung: 2.0.0 - Eingabewerte für diese Funktion dürfen nicht "unknown" sein -- es muss sich um eine Geometrie handeln. Konstrukte, wie ST_AsBinary('POINT(1 2)'), sind nicht länger gültig und geben folgende Fehlermeldung aus: n st_asbinary(unknown) is not unique error. Dieser Code muss in ST_AsBinary('POINT(1 2)'::geometry); geändert werden. Falls dies nicht möglich ist, so installieren Sie bitte legacy.sql.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.37

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

                   st_asbinary
--------------------------------
\001\003\000\000\000\001\000\000\000\005
\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000
\000\000\000\360?\000\000\000\000\000\000
\360?\000\000\000\000\000\000\360?\000\000
\000\000\000\000\360?\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000
(1 row)
SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR');
                   st_asbinary
--------------------------------
\000\000\000\000\003\000\000\000\001\000\000\000\005\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000
\000?\360\000\000\000\000\000\000?\360\000\000\000\000\000\000?\360\000\000
\000\000\000\000?\360\000\000\000\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000
(1 row)

Name

ST_AsEWKB — Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie mit den SRID Metadaten zurück.

Synopsis

bytea ST_AsEWKB(geometry g1);

bytea ST_AsEWKB(geometry g1, text NDR_or_XDR);

Beschreibung

Gibt die Well-known Binary Darstellung der Geometrie mit den SRID Metadaten aus. Die Funktion hat 2 Varianten. Die erste Variante nimmt einen nicht als Endian kodierten Parameter entgegen und setzt diesen auf Little-Endian. Die zweite Variante nimmt ein zweites Argument, welches die Zeichenkodierung festlegt - nämlich Little-Endian ('NDR') oder Big-Endian ('XDR') Zeichenkodierung.

Dies ist nützlich mit binären Cursor, um Daten aus der Datenbank zu holen ohne dass diese in eine Zeichenkette-Darstellung konvertiert werden.

[Note]

Die WKT Spezifikation bezieht die SRID nicht mit ein. Für die OGC WKB-Darstellung verwenden Sie bitte ST_AsBinary.

[Note]

ST_AsEWKB ist das Gegenstück von ST_GeomFromEWKB.. Verwenden Sie ST_GeomFromEWKB um eine ST_AsEWKB Darstellung in eine PostGIS Geometrie zu konvertieren.

Erweiterung: 2.0.0 - Unterstützung für polyedrische Oberflächen, Dreiecke und TIN eingeführt.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

                   st_asewkb
--------------------------------
\001\003\000\000 \346\020\000\000\001\000
\000\000\005\000\000\000\000
\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000
\000\000\360?\000\000\000\000\000\000\360?
\000\000\000\000\000\000\360?\000\000\000\000\000
\000\360?\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000
(1 row)
SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR');
                   st_asewkb
--------------------------------
\000 \000\000\003\000\000\020\346\000\000\000\001\000\000\000\005\000\000\000\000\
000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000?
\360\000\000\000\000\000\000?\360\000\000\000\000\000\000?\360\000\000\000\000
\000\000?\360\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000
                

Name

ST_AsHEXEWKB — Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung.

Synopsis

text ST_AsHEXEWKB(geometry g1, text NDRorXDR);

text ST_AsHEXEWKB(geometry g1);

Beschreibung

Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung. Wenn keine Zeichenkodierung angegeben wurde, wird NDR verwendet.

[Note]

Verfügbarkeit: 1.2.2

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_AsHEXEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
               --gibt die selbe Antword wie

                SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)::text;

                st_ashexewkb
                --------
                0103000020E6100000010000000500
                00000000000000000000000000000000
                00000000000000000000000000000000F03F
                000000000000F03F000000000000F03F000000000000F03
                F000000000000000000000000000000000000000000000000

8.7.3. Other Formats

ST_AsEncodedPolyline — Erzeugt eine codierte Polylinie aus einer LineString Geometrie.
ST_AsGeobuf — Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.
ST_AsGeoJSON — Gibt die Geometrie eines GeoJSON Elements zurück.
ST_AsGML — Gibt die Geometrie als GML-Element - Version 2 oder 3 - zurück.
ST_AsKML — Gibt die Geometrie als ein KML Element aus. Mehrere Varianten. Standardmäßig ist version=2 und precision=15
ST_AsLatLonText — Gibt die "Grad, Minuten, Sekunden"-Darstellung für den angegebenen Punkt aus.
ST_AsMVTGeom — Transformiert eine Geometrie in das Koordinatensystem eines Mapbox Vector Tiles.
ST_AsMVT — Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.
ST_AsSVG — Gibt ein Geoobjekt als SVG-Pfadgeometrie zurück. Unterstützt den geometrischen und den geographischen Datentyp.
ST_AsTWKB — Gibt die Geometrie als TWKB, aka "Tiny Well-known Binary" zurück
ST_AsX3D — Gibt eine Geometrie im X3D XML Knotenelement-Format zurück: ISO-IEC-19776-1.2-X3DEncodings-XML
ST_GeoHash — Gibt die Geometrie in der GeoHash Darstellung aus.

Name

ST_AsEncodedPolyline — Erzeugt eine codierte Polylinie aus einer LineString Geometrie.

Synopsis

text ST_AsEncodedPolyline(geometry geom, integer precision=5);

Beschreibung

Gibt die Geometrie als codierte Polylinie zurück. Dieses Format ist geeignet, wenn Sie Google Maps verwenden.

Optional precision specifies how many decimal places will be preserved in Encoded Polyline. Value should be the same on encoding and decoding, or coordinates will be incorrect.

Verfügbarkeit: 2.2.0

Beispiele

Grundlegendes

SELECT ST_AsEncodedPolyline(GeomFromEWKT('SRID=4326;LINESTRING(-120.2 38.5,-120.95 40.7,-126.453 43.252)'));
        --result--
        |_p~iF~ps|U_ulLnnqC_mqNvxq`@
        

Anwendung in Verbindung mit LINESTRING und ST_Segmentize für den geographischen Datentyp, und auf Google Maps stellen

-- das SQL von Boston nach San Francisco, segmentiert alle 100 KM
        SELECT ST_AsEncodedPolyline(
                ST_Segmentize(
                        ST_GeogFromText('LINESTRING(-71.0519 42.4935,-122.4483 37.64)'),
                                100000)::geometry) As encodedFlightPath;

In JavaScript sieht dies ungefähr wie folgt aus, wobei die $ Variable durch das Abfrageergebnis ersetzt wird

<script type="text/javascript" src="http://maps.googleapis.com/maps/api/js?libraries=geometry"
></script>
<script type="text/javascript">
         flightPath = new google.maps.Polyline({
                        path:  google.maps.geometry.encoding.decodePath("$encodedFlightPath"),
                        map: map,
                        strokeColor: '#0000CC',
                        strokeOpacity: 1.0,
                        strokeWeight: 4
                });
</script>
        

Siehe auch

???, ST_Segmentize


Name

ST_AsGeobuf — Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.

Synopsis

bytea ST_AsGeobuf(anyelement set row);

bytea ST_AsGeobuf(anyelement row, text geom_name);

Beschreibung

Gibt Zeilen einer FeatureCollection in der Geobuf Darstellung (https://github.com/mapbox/geobuf) aus. Von jeder Eingabegeometrie wird die maximale Genauigkeit analysiert, um eine optimale Speicherung zu erreichen. Anmerkung: In der jetzigen Form kann Geobuf nicht "gestreamt" werden, wodurch die gesamte Ausgabe im Arbeitsspeicher zusammengestellt wird.

row Datenzeilen mit zumindest einer Geometriespalte.

geom_name ist die Bezeichnung der Geometriespalte in den Datenzeilen. Wenn NULL, dann wird standardmäßig die erste aufgefundene Geometriespalte verwendet.

Verfügbarkeit: 2.4.0

Beispiele

SELECT encode(ST_AsGeobuf(q, 'geom'), 'base64')
    FROM (SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))') AS geom) AS q;
 st_asgeobuf
----------------------------------
 GAAiEAoOCgwIBBoIAAAAAgIAAAE=

                
                

Name

ST_AsGeoJSON — Gibt die Geometrie eines GeoJSON Elements zurück.

Synopsis

text ST_AsGeoJSON(geometry geom, integer maxdecimaldigits=15, integer options=0);

text ST_AsGeoJSON(geography geog, integer maxdecimaldigits=15, integer options=0);

text ST_AsGeoJSON(integer gj_version, geometry geom, integer maxdecimaldigits=15, integer options=0);

text ST_AsGeoJSON(integer gj_version, geography geog, integer maxdecimaldigits=15, integer options=0);

Beschreibung

Gibt die Geometrie als Geometrische Javascript Objekt Notation (GeoJSON) Element aus. (Vggl. GeoJSON specifications 1.0). Es werden sowohl 2D- als auch 3D-Geometrien unterstützt. GeoJSON unterstützt lediglich den geometrischer Datentyp SFS 1.1 (hat z.B. keine Unterstützung für Kurven).

The maxdecimaldigits argument may be used to reduce the maximum number of decimal places used in output (defaults to 9). If you are using EPSG:4326 and are outputting the geometry only for display, maxdecimaldigits=6 can be a good choice for many maps.

Mit dem letzten 'options' Argument kann eine BBox oder ein CRS zur GeoJSON Ausgabe hinzugefügt werden:

  • 0: bedeutet keine Option (Standardwert)

  • 1: GeoJSON Bbox

  • 2: GeoJSON CRS-Kurzform (z.B. EPSG:4326)

  • 4: GeoJSON CRS-Langform (z.B. urn:ogc:def:crs:EPSG::4326)

  • 2: GeoJSON CRS-Kurzform (z.B. EPSG:4326)

Verfügbarkeit: 1.3.4

Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.

Änderung: 2.0.0 Unterstützung für Standardargumente und benannte Argumente.

Änderung: 2.0.0 Unterstützung für Standardargumente und benannte Argumente.

Changed: 3.0.0 output SRID if not EPSG:4326.

This function supports 3d and will not drop the z-index.

Beispiele

GeoJSON format is popular among web mapping frameworks.

You can test and view your GeoJSON data online on geojson.io.

To build FeatureCollection:

select json_build_object(
    'type', 'FeatureCollection',
    'features', json_agg(ST_AsGeoJSON(t.*)::json)
    )
from ( values (1, 'one', 'POINT(1 1)'::geometry),
              (2, 'two', 'POINT(2 2)'),
              (3, 'three', 'POINT(3 3)')
     ) as t(id, name, geom);
{"type" : "FeatureCollection", "features" : [{"type": "Feature", "geometry": {"type":"Point","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[2,2]}, "properties": {"id": 2, "name": "two"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[3,3]}, "properties": {"id": 3, "name": "three"}}]}

To get Features as records:

SELECT ST_AsGeoJSON(t.*)
FROM (VALUES
  (1, 'one', 'POINT(1 1)'::geometry),
  (2, 'two', 'POINT(2 2)'),
  (3, 'three', 'POINT(3 3)'))
AS t(id, name, geom);
st_asgeojson
-----------------------------------------------------------------------------------------------------------------
 {"type": "Feature", "geometry": {"type":"Point","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}
 {"type": "Feature", "geometry": {"type":"Point","coordinates":[2,2]}, "properties": {"id": 2, "name": "two"}}
 {"type": "Feature", "geometry": {"type":"Point","coordinates":[3,3]}, "properties": {"id": 3, "name": "three"}}

Don't forget to transform your data to WGS84 longitude, latitude to conform with RFC7946:

SELECT ST_AsGeoJSON(ST_Transform(geom,4326)) from fe_edges limit 1;
SELECT ST_AsGeoJSON(the_geom) from fe_edges limit 1;
                                           st_asgeojson
-----------------------------------------------------------------------------------------------------------

{"type":"MultiLineString","coordinates":[[[-89.734634999999997,31.492072000000000],
[-89.734955999999997,31.492237999999997]]]}
(1 row)
--3d point
SELECT ST_AsGeoJSON('LINESTRING(1 2 3, 4 5 6)');

st_asgeojson
-----------------------------------------------------------------------------------------
 {"type":"LineString","coordinates":[[1,2,3],[4,5,6]]}

You can also use it with 3D geometries:

SELECT ST_AsGeoJSON('LINESTRING(1 2 3, 4 5 6)');
{"type":"LineString","coordinates":[[1,2,3],[4,5,6]]}

Name

ST_AsGML — Gibt die Geometrie als GML-Element - Version 2 oder 3 - zurück.

Synopsis

text ST_AsGML(geometry geom, integer maxdecimaldigits=15, integer options=0);

text ST_AsGML(geography geog, integer maxdecimaldigits=15, integer options=0);

text ST_AsGML(integer version, geometry geom, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);

text ST_AsGML(integer version, geography geog, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);

Beschreibung

Gibt die Geometrie als ein Geography Markup Language (GML) Element zurück. Der Versionsparameter kann 2 oder 3 sein, falls angegeben. Wenn kein Versionsparameter angegeben ist, wird dieser standardmäßig mit 2 angenommen. Das Genauigkeitsargument "precision" kann verwendet werden, um die Anzahl der Dezimalstellen (maxdecimaldigits)  bei der Ausgabe zu reduzieren (standardmäßig 15).

GML 2 verweist auf Version 2.1.2, GML 3 auf Version 3.1.1

Der Übergabewert "options" ist ein Bitfeld. Es kann verwendet werden um das Koordinatenreferenzsystem bei der GML Ausgabe zu bestimmen und um die Daten in Länge/Breite anzugeben.

  • 0: GML Kurzform für das CRS (z.B. EPSG:4326), Standardwert

  • 1: GML Langform für das CRS (z.B. urn:ogc:def:crs:EPSG::4326)

  • 2: Nur für GML 3, entfernt das srsDimension Attribut von der Ausgabe.

  • 4: Nur für GML 3, Für Linien verwenden Sie bitte den Tag <LineString> anstatt <Curve>.

  • 16: Deklarieren, dass die Daten in Breite/Länge (z.B. SRID=4326) vorliegen. Standardmäßig wird angenommen, dass die Daten planar sind. Diese Option ist nur bei Ausgabe in GML 3.1.1, in Bezug auf die Anordnung der Achsen sinnvoll. Falls Sie diese setzen, werden die Koordinaten von Länge/Breite auf Breite/Länge vertauscht.

  • 32: Ausgabe der BBox der Geometrie (Umhüllende/Envelope).

Der Übergabewert 'namespace prefix' kann verwendet werden, um ein benutzerdefiniertes Präfix für den Namensraum anzugeben, oder kein Präfix (wenn leer). Wenn Null oder weggelassen, so wird das Präfix "gml" verwendet.

Verfügbarkeit: 1.3.2

Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.

Erweiterung: 2.0.0 Unterstützung durch Präfix eingeführt. Für GML3 wurde die Option 4 eingeführt, um die Verwendung von LineString anstatt von Kurven für Linien zu erlauben. Ebenfalls wurde die GML3 Unterstützung für polyedrische Oberflächen und TINS eingeführt, sowie die Option 32 zur Ausgabe der BBox.

Änderung: 2.0.0 verwendet standardmäßig benannte Argumente.

Erweiterung: 2.1.0 Für GML 3 wurde die Unterstützung einer ID eingeführt.

[Note]

Nur die Version 3+ von ST_AsGML unterstützt polyedrische Oberflächen und TINs.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele: Version 2

SELECT ST_AsGML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
                st_asgml
                --------
                <gml:Polygon srsName="EPSG:4326"
><gml:outerBoundaryIs
><gml:LinearRing
><gml:coordinates
>0,0 0,1 1,1 1,0 0,0</gml:coordinates
></gml:LinearRing
></gml:outerBoundaryIs
></gml:Polygon
>
                        

Beispiele: Version 3

-- Koordinaten umdrehen und Ausgabe in erweitertem EPSG (16 | 1)--
SELECT ST_AsGML(3, ST_GeomFromText('POINT(5.234234233242 6.34534534534)',4326), 5, 17);
                        st_asgml
                        --------
                <gml:Point srsName="urn:ogc:def:crs:EPSG::4326"
><gml:pos
>6.34535 5.23423</gml:pos
></gml:Point
>
                        
-- Die Umhüllende/Envelope ausgeben (32) --
SELECT ST_AsGML(3, ST_GeomFromText('LINESTRING(1 2, 3 4, 10 20)',4326), 5, 32);
                st_asgml
                --------
        <gml:Envelope srsName="EPSG:4326">
                <gml:lowerCorner
>1 2</gml:lowerCorner>
                <gml:upperCorner
>10 20</gml:upperCorner>
        </gml:Envelope
>
                        
-- Die Umhüllende (32) ausgeben, umgedreht (Breite/Länge anstatt Länge/Bereite) (16), long srs (1)= 32 | 16 | 1 = 49 --
SELECT ST_AsGML(3, ST_GeomFromText('LINESTRING(1 2, 3 4, 10 20)',4326), 5, 49);
        st_asgml
        --------
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
        <gml:lowerCorner
>2 1</gml:lowerCorner>
        <gml:upperCorner
>20 10</gml:upperCorner>
</gml:Envelope
>
                        
-- Polyeder Beispiel --
SELECT ST_AsGML(3, ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
        st_asgml
        --------
 <gml:PolyhedralSurface>
<gml:polygonPatches>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 0 0 0 1 0 1 1 0 1 0 0 0 0 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 0 0 1 0 0 1 0 1 0 0 1 0 0 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
   <gml:PolygonPatch>
                <gml:exterior>
                          <gml:LinearRing>
                                   <gml:posList srsDimension="3"
>0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml:posList>
                          </gml:LinearRing>
                </gml:exterior>
   </gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface
>
                        

Siehe auch

???


Name

ST_AsKML — Gibt die Geometrie als ein KML Element aus. Mehrere Varianten. Standardmäßig ist version=2 und precision=15

Synopsis

text ST_AsSVG(geometry geom, integer rel=0, integer maxdecimaldigits=15);

text ST_AsSVG(geography geog, integer rel=0, integer maxdecimaldigits=15);

Beschreibung

Gibt die Geometrie als ein Keyhole Markup Language (KML) Element zurück. Diese Funktion verfügt über mehrere Varianten. Die maximale Anzahl der Dezimalstellen die bei der Ausgabe verwendet wird (standardmäßig 15), die Version ist standardmäßig 2 und der Standardnamensraum hat kein Präfix.

Version 1: ST_AsKML(geom_or_geog, maxdecimaldigits) / version=2 / maxdecimaldigits=15

Version 2: ST_AsKML(version, geom_or_geog, maxdecimaldigits, nprefix) maxdecimaldigits=15 / nprefix=NULL

[Note]

Setzt voraus, dass PostGIS mit Proj-Unterstützung kompiliert wurde. Verwenden Sie bitte ???, um festzustellen ob mit proj kompiliert wurde.

[Note]

Verfügbarkeit: 1.2.2 - spätere Varianten ab 1.3.2 nehmen den Versionsparameter mit auf

[Note]

Erweiterung: 2.0.0 - Präfix Namensraum hinzugefügt. Standardmäßig kein Präfix

[Note]

Änderung: 2.0.0 verwendet Standardargumente und unterstützt benannte Argumente.

[Note]

Die Ausgabe AsKML funktioniert nicht bei Geometrien ohne SRID

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsKML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

                st_askml
                --------
                <Polygon
><outerBoundaryIs
><LinearRing
><coordinates
>0,0 0,1 1,1 1,0 0,0</coordinates
></LinearRing
></outerBoundaryIs
></Polygon>

                --3D Linienzug
                SELECT ST_AsKML('SRID=4326;LINESTRING(1 2 3, 4 5 6)');
                <LineString
><coordinates
>1,2,3 4,5,6</coordinates
></LineString>
                
                

Siehe auch

ST_AsSVG, ST_AsGML


Name

ST_AsLatLonText — Gibt die "Grad, Minuten, Sekunden"-Darstellung für den angegebenen Punkt aus.

Synopsis

text ST_AsLatLonText(geometry pt, text format='');

Beschreibung

Gibt die "Grad, Minuten, Sekunden"-Darstellung des Punktes aus.

[Note]

Es wird angenommen, dass der Punkt in einer Breite/Länge-Projektion vorliegt. Die X (Länge) und Y (Breite) Koordinaten werden bei der Ausgabe in den "üblichen" Bereich (-180 to +180 für die Länge, -90 to +90 für die Breite) normalisiert.

Der Textparameter ist eine Zeichenkette für die Formatierung der Ausgabe, ähnlich wie die Zeichenkette für die Formatierung der Datumsausgabe. Gültige Zeichen sind "D" für Grad/Degrees, "M" für Minuten, "S" für Sekunden, und "C" für die Himmelsrichtung (NSEW). DMS Zeichen können wiederholt werden, um die gewünschte Zeichenbreite und Genauigkeit anzugeben ("SSS.SSSS" bedeutet z.B. " 1.0023").

"M", "S", und "C" sind optional. Wenn "C" weggelassen wird, werden Grad mit einem "-" Zeichen versehen, wenn Süd oder West. Wenn "S" weggelassen wird, werden die Minuten als Dezimalzahl mit der vorgegebenen Anzahl an Kommastellen angezeigt. Wenn "M" wegggelassen wird, werden die Grad als Dezimalzahl mit der vorgegebenen Anzahl an Kommastellen angezeigt.

Wenn die Zeichenkette für das Ausgabeformat weggelassen wird (oder leer ist) wird ein Standardformat verwendet.

Verfügbarkeit: 2.0

Beispiele

Standardformat.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)'));
      st_aslatlontext
----------------------------
 2°19'29.928"S 3°14'3.243"W

Ein Format angeben (identisch mit Standardformat).

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"C'));
      st_aslatlontext
----------------------------
 2°19'29.928"S 3°14'3.243"W

Andere Zeichen als D, M, S, C und "." werden lediglich durchgereicht.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D degrees, M minutes, S seconds to the C'));
                                   st_aslatlontext
--------------------------------------------------------------------------------------
 2 degrees, 19 minutes, 30 seconds to the S 3 degrees, 14 minutes, 3 seconds to the W

Grad mit einem Vorzeichen versehen - anstatt der Himmelsrichtung.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"'));
      st_aslatlontext
----------------------------
 -2°19'29.928" -3°14'3.243"

Dezimalgrad.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D.DDDD degrees C'));
          st_aslatlontext
-----------------------------------
 2.3250 degrees S 3.2342 degrees W

Überhöhte Werte werden normalisiert.

SELECT (ST_AsLatLonText('POINT (-302.2342342 -792.32498)'));
        st_aslatlontext
-------------------------------
 72°19'29.928"S 57°45'56.757"E

Name

ST_AsMVTGeom — Transformiert eine Geometrie in das Koordinatensystem eines Mapbox Vector Tiles.

Synopsis

geometry ST_AsMVTGeom(geometry geom, box2d bounds, int4 extent=4096, int4 buffer=256, bool clip_geom=true);

Beschreibung

Transformiert eine Geometrie in das Koordinatensystem eines Mapbox Vector Tiles aus Zeilen die einem Layer entsprechen. Unternimmt alle Anstrengungen, damit die Geometrie valide bleibt oder korrigiert sie eventuell sogar. Bei diesem Prozess kann es vorkommen, dass die Geometrie in eine niedrigere Dimension übergeführt wird.

geom Die zu Transformierende Geometrie.

bounds ist die geometrische Abgrenzung des Inhalts der Kachel ohne Puffer.

extent ist die Größe der Kachel, angegeben im Koordinatensystem der Vektorkacheln und so wie in der Spezifikation festgelegt. Wenn dieser Wert NULL ist, wird der Standardwert 4096 angenommen.

buffer ist die Puffergröße im Koordinatensystem der Vektorkacheln, an der die Geometrie optional ausgeschnitten werden kann. Wenn NULL, dann wird der Standardwert 256 angenommen.

clip_geom ist ein boolescher Eingabewert, der bestimmt ob die Geometrie ausgeschnitten werden soll, oder so wie sie vorliegt codiert wird. Wenn der Wert NULL ist, wird der Standardwert TRUE angenommen.

Verfügbarkeit: 2.4.0

[Note]

From 3.0, Wagyu can be chosen at configure time to clip and validate MVT polygons. This library is faster and produces more correct results than the GEOS default, but it might drop small polygons.

Beispiele

SELECT ST_AsText(ST_AsMVTGeom(
        ST_GeomFromText('POLYGON ((0 0, 10 0, 10 5, 0 -5, 0 0))'),
        ST_MakeBox2D(ST_Point(0, 0), ST_Point(4096, 4096)),
        4096, 0, false));
                              st_astext
--------------------------------------------------------------------
 MULTIPOLYGON(((5 4096,10 4096,10 4091,5 4096)),((5 4096,0 4096,0 4101,5 4096)))

                
                

Name

ST_AsMVT — Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.

Synopsis

bytea ST_AsMVT(anyelement set row);

bytea ST_AsMVT(anyelement row, text name);

bytea ST_AsMVT(anyelement row, text name, int4 extent);

bytea ST_AsMVT(anyelement row, text name, int4 extent, text geom_name);

Beschreibung

Gibt eine Menge an Zeilen, die einem Layer entsprechen, in der Mapbox Vector Tile Darstellung aus. Mehrere Aufrufe können aneinandergereiht werden, um eine Kachel mit mehreren Layern zu erstellen. Es wird angenommen, dass die Geometrie im Koordinatensystem der Vektorkacheln vorliegt und entsprechend derSpezifikation valide ist. Üblicherweise wird ST_AsMVTGeom verwendet, um die Geometrie in das Koordinatensystem der Vektorkacheln zu transformieren. Die übrigen Daten werden als Attribute codiert.

Das Mapbox Vector Tile Format kann Geoobjekte mit unterschiedlichen Attributen pro Feature speichern. Um dies zu nutzen, legen Sie bitte eine JSONB-Spalte mit JSON-Objekten in den Rohdaten an. Die Schlüssel und Werte in dem Objekt werden in die Feature-Attribute zerlegt.

Tiles with multiple layers can be created by concatenating multiple calls to this function using ||.

[Important]

Do not call with a GEOMETRYCOLLECTION as an element in the row. However you can use ST_AsMVTGeom to prepare a geometry collection for inclusion.

row Datenzeilen mit zumindest einer Geometriespalte.

name ist der Name des Layers. Wenn NULL, dann wird die Zeichenfolge "default" verwendet.

extent ist die Kachelausdehnung in Bildschirmeinheiten, so wie in der Spezifikation festgelegt. Wenn NULL, wird der Standardwert 4096 angenommen.

geom_name ist die Bezeichnung der Geometriespalte in den Datenzeilen. Wenn NULL, dann wird standardmäßig die erste aufgefundene Geometriespalte verwendet.

feature_id_name is the name of the Feature ID column in the row data. If NULL or negative the Feature ID is not set. The first column matching name and valid type (smallint, integer, bigint) will be used as Feature ID, and any subsequent column will be added as a property. JSON properties are not supported.

Enhanced: 3.0 - added support for Feature ID.

Erweiterung: 2.1.0 Für GML 3 wurde die Unterstützung einer ID eingeführt.

Verfügbarkeit: 2.4.0

Beispiele

WITH mvtgeom AS
(
  SELECT ST_AsMVTGeom(geom, ST_TileEnvelope(12,513,412)) AS geom, name, description
  FROM points_of_interest
  WHERE ST_Intersects(geom, ST_TileEnvelope(12,513,412)
)
SELECT ST_AsMVT(mvtgeom.*)
FROM mvtgeom;

Name

ST_AsSVG — Gibt ein Geoobjekt als SVG-Pfadgeometrie zurück. Unterstützt den geometrischen und den geographischen Datentyp.

Synopsis

text ST_AsSVG(geometry geom, integer rel=0, integer maxdecimaldigits=15);

text ST_AsSVG(geography geog, integer rel=0, integer maxdecimaldigits=15);

Beschreibung

Gibt die Geometrie als Skalare Vektor Graphik (SVG-Pfadgeometrie) aus. Verwenden Sie 1 als zweiten Übergabewert um die Pfadgeometrie in relativen Schritten zu implementieren; Standardmäßig (oder 0) verwendet absolute Schritte. Der dritte Übergabewert kann verwendet werden, um die maximale Anzahl der Dezimalstellen bei der Ausgabe einzuschränken (standardmäßig 15). Punktgeometrie wird als cx/cy übersetzt wenn der Übergabewert 'rel' gleich 0 ist, x/y wenn 'rel' 1 ist. Mehrfachgeometrie wird durch Beistriche (",") getrennt, Sammelgeometrie wird durch Strichpunkt (";") getrennt.

[Note]

Verfügbarkeit: 1.2.2. Änderung: 1.4.0 L-Befehl beim absoluten Pfad aufgenommen, um mit http://www.w3.org/TR/SVG/paths.html#PathDataBNF konform zu sein.

Änderung: 2.0.0 verwendet Standardargumente und unterstützt benannte Argumente.

Beispiele

SELECT ST_AsSVG(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

                st_assvg
                --------
                M 0 0 L 0 -1 1 -1 1 0 Z

Name

ST_AsTWKB — Gibt die Geometrie als TWKB, aka "Tiny Well-known Binary" zurück

Synopsis

bytea ST_AsTWKB(geometry g1, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer decimaldigits_m=0, boolean include_sizes=false, boolean include_bounding boxes=false);

bytea ST_AsTWKB(geometry[] geometries, bigint[] unique_ids, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer decimaldigits_m=0, boolean include_sizes=false, boolean include_bounding_boxes=false);

Beschreibung

Gibt die Geometrie im TWKB ("Tiny Well-Known Binary") Format aus. TWKB ist ein komprimiertes binäres Format mit dem Schwerpunkt, die Ausgabegröße zu minimieren.

Der Parameter 'decimaldigits' bestimmt die Anzahl der Dezimalstellen bei der Ausgabe. Standardmäßig werden die Werte vor der Zeichenkodierung auf die Einserstelle gerundet. Wenn Sie die Daten mit höherer Genauigkeit übergeben wollen, erhöhen Sie bitte die Anzahl der Dezimalstellen. Zum Beispiel bedeutet ein Wert von 1, dass die erste Dezimalstelle erhalten bleibt.

Die Parameter "sizes" und "bounding_boxes" bestimmen ob zusätzliche Information über die kodierte Länge und die Abgrenzung des Objektes in der Ausgabe eingebunden werden. Standardmäßig passiert dies nicht. Drehen Sie diese bitte nicht auf, solange dies nicht von Ihrer Client-Software benötigt wird, da dies nur unnötig Speicherplatz verbraucht (Einsparen von Speicherplatz ist der Sinn von TWKB).

Das Feld-Eingabeformat dieser Funktion wird verwendet um eine Sammelgeometriee und eindeutige Identifikatoren in eine TWKB-Collection zu konvertieren, welche die Identifikatoren erhält. Dies ist nützlich für Clients, die davon ausgehen, eine Sammelgeometrie auszupacken, um so auf zusätzliche Information über die internen Objekte zuzugreifen. Sie können das Feld mit der Funktion array_agg erstellen. Die anderen Parameter bewirken dasselbe wie bei dem einfachen Format dieser Funktion.

[Note]

Die Formatspezifikation steht Online unter https://github.com/TWKB/Specification zur Verfügung, und Code zum Aufbau eines JavaScript Clints findet sich unter https://github.com/TWKB/twkb.js.

Enhanced: 2.4.0 memory and speed improvements.

Verfügbarkeit: 2.2.0

Beispiele

SELECT ST_AsTWKB('LINESTRING(1 1,5 5)'::geometry);
                 st_astwkb
--------------------------------------------
\x02000202020808

Um ein aggregiertes TWKB-Objekt inklusive Identifikatoren zu erzeugen, fassen Sie bitte die gewünschte Geometrie und Objekte zuerst mittels "array_agg()" zusammen und rufen anschließend die passende TWKB Funktion auf.

SELECT ST_AsTWKB(array_agg(geom), array_agg(gid)) FROM mytable;
                 st_astwkb
--------------------------------------------
\x040402020400000202

Siehe auch

???, ST_AsEWKB, ST_AsEWKT, ???


Name

ST_AsX3D — Gibt eine Geometrie im X3D XML Knotenelement-Format zurück: ISO-IEC-19776-1.2-X3DEncodings-XML

Synopsis

text ST_AsX3D(geometry g1, integer maxdecimaldigits=15, integer options=0);

Beschreibung

Gibt eine Geometrie als X3D knotenformatiertes XML Element zurück http://www.web3d.org/standards/number/19776-1. Falls maxdecimaldigits (Genauigkeit) nicht angegeben ist, wird sie standardmäßig 15.

[Note]

Es gibt verschiedene Möglichkeiten eine PostGIS Geometrie in X3D zu übersetzen, da sich der X3D Geometrietyp nicht direkt in den geometrischen Datentyp von PostGIS abbilden lässt. Einige neuere X3D Datentypen, die sich besser abbilden lassen könnten haben wir vermieden, da diese von den meisten Rendering-Tools zurzeit nicht untestützt werden. Dies sind die Abbildungen für die wir uns entschieden haben. Falls Sie Ideen haben, wie wir es den Anwendern ermöglichen können ihre bevorzugten Abbildungen anzugeben, können Sie gerne ein Bug-Ticket senden.

Im Folgenden wird beschrieben, wie der PostGIS 2D/3D Datentyp derzeit in den X3D Datentyp abgebildet wird

Das Argument 'options' ist ein Bitfeld. Ab PostGIS 2.2+ wird dieses verwendet, um anzuzeigen ob die Koordinaten als X3D geospatiale Knoten in GeoKoordinaten dargestellt werden und auch ob X- und Y-Achse vertauscht werden sollen. Standardmäßig erfolgt die Ausgabe durch ST_AsX3D im Datenbankformat (Länge, Breite oder X,Y), aber es kann auch der X3D Standard mit Breite/Länge oder Y/X bevorzugt werden.

  • 0: X/Y in der Datenbankreihenfolge (z.B. ist Länge/Breite = X,Y die standardmäßige Datenbankreihenfolge), Standardwert, und nicht-spatiale Koordinaten (nur der normale alte Koordinaten-Tag).

  • 1: X und Y umdrehen. In Verbindung mit der Option für GeoKoordinaten wird bei der Standardausgabe die Breite zuerst/"latitude_first" ausgegeben und die Koordinaten umgedreht.

  • 2: Die Koordinaten werden als geospatiale GeoKoordinaten ausgegeben. Diese Option gibt eine Fehlermeldung aus, falls die Geometrie nicht in WGS 84 Länge/Breite (SRID: 4326) vorliegt. Dies ist zurzeit der einzige GeoKoordinaten-Typ der unterstützt wird.Siehe die X3D Spezifikation für Koordinatenreferenzsysteme. Die Standardausgabe ist GeoCoordinate geoSystem='"GD" "WE" "longitude_first"'. Wenn Sie den X3D Standard bevorzugen GeoCoordinate geoSystem='"GD" "WE" "latitude_first"' verwenden Sie bitte (2+1) = 3

PostGIS Datentyp2D X3D Datentyp3D X3D Datentyp
LINESTRINGzurzeit nicht implementiert - wird PolyLine2DLineSet
MULTILINESTRINGzurzeit nicht implementiert - wird PolyLine2DIndexedLineSet
MULTIPOINTPolypoint2DPointSet
POINTgibt leerzeichengetrennte Koordinaten ausgibt leerzeichengetrennte Koordinaten aus
(MULTI) POLYGON, POLYHEDRALSURFACEUngültiges X3D MarkupIndexedFaceSet (die inneren Ringe werden zurzeit als ein weiteres FaceSet abgebildet)
TINTriangleSet2D (zurzeit nicht implementiert)IndexedTriangleSet
[Note]

Die Unterstützung von 2D-Geometrie ist noch nicht vollständig. Die inneren Ringe werden zur Zeit lediglich als gesonderte Polygone abgebildet. Wir arbeiten daran.

Bezüglich 3D sind viele Weiterentwicklungen im Gange, insbesondere in Bezug auf X3D Integration mit HTML5

Es gibt auch einen feinen OpenSource X3D Viewer, den Sie benützen können, um Geometrien darzustellen. Free Wrl http://freewrl.sourceforge.net/ Binärdateien sind für Mac, Linux und Windows verfügbar. Sie können den mitgelieferten FreeWRL_Launcher verwenden, um Gemetrien darzustellen.

Riskieren Sie auch einen Blick auf PostGIS minimalist X3D viewer, der diese Funktionalität einsetzt und auf x3dDom HTML/JS OpenSource Toolkit.

Verfügbarkeit: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML

Erweiterung: 2.2.0: Unterstützung für geographische Koordinaten und Vertauschen der Achsen (x/y, Länge/Breite). Für nähere Details siehe Optionen.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiel: Erzeugung eines voll funktionsfähigen X3D Dokuments - Dieses erzeugt einen Würfel, den man sich mit FreeWrl und anderen X3D-Viewern ansehen kann.

SELECT '<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d-3.0.dtd">
<X3D>
  <Scene>
    <Transform>
      <Shape>
       <Appearance>
            <Material emissiveColor=''0 0 1''/>
       </Appearance
> ' ||
       ST_AsX3D( ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')) ||
      '</Shape>
    </Transform>
  </Scene>
</X3D
>' As x3ddoc;

                x3ddoc
                --------
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d-3.0.dtd">
<X3D>
  <Scene>
    <Transform>
      <Shape>
       <Appearance>
            <Material emissiveColor='0 0 1'/>
       </Appearance>
       <IndexedFaceSet  coordIndex='0 1 2 3 -1 4 5 6 7 -1 8 9 10 11 -1 12 13 14 15 -1 16 17 18 19 -1 20 21 22 23'>
            <Coordinate point='0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1' />
      </IndexedFaceSet>
      </Shape>
    </Transform>
  </Scene>
</X3D
>

Beispiel: Ein Achteck, um 3 Einheiten gehoben und mit einer dezimalen Genauigkeit von 6

SELECT ST_AsX3D(
ST_Translate(
    ST_Force_3d(
        ST_Buffer(ST_Point(10,10),5, 'quad_segs=2')), 0,0,
    3)
  ,6) As x3dfrag;

x3dfrag
--------
<IndexedFaceSet coordIndex="0 1 2 3 4 5 6 7">
    <Coordinate point="15 10 3 13.535534 6.464466 3 10 5 3 6.464466 6.464466 3 5 10 3 6.464466 13.535534 3 10 15 3 13.535534 13.535534 3 " />
</IndexedFaceSet
>

Beispiel: TIN

SELECT ST_AsX3D(ST_GeomFromEWKT('TIN (((
                0 0 0,
                0 0 1,
                0 1 0,
                0 0 0
            )), ((
                0 0 0,
                0 1 0,
                1 1 0,
                0 0 0
            ))
            )')) As x3dfrag;

                x3dfrag
                --------
<IndexedTriangleSet  index='0 1 2 3 4 5'
><Coordinate point='0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0'/></IndexedTriangleSet
>

Beispiel: Geschlossener MultiLinestring (die Begrenzung eines Polygons mit Lücken)

SELECT ST_AsX3D(
                    ST_GeomFromEWKT('MULTILINESTRING((20 0 10,16 -12 10,0 -16 10,-12 -12 10,-20 0 10,-12 16 10,0 24 10,16 16 10,20 0 10),
  (12 0 10,8 8 10,0 12 10,-8 8 10,-8 0 10,-8 -4 10,0 -8 10,8 -4 10,12 0 10))')
) As x3dfrag;

                x3dfrag
                --------
<IndexedLineSet  coordIndex='0 1 2 3 4 5 6 7 0 -1 8 9 10 11 12 13 14 15 8'>
    <Coordinate point='20 0 10 16 -12 10 0 -16 10 -12 -12 10 -20 0 10 -12 16 10 0 24 10 16 16 10 12 0 10 8 8 10 0 12 10 -8 8 10 -8 0 10 -8 -4 10 0 -8 10 8 -4 10 ' />
 </IndexedLineSet
>

Name

ST_GeoHash — Gibt die Geometrie in der GeoHash Darstellung aus.

Synopsis

text ST_GeoHash(geometry geom, integer maxchars=full_precision_of_point);

Beschreibung

Gibt die Geometrie in der GeoHash-Darstellung (http://en.wikipedia.org/wiki/Geohash) aus. Ein GeoHash codiert einen Punkt in einem Textformat, das über Präfixe sortierbar und durchsuchbar ist. Ein kürzer codierter GeoHash ergibt eine ungenauere Darstellung des Punktes. Man kann sich einen GeoHash auch als eine Box vorstellen, welche den tatsächlichen Punkt enthält.

Wenn maxchars nicht angegeben wird, gibt ST_GeoHash einen GeoHash mit der vollen Genauigkeit der Eingabegeometrie zurück. Punkte ergeben so einen GeoHash mit einer Genauigkeit von 20 Zeichen (dies sollte ausreichen um die Eingabe in Double Precision zur Gänze abzuspeichern). Andere Varianten geben einen Geohash, basierend auf der Größe des Geoobjektes, mit veränderlicher Genauigkeit zurück, Größere Geoobjekte werden mit geringerer, kleinere Geoobjekte mit höherer Genauigkeit dargestellt. Die Idee dahinter ist, dass die durch den GeoHash implizierte Box immer das gegebene Geoobjekt beinhaltet.

Wenn maxchars angegeben wird, gibt ST_GeoHash einen GeoHash zurück, der maximal die Anzahl dieser Zeichen aufweist. Auf diese Weise ist es möglich die Eingabegeometrie mit einer geringeren Präzision darzustellen. Bei Nicht-Punkten befindet sich der Anfangspunkt der Berechnung im Mittelpunkt des Umgebungsrechtecks der Geometrie.

Verfügbarkeit: 1.4.0

[Note]

ST_GeoHash funktioniert nicht, wenn die Geometrien nicht in geographischen (Länge/Breite) Koordinaten vorliegen.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_GeoHash(ST_SetSRID(ST_MakePoint(-126,48),4326));

         st_geohash
----------------------
 c0w3hf1s70w3hf1s70w3

SELECT ST_GeoHash(ST_SetSRID(ST_MakePoint(-126,48),4326),5);

 st_geohash
------------
 c0w3h
                
                

Siehe auch

???

8.8. Operatoren

8.8.1. Bounding Box Operators

&& — Gibt TRUE zurück, wenn die 2D Bounding Box von A die 2D Bounding Box von B schneidet.
&&(geometry,box2df) — Gibt TRUE zurück, wenn sich die 2D Bounding Box (cached) einer Geometrie mit einer 2D Bounding Box mit Gleitpunktgenauigkeit (BOX2DF) überschneidet.
&&(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine Geometrie (cached) 2D bounding box schneidet.
&&(box2df,box2df) — Gibt TRUE zurück, wenn sich zwei 2D float precision Bounding Boxes (BOX2DF) überschneiden.
&&& — Gibt TRUE zurück, wenn A's n-D bounding box B's n-D bounding box schneidet.
&&&(geometry,gidx) — Gibt TRUE zurück, wenn die (cached) n-D bounding box einer Geometrie eine n-D float precision bounding box (GIDX) schneidet.
&&&(gidx,geometry) — Gibt TRUE zurück, wenn eine n-D float precision bounding box (GIDX) eine (cached) n-D bounding box einer Geometrie schneidet.
&&&(gidx,gidx) — Gibt TRUE zurück, wenn sich zwei n-D float precision bounding boxes (GIDX) gegenseitig überschneiden.
&< — Gibt TRUE zurück, wenn die bounding box der Geometrie A, die bounding box der Geometrie B überlagert oder links davon liegt.
&<| — Gibt TRUE zurück, wenn die bounding box von A jene von B überlagert oder unterhalb liegt.
&> — Gibt TRUE zurück, wenn die Bounding Box von A jene von B überlagert oder rechts davon liegt.
<< — Gibt TRUE zurück, wenn die Bounding Box von A zur Gänze links von der von B liegt.
<<| — Gibt TRUE zurück, wenn A's Bounding Box zur Gänze unterhalb von der von B liegt.
= — Gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind.
>> — Gibt TRUE zurück, wenn A's bounding box zur Gänze rechts von der von B liegt.
@ — Gibt TRUE zurück, wenn die Bounding Box von A in jener von B enthalten ist.
@(geometry,box2df) — Gibt TRUE zurück, wenn die 2D Bounding Box einer Geometrie in einer 2D float precision Bbounding Box (BOX2DF) enthalten ist.
@(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) in der 2D Bounding Box einer Geometrie enthalten ist..
@(box2df,box2df) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) innerhalb einer anderen 2D float precision bounding box enthalten ist.
|&> — Gibt TRUE zurück, wenn A's bounding box diejenige von B überlagert oder oberhalb von B liegt.
|>> — Gibt TRUE zurück, wenn A's bounding box is zur Gänze oberhalb der von B liegt.
~ — Gibt TRUE zurück, wenn A's bounding box die von B enthält.
~(geometry,box2df) — Gibt TRUE zurück, wenn die 2D bounding box einer Geometrie eine 2D float precision bounding box (GIDX) enthält.
~(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) die 2D Bounding Box einer Geometrie enthält.
~(box2df,box2df) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine andere 2D float precision bounding box (BOX2DF) enthält.
~= — Gibt TRUE zurück, wenn die bounding box von A ident mit jener von B ist.

Name

&& — Gibt TRUE zurück, wenn die 2D Bounding Box von A die 2D Bounding Box von B schneidet.

Synopsis

boolean &&( geometry A , geometry B );

boolean &&( geography A , geography B );

Beschreibung

Der && Operator gibt TRUE zurück, wenn die 2D Bounding Box von Geometrie A die 2D Bounding Box der Geometrie von B schneidet.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen eingeführt.

Verfügbarkeit: Mit 1.5.0 wurde die Unterstützung von geograpischen Koordinaten eingeführt

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 && tbl2.column2 AS overlaps
FROM ( VALUES
        (1, 'LINESTRING(0 0, 3 3)'::geometry),
        (2, 'LINESTRING(0 1, 0 5)'::geometry)) AS tbl1,
( VALUES
        (3, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overlaps
---------+---------+----------
           1 |       3 | t
           2 |       3 | f
(2 rows)

Siehe auch

|&>, &>, &<|, &<, ~, @


Name

&&(geometry,box2df) — Gibt TRUE zurück, wenn sich die 2D Bounding Box (cached) einer Geometrie mit einer 2D Bounding Box mit Gleitpunktgenauigkeit (BOX2DF) überschneidet.

Synopsis

boolean &&( geometry A , box2df B );

Beschreibung

Der && Operator gibt TRUE zurück, wenn die im Cache befindliche 2D Bounding Box der Geometrie A sich mit der 2D Bounding Box von B, unter Verwendung von Gleitpunktgenauigkeit überschneidet. D.h.: falls B eine (double precision) box2d ist, wird diese intern in eine auf Gleitpunkt genaue 2D Bounding Box (BOX2DF) umgewandelt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakePoint(1,1) && ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine Geometrie (cached) 2D bounding box schneidet.

Synopsis

boolean &&( box2df A , geometry B );

Beschreibung

Der && Operator gibt TRUE zurück, wenn die 2D Bounding Box A die zwischengespeicherte 2D Bounding Box der Geometrie B, unter Benutzung von Fließpunktgenauigkeit, schneidet. D.h.: wenn A eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) && ST_MakePoint(1,1) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&(box2df,box2df) — Gibt TRUE zurück, wenn sich zwei 2D float precision Bounding Boxes (BOX2DF) überschneiden.

Synopsis

boolean &&( box2df A , box2df B );

Beschreibung

Der && Operator gibt TRUE zurück, wenn sich zwei 2D Bounding Boxes A und B, unter Benutzung von float precision, gegenseitig überschneiden. D.h.: Wenn A (oder B) eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt

[Note]

Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) && ST_MakeBox2D(ST_MakePoint(1,1), ST_MakePoint(3,3)) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&& — Gibt TRUE zurück, wenn A's n-D bounding box B's n-D bounding box schneidet.

Synopsis

boolean &&&( geometry A , geometry B );

Beschreibung

Der &&& Operator gibt TRUE zurück, wenn die n-D bounding box der Geometrie A die n-D bounding box der Geometrie B schneidet.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Verfügbarkeit: 2.0.0

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele: 3D LineStrings

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3d,
                                    tbl1.column2 && tbl2.column2 AS overlaps_2d
FROM ( VALUES
        (1, 'LINESTRING Z(0 0 1, 3 3 2)'::geometry),
        (2, 'LINESTRING Z(1 2 0, 0 5 -1)'::geometry)) AS tbl1,
( VALUES
        (3, 'LINESTRING Z(1 2 1, 4 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overlaps_3d | overlaps_2d
---------+---------+-------------+-------------
       1 |       3 | t           | t
       2 |       3 | f           | t

Beispele: 3M LineStrings

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3zm,
                                    tbl1.column2 && tbl2.column2 AS overlaps_2d
FROM ( VALUES
        (1, 'LINESTRING M(0 0 1, 3 3 2)'::geometry),
        (2, 'LINESTRING M(1 2 0, 0 5 -1)'::geometry)) AS tbl1,
( VALUES
        (3, 'LINESTRING M(1 2 1, 4 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overlaps_3zm | overlaps_2d
---------+---------+-------------+-------------
       1 |       3 | t           | t
       2 |       3 | f           | t

Siehe auch

&&


Name

&&&(geometry,gidx) — Gibt TRUE zurück, wenn die (cached) n-D bounding box einer Geometrie eine n-D float precision bounding box (GIDX) schneidet.

Synopsis

boolean &&&( geometry A , gidx B );

Beschreibung

Der &&& Operator gibt TRUE zurück, wenn die zwischengespeicherte n-D bounding box der Geometrie A die n-D bounding box B, unter Benutzung von float precision, schneidet. D.h.: Wenn B eine (double precision) box3d ist, wird diese intern in eine float precision 3D bounding box (GIDX) umgewandelt

[Note]

Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_MakePoint(1,1,1) &&& ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&&(gidx,geometry) — Gibt TRUE zurück, wenn eine n-D float precision bounding box (GIDX) eine (cached) n-D bounding box einer Geometrie schneidet.

Synopsis

boolean &&&( gidx A , geometry B );

Beschreibung

Der &&& Operator gibt TRUE zurück, wenn die n-D bounding box A die cached n-D bounding box der Geometrie B, unter Benutzung von float precision, schneidet. D.h.: wenn A eine (double precision) box3d ist, wir diese intern in eine float precision 3D bounding box (GIDX) umgewandelt

[Note]

Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_MakePoint(1,1,1) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&&&(gidx,gidx) — Gibt TRUE zurück, wenn sich zwei n-D float precision bounding boxes (GIDX) gegenseitig überschneiden.

Synopsis

boolean &&&( gidx A , gidx B );

Beschreibung

Der &&& Operator gibt TRUE zurück, wenn sich zwei n-D bounding boxes A und B, unter Benutzung von float precision, gegenseitig überschneiden. D.h.: wenn A (oder B) eine (double precision) box3d ist, wird diese intern in eine float precision 3D bounding box (GIDX) umgewandelt

[Note]

Dieser Operator ist für die interne Nutzung durch BRIN Indizes, und nicht so sehr durch Anwender, vorgesehen.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_3DMakeBox(ST_MakePoint(1,1,1), ST_MakePoint(3,3,3)) AS overlaps;

 overlaps
----------
 t
(1 row)

Name

&< — Gibt TRUE zurück, wenn die bounding box der Geometrie A, die bounding box der Geometrie B überlagert oder links davon liegt.

Synopsis

boolean &<( geometry A , geometry B );

Beschreibung

Der &< Operator gibt TRUE zurück, wenn die bounding box der Geometrie A die bounding box der Geometrie B überlagert oder links davon liegt, oder präziser, überlagert und NICHT rechts von der bounding box der Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &< tbl2.column2 AS overleft
FROM
  ( VALUES
        (1, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING(0 0, 3 3)'::geometry),
        (3, 'LINESTRING(0 1, 0 5)'::geometry),
        (4, 'LINESTRING(6 0, 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overleft
---------+---------+----------
           1 |       2 | f
           1 |       3 | f
           1 |       4 | t
(3 rows)

Siehe auch

&&, |&>, &>, &<|


Name

&<| — Gibt TRUE zurück, wenn die bounding box von A jene von B überlagert oder unterhalb liegt.

Synopsis

boolean &<|( geometry A , geometry B );

Beschreibung

Der &<| Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A die Bounding Box der Geometrie B überlagert oder unterhalb liegt, oder präziser, überlagert oder NICHT oberhalb der Bounding der Geometrie B liegt.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &<| tbl2.column2 AS overbelow
FROM
  ( VALUES
        (1, 'LINESTRING(6 0, 6 4)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING(0 0, 3 3)'::geometry),
        (3, 'LINESTRING(0 1, 0 5)'::geometry),
        (4, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overbelow
---------+---------+-----------
           1 |       2 | f
           1 |       3 | t
           1 |       4 | t
(3 rows)

Siehe auch

&&, |&>, &>, &<


Name

&> — Gibt TRUE zurück, wenn die Bounding Box von A jene von B überlagert oder rechts davon liegt.

Synopsis

boolean &>( geometry A , geometry B );

Beschreibung

Der &> Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A die Bounding Box der Geometrie B überlagert oder rechts von ihr liegt, oder präziser, überlagert und NICHT links von der Bounding Box der Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &> tbl2.column2 AS overright
FROM
  ( VALUES
        (1, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING(0 0, 3 3)'::geometry),
        (3, 'LINESTRING(0 1, 0 5)'::geometry),
        (4, 'LINESTRING(6 0, 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overright
---------+---------+-----------
           1 |       2 | t
           1 |       3 | t
           1 |       4 | f
(3 rows)

Siehe auch

&&, |&>, &<|, &<


Name

<< — Gibt TRUE zurück, wenn die Bounding Box von A zur Gänze links von der von B liegt.

Synopsis

boolean <<( geometry A , geometry B );

Beschreibung

Der << Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A zur Gänze links der Bounding Box der Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 << tbl2.column2 AS left
FROM
  ( VALUES
        (1, 'LINESTRING (1 2, 1 5)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (0 0, 4 3)'::geometry),
        (3, 'LINESTRING (6 0, 6 5)'::geometry),
        (4, 'LINESTRING (2 2, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | left
---------+---------+------
           1 |       2 | f
           1 |       3 | t
           1 |       4 | t
(3 rows)

Siehe auch

>>, |>>, <<|


Name

<<| — Gibt TRUE zurück, wenn A's Bounding Box zur Gänze unterhalb von der von B liegt.

Synopsis

boolean <<|( geometry A , geometry B );

Beschreibung

Der <<| Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A zur Gänze unterhalb der Bounding Box von Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 <<| tbl2.column2 AS below
FROM
  ( VALUES
        (1, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (1 4, 1 7)'::geometry),
        (3, 'LINESTRING (6 1, 6 5)'::geometry),
        (4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | below
---------+---------+-------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | f
(3 rows)

Siehe auch

<<, >>, |>>


Name

= — Gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind.

Synopsis

boolean =( geometry A , geometry B );

boolean =( geography A , geography B );

Beschreibung

Der Operator = gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind. PostgreSQL verwendet die =, <, und > Operatoren um die interne Sortierung und den Vergleich von Geometrien durchzuführen (z.B.: in einer GROUP BY oder ORDER BY Klausel). 

[Note]

Nur die Geometrie/Geographie die in allen Gesichtspunkten übereinstimmt, d.h. mit den selben Koordinaten in der gleichen Reihenfolge, werden von diesem Operator als gleich betrachtet. Für "räumliche Gleichheit", bei der Dinge wie die Reihenfolge der Koordinaten außer Acht gelassen werden, und die es ermöglicht Geoobjekte zu erfassen, die denselben räumlichen Bereich mit unterschiedlicher Darstellung abdecken, verwenden Sie bitte ??? oder ???

[Caution]

Dieser Operator verwendet NICHT die Indizes, welche für die Geometrien vorhanden sind. Um eine Überprüfung auf exakte Gleichheit indexgestützt durchzuführen, kombinieren Sie bitte = mit &&.

Änderung: 2.4.0, in Vorgängerversionen war dies die Gleichheit der umschreibenden Rechtecke, nicht die geometrische Gleichheit. Falls Sie auf Gleichheit der umschreibenden Rechtecke prüfen wollen, verwenden Sie stattdesse bitte ~=.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT 'LINESTRING(0 0, 0 1, 1 0)'::geometry = 'LINESTRING(1 1, 0 0)'::geometry;
 ?column?
----------
 f
(1 row)

SELECT ST_AsText(column1)
FROM ( VALUES
        ('LINESTRING(0 0, 1 1)'::geometry),
        ('LINESTRING(1 1, 0 0)'::geometry)) AS foo;
          st_astext
---------------------
 LINESTRING(0 0,1 1)
 LINESTRING(1 1,0 0)
(2 rows)

-- Anmerkung: die Klausel GROUP BY berwendet "=" um auf geometrische Gleichwertigkeit zu prüfen.
SELECT ST_AsText(column1)
FROM ( VALUES
        ('LINESTRING(0 0, 1 1)'::geometry),
        ('LINESTRING(1 1, 0 0)'::geometry)) AS foo
GROUP BY column1;
      st_astext
---------------------
 LINESTRING(0 0,1 1)
 LINESTRING(1 1,0 0)
(2 rows)

-- In Vorgängerversionen von 2.0 wurde hier üblicherweise TRUE zurückgegeben --
 SELECT ST_GeomFromText('POINT(1707296.37 4820536.77)') =
        ST_GeomFromText('POINT(1707296.27 4820536.87)') As pt_intersect;

--pt_intersect --
f

Siehe auch

???, ???, ~=


Name

>> — Gibt TRUE zurück, wenn A's bounding box zur Gänze rechts von der von B liegt.

Synopsis

boolean >>( geometry A , geometry B );

Beschreibung

Der >> Operator gibt TRUE zurück, wenn die Bounding Box von Geometrie A zur Gänze rechts der Bounding Box von Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 >> tbl2.column2 AS right
FROM
  ( VALUES
        (1, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (1 4, 1 7)'::geometry),
        (3, 'LINESTRING (6 1, 6 5)'::geometry),
        (4, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl2;

 column1 | column1 | right
---------+---------+-------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | f
(3 rows)

Siehe auch

<<, |>>, <<|


Name

@ — Gibt TRUE zurück, wenn die Bounding Box von A in jener von B enthalten ist.

Synopsis

boolean @( geometry A , geometry B );

Beschreibung

Der @ Operator gibt TRUE zurück, wenn die Bounding Box der Geometrie A vollstänig in der Bounding Box der Geometrie B enthalten ist.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 @ tbl2.column2 AS contained
FROM
  ( VALUES
        (1, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (0 0, 4 4)'::geometry),
        (3, 'LINESTRING (2 2, 4 4)'::geometry),
        (4, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl2;

 column1 | column1 | contained
---------+---------+-----------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | t
(3 rows)

Siehe auch

~, &&


Name

@(geometry,box2df) — Gibt TRUE zurück, wenn die 2D Bounding Box einer Geometrie in einer 2D float precision Bbounding Box (BOX2DF) enthalten ist.

Synopsis

boolean @( geometry A , box2df B );

Beschreibung

Der @ Operator gibt TRUE zurück, wenn die 2D Bounding Box der Geometrie A in der 2D Bounding Box der Geometrie B , unter Benutzung von float precision, enthalten ist. D.h.: wenn B eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) übersetzt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_Buffer(ST_GeomFromText('POINT(2 2)'), 1) @ ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) AS is_contained;

 is_contained
--------------
 t
(1 row)

Name

@(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) in der 2D Bounding Box einer Geometrie enthalten ist..

Synopsis

boolean @( box2df A , geometry B );

Beschreibung

Der @ Operator gibt TRUE zurück, wenn die 2D bounding box A in der 2D bounding box der Geometrie B, unter Verwendung von float precision, enthalten ist. D.h.: wenn B eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_MakePoint(2,2), ST_MakePoint(3,3)) @ ST_Buffer(ST_GeomFromText('POINT(1 1)'), 10) AS is_contained;

 is_contained
--------------
 t
(1 row)

Name

@(box2df,box2df) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) innerhalb einer anderen 2D float precision bounding box enthalten ist.

Synopsis

boolean @( box2df A , box2df B );

Beschreibung

Der @ Operator gibt TRUE zurück, wenn die 2D bounding box A innerhalb der 2D bounding box B, unter Verwendung von float precision, enthalten ist. D.h.: wenn A (oder B) eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_MakePoint(2,2), ST_MakePoint(3,3)) @ ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) AS is_contained;

 is_contained
--------------
 t
(1 row)

Name

|&> — Gibt TRUE zurück, wenn A's bounding box diejenige von B überlagert oder oberhalb von B liegt.

Synopsis

boolean |&>( geometry A , geometry B );

Beschreibung

Der |&> Operator gibt TRUE zurück, wenn die bounding box der Geometrie A die bounding box der Geometrie B überlagert oder oberhalb liegt, oder präziser, überlagert oder NICHT unterhalb der Bounding Box der Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 |&> tbl2.column2 AS overabove
FROM
  ( VALUES
        (1, 'LINESTRING(6 0, 6 4)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING(0 0, 3 3)'::geometry),
        (3, 'LINESTRING(0 1, 0 5)'::geometry),
        (4, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overabove
---------+---------+-----------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | f
(3 rows)

Siehe auch

&&, &>, &<|, &<


Name

|>> — Gibt TRUE zurück, wenn A's bounding box is zur Gänze oberhalb der von B liegt.

Synopsis

boolean |>>( geometry A , geometry B );

Beschreibung

Der Operator |>> gibt TRUE zurück, wenn die Bounding Box der Geometrie A zur Gänze oberhalb der Bounding Box von Geometrie B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 |>> tbl2.column2 AS above
FROM
  ( VALUES
        (1, 'LINESTRING (1 4, 1 7)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (0 0, 4 2)'::geometry),
        (3, 'LINESTRING (6 1, 6 5)'::geometry),
        (4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | above
---------+---------+-------
           1 |       2 | t
           1 |       3 | f
           1 |       4 | f
(3 rows)

Siehe auch

<<, >>, <<|


Name

~ — Gibt TRUE zurück, wenn A's bounding box die von B enthält.

Synopsis

boolean ~( geometry A , geometry B );

Beschreibung

Der ~ Operator gibt TRUE zurück, wenn die bounding box der Geometrie A zur Gänze die bounding box der Geometrie B enthält.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT tbl1.column1, tbl2.column1, tbl1.column2 ~ tbl2.column2 AS contains
FROM
  ( VALUES
        (1, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl1,
  ( VALUES
        (2, 'LINESTRING (0 0, 4 4)'::geometry),
        (3, 'LINESTRING (1 1, 2 2)'::geometry),
        (4, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl2;

 column1 | column1 | contains
---------+---------+----------
           1 |       2 | f
           1 |       3 | t
           1 |       4 | t
(3 rows)

Siehe auch

@, &&


Name

~(geometry,box2df) — Gibt TRUE zurück, wenn die 2D bounding box einer Geometrie eine 2D float precision bounding box (GIDX) enthält.

Synopsis

boolean ~( geometry A , box2df B );

Beschreibung

Der ~ Operator gibt TRUE zurück, wenn die 2D bounding box einer Geometrie A die 2D bounding box B, unter Verwendung von float precision, enthält. D.h.: wenn B eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) übersetzt

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_Buffer(ST_GeomFromText('POINT(1 1)'), 10) ~ ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) AS contains;

 contains
----------
 t
(1 row)

Name

~(box2df,geometry) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) die 2D Bounding Box einer Geometrie enthält.

Synopsis

boolean ~( box2df A , geometry B );

Beschreibung

Der ~ Operator gibt TRUE zurück, wenn die 2D bounding box A die Bounding Box der Geometrie B, unter Verwendung von float precision, enthält. D.h.: wenn A eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt.

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) ~ ST_Buffer(ST_GeomFromText('POINT(2 2)'), 1) AS contains;

 contains
----------
 t
(1 row)

Name

~(box2df,box2df) — Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine andere 2D float precision bounding box (BOX2DF) enthält.

Synopsis

boolean ~( box2df A , box2df B );

Beschreibung

Der ~ Operator gibt TRUE zurück, wenn die 2D bounding box A die 2D bounding box B, unter Verwendung von float precision, enthält. D.h.: wenn A eine (double precision) box2d ist, wird diese intern in eine float precision 2D bounding box (BOX2DF) umgewandelt

[Note]

Dieser Operand ist eher für die interne Nutzung durch BRIN Indizes, als durch die Anwender, gedacht.

Verfügbarkeit: Mit 2.3.0 wurde die Unterstützung von Block Range INdexes (BRIN) eingeführt. Erfordert PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Beispiele

SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) ~ ST_MakeBox2D(ST_MakePoint(2,2), ST_MakePoint(3,3)) AS contains;

 contains
----------
 t
(1 row)

Name

~= — Gibt TRUE zurück, wenn die bounding box von A ident mit jener von B ist.

Synopsis

boolean ~=( geometry A , geometry B );

Beschreibung

Der ~= Operator gibt TRUE zurück, wenn die bounding box der Geometrie/Geographie A ident mit der bounding box der Geometrie/Geographie B ist.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Verfügbarkeit: 1.5.0 "Verhaltensänderung"

This function supports Polyhedral surfaces.

[Warning]

Dieser Operator verhält sich ab PostGIS 1.5 insofern anders, als er vom Prüfen der Übereinstimmung der tatsächlichen Geometrie auf eine ledigliche Überprüfung der Gleichheit der Bounding Boxes abgeändert wurde. Um die Sache noch weiter zu komplizieren, hängt dieses Verhalten der Datenbank davon ab, ob ein hard oder soft upgrade durchgeführt wurde. Um herauszufinden, wie sich die Datenbank in dieser Beziehung verhält, führen Sie bitte die untere Abfrage aus. Um auf exakte Gleichheit zu prüfen benutzen Sie bitte ??? oder ???.

Beispiele

select 'LINESTRING(0 0, 1 1)'::geometry ~= 'LINESTRING(0 1, 1 0)'::geometry as equality;
 equality   |
-----------------+
          t    |
                        

Siehe auch

???, ???, =

8.8.2. Operatoren

<-> — Gibt die 2D Entfernung zwischen A und B zurück.
|=| — Gibt die Entfernung zwischen den Trajektorien A und B, am Ort der dichtesten Annäherung, an.
<#> — Gibt die 2D Entfernung zwischen den Bounding Boxes von A und B zurück
<<->> — Gibt die n-D Entfernung zwischen den geometrischen Schwerpunkten der Begrenzungsrechtecke/Bounding Boxes von A und B zurück.
<<#>> — Gibt die n-D Entfernung zwischen den Bounding Boxes von A und B zurück.

Name

<-> — Gibt die 2D Entfernung zwischen A und B zurück.

Synopsis

double precision <->( geometry A , geometry B );

double precision <->( geography A , geography B );

Beschreibung

Der <-> Operator gibt die 2D Entfernung zwischen zwei Geometrien zurück. Wird er in einer "ORDER BY" Klausel verwendet, so liefert er Index-unterstützte nearest-neighbor Ergebnismengen. PostgreSQL Versionen unter 9.5 geben jedoch lediglich die Entfernung der Centroide der bounding boxes zurück, während PostgreSQL 9.5+ mittels KNN-Methode die tatsächliche Entfernung zwischen den Geometrien, bei geographischen Koordinaten die Entfernung auf der Späre, widergibt.

[Note]

Dieser Operand verwendet 2D GiST Indizes, falls diese für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, die räumliche Indizes verwenden, indem der räumliche Index nur dann verwendet wird, wenn sich der Operator in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist (sich nicht in einer Subquery/CTE befindet). Z.B. 'SRID=3005;POINT(1011102 450541)'::geometry und nicht a.geom

Siehe OpenGeo workshop: Nearest-Neighbour Searching für ein praxisbezogenes Anwendungsbeispiel.

Verbesserung: 2.2.0 -- Echtes KNN ("K nearest neighbor") Verhalten für Geometrie und Geographie ab PostgreSQL 9.5+. Beachten Sie bitte, das KNN für Geographie auf der Späre und nicht auf dem Sphäroid beruht. Für PostgreSQL 9.4 und darunter, wird die Berechnung nur auf Basis des Centroids der Box unterstützt.

Änderung: 2.2.0 -- Da für Anwender von PostgreSQL 9.5 der alte hybride Syntax langsamer sein kann, möchten sie diesen Hack eventuell loswerden, falls der Code nur auf PostGIS 2.2+ 9.5+ läuft. Siehe die unteren Beispiele.

Verfügbarkeit: 2.0.0 -- Weak KNN liefert nearest neighbors, welche sich auf die Entfernung der Centroide der Geometrien, anstatt auf den tatsächlichen Entfernungen, stützen. Genaue Ergebnisse für Punkte, ungenau für alle anderen Geometrietypen. Verfügbar ab PostgreSQL 9.1+.

Beispiele

SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY d limit 10;

        d         | edabbr | vaabbr
------------------+--------+--------
                0 | ALQ    | 128
 5541.57712511724 | ALQ    | 129A
 5579.67450712005 | ALQ    | 001
  6083.4207708641 | ALQ    | 131
  7691.2205404848 | ALQ    | 003
 7900.75451037313 | ALQ    | 122
 8694.20710669982 | ALQ    | 129B
 9564.24289057111 | ALQ    | 130
  12089.665931705 | ALQ    | 127
 18472.5531479404 | ALQ    | 002
(10 rows)

Then the KNN raw answer:

SELECT st_distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry limit 10;

        d         | edabbr | vaabbr
------------------+--------+--------
                0 | ALQ    | 128
 5541.57712511724 | ALQ    | 129A
 5579.67450712005 | ALQ    | 001
  6083.4207708641 | ALQ    | 131
  7691.2205404848 | ALQ    | 003
 7900.75451037313 | ALQ    | 122
 8694.20710669982 | ALQ    | 129B
 9564.24289057111 | ALQ    | 130
  12089.665931705 | ALQ    | 127
 18472.5531479404 | ALQ    | 002
(10 rows)

Wenn Sie "EXPLAIN ANALYZE" an den zwei Abfragen ausführen, sollte eine Performance Verbesserung im Ausmaß von einer Sekunde auftreten.

Anwender von PostgreSQL < 9.5 können eine hybride Abfrage erstellen, um die echten nearest neighbors aufzufinden. Zuerst eine CTE-Abfrage, welche die Index-unterstützten KNN-Methode anwendet, dann eine exakte Abfrage um eine korrekte Sortierung zu erhalten:

WITH index_query AS (
  SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
        FROM va2005
  ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry LIMIT 100)
  SELECT *
        FROM index_query
  ORDER BY d limit 10;

        d         | edabbr | vaabbr
------------------+--------+--------
                0 | ALQ    | 128
 5541.57712511724 | ALQ    | 129A
 5579.67450712005 | ALQ    | 001
  6083.4207708641 | ALQ    | 131
  7691.2205404848 | ALQ    | 003
 7900.75451037313 | ALQ    | 122
 8694.20710669982 | ALQ    | 129B
 9564.24289057111 | ALQ    | 130
  12089.665931705 | ALQ    | 127
 18472.5531479404 | ALQ    | 002
(10 rows)

                        

Siehe auch

???, ST_Distance, <#>


Name

|=| — Gibt die Entfernung zwischen den Trajektorien A und B, am Ort der dichtesten Annäherung, an.

Synopsis

double precision |=|( geometry A , geometry B );

Beschreibung

Der |=| Operator gibt die 3D Entfernung zwischen zwei Trajektorien (Siehe ???). Dieser entspricht ???, da es sich jedoch um einen Operator handelt, kann dieser für nearest neightbor searches mittels eines N-dimensionalen Index verwendet werden (verlangt PostgreSQL 9.5.0 oder höher).

[Note]

Dieser Operand verwendet die ND GiST Indizes, welche für Geometrien vorhanden sein können. Er unterscheidet sich insofern von anderen Operatoren, die ebenfalls räumliche Indizes verwenden, als der räumliche Index nur dann angewandt wird, wenn sich der Operand in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist (sich nicht in einer Subquery/CTE befindet). Z.B. 'SRID=3005;LINESTRINGM(0 0 0,0 0 1)'::geometry und nicht a.geom

Verfügbarkeit: 2.2.0. Index-unterstützt steht erst ab PostgreSQL 9.5+ zur Verfügung.

Beispiele

-- Save a literal query trajectory in a psql variable...
\set qt 'ST_AddMeasure(ST_MakeLine(ST_MakePointM(-350,300,0),ST_MakePointM(-410,490,0)),10,20)'
-- Run the query !
SELECT track_id, dist FROM (
  SELECT track_id, ST_DistanceCPA(tr,:qt) dist
  FROM trajectories
  ORDER BY tr |=| :qt
  LIMIT 5
) foo;
 track_id        dist
----------+-------------------
      395 | 0.576496831518066
      380 |  5.06797130410151
      390 |  7.72262293958322
      385 |   9.8004461358071
      405 |  10.9534397988433
(5 rows)

Siehe auch

???, ???, ???


Name

<#> — Gibt die 2D Entfernung zwischen den Bounding Boxes von A und B zurück

Synopsis

double precision <#>( geometry A , geometry B );

Beschreibung

Der <#> Operator gibt die Entfernung zwischen zwei floating point bounding boxes zurück, wobei diese eventuell vom räumlichen Index ausgelesen wird (PostgreSQL 9.1+ vorausgesetzt). Praktikabel falls man eine nearest neighbor Abfrage approximate nach der Entfernung sortieren will.

[Note]

Dieser Operand verwendet sämtliche Indizes, welche für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, welche ebenfalls räumliche Indizes verwenden, als der räumliche Index nur dann verwendet wird, falls sich der Operand in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist; z.B.: ORDER BY (ST_GeomFromText('POINT(1 2)') <#> geom) anstatt g1.geom <#>.

Verfügbarkeit: 2.0.0 -- KNN steht erst ab PostgreSQL 9.1+ zur Verfügung

Beispiele

SELECT *
FROM (
SELECT b.tlid, b.mtfcc,
        b.geom <#
> ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
                745787 2948499,745740 2948468,745712 2948438,
                745690 2948384,745677 2948319)',2249) As b_dist,
                ST_Distance(b.geom, ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
                745787 2948499,745740 2948468,745712 2948438,
                745690 2948384,745677 2948319)',2249)) As act_dist
    FROM bos_roads As b
    ORDER BY b_dist, b.tlid
    LIMIT 100) As foo
    ORDER BY act_dist, tlid LIMIT 10;

   tlid    | mtfcc |      b_dist      |     act_dist
-----------+-------+------------------+------------------
  85732027 | S1400 |                0 |                0
  85732029 | S1400 |                0 |                0
  85732031 | S1400 |                0 |                0
  85734335 | S1400 |                0 |                0
  85736037 | S1400 |                0 |                0
 624683742 | S1400 |                0 | 128.528874268666
  85719343 | S1400 | 260.839270432962 | 260.839270432962
  85741826 | S1400 | 164.759294123275 | 260.839270432962
  85732032 | S1400 |           277.75 | 311.830282365264
  85735592 | S1400 |           222.25 | 311.830282365264
(10 rows)

Siehe auch

???, ST_Distance, <->


Name

<<->> — Gibt die n-D Entfernung zwischen den geometrischen Schwerpunkten der Begrenzungsrechtecke/Bounding Boxes von A und B zurück.

Synopsis

double precision <<->>( geometry A , geometry B );

Beschreibung

Der <<->> Operator gibt die n-D (euklidische) Entfernung zwischen den geometrischen Schwerpunkten der Begrenzungsrechtecke zweier Geometrien zurück. Praktikabel für nearest neighbor approximate distance ordering.

[Note]

Dieser Operator verwendet n-D GiST Indizes, falls diese für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, die räumliche Indizes verwenden, indem der räumliche Index nur dann verwendet wird, wenn sich der Operator in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist (sich nicht in einer Subquery/CTE befindet). Z.B. 'SRID=3005;POINT(1011102 450541)'::geometry und nicht a.geom

Verfügbarkeit: 2.2.0 -- KNN steht erst ab PostgreSQL 9.1+ zur Verfügung.

Siehe auch

<<#>>, <->


Name

<<#>> — Gibt die n-D Entfernung zwischen den Bounding Boxes von A und B zurück.

Synopsis

double precision <<#>>( geometry A , geometry B );

Beschreibung

Der <<#>> Operator gibt die Entfernung zwischen zwei floating point bounding boxes zurück, wobei diese eventuell vom räumlichen Index ausgelesen wird (PostgreSQL 9.1+ vorausgesetzt). Praktikabel falls man eine nearest neighbor Abfrage nach der Entfernung sortieren will / approximate distance ordering.

[Note]

Dieser Operand verwendet sämtliche Indizes, welche für die Geometrien vorhanden sind. Er unterscheidet sich insofern von anderen Operatoren, welche ebenfalls räumliche Indizes verwenden, als der räumliche Index nur dann verwendet wird, falls sich der Operand in einer ORDER BY Klausel befindet.

[Note]

Der Index kommt nur zum Tragen, wenn eine der Geometrien eine Konstante ist; z.B.: ORDER BY (ST_GeomFromText('POINT(1 2)') <<#>> geom) anstatt g1.geom <<#>>.

Verfügbarkeit: 2.2.0 -- KNN steht erst ab PostgreSQL 9.1+ zur Verfügung.

Siehe auch

<<->>, <#>

8.9. Measurement Functions

Abstract

These functions compute measurements of distance, area and angles. There are also functions to compute geometry values determined by measurements.

ST_Area — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_Azimuth — Gibt den auf die Nordrichtung bezogenen Azimut in Radiant zurück. Der Winkel wird von einer Senkrechten auf "pointA" nach pointB im Uhrzeigersinn gemessen.
ST_Angle — Gibt den Winkel zwischen 3 Punkten oder zwischen 2 Vektoren (4 Punkte oder 2 Linien) zurück.
ST_ClosestPoint — Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.
ST_3DClosestPoint — Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.
ST_Distance — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
ST_3DDistance — Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurückgegeben.
ST_DistanceSphere — Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.
ST_DistanceSpheroid — Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.
ST_FrechetDistance — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück
ST_HausdorffDistance — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück
ST_Length — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_Length2D

Gibt die 2-dimensionale Länge einer Linie oder einer Mehrfachlinie zurück. Dies ist ein Alias für ST_Length

ST_3DLength — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_LengthSpheroid — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_LongestLine — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
ST_3DLongestLine — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
ST_MaxDistance — Gibt die größte 2-dimensionale Distanz zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.
ST_3DMaxDistance — Für den geometrischen Datentyp. Gibt die maximale 3-dimensionale kartesische Distanz (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.
ST_MinimumClearance — Gibt das Mindestabstandsmaß für eine Geometrie zurück; ein Maß für die Robustheit einer Geometrie.
ST_MinimumClearanceLine — Gibt ein Linienstück mit zwei Punkten zurück, welche sich über das Mindestabstandsmaß erstreckt.
ST_Perimeter — Returns the length of the boundary of a polygonal geometry or geography.
ST_Perimeter2D — Returns the 2D perimeter of a polygonal geometry. Alias for ST_Perimeter.
ST_3DPerimeter — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
ST_Project — Gibt einen POINT zurück, der von einem Anfangspunkt weg, entsprechend einer Distanz in Meter und einer Peilung (Azimut) in Radiant, projiziert wird.
ST_ShortestLine — Gibt die 2-dimenionale kürzeste Strecke zwischen zwei Geometrien als Linie zurück
ST_3DShortestLine — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück

Name

ST_Area — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_Area(geometry g1);

float ST_Area(geography geog, boolean use_spheroid=true);

Beschreibung

Gibt den Flächeninhalt von Polygonen und Mehrfachpolygonen zurück. Gibt den Flächeninhalt der Datentypen "ST_Surface" und "ST_MultiSurface" zurück. Beim geometrischen Datentyp wird die kartesische 2D-Fläche ermittelt und in den Einheiten des SRID ausgegeben. Beim geographischen Datentyp wird die Fläche standardmäßig auf einem Referenzellipsoid ermittelt und in Quadratmeter ausgegeben. Mit ST_Area(geog,false) kann der Flächeninhalt auf einer Kugel ermittelt werden; dies ist zwar schneller aber auch weniger genau.

Erweiterung: Mit 2.0.0 wurde 2D-Unterstützung für polyedrische Oberflächen eingeführt.

Erweiterung: 2.2.0 - die Messung auf dem Referenzellipsoid wird mit der Bibliothek "GeographicLib" durchgeführt. Dadurch wurde die Genauigkeit und die Robustheit erhöht. Um die Vorteile dieser neuen Funktionalität zu nutzen, benötigen Sie Proj >= 4.9.0.

Changed: 3.0.0 - does not depend on SFCGAL anymore.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.1.2, 9.5.3

This function supports Polyhedral surfaces.

[Note]

Bei polyedrischen Oberflächen wird nur 2D (nicht 2.5D) unterstützt. Bei 2.5D kann ein Ergebnis ungleich null geliefert werden, wenn die Oberflächen vollständig in der XY-Ebene liegen.

Beispiele

Gibt den Flächeninhalt eines Grundstücks in Massachusetts - in Quadratfuß und konvertiert in Quadratmeter - zurück. Anmerkung: Wegen "Massachusetts State Plane Feet" (EPSG:2249) wird der Flächeninhalt in Quadratfuß ausgegeben

select ST_Area(geom) sqft,
    ST_Area(geom) * 0.3048 ^ 2 sqm
from (
         select 'SRID=2249;POLYGON((743238 2967416,743238 2967450,
                                 743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
     ) subquery;
┌─────────┬─────────────┐
│  sqft   │     sqm     │
├─────────┼─────────────┤
│ 928.625 │ 86.27208552 │
└─────────┴─────────────┘

Gibt den Flächeninhalt in Quadratfuß aus und transformiert nach "Massachusetts state plane meters" (EPSG:26986) um Quadratmeter zu erhalten. Da die Fläche in "Massachusetts State Plane Feet" (EPSG:2249) vorliegt, wird der Flächeninhalt in Quadratfuß ausgegeben. Die transformierte Fläche ist in Quadratmeter, da sie in EPSG:26986 "Massachusetts state plane meters" (EPSG:26986) vorliegt.

select ST_Area(geom) sqft,
    ST_Area(ST_Transform(geom, 26986)) As sqm
from (
         select
             'SRID=2249;POLYGON((743238 2967416,743238 2967450,
             743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
     ) subquery;
┌─────────┬─────────────────┐
│  sqft   │       sqm       │
├─────────┼─────────────────┤
│ 928.625 │ 86.272430607008 │
└─────────┴─────────────────┘

Gibt den Flächeninhalt in Quadratfuß und in Quadratmeter für den geographischen Datentyp zurück. Beachten Sie bitte, dass wir den geometrischen in den geographischen Datentyp umwandeln (dafür muss die Geometrie in WGS84 lon lat 4326 vorliegen). Beim geographischen Datentyp wird immer in Meter gemessen. Dies ist nur für Vergleichszwecke gedacht, da Ihre Tabelle üblicherweise bereits den geographischen Datentyp aufweisen wird.

select ST_Area(geog) / 0.3048 ^ 2 sqft_spheroid,
    ST_Area(geog, false) / 0.3048 ^ 2 sqft_sphere,
    ST_Area(geog) sqm_spheroid
from (
         select ST_Transform(
                    'SRID=2249;POLYGON((743238 2967416,743238 2967450,743265 2967450,743265.625 2967416,743238 2967416))'::geometry,
                    4326
             ) :: geography geog
     ) as subquery;
┌──────────────────┬──────────────────┬──────────────────┐
│  sqft_spheroid   │   sqft_sphere    │   sqm_spheroid   │
├──────────────────┼──────────────────┼──────────────────┤
│ 928.684405784452 │ 927.049336105925 │ 86.2776044979692 │
└──────────────────┴──────────────────┴──────────────────┘

If your data is in geography already:

select ST_Area(geog) / 0.3048 ^ 2 sqft,
    ST_Area(the_geog) sqm
from somegeogtable;

Name

ST_Azimuth — Gibt den auf die Nordrichtung bezogenen Azimut in Radiant zurück. Der Winkel wird von einer Senkrechten auf "pointA" nach pointB im Uhrzeigersinn gemessen.

Synopsis

float ST_Azimuth(geometry pointA, geometry pointB);

float ST_Azimuth(geography pointA, geography pointB);

Beschreibung

Gibt den Azimut des Kreisbogens in Radiant zurück, der durch die gegebenen Punkte bestimmt ist. Wenn sich die beiden Punkte decken, wird NULL zurückgegeben. Der Azimut ist der auf die Nordrichtung bezogene Winkel; er ist im Uhrzeigersinn positiv: Norden = 0; Osten = π/2; Süden = π; Westen = 3π/2.

Beim geographischen Datentyp wird der vorwärtsgerichtete Azimuth als Teil der zweiten geodätischen Hauptaufgabe gelöst.

Der mathematische Begriff Azimut ist als Winkel zwischen einer Referenzebene und einem Punkt definiert, wobei das Winkelmaß in Radiant angegeben wird. Wie im folgenden Beispiel gezeigt, kann mit der in PostgreSQL integrierten Funktion "degrees()" von der Einheit Radiant auf die Einheit Grad umgerechnet werden.

Verfügbarkeit: 1.1.0

Erweiterung: mit 2.0.0 wurde die Unterstützung des geographischen Datentyps eingeführt.

Erweiterung: 2.2.0 die Messungen auf dem Referenzellipsoid werden mit der Bibliothek "GeographicLib" durchgeführt. Dadurch wurde die Genauigkeit und die Robustheit erhöht. Um die Vorteile dieser neuen Funktionalität zu nutzen, benötigen Sie Proj >= 4.9.0.

Der Azimut ist in Verbindung mit ST_Translate besonders nützlich, weil damit ein Objekt entlang seiner rechtwinkeligen Achse verschoben werden kann. Siehe dazu die Funktion "upgis_lineshift", in dem Abschnitt Plpgsqlfunctions des PostGIS Wiki, für ein Beispiel.

Beispiele

Geometrischer Datentyp - Azimut in Grad

SELECT degrees(ST_Azimuth(ST_Point(25, 45), ST_Point(75, 100))) AS degA_B,
            degrees(ST_Azimuth(ST_Point(75, 100), ST_Point(25, 45))) AS degB_A;

      dega_b       |     degb_a
------------------+------------------
 42.2736890060937 | 222.273689006094

Grün: der Anfangspunkt Point(25,45) mit der Senkrechten darauf. Gelb: der zu durchlaufende Pfad "degA_B" (Azimut).

Grün: der Anfangspunkt Point(75,100) mit der Senkrechten darauf. Gelb: der zu durchlaufende Pfad "degB_A" (Azimut).


Name

ST_Angle — Gibt den Winkel zwischen 3 Punkten oder zwischen 2 Vektoren (4 Punkte oder 2 Linien) zurück.

Synopsis

float ST_Angle(geometry point1, geometry point2, geometry point3, geometry point4);

float ST_Angle(geometry line1, geometry line2);

Beschreibung

Fpr 3 Punkte wird der Winkel im Uhrzeigersinn von P1P2P3 errechnet. Bei der Eingabe von 2 Linien werden 4 Punkte aus den Anfangs- und Endpunkten der Linien ermittelt. Für die 4 Punkte wird der Winkel im Uhrzeigersinn von P1P2,P3P4 berechnet. Das ergebnis ist immer positiv, zwischen 0 und 2*Pi Radiant. Verwendet den Azimut von Linienpaaren oder Punkten.

ST_Angle(P1,P2,P3) = ST_Angle(P2,P1,P2,P3)

Das Ergebnis wird in Radiant ausgegeben. Wie im folgenden Beispiel gezeigt, kann mit der in PostgreSQL integrierten Funktion "degrees()" von der Einheit Radiant auf die Einheit Grad umgerechnet werden.

Verfügbarkeit: 2.5.0

Beispiele

Geometrischer Datentyp - Azimut in Grad

WITH rand AS (
                SELECT s, random() * 2 * PI() AS rad1
                        , random() * 2 * PI() AS rad2
                FROM  generate_series(1,2,2) AS s
        )
         , points AS (
                SELECT s, rad1,rad2, ST_MakePoint(cos1+s,sin1+s) as p1, ST_MakePoint(s,s) AS p2, ST_MakePoint(cos2+s,sin2+s) as p3
                FROM rand
                        ,cos(rad1) cos1, sin(rad1) sin1
                        ,cos(rad2) cos2, sin(rad2) sin2
        )
        SELECT s, ST_AsText(ST_SnapToGrid(ST_MakeLine(ARRAY[p1,p2,p3]),0.001)) AS line
                , degrees(ST_Angle(p1,p2,p3)) as computed_angle
                , round(degrees(2*PI()-rad2 -2*PI()+rad1+2*PI()))::int%360 AS reference
                , round(degrees(2*PI()-rad2 -2*PI()+rad1+2*PI()))::int%360 AS reference
        FROM points ;

1 | line | computed_angle | reference
------------------+------------------
1 | LINESTRING(1.511 1.86,1 1,0.896 0.005) | 155.27033848688 | 155


Name

ST_ClosestPoint — Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.

Synopsis

geometry ST_ClosestPoint(geometry g1, geometry g2);

Beschreibung

Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.

[Note]

Falls es sich um eine 3D-Geometrie handelt, sollten Sie ST_3DClosestPoint vorziehen.

Verfügbarkeit: 1.5.0

Beispiele

Der nächstliegende Punkt zwischen einem Punkt und einem Linienzug ist der Punkt selbst. Aber der nächstliegende Punkt zwischen einem Linienzug und einem Punkt ist der Punkt auf dem Linienzug mit dem geringsten Abstand.

SELECT ST_AsText(ST_ClosestPoint(pt,line)) AS cp_pt_line,
        ST_AsText(ST_ClosestPoint(line,pt)) As cp_line_pt
FROM (SELECT 'POINT(100 100)'::geometry As pt,
                'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry As line
        ) As foo;


   cp_pt_line   |                cp_line_pt
----------------+------------------------------------------
 POINT(100 100) | POINT(73.0769230769231 115.384615384615)
                                

Der Punkt des Polygons A der am nähesten beim Polygon B liegt

SELECT ST_AsText(
                ST_ClosestPoint(
                        ST_GeomFromText('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'),
                        ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                        )
                ) As ptwkt;

                  ptwkt
------------------------------------------
 POINT(140.752120669087 125.695053378061)
                                


Name

ST_3DClosestPoint — Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.

Synopsis

geometry ST_3DClosestPoint(geometry g1, geometry g2);

Beschreibung

Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D. Die Länge des kürzesten Abstands in 3D ergibt sich aus der 3D-Distanz.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Wenn 2 geometrische Objekte in 2D übergegeben werden, wird ein 2D-Punkt zurückgegeben (anstelle wie früher 0 für ein fehlendes Z). Im Falle von 2D und 3D, wird für fehlende Z nicht länger 0 angenommen.

Beispiele

Linienstück und Punkt -- Punkt mit kürzestem Abstand; in 3D und in 2D

SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
                ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
        FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
                ) As foo;


 cp3d_line_pt                                                |               cp2d_line_pt
-----------------------------------------------------------+------------------------------------------
 POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(73.0769230769231 115.384615384615)
                                        

Linienstück und Mehrfachpunkt - Punkt mit kürzestem Abstand; in 3D und in 2D

SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
                ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
        FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
                ) As foo;


                       cp3d_line_pt                        | cp2d_line_pt
-----------------------------------------------------------+--------------
 POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(50 75)
                                        

Mehrfachlinie und Polygon - Punkt mit kürzestem Abstand; in 3D und in 2D

SELECT ST_AsEWKT(ST_3DClosestPoint(poly, mline)) As cp3d,
    ST_AsEWKT(ST_ClosestPoint(poly, mline)) As cp2d
        FROM (SELECT  ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
                ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
                (1 10 2, 5 20 1))') As mline ) As foo;
                   cp3d                    |     cp2d
-------------------------------------------+--------------
 POINT(39.993580415989 54.1889925532825 5) | POINT(20 40)
             


Name

ST_Distance — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

float ST_HausdorffDistance(geometry g1, geometry g2);

float ST_HausdorffDistance(geometry g1, geometry g2, float densifyFrac);

Beschreibung

Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand zwischen zwei geometrischen Objekten in projizierten Einheiten (Einheiten des Koordinatenreferenzsystem) zurückgegeben.

Beim geometrischen Datentyp geometry wird die geringste kartesische Distanz in 2D zwischen zwei geometrischen Objekten - in projizierten Einheiten (Einheiten des Koordinatenreferenzsystem) - zurückgegeben. Beim geographischen Datentyp geography wird standardmäßig die geringste geodätische Distanz zwischen zwei geographischen Objekten in Meter zurückgegeben. Wenn use_speroid FALSE ist, erfolgt eine schnellere Berechnung auf einer Kugel anstatt auf dem Referenzellipsoid.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.23

This method supports Circular Strings and Curves

Verfügbarkeit: 1.5.0 die Unterstützung des geograpischen Datentyps wurde eingeführt. Geschwindigkeitsverbesserungen bei einer umfangreichen Geometrie und bei einer Geometrie mit vielen Knoten

Enhanced: 2.1.0 Geschwindigkeitsverbesserung beim geographischen Datentyp. Siehe Making Geography faster für Details.

Erweiterung: 2.1.0 - Unterstützung für Kurven beim geometrischen Datentyp eingeführt.

Erweiterung: 2.2.0 - die Messung auf dem Referenzellipsoid wird mit der Bibliothek "GeographicLib" durchgeführt. Dadurch wurde die Genauigkeit und die Robustheit erhöht. Um die Vorteile dieser neuen Funktionalität zu nutzen, benötigen Sie Proj >= 4.9.0.

Changed: 3.0.0 - does not depend on SFCGAL anymore.

Standardbeispiele Geometrie

Geometry example - units in planar degrees 4326 is WGS 84 long lat, units are degrees.

SELECT ST_AsText(
        ST_LongestLine('POINT(100 100)'::geometry,
                'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry)
        ) As lline;


   lline
-----------------
LINESTRING(100 100,98 190)

Geometry example - units in meters (SRID: 3857, proportional to pixels on popular web maps). Although the value is off, nearby ones can be compared correctly, which makes it a good choice for algorithms like KNN or KMeans.

SELECT ST_Intersects(
                ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
                ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
                );

 st_intersects
---------------
t

Geometry example - units in meters (SRID: 3857 as above, but corrected by cos(lat) to account for distortion)

SELECT ST_Intersects(
                ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
                ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
                );

 st_intersects
---------------
t

Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most accurate for Massachusetts)

SELECT ST_Intersects(
                ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
                ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
                );

 st_intersects
---------------
t

Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least accurate)

SELECT ST_Intersects(
                ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
                ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
                );

 st_intersects
---------------
t

Beispiele für den geographischen Datentyp 

Same as geometry example but note units in meters - use sphere for slightly faster and less accurate computation.

-- gleich wie das Beispiel mit dem geometrischen Datentyp, aber Einheiten in Meter - verwendet Kugel für eine geringfügige Geschwindigkeitsverbesserung, allerdings ungenauer
SELECT ST_Distance(gg1, gg2) As spheroid_dist, ST_Distance(gg1, gg2, false) As sphere_dist
FROM (SELECT
        'SRID=4326;POINT(-72.1235 42.3521)'::geography as gg1,
        'SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geography as gg2
        ) As foo  ;

  spheroid_dist   |   sphere_dist
------------------+------------------
 123.802076746848 | 123.475736916397

Name

ST_3DDistance — Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurückgegeben.

Synopsis

float ST_3DDistance(geometry g1, geometry g2);

Beschreibung

Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand zwischen zwei geometrischen Objekten in projizierten Einheiten (Einheiten des Koordinatenreferenzsystem) zurückgegeben.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This method implements the SQL/MM specification. SQL-MM ?

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Im Falle von 2D und 3D wird für ein fehlendes Z nicht mehr 0 angenommen.

Changed: 3.0.0 - SFCGAL version removed

Beispiele

-- Beispiel Geometrie - Einheiten in Meter (SRID: 2163 US National Atlas Equal area) (Abstand zwischen Punkt und Linie; Vergleich zwischen 3D und 2D)
-- Anmerkung: zur Zeit gibt es keine Unterstützung für ein Höhendatum, daher wird Z unverändert übernommen und nicht transformiert.
SELECT ST_3DDistance(
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 4)'),2163),
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
                ) As dist_3d,
                ST_Distance(
                        ST_Transform(ST_GeomFromText('POINT(-72.1235 42.3521)',4326),2163),
                        ST_Transform(ST_GeomFromText('LINESTRING(-72.1260 42.45, -72.123 42.1546)', 4326),2163)
                ) As dist_2d;

     dist_3d      |     dist_2d
------------------+-----------------
 127.295059324629 | 126.66425605671
-- MultiLinestring und Polygon, Distanz in 3D und in 2D
-- Gleiches Beispiel wie das mit dem nächstliegenden Punkt in 3D
SELECT ST_3DDistance(poly, mline) As dist3d,
    ST_Distance(poly, mline) As dist2d
        FROM (SELECT  ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
                ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
                (1 10 2, 5 20 1))') As mline ) As foo;
      dist3d       | dist2d
-------------------+--------
 0.716635696066337 |      0

Name

ST_DistanceSphere — Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

Synopsis

float ST_DistanceSphere(geometry geomlonlatA, geometry geomlonlatB);

Beschreibung

Gibt die kürzeste Distanz zwischen zwei Punkten zurück, die über Länge und Breite gegeben sind. Verwendet die Kugelform für die Erde und den Radius des Referenzellipsoids, der durch die SRID festgelegt ist. Ist schneller als ST_DistanceSpheroid, aber weniger genau. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

Verfügbarkeit: 1.5 die Unterstützung für weitere geometrische Datentypen neben Punkten eingeführt. Bei Vorgängerversionen wurden nur Punkte unterstützt.

Änderung: 2.2.0 In Vorgängerversionen als ST_Distance_Sphere bezeichet.

Beispiele

SELECT round(CAST(ST_DistanceSphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
                ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters,
round(CAST(ST_Distance(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)', 4326)) As numeric),5) As dist_degrees,
round(CAST(ST_Distance(ST_Transform(the_geom,32611),
                ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As min_dist_line_point_meters
FROM
        (SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom) as foo;
         dist_meters | dist_utm11_meters | dist_degrees | min_dist_line_point_meters
        -------------+-------------------+--------------+----------------------------
                70424.47 |          70438.00 |      0.72900 |                   65871.18

        

Name

ST_DistanceSpheroid — Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

Synopsis

float ST_DistanceSpheroid(geometry geomlonlatA, geometry geomlonlatB, spheroid measurement_spheroid);

Beschreibung

Gibt die kürzeste Distanz zwischen zwei geometrischen Objekten in Meter zurück, die über Länge, Breite und ein bestimmtes Referenzellipsoid gegeben sind. Siehe die Erklärung zu Referenzellipsoiden unter ST_LengthSpheroid. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

[Note]

Aktuell schaut diese Funktion nicht auf die SRID der Geometrie, sondern nimmt an, dass die Geometrie in den Koordinaten des gegebenen Referenzellipsoids vorliegt. Vorgängerversionen von PostGIS 1.5 unterstützten nur Punkte.

Verfügbarkeit: 1.5 die Unterstützung für weitere geometrische Datentypen neben Punkten eingeführt. Bei Vorgängerversionen wurden nur Punkte unterstützt.

Änderung: 2.2.0 In Vorgängerversionen als ST_Distance_Spheroid bezeichet.

Beispiele

SELECT round(CAST(
                ST_DistanceSpheroid(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326), 'SPHEROID["WGS 84",6378137,298.257223563]')
                        As numeric),2) As dist_meters_spheroid,
                round(CAST(ST_DistanceSphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters_sphere,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
                ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters
FROM
        (SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom) as foo;
 dist_meters_spheroid | dist_meters_sphere | dist_utm11_meters
----------------------+--------------------+-------------------
                         70454.92 |           70424.47 |          70438.00

        

Name

ST_FrechetDistance — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

float ST_FrechetDistance(geometry g1, geometry g2, float densifyFrac = -1);

Beschreibung

Implementiert einen Algorithmus zur Berechnung der Fréchet-Metrik, der für beide geometrischen Objekte auf diskrete Punkte beschränkt ist und auf Computing Discrete Fréchet Distance beruht. Die Fréchet-Metrik ist ein Maß für die Ähnlichkeit von Kurven, welches die Position und die Reihenfolge der Kurvenstützpunkte mit einbezieht. Daher ist sie oft besser geeignet als die Hausdorff-Metrik.

Wenn der optionale Parameter "densifyFrac" vorgegeben wird, dann führt diese Funktion eine Verdichtung der Linienstücke durch, bevor die diskrete Fréchet-Metrik berechnet wird. Der Parameter "densifyFrac" bestimmt um welchen Anteil die Linienstücke verdichtet werden. Jedes Linienstück wird in gleichlange Teilsegmente zerlegt, deren Anteil an der Gesamtlänge am nächsten an den vorgegebenen Anteil herankommt.

Units are in the units of the spatial reference system of the geometries.

[Note]

Bei der aktuellen Implementierung können die diskreten Punkte nur Knoten sein. Dies könnte erweitert werden, um eine beliebige Punktdichte zu ermöglichen.

[Note]

Umso kleiner wir densifyFrac wählen, umso genauer wird die Fréchet-Metrik. Aber die Rechenzeit und der Speicherplatzbedarf steigen quadratisch mit der Anzahl der Teilabschnitte.

Wird durch das GEOS Modul ausgeführt

Verfügbarkeit: 2.4.0 - benötigt GEOS >= 3.7.0

Beispiele

postgres=# SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry);
 st_frechetdistance
--------------------
   70.7106781186548
(1 row)
                        
SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry, 0.5);
 st_frechetdistance
--------------------
                 50
(1 row)
                        

Name

ST_HausdorffDistance — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

float ST_HausdorffDistance(geometry g1, geometry g2);

float ST_HausdorffDistance(geometry g1, geometry g2, float densifyFrac);

Beschreibung

Gibt die Hausdorff-Metrik von zwei geometrischen Objekten zurück. Dies ist ein grundsätzliches Maß für die Ähnlichkeit oder Unähnlichkeit von 2 geometrischen Objekten. Die Einheiten sind in den Einheiten des Koordinatenreferenzsystems der Geometrie.

Implementiert einen Algorithmus zur Berechnung einer Abstandsmetrik, welche als "Diskrete Hausdorff-Metrik" gedacht werden kann. Dabei handelt es sich um eine Hausdorff-Metrik, die auf diskrete Punkte einer Geometrie beschränkt ist.Wikipedia article on Hausdorff distance Martin Davis Notizen wie die Hausdorff-Metrik zur Überprüfung der Korrektheit des CascadePolygonUnion Ansatzes verwendet wurde.

Wenn densifyFrac vorgegeben wird, dann führt diese Funktion eine Verdichtung der Linienstücke durch, bevor die diskrete Hausdorff-Metrik berechnet wird. Der Parameter "densifyFrac" bestimmt um welchen Anteil die Linienstücke verdichtet werden. Jedes Linienstück wird in gleichlange Teilsegmente zerlegt, deren Anteil an der Gesamtlänge am nächsten an den vorgegebenen Anteil herankommt.

Units are in the units of the spatial reference system of the geometries.

[Note]

Bei der aktuellen Implementierung können die diskreten Punkte nur Knoten sein. Dies könnte erweitert werden, um eine beliebige Punktdichte zu ermöglichen.

[Note]

Dieser Algorithmus ist NICHT gleichwertig mit der normalen Hausdorff-Metrik. Er führt aber eine Näherungsberechnung durch, die für eine große Zahl von Anwendungsfällen korrekt ist. Ein wichtiger Anwendungsfall sind Linienstücke, die ungefähr parallel sind und etwa die gleiche Länge haben. Diese Funktion bietet eine wertvolle Metrik zum Anpassen von Linien.

Verfügbarkeit: 1.5.0

Beispiele

Finde zu jedem Bauwerk das Grundstück, das am besten dazu passt. Zuerst verlangen wir, dass sich das Grundstück mit dem Bauwerk schneidet. DISTINCT ON stellt sicher, dass wir jedes Bauwerk nur einmal aufgelistet bekommen, ORDER BY .. ST_HausdorffDistance bevorzugt die Grundstücke, die dem Bauwerk am ähnlichsten sind.

SELECT DISTINCT ON(buildings.gid) buildings.gid, parcels.parcel_id
   FROM buildings INNER JOIN parcels ON ST_Intersects(buildings.geom,parcels.geom)
     ORDER BY buildings.gid, ST_HausdorffDistance(buildings.geom, parcels.geom);
postgis=# SELECT ST_HausdorffDistance(
                                'LINESTRING (0 0, 2 0)'::geometry,
                                'MULTIPOINT (0 1, 1 0, 2 1)'::geometry);
 st_hausdorffdistance
 ----------------------
                                         1
(1 row)
                        
postgis=# SELECT st_hausdorffdistance('LINESTRING (130 0, 0 0, 0 150)'::geometry, 'LINESTRING (10 10, 10 150, 130 10)'::geometry, 0.5);
 st_hausdorffdistance
 ----------------------
                                        70
(1 row)
                        

Name

ST_Length — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_Length(geometry a_2dlinestring);

float ST_Length(geography geog, boolean use_spheroid=true);

Beschreibung

Beim geometrischen Datentyp wird die kartesische 2D Länge der Geometrie zurückgegeben. Dabei muss es sich um einen LineString, einen MultiLineString, eine ST_Curve oder eine ST_MultiCurve handeln. Bei einer flächigen Geometrie wird 0 zurückgegeben. Für eine flächige Geometrie können Sie ST_Perimeter verwenden. Bei den geometrischen Datentypen sind die Einheiten für die Längenmessungen durch das Koordinatenreferenzsystem festgelegt.

Beim geographischen Datentyp werden die Berechnungen über die zweite geodätische Hauptaufgabe mit der Längeneinheit Meter durchgeführt. Wenn PostGIS mit PROJ Version 4.8.0 oder höher kompiliert wurde, dann ist das Referenzellipsoid durch die SRID bestimmt; sonst ist es ausschließlich WGS84. Wenn use_spheroid=false ist, dann werden die Berechnungen auf einer Kugel anstatt auf einem Referenzellipsoid ausgeführt.

Zur Zeit ein Synonym für ST_Length2D; dies kann sich allerdings ändern, wenn höhere Dimensionen unterstützt werden.

[Warning]

Änderung: 2.0.0 Wesentliche Änderung -- In früheren Versionen ergab die Anwendung auf ein MULTI/POLYGON vom geographischen Datentyp den Umfang des POLYGON/MULTIPOLYGON. In 2.0.0 wurde dies geändert und es wird jetzt 0 zurückgegeben, damit es mit der Verhaltensweise beim geometrischen Datentyp übereinstimmt. Verwenden Sie bitte ST_Perimeter, wenn Sie den Umfang eines Polygons wissen wollen

[Note]

Beim geographischer Datentyp werden die Messungen standardmäßig am Referenzellipsoid durchgeführt. Für die schnellere, aber ungenauere Berechnung auf einer Kugel können Sie ST_Length(gg,false) verwenden;

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 7.1.2, 9.3.4

Verfügbarkeit: 1.5.0 Unterstützung von geograpischen Koordinaten.

This method is also provided by SFCGAL backend.

Beispiele mit geometrischem Datentyp

Gibt die Länge eines Linienstücks zurück. Beachten Sie, dass die Einheit Fuß ist, da EPSG:2249 "Massachusetts State Plane Feet" ist

SELECT ST_Length(ST_GeomFromText('LINESTRING(743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416)',2249));
st_length
---------
 122.630744000095


--Koordinatentransformation eines Linienzuges von "WGS 84" nach "Massachusetts state plane meters"
SELECT ST_Length(
        ST_Transform(
                ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)'),
                26986
        )
);
st_length
---------
34309.4563576191
                        

Beispiele für den geographischen Datentyp 

Gibt die Länge einer Linie zurück, die in geographischen WGS 84 Koordinaten vorliegt.

-- standardmäßig wird die Berechnung auf einer Kugel anstatt auf dem Referenzellipsoid ausgeführt
SELECT ST_Length(the_geog) As length_spheroid,  ST_Length(the_geog,false) As length_sphere
FROM (SELECT ST_GeographyFromText(
'SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)') As the_geog)
 As foo;
 length_spheroid  |  length_sphere
------------------+------------------
 34310.5703627288 | 34346.2060960742
                        

Name

ST_Length2D —

Gibt die 2-dimensionale Länge einer Linie oder einer Mehrfachlinie zurück. Dies ist ein Alias für ST_Length

Synopsis

float ST_Length2D(geometry a_2dlinestring);

Beschreibung

Gibt die 2-dimensionale Länge einer Linie oder einer Mehrfachlinie zurück. Dies ist ein Alias für ST_Length


Name

ST_3DLength — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_3DLength(geometry a_3dlinestring);

Beschreibung

Gibt die 2- oder 3-dimensionale Länge einer Linie oder einer Mehrfachlinie zurück. Bei einer 2-D Linie wird die Länge nur in 2D zurückgegeben (gleich wie ST_Length und ST_Length2D)

This function supports 3d and will not drop the z-index.

Änderung: 2.0.0 In Vorgängerversionen als ST_Length3D bezeichet.

Beispiele

Gibt die Länge eines 3D-Kabels zurück. Beachten Sie, dass die Einheit Fuß ist, da EPSG:2249 "Massachusetts State Plane Feet" ist

SELECT ST_3DLength(ST_GeomFromText('LINESTRING(743238 2967416 1,743238 2967450 1,743265 2967450 3,
743265.625 2967416 3,743238 2967416 3)',2249));
ST_3DLength
-----------
122.704716741457
                

Name

ST_LengthSpheroid — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_LengthSpheroid(geometry a_geometry, spheroid a_spheroid);

Beschreibung

Berechnet die/den Länge/Umfang einer Geometrie auf einem Ellipsoid. Dies ist nützlich wenn die Koordinaten der Geometrie in Länge und Breite vorliegen, und die Länge der Geometrie ohne benötigt wird, ohne dass umprojiziert werden muss. Das Ellipsoid ist ein eigener Datentyp und kann wie folgt erstellt werden:

SPHEROID[<NAME>,<SEMI-MAJOR AXIS>,<INVERSE FLATTENING>]

Geometrie Beispiel

SPHEROID["GRS_1980",6378137,298.257222101]

Verfügbarkeit: 1.2.2

Änderung: 2.2.0 In Vorgängerversionen als ST_Length_Spheroid bezeichet.und mit dem Alias "ST_3DLength_Spheroid" versehen

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_LengthSpheroid( geometry_column,
                          'SPHEROID["GRS_1980",6378137,298.257222101]' )
                          FROM geometry_table;

SELECT ST_LengthSpheroid( the_geom, sph_m ) As tot_len,
ST_LengthSpheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
                          FROM (SELECT ST_GeomFromText('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
        (-71.05957 42.3589 , -71.061 43))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m)  as foo;
        tot_len      |    len_line1     |    len_line2
------------------+------------------+------------------
 85204.5207562955 | 13986.8725229309 | 71217.6482333646

 --3D
SELECT ST_LengthSpheroid( the_geom, sph_m ) As tot_len,
ST_LengthSpheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
                          FROM (SELECT ST_GeomFromEWKT('MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30),
        (-71.05957 42.3589 75, -71.061 43 90))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m)  as foo;

         tot_len      |    len_line1    |    len_line2
------------------+-----------------+------------------
 85204.5259107402 | 13986.876097711 | 71217.6498130292


Name

ST_LongestLine — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

geometry ST_LongestLine(geometry g1, geometry g2);

Beschreibung

Gibt die längste 2-dimensionale Linie zwischen den Punkten zweier Geometrien zurück.

Gibt den größten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück. Wenn es mehr als einen größten Abstand gibt, dann wird nur die erste zurückgegeben. Die zurückgegebene Linie fängt immer mit "g1" an und endet mit "g2". Die Länge der 3D-Linie die von dieser Funktion zurückgegeben wird ist immer ident mit der von ST_3DMaxDistance für "g1" und "g2" zurückgegebenen Distanz.

Verfügbarkeit: 1.5.0

Beispiele

Längste Strecke zwischen Punkt und Linie

SELECT ST_AsText(
        ST_LongestLine('POINT(100 100)'::geometry,
                'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry)
        ) As lline;


   lline
-----------------
LINESTRING(100 100,98 190)
                                

Längste Strecke zwischen Polygon und Polygon

SELECT ST_AsText(
        ST_LongestLine(
                ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                )
        ) As llinewkt;

   lline
-----------------
LINESTRING(20 40,121.111404660392 186.629392246051)
                                

Die längste Luftlinie um von einer Seite einer eleganten Stadt auf die andere zu wechseln. Beachten Sie, dass das Ergebnis von ST_MaxDistance ident mit der Länge von ST_LongestLine ist.

SELECT ST_AsText(ST_LongestLine(c.the_geom, c.the_geom)) As llinewkt,
        ST_MaxDistance(c.the_geom,c.the_geom) As max_dist,
        ST_Length(ST_LongestLine(c.the_geom, c.the_geom)) As lenll
FROM (SELECT ST_BuildArea(ST_Collect(the_geom)) As the_geom
        FROM (SELECT ST_Translate(ST_SnapToGrid(ST_Buffer(ST_Point(50 ,generate_series(50,190, 50)
                        ),40, 'quad_segs=2'),1), x, 0)  As the_geom
                        FROM generate_series(1,100,50) As x)  AS foo
) As c;

          llinewkt          |     max_dist     |      lenll
---------------------------+------------------+------------------
 LINESTRING(23 22,129 178) | 188.605408193933 | 188.605408193933
                                


Name

ST_3DLongestLine — Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

geometry ST_3DLongestLine(geometry g1, geometry g2);

Beschreibung

Gibt den größten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück. Wenn es mehr als einen größten Abstand gibt, dann wird nur die erste zurückgegeben. Die zurückgegebene Linie fängt immer mit "g1" an und endet mit "g2". Die Länge der 3D-Linie die von dieser Funktion zurückgegeben wird ist immer ident mit der von ST_3DMaxDistance für "g1" und "g2" zurückgegebenen Distanz.

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Wenn 2 geometrische Objekte in 2D übergegeben werden, wird ein 2D-Punkt zurückgegeben (anstelle wie früher 0 für ein fehlendes Z). Im Falle von 2D und 3D, wird für fehlende Z nicht länger 0 angenommen.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

Linienstück und Punkt -- größter Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DLongestLine(line,pt)) AS lol3d_line_pt,
                ST_AsEWKT(ST_LongestLine(line,pt)) As lol2d_line_pt
        FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
                ) As foo;


           lol3d_line_pt           |       lol2d_line_pt
-----------------------------------+----------------------------
 LINESTRING(50 75 1000,100 100 30) | LINESTRING(98 190,100 100)
                                        

Linienstück und Mehrfachpunkt -- größter Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DLongestLine(line,pt)) AS lol3d_line_pt,
                ST_AsEWKT(ST_LongestLine(line,pt)) As lol2d_line_pt
        FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
                ) As foo;


          lol3d_line_pt          |      lol2d_line_pt
---------------------------------+--------------------------
 LINESTRING(98 190 1,50 74 1000) | LINESTRING(98 190,50 74)
                                        

Mehrfachlinie und Polygon - größter Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DLongestLine(poly, mline)) As lol3d,
    ST_AsEWKT(ST_LongestLine(poly, mline)) As lol2d
        FROM (SELECT  ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
                ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
                (1 10 2, 5 20 1))') As mline ) As foo;
            lol3d             |          lol2d
------------------------------+--------------------------
 LINESTRING(175 150 5,1 10 2) | LINESTRING(175 150,1 10)
             


Name

ST_MaxDistance — Gibt die größte 2-dimensionale Distanz zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.

Synopsis

float ST_MaxDistance(geometry g1, geometry g2);

Beschreibung

[Note]

Gibt die größte 2-dimensionale Distanz zwischen zwei geometrischen Objekten in projizierten Einheiten zurück. Wenn g1 und g2 dieselbe Geometrie sind, dann gibt die Funktion die Distanz zwischen den beiden am weitesten entfernten Knoten in dieser Geometrie zurück.

Verfügbarkeit: 1.5.0

Beispiele

Größte Distanz zwischen dem Punkt und irgendeinem Teil der Linie

postgis=# SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry);
   st_maxdistance
-----------------
 2
(1 row)

postgis=# SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING ( 2 2, 2 2 )'::geometry);
  st_maxdistance
------------------
 2.82842712474619
(1 row)

Name

ST_3DMaxDistance — Für den geometrischen Datentyp. Gibt die maximale 3-dimensionale kartesische Distanz (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.

Synopsis

float ST_3DMaxDistance(geometry g1, geometry g2);

Beschreibung

Für den geometrischen Datentyp. Gibt die maximale 3-dimensionale kartesische Distanz zwischen zwei geometrischen Objekten in projizierten Einheiten (Einheiten des Koordinatenreferenzsystem) zurück.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Im Falle von 2D und 3D wird für ein fehlendes Z nicht mehr 0 angenommen.

Beispiele

-- Beispiel Geometrie - Einheiten in Meter (SRID: 2163 US National Atlas Equal area) (Vergleich von 3D-Punkt und Linie mit 2D-Punkt und Linie)
-- Anmerkung: zur Zeit gibt es keine Unterstützung für ein Höhendatum, daher wird Z unverändert übernommen und nicht transformiert.
SELECT ST_3DMaxDistance(
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
                ) As dist_3d,
                ST_MaxDistance(
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
                        ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
                ) As dist_2d;

     dist_3d      |     dist_2d
------------------+------------------
 24383.7467488441 | 22247.8472107251

Name

ST_MinimumClearance — Gibt das Mindestabstandsmaß für eine Geometrie zurück; ein Maß für die Robustheit einer Geometrie.

Synopsis

float ST_MinimumClearance(geometry g);

Beschreibung

Es ist nicht ungewöhnlich dass eine Geometrie, welche die Kriterien für Validität gemäß ST_IsValid (Polygone) oder ST_IsSimple (Linien) erfüllt, durch eine geringe Verschiebung von einem Knoten invalid wird. Dies kann während einer Konvertierung in Textformate (wie WKT, KML, GML und GeoJSON) vorkommen, oder bei binären Formaten, welche die Koordinaten nicht als Gleitpunkt-Zahl mit doppelter Genauigkeit (double-precision floating point) abspeichern (MapInfo TAB).

Das "Mindestabstandsmaß" einer Geometrie entspricht der kürzesten Strecke, um die ein Knoten der Geometrie bewegt werden kann, ohne dass die Geometrie invalid wird. Es kann als quantitative Maßzahl für die Robustheit einer Geometrie gesehen werden, wobei steigende Werte zunehmende Robustheit anzeigen.

Wenn eine Geometrie ein Mindestabstandsmaß von e hat, dann gilt:

  • Zwei sich unterscheidende Knoten der Geometrie sind nicht weniger als e voneinander entfernt.

  • Kein Knoten liegt näher als e bei einem Liniensegment, außer es ist ein Endpunkt.

Wenn für eine Geometrie kein Mindestabstandsmaß existiert (zum Beispiel ein einzelner Punkt, oder ein Mehrfachpunkt, dessen Punkte identisch sind), dann gibt ST_MinimumClearance unendlich zurück.

Verfügbarkeit: 2.3.0

Beispiele

SELECT ST_MinimumClearance('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))');
 st_minimumclearance
---------------------
             0.00032
     

Name

ST_MinimumClearanceLine — Gibt ein Linienstück mit zwei Punkten zurück, welche sich über das Mindestabstandsmaß erstreckt.

Synopsis

Geometry ST_MinimumClearanceLine(geometry g);

Beschreibung

Gibt ein Zwei-Punkt-Linienstück zurück, welches sich über das Mindestabstandsmaß erstreckt. Wenn die Geometrie kein Mindestabstandsmaß aufweist, dann wird LINESTRING EMPTY zurückgegeben.

Wird durch das GEOS Modul ausgeführt

Verfügbarkeit: 2.3.0 - benötigt GEOS >= 3.6.0

Beispiele

SELECT ST_AsText(ST_MinimumClearanceLine('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))'));
st_astext
-------------------------------
LINESTRING(0.5 0.00032,0.5 0)
                  

Name

ST_Perimeter — Returns the length of the boundary of a polygonal geometry or geography.

Synopsis

float ST_Perimeter(geometry g1);

float ST_Perimeter(geography geog, boolean use_spheroid=true);

Beschreibung

Gibt für die geometrischen/geographischen Datentypen ST_Surface, ST_MultiSurface (Polygon, MultiPolygon) den Umfang in 2D zurück. Bei einer nicht flächigen Geometrie wird 0 zurückgegeben. Für eine lineare Geometrie können Sie ST_Length verwenden. Beim geometrischen Datentyp sind die Einheiten der Umfangsmessung durch das Koordinatenreferenzsystem der Geometrie festgelegt.

Beim geographischen Datentyp werden die Berechnungen über die zweite geodätische Hauptaufgabe durchgeführt, wobei die Einheit für den Umfang Meter ist. Wenn PostGIS mit PROJ Version 4.8.0 oder höher kompiliert wurde, dann ist das Referenzellipsoid durch die SRID bestimmt; sonst ist es ausschließlich WGS84. Wenn use_spheroid=false ist, dann werden die Berechnungen auf einer Kugel anstatt auf einem Referenzellipsoid ausgeführt.

Zur Zeit ein Synonym für ST_Perimeter2D; dies kann sich allerdings ändern, wenn höhere Dimensionen unterstützt werden.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 8.1.3, 9.5.4

Verfügbarkeit: Mit 2.0.0 wurde die Unterstützung für geograpischen Koordinaten eingeführt

Beispiele: geometrischer Datentyp

Den Umfang eines Polygons und eines Mehrfachpolygons in Fuß ausgeben. Beachten Sie bitte, dass die Einheit Fuß ist, da EPSG:2249 "Massachusetts State Plane Feet" ist

SELECT ST_Perimeter(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416))', 2249));
st_perimeter
---------
 122.630744000095
(1 row)

SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,
763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003)))', 2249));
st_perimeter
---------
 845.227713366825
(1 row)
                        

Beispiele: geographischer Datentyp

Gibt den Umfang eines Polygons und eines Mehrfachpolygons in Meter und in Fuß aus. Beachten Sie, dass diese in geographischen Koordinaten (WGS 84 Länge/Breite) vorliegen.

SELECT  ST_Perimeter(geog) As per_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('POLYGON((-71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.1776848522251 42.3902896512902))') As geog;

   per_meters    |      per_ft
-----------------+------------------
37.3790462565251 | 122.634666195949


-- Beispiel MultiPolygon  --
SELECT  ST_Perimeter(geog) As per_meters, ST_Perimeter(geog,false) As per_sphere_meters,  ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('MULTIPOLYGON(((-71.1044543107478 42.340674480411,-71.1044542869917 42.3406744369506,
-71.1044553562977 42.340673886454,-71.1044543107478 42.340674480411)),
((-71.1044543107478 42.340674480411,-71.1044860600303 42.3407237015564,-71.1045215770124 42.3407653385914,
-71.1045498002983 42.3407946553165,-71.1045611902745 42.3408058316308,-71.1046016507427 42.340837442371,
-71.104617893173 42.3408475056957,-71.1048586153981 42.3409875993595,-71.1048736143677 42.3409959528211,
-71.1048878050242 42.3410084812078,-71.1044020965803 42.3414730072048,
-71.1039672113619 42.3412202916693,-71.1037740497748 42.3410666421308,
-71.1044280218456 42.3406894151355,-71.1044543107478 42.340674480411)))') As geog;

    per_meters    | per_sphere_meters |      per_ft
------------------+-------------------+------------------
 257.634283683311 |  257.412311446337 | 845.256836231335
                        

Siehe auch

???, ???, ST_Length


Name

ST_Perimeter2D — Returns the 2D perimeter of a polygonal geometry. Alias for ST_Perimeter.

Synopsis

float ST_Perimeter2D(geometry geomA);

Beschreibung

Gibt den 2-dimensionalen Umfang eines Polygons oder eines Mehrfachpolygons zurück.

[Note]

Zurzeit ein Alias für ST_Perimeter. In zukünftigen Versionen dürfte ST_Perimeter den Umfang in der höchsten Dimension einer Geometrie zurückgeben. Dies befindet sich jedoch noch im Aufbau.

Siehe auch

ST_Perimeter


Name

ST_3DPerimeter — Gibt den geometrischen Schwerpunkt einer Geometrie zurück.

Synopsis

float ST_3DPerimeter(geometry geomA);

Beschreibung

Gibt den 3-dimensionalen Umfang eines Polygons oder eines Mehrfachpolygons zurück. Wenn es sich um eine 2-dimensionale Geometrie handelt wird der 2-dimensionale Umfang zurückgegeben.

This function supports 3d and will not drop the z-index.

Änderung: 2.0.0 In Vorgängerversionen als ST_Perimeter3D bezeichet.

Beispiele

Umfang eines leicht erhöhten Polygons in "Massachusetts state plane feet"

SELECT ST_3DPerimeter(the_geom), ST_Perimeter2d(the_geom), ST_Perimeter(the_geom) FROM
                        (SELECT ST_GeomFromEWKT('SRID=2249;POLYGON((743238 2967416 2,743238 2967450 1,
743265.625 2967416 1,743238 2967416 2))') As the_geom) As foo;

  ST_3DPerimeter  |  st_perimeter2d  |   st_perimeter
------------------+------------------+------------------
 105.465793597674 | 105.432997272188 | 105.432997272188


Name

ST_Project — Gibt einen POINT zurück, der von einem Anfangspunkt weg, entsprechend einer Distanz in Meter und einer Peilung (Azimut) in Radiant, projiziert wird.

Synopsis

geography ST_Project(geography g1, float distance, float azimuth);

Beschreibung

Gibt einen POINT zurück, der sich von einem Standpunkt aus durch den Azimut (Pelilung) in Radiant und die Distanz in Meter zum Zielpunkt ergibt. Dies wird auch als erste geodätische Hauptaufgabe bezeichnet.

Die Entfernung wird in Meter angegeben.

In der Navigation wird das Azimut auch manchmal als Kurs oder Peilung bezeichnet. Es wird relativ zur Nordrichtung (Azimut null) gemessen. Osten hat ein Azimut von 90 (π/2), Süden 180 (π) und Westen 270 (3π/2).

Verfügbarkeit: 2.0.0

Erweiterung: 2.4.0 Erlaubt negative Distanzen und nicht normalisierten Azimut.

Beispiel: verwendet Grad - die Distanz zum Zielpunkt ist 100,000 Meter und die Peilung liegt bei 45 Grad

SELECT ST_AsText(ST_Project('POINT(0 0)'::geography, 100000, radians(45.0)));

                 st_astext
--------------------------------------------
 POINT(0.635231029125537 0.639472334729198)
(1 row)
      

Name

ST_ShortestLine — Gibt die 2-dimenionale kürzeste Strecke zwischen zwei Geometrien als Linie zurück

Synopsis

geometry ST_ShortestLine(geometry g1, geometry g2);

Beschreibung

Gibt den kürzesten 2-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück. Wenn es mehrere kürzeste Abstände gibt, dann wird nur der erste zurückgegeben, der von der Funktion gefunden wurde. Wenn sich g1 und g2 nur in einem Punkt schneiden, dann gibt die Funktion eine Linie zurück, die ihren Anfang und ihr Ende in dem Schnittpunkt hat. Wenn sich g1 und g2 in mehreren Punkten schneiden, dann gibt die Funktion eine Linie zurück, die Anfang und Ende in irgendeinem der Schnittpunkte hat. Die zurückgegebene Linie beginnt immer mit g1 und endet mit g2. Die Länge der 2D-Linie die von dieser Funktion zurückgegeben wird ist immer gleich der von ST_Distance für g1 und g2 zurückgegebenen Distanz.

Verfügbarkeit: 1.5.0

Beispiele

Kürzeste Strecke zwischen Punkt und Linienzug

SELECT ST_AsText(
        ST_ShortestLine('POINT(100 100)'::geometry,
                'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry)
        ) As sline;


   sline
-----------------
LINESTRING(100 100,73.0769230769231 115.384615384615)
                                

kürzeste Strecke zwischen Polygon und Polygon

SELECT ST_AsText(
                ST_ShortestLine(
                        ST_GeomFromText('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'),
                        ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                        )
                ) As slinewkt;

 LINESTRING(140.752120669087 125.695053378061,121.111404660392 153.370607753949)
                                


Name

ST_3DShortestLine — Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück

Synopsis

geometry ST_3DShortestLine(geometry g1, geometry g2);

Beschreibung

Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück. Wenn es mehrere kürzeste Abstände gibt, dann wird nur der erste zurückgegeben, der von der Funktion gefunden wurde. Wenn sich g1 und g2 nur in einem Punkt schneiden, dann gibt die Funktion eine Linie zurück, die ihren Anfang und ihr Ende in dem Schnittpunkt hat. Wenn sich g1 und g2 in mehreren Punkten schneiden, dann gibt die Funktion eine Linie zurück, die Anfang und Ende in irgendeinem der Schnittpunkte hat. Die zurückgegebene Linie beginnt immer mit g1 und endet mit g2. Die Länge der 3D-Linie die von dieser Funktion zurückgegeben wird ist immer ident mit der von ST_3DDistance für g1 und g2 zurückgegebenen Distanz.

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 - Wenn 2 geometrische Objekte in 2D übergegeben werden, wird ein 2D-Punkt zurückgegeben (anstelle wie früher 0 für ein fehlendes Z). Im Falle von 2D und 3D, wird für fehlende Z nicht länger 0 angenommen.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Beispiele

Linienzug und Punkt -- kürzester Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
                ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
        FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
                ) As foo;


 shl3d_line_pt                                                                 |               shl2d_line_pt
----------------------------------------------------------------------------+------------------------------------------------------
 LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30)  | LINESTRING(73.0769230769231 115.384615384615,100 100)
                                        

Linienstück und Mehrfachpunkt -- kürzester Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
                ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
        FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
                        'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
                ) As foo;


                       shl3d_line_pt                                       | shl2d_line_pt
---------------------------------------------------------------------------+------------------------
 LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) | LINESTRING(50 75,50 74)
                                        

Mehrfachlinienzug und Polygon - kürzester Abstand in 3D und in 2D

SELECT ST_AsEWKT(ST_3DShortestLine(poly, mline)) As shl3d,
    ST_AsEWKT(ST_ShortestLine(poly, mline)) As shl2d
        FROM (SELECT  ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
                ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
                (1 10 2, 5 20 1))') As mline ) As foo;
                   shl3d                                                                           |     shl2d
---------------------------------------------------------------------------------------------------+------------------------
 LINESTRING(39.993580415989 54.1889925532825 5,40.4078575708294 53.6052383805529 5.03423778139177) | LINESTRING(20 40,20 40)
             

8.10. SFCGAL Funktionen

Abstract

SFCGAL ist ein C++ Adapter für CGAL, welches fortgeschrittene Funktionen in 2D und in 3D zur Verfügung stellt. Aus Gründen der Robustheit liegen die geometrischen Koordinaten in einer fehlerfreien rationalen Zahlendarstellung vor.

Eine Anleitung zur Installation der Bibliothek finden Sie auf der SFCGAL Homepage http://www.sfcgal.org. Um die Funktionen zu laden, müssen Sie die Anweisung "CREATE EXTENSION postgis_sfscal;" ausführen.

postgis_sfcgal_version — Gibt die verwendete Version von SFCGAL aus
ST_Extrude — Weitet eine Oberfläche auf ein entsprechendes Volumen aus
ST_StraightSkeleton — Berechnet aus einer Geometrie ein "Gerippe" aus Geraden.
ST_ApproximateMedialAxis — Errechnet die genäherte Mediale Achse einer Flächengeometrie.
ST_IsPlanar — Überprüft ob es sich um eine ebene Oberfläche handelt oder nicht
ST_Orientation — Bestimmt die Ausrichtung der Fläche
ST_ForceLHR — Erzwingt LHR Orientierung
ST_MinkowskiSum — Berechnet die Minkowski-Summe
ST_ConstrainedDelaunayTriangles — Return a constrained Delaunay triangulation around the given input geometry.
ST_3DIntersection — Führt eine Verschneidung in 3D aus
ST_3DDifference — Errechnet die Differenzmenge in 3D
ST_3DUnion — Führt eine Vereinigung/Union in 3D aus
ST_3DArea — Berechnet die Fläche von 3D-Oberflächengeometrien. Gibt 0 für Solids zurück.
ST_Tesselate — Erzeugt ein Oberflächen-Mosaik aus einem Polygon oder einer polyedrischen Oberfläche und gibt dieses als TIN oder als TIN-Kollektion zurück
ST_Volume — Berechnet das Volumen eines 3D-Solids. Auf Oberflächengeometrien (auch auf geschlossene) angewandt wird 0 zurückgegeben.
ST_MakeSolid — Wandelt die Geometrie in ein Solid um. Es wird keine Überprüfung durchgeführt. Um ein gültiges Solid zu erhalten muss die eingegebene Geometrie entweder eine geschlossene polyedrische Oberfläche oder ein geschlossenes TIN sein.
ST_IsSolid — Überprüft ob die Geometrie ein Solid ist. Es wird keine Plausibilitätsprüfung durchgeführt.

Name

postgis_sfcgal_version — Gibt die verwendete Version von SFCGAL aus

Synopsis

text postgis_sfcgal_version(void);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).


Name

ST_Extrude — Weitet eine Oberfläche auf ein entsprechendes Volumen aus

Synopsis

geometry ST_Extrude(geometry geom, float x, float y, float z);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Die 3D Bilder sind mit PostGIS ST_AsX3D erzeugt und das Rendern in HTML mit X3Dom HTML Javascript rendering library.

SELECT ST_Buffer(ST_GeomFromText('POINT(100 90)'),
  50, 'quad_segs=2'),0,0,30);

Ursprüngliches Achteck aus einem gepufferten Punkt gebildet

ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30);

Ein Achteck, um 30 Einheiten entlang der Z-Achse ausgeweitet, ergibt ein PolyhedralSurfaceZ

SELECT ST_GeomFromText('LINESTRING(50 50, 100 90, 95 150)')

Ursprünglicher Linienzug

SELECT ST_Extrude(
 ST_GeomFromText('LINESTRING(50 50, 100 90, 95 150)'),0,0,10));

Ein Linienzug, entlang der Z Achse ausgeweitet, ergibt ein PolyhedralSurfaceZ

Siehe auch

ST_AsX3D


Name

ST_StraightSkeleton — Berechnet aus einer Geometrie ein "Gerippe" aus Geraden.

Synopsis

geometry ST_StraightSkeleton(geometry geom);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_StraightSkeleton(ST_GeomFromText('POLYGON (( 190 190, 10 190, 10 10, 190 10, 190 20, 160 30, 60 30, 60 130, 190 140, 190 190 ))'));

Ursprüngliches Polygon

Das "Gerippe" des Polygons


Name

ST_ApproximateMedialAxis — Errechnet die genäherte Mediale Achse einer Flächengeometrie.

Synopsis

geometry ST_ApproximateMedialAxis(geometry geom);

Beschreibung

Gibt die genäherte mediale Achse einer Flächeneingabe als eine Art Gerippe an Geraden zurück. Wenn mit einer geeigneten Version (1.2.0+) kompiliert wurde, wird die SFCGAL-eigene API ausgeführt. Sonst verhält sich die Funktion nur wie ein Adapter für ST_StraightSkeleton (langsamerer Fall).

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_ApproximateMedialAxis(ST_GeomFromText('POLYGON (( 190 190, 10 190, 10 10, 190 10, 190 20, 160 30, 60 30, 60 130, 190 140, 190 190 ))'));

Ein Polygon und dessen angenäherte mediale Achse


Name

ST_IsPlanar — Überprüft ob es sich um eine ebene Oberfläche handelt oder nicht

Synopsis

boolean ST_IsPlanar(geometry geom);

Beschreibung

Verfügbarkeit: 2.2.0: Wurde zwar für 2.1.0 dokumentiert, aber unabsichtlich in der Version 2.1 weggelassen.

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).


Name

ST_Orientation — Bestimmt die Ausrichtung der Fläche

Synopsis

integer ST_Orientation(geometry geom);

Beschreibung

Die Funktion ist nur auf Polygone anwendbar. Sie gibt -1 zurück, wenn das Polygon gegen den Uhrzeigersinn ausgerichttet ist und 1, wenn das Polygon im Uhrzeigersinn ausgerichtet ist.

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.


Name

ST_ForceLHR — Erzwingt LHR Orientierung

Synopsis

geometry ST_ForceLHR(geometry geom);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).


Name

ST_MinkowskiSum — Berechnet die Minkowski-Summe

Synopsis

geometry ST_MinkowskiSum(geometry geom1, geometry geom2);

Beschreibung

Diese Funktion errechnet die Minkowski-Summe eines Punktes, einer Linie oder eines Polygons mit einem Polygon in 2D.

Die Minkowski-Summe zweier Geometrien A und B ist die Menge aller Punkte, die die Summe aller Punkte von A und B sind. Minkowski-Summen werden häufig zur Planung von Bewegungsabläufen und im CAD-Bereich eingesetzt. Weitere Einzelheiten finden Sie unter Wikipedia Minkowski addition.

Der erste Parameter kann irgendeine 2D-Geometrie (Punkt, Linienzug, Polygon) sein. Wenn eine 3D-Geometrie eingegeben wird, so wird diese in 2D umgewandelt, indem Z auf 0 gesetzt wird. Dies kann zu ungültigen Spezialfällen führen. Der zweite Parameter muss ein 2D-Polygon sein.

Die Umsetzung nützt CGAL 2D Minkowskisum.

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

Beispiele

Die Minkowski-Summe eines LineString's, der ein Kreispolygon schneidet

Vor dem Aufsummieren

Nach dem Aufsummieren

SELECT ST_MinkowskiSum(line, circle))
FROM (SELECT
    ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(100, 100)) As line,
    ST_Buffer(ST_GeomFromText('POINT(50 50)'), 30) As circle) As foo;

-- wkt --
MULTIPOLYGON(((30 59.9999999999999,30.5764415879031 54.1472903395161,32.2836140246614 48.5194970290472,35.0559116309237 43.3328930094119,38.7867965644036 38.7867965644035,43.332893009412 35.0559116309236,48.5194970290474 32.2836140246614,54.1472903395162 30.5764415879031,60.0000000000001 30,65.8527096604839 30.5764415879031,71.4805029709527 32.2836140246614,76.6671069905881 35.0559116309237,81.2132034355964 38.7867965644036,171.213203435596 128.786796564404,174.944088369076 133.332893009412,177.716385975339 138.519497029047,179.423558412097 144.147290339516,180 150,179.423558412097 155.852709660484,177.716385975339 161.480502970953,174.944088369076 166.667106990588,171.213203435596 171.213203435596,166.667106990588 174.944088369076,
161.480502970953 177.716385975339,155.852709660484 179.423558412097,150 180,144.147290339516 179.423558412097,138.519497029047 177.716385975339,133.332893009412 174.944088369076,128.786796564403 171.213203435596,38.7867965644035 81.2132034355963,35.0559116309236 76.667106990588,32.2836140246614 71.4805029709526,30.5764415879031 65.8527096604838,30 59.9999999999999)))
            

Minkowski Summe von einem Polygon mit einem MultiPoint

Vor dem Aufsummieren

Nach der Aufsummierung: das Polygon ist dupliziert und in Punktlagen übersetzt

SELECT ST_MinkowskiSum(mp, poly)
FROM (SELECT 'MULTIPOINT(25 50,70 25)'::geometry As mp,
   'POLYGON((130 150, 20 40, 50 60, 125 100, 130 150))'::geometry As poly
    ) As foo


-- wkt --
MULTIPOLYGON(
    ((70 115,100 135,175 175,225 225,70 115)),
    ((120 65,150 85,225 125,275 175,120 65))
    )
            

Name

ST_ConstrainedDelaunayTriangles — Return a constrained Delaunay triangulation around the given input geometry.

Synopsis

geometry ST_Tesselate(geometry geom);

Beschreibung

Return a Constrained Delaunay triangulation around the vertices of the input geometry. Output is a TIN.

This method needs SFCGAL backend.

Verfügbarkeit: 2.1.0

This function supports 3d and will not drop the z-index.

Beispiele

ST_ConstrainedDelaunayTriangles of 2 polygons

select ST_ConstrainedDelaunayTriangles(
               ST_Union(
                       'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'::geometry,
                       ST_Buffer('POINT(110 170)'::geometry, 20)
                   )
           );
                                

ST_DelaunayTriangles of 2 polygons. Triangle edges cross polygon boundaries.

select ST_DelaunayTriangles(
               ST_Union(
                       'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'::geometry,
                       ST_Buffer('POINT(110 170)'::geometry, 20)
                   )
           );


Name

ST_3DIntersection — Führt eine Verschneidung in 3D aus

Synopsis

geometry ST_3DIntersection(geometry geom1, geometry geom2);

Beschreibung

Gibt die Schnittmenge von geom1 und geom2 als Geometrie zurück.

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Die 3D Bilder sind mit PostGIS ST_AsX3D erzeugt und das Rendern in HTML mit X3Dom HTML Javascript rendering library.

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;
                

Ursprüngliche 3D-Geometrien überlagert. geom2 wird halbtransparent angezeigt

SELECT ST_3DIntersection(geom1,geom2)
FROM ( SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2 ) As t;

Schnittmenge von geom1 und geom2

Linienzüge und Polygone in 3D

SELECT ST_AsText(ST_3DIntersection(linestring, polygon)) As wkt
FROM  ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS linestring
 CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;

              wkt
--------------------------------
 LINESTRING Z (1 1 8,0.5 0.5 8)
                

Würfel (geschlossene polyedrische Oberfläche) und Polygon Z

SELECT ST_AsText(ST_3DIntersection(
                ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
        ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
        ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
        ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'),
        'POLYGON Z ((0 0 0, 0 0 0.5, 0 0.5 0.5, 0 0.5 0, 0 0 0))'::geometry))
TIN Z (((0 0 0,0 0 0.5,0 0.5 0.5,0 0 0)),((0 0.5 0,0 0 0,0 0.5 0.5,0 0.5 0)))

Die Verschneidung von 2 Solids, die sich volumetrisch überschneiden, ist ebenfalls ein Solid (ST_Dimension liefert 3)

SELECT ST_AsText(ST_3DIntersection( ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),0,0,30),
 ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),2,0,10) ));
POLYHEDRALSURFACE Z (((13.3333333333333 13.3333333333333 10,20 20 0,20 20 10,13.3333333333333 13.3333333333333 10)),
        ((20 20 10,16.6666666666667 23.3333333333333 10,13.3333333333333 13.3333333333333 10,20 20 10)),
        ((20 20 0,16.6666666666667 23.3333333333333 10,20 20 10,20 20 0)),
        ((13.3333333333333 13.3333333333333 10,10 10 0,20 20 0,13.3333333333333 13.3333333333333 10)),
        ((16.6666666666667 23.3333333333333 10,12 28 10,13.3333333333333 13.3333333333333 10,16.6666666666667 23.3333333333333 10)),
        ((20 20 0,9.99999999999995 30 0,16.6666666666667 23.3333333333333 10,20 20 0)),
        ((10 10 0,9.99999999999995 30 0,20 20 0,10 10 0)),((13.3333333333333 13.3333333333333 10,12 12 10,10 10 0,13.3333333333333 13.3333333333333 10)),
        ((12 28 10,12 12 10,13.3333333333333 13.3333333333333 10,12 28 10)),
        ((16.6666666666667 23.3333333333333 10,9.99999999999995 30 0,12 28 10,16.6666666666667 23.3333333333333 10)),
        ((10 10 0,0 20 0,9.99999999999995 30 0,10 10 0)),
        ((12 12 10,11 11 10,10 10 0,12 12 10)),((12 28 10,11 11 10,12 12 10,12 28 10)),
        ((9.99999999999995 30 0,11 29 10,12 28 10,9.99999999999995 30 0)),((0 20 0,2 20 10,9.99999999999995 30 0,0 20 0)),
        ((10 10 0,2 20 10,0 20 0,10 10 0)),((11 11 10,2 20 10,10 10 0,11 11 10)),((12 28 10,11 29 10,11 11 10,12 28 10)),
        ((9.99999999999995 30 0,2 20 10,11 29 10,9.99999999999995 30 0)),((11 11 10,11 29 10,2 20 10,11 11 10)))

Name

ST_3DDifference — Errechnet die Differenzmenge in 3D

Synopsis

geometry ST_3DDifference(geometry geom1, geometry geom2);

Beschreibung

Gibt jenen Teil von geom1 zurück, der nicht Teil von geom2 ist.

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Die 3D Bilder sind mit PostGIS ST_AsX3D erzeugt und das Rendern in HTML mit X3Dom HTML Javascript rendering library.

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;
                

Ursprüngliche 3D-Geometrien überlagert. geom2 ist jener Teil der nicht entfernt wird.

SELECT ST_3DDifference(geom1,geom2)
FROM ( SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2 ) As t;

Was bleibt zurück nachdem geom2 entfernt wurde


Name

ST_3DUnion — Führt eine Vereinigung/Union in 3D aus

Synopsis

geometry ST_3DUnion(geometry geom1, geometry geom2);

Beschreibung

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Die 3D Bilder sind mit PostGIS ST_AsX3D erzeugt und das Rendern in HTML mit X3Dom HTML Javascript rendering library.

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;
                

Überlagerung der ursprünglichen Geometrien in 3D. geom2 ist transparent dargestellt.

SELECT ST_3DUnion(geom1,geom2)
FROM ( SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
        ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2 ) As t;

Vereinigung von geom1 und geom2


Name

ST_3DArea — Berechnet die Fläche von 3D-Oberflächengeometrien. Gibt 0 für Solids zurück.

Synopsis

floatST_3DArea(geometry geom1);

Beschreibung

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

Anmerkung: Standardmäßig ist ein aus WKT erzeugtes PolyhedralSurface eine Oberflächengeometrie und kein Solid. Es hat daher eine Flächenausdehnung. In ein Solid umgewandelt, keine Fläche.

SELECT ST_3DArea(geom) As cube_surface_area,
        ST_3DArea(ST_MakeSolid(geom)) As solid_surface_area
  FROM (SELECT 'POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
    ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
    ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
    ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
    ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
    ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'::geometry) As f(geom);

 cube_surface_area | solid_surface_area
-------------------+--------------------
                 6 |                  0    

Name

ST_Tesselate — Erzeugt ein Oberflächen-Mosaik aus einem Polygon oder einer polyedrischen Oberfläche und gibt dieses als TIN oder als TIN-Kollektion zurück

Synopsis

geometry ST_Tesselate(geometry geom);

Beschreibung

Nimmt als Eingabe eine Fläche, wie ein Multi(Polygon) oder eine polyedrische Oberfläche, und gibt, mittels Mosaikierung in Dreiecke, eine TIN-Darstellung der Geometrie zurück.

Verfügbarkeit: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

SELECT ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
                ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )');

Ursprünglicher Würfel

SELECT ST_Tesselate(ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
        ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
        ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
        ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));

ST_AsText Ausgabe:

TIN Z (((0 0 0,0 0 1,0 1 1,0 0 0)),((0 1 0,0 0 0,0 1 1,0 1 0)),
        ((0 0 0,0 1 0,1 1 0,0 0 0)),
        ((1 0 0,0 0 0,1 1 0,1 0 0)),((0 0 1,1 0 0,1 0 1,0 0 1)),
        ((0 0 1,0 0 0,1 0 0,0 0 1)),
        ((1 1 0,1 1 1,1 0 1,1 1 0)),((1 0 0,1 1 0,1 0 1,1 0 0)),
        ((0 1 0,0 1 1,1 1 1,0 1 0)),((1 1 0,0 1 0,1 1 1,1 1 0)),
        ((0 1 1,1 0 1,1 1 1,0 1 1)),((0 1 1,0 0 1,1 0 1,0 1 1)))

Mosaikierter Würfel mit eingefärbten Dreiecken

SELECT 'POLYGON (( 10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190 ))'::geometry;

Ursprüngliches Polygon

SELECT
        ST_Tesselate('POLYGON (( 10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190 ))'::geometry);

ST_AsText Ausgabe

TIN(((80 130,50 160,80 70,80 130)),((50 160,10 190,10 70,50 160)),
         ((80 70,50 160,10 70,80 70)),((120 160,120 190,50 160,120 160)),
 ((120 190,10 190,50 160,120 190)))

Mosaikiertes Polygon


Name

ST_Volume — Berechnet das Volumen eines 3D-Solids. Auf Oberflächengeometrien (auch auf geschlossene) angewandt wird 0 zurückgegeben.

Synopsis

float ST_Volume(geometry geom1);

Beschreibung

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiel

Wenn geschlossene Oberflächen über WKT erzeugt werden, so werden diese wie eine Flächen und nicht wie ein Solid behandelt. Um sie in ein Solid umzuwandeln, müssen Sie ST_MakeSolid verwenden. Flächeneometrien besitzen kein Volumen. Das folgende Beispiel demonstriert dies.

SELECT ST_Volume(geom) As cube_surface_vol,
        ST_Volume(ST_MakeSolid(geom)) As solid_surface_vol
  FROM (SELECT 'POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
    ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
    ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
    ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
    ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
    ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'::geometry) As f(geom);

 cube_surface_vol | solid_surface_vol
------------------+-------------------
                0 |                 1
              

Name

ST_MakeSolid — Wandelt die Geometrie in ein Solid um. Es wird keine Überprüfung durchgeführt. Um ein gültiges Solid zu erhalten muss die eingegebene Geometrie entweder eine geschlossene polyedrische Oberfläche oder ein geschlossenes TIN sein.

Synopsis

geometryST_MakeSolid(geometry geom1);

Beschreibung

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).


Name

ST_IsSolid — Überprüft ob die Geometrie ein Solid ist. Es wird keine Plausibilitätsprüfung durchgeführt.

Synopsis

booleanST_IsSolid(geometry geom1);

Beschreibung

Verfügbarkeit: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

8.11. Geometrieverarbeitung

ST_Buffer — (T) Gibt eine Geometrie zurück, welche alle Punkte innerhalb einer gegebenen Entfernung von der Eingabegeometrie beinhaltet.
ST_BuildArea — Erzeugt eine Flächengeometrie aus den einzelnen Linien einer gegebenen Geometrie
ST_Centroid — Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.
ST_ClipByBox2D — Gibt jenen Teil der Geometrie zurück, der innerhalb eines Rechteckes liegt.
ST_ConcaveHull — Die konkave Hülle einer Geometrie stellt eine möglicherweise konkave Geometrie dar, welche alle Geometrien der Menge einschließt. Sie können es sich wie in Folie einpacken vorstellen.
ST_ConvexHull — Computes the convex hull of a geometry.
ST_CurveToLine — Wandelt einen CIRCULARSTRING/CURVEPOLYGON in ein LINESTRING/POLYGON um
ST_DelaunayTriangles — Gibt die Delaunay-Triangulierung für gegebene Punkte zurück.
ST_Difference — Gibt eine Geometrie zurück, die jenen Teil der Geometrie A abbildet, der sich nicht mit der Geometrie B überschneidet.
ST_FlipCoordinates — Gibt eine Version der gegebenen Geometrie zurück, wobei die X und Y Achse vertauscht sind. Nützlich wenn man Geoobjekte in Breite/Länge vorliegen hat und dies beheben möchte.
ST_GeneratePoints — Wandelt ein Polygon oder ein MultiPolygon in einen MultiPoint um, welcher aus wahllos angeordeten, innerhalb der ursprünglichen Flächen liegenden Punkten besteht.
ST_GeometricMedian — Returns the geometric median of a MultiPoint.
ST_Intersection — (T) Gibt eine Geometrie zurück, welche den gemeinsamen Anteil von geomA und geomB repräsentiert.
ST_LineToCurve — Wandelt einen LINESTRING/POLYGON in einen CIRCULARSTRING, CURVEPOLYGON um
ST_MakeValid — Versucht eine ungültige Geometrie, ohne den Verlust an Knoten zu bereinigen.
ST_MemUnion — Das gleiche wie ST_Union, nur freundlicher zum Arbeitsspeicher (verwendet weniger Arbeitsspeicher und mehr Rechnerzeit).
ST_MinimumBoundingCircle — Gibt das kleinstmögliche Kreispolygon zurück, welches eine Geometrie zur Gänze beinhaltet. Standardmäßig werden 48 Segmente pro Viertelkreiss verwendet.
ST_MinimumBoundingRadius — Gibt den Mittelpunkt und den Radius des kleinstmöglichen Kreises zurück, der die gesamte Geometrie beinhaltet.
ST_OrientedEnvelope — Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.
ST_Polygonize — Aggregatfunktion. Erzeugt eine Sammelgeometrie/GeometryCollection, welche Polygone enthält, die aus den einzelnen Linien einer Menge von Geometrien gebildet werden können.
ST_Node — Knotenberechnung für eine Menge von Linienzügen.
ST_OffsetCurve — Gibt eine Linie zurück, die um eine gegebenen Entfernung und Seite von der Eingabelinie versetzt ist. Nützlich zur Berechnung von Linien, die zu einer Mittellinie parallel verlaufen
ST_PointOnSurface — Returns a POINT guaranteed to lie on the surface.
ST_RemoveRepeatedPoints — Gibt eine Version der Eingabegeometrie zurück, wobei duplizierte Punkte entfernt werden.
ST_SharedPaths — Gibt eine Sammelgeometrie zurück, welche die gemeinsamen Strecken der beiden eingegebenen LineStrings/MultiLinestrings enthält.
ST_ShiftLongitude — Schaltet geometrische Koordinaten zwischen den Bereichen -180..180 und 0..360 um.
ST_WrapX — Versammelt eine Geometrie um einen X-Wert
ST_Simplify — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Douglas-Peucker Algorithmus.
ST_SimplifyPreserveTopology — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Douglas-Peucker Algorithmus. Vermeidet es abgeleitete Geometrien zu erzeugen (insbesondere Polygone), die invalide sind.
ST_SimplifyVW — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Visvalingam-Whyatt Algorithmus.
ST_ChaikinSmoothing — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Visvalingam-Whyatt Algorithmus.
ST_FilterByM — Filters vertex points based on their m-value
ST_SetEffectiveArea — Setzt die Nutzfläche für jeden Knoten und speichert den Wert in der M-Ordinate. Eine vereinfachte Geometrie kann dann über einen Filter auf die M-Ordinate erzeugt werden.
ST_Split — Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.
ST_SymDifference — Gibt eine Geometrie zurück, die jene Teile von A und B repräsentiert, die sich nicht überlagern. Wird symmetrische Differenz genannt, da ST_SymDifference(A,B) = ST_SymDifference(B,A).
ST_Subdivide — Gibt eine Geometriemenge zurück, wobei keine Geometrie der Menge mehr als die festgelegte Anzahl an Knoten aufweist.
ST_Union — Gibt eine Geometrie zurück, welche der mengentheoretischen Vereinigung der Geometrien entspricht.
ST_UnaryUnion — Wie ST_Union, arbeitet aber auf der Ebene der Geometriebestandteile.
ST_VoronoiLines — Gibt die Grenzen zwischen den Zellen des Voronoi Diagramms aus, das aus den Knoten der Geometrie konstruiert wurde.
ST_VoronoiPolygons — Gibt die Zellen des Voronoi Diagramms zurück, die aus den Knoten der Geometrie erzeugt wurden.

Name

ST_Buffer — (T) Gibt eine Geometrie zurück, welche alle Punkte innerhalb einer gegebenen Entfernung von der Eingabegeometrie beinhaltet.

Synopsis

geometry ST_Buffer(geometry g1, float radius_of_buffer);

geometry ST_Buffer(geometry g1, float radius_of_buffer, integer num_seg_quarter_circle);

geometry ST_Buffer(geometry g1, float radius_of_buffer, text buffer_style_parameters);

geography ST_Buffer(geography g1, float radius_of_buffer_in_meters);

geography ST_Buffer(geography g1, float radius_of_buffer, integer num_seg_quarter_circle);

geography ST_Buffer(geography g1, float radius_of_buffer, text buffer_style_parameters);

Beschreibung

Gibt eine Geometrie/Geographie zurück, die alle Punkte repräsentiert, deren Entfernung von dieser Geometrie/Geographie kleiner oder gleich der gegebenen Entfernung ist.

Geometrie: Berechnungen werden im Koordinatenreferenzsystem der Geometrie durchgeführt. Mit 1.5 wurde die Unterstützung unterschiedlicher Abschlussstücke/end-cap und Gehrungen/mitre eingeführt, um die Gestalt zu kontrollieren.

[Note]

Negative Radien: Bei Polygonen kann ein negativer Radius vergewendet werden, wodurch das Polygon geschrumpft anstatt vergrößert wird.

[Note]

Geographie: Beim geographischen Datentyp handelt es sich lediglich um einen schlanken Adapter, der um die geometrische Implementation herumgelegt wurde. Zuerst wird die passenste SRID für das Umgebungsrechteck des geographischen Objektes bestimmt (bevorzugt UTM, Lambert Azimuthal Equal Area (LAEA) Nord/Süd Pol, im schlimmsten Fall wird auf Mercator zurückgegriffen), dann im planaren Koordinatenreferenzsystem gepuffert und anschließend nach WGS84 Geographie zurück transformiert.

[Warning]

Beim geographischen Datentyp kann sich dies anders verhalten als erwartet, nämlich dann, wenn das Objekt entrsprechend groß ist und zwischen zwei UTM-Zonen fällt oder eine Datumsgrenze überschreitet.

Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right.

Verfügbarkeit: 1.5 - ST_Buffer wurde um die Unterstützung von Abschlusstücken/endcaps und Join-Typen erweitert. Diese können zum Beispiel dazu verwendet werden, um Linienzüge von Straßen in Straßenpolygone mit flachen oder rechtwinkeligen Abschlüssen anstatt mit runden Enden umzuwandeln. Ein schlanker Adapter für den geographischen Datentyp wurde hinzugefügt. - benötigt GEOS >= 3.2 um diese erweiterte geometrische Funktionalität auszunutzen.

Der optionale dritte Parameter (zurzeit nur auf den geometrischen Datentyp anwendbar) ermöglicht es die Anzahl der Segmente zur Näherung eines Viertelkreises (Ganzzahl, standardmäßig 8) oder eine Liste von leerzeichengetrennten key=value Paaren (string case) festzulegen, um die Berechnungen wie folgt zu optimieren:

  • 'quad_segs=#' : Anzahl der Segmente die verwendet werden um einen Viertelkreis anzunähern (standardmäßig 8).

  • 'endcap=round|flat|square' : endcap style (standardmäßig "round", benötigt GEOS-3.2 oder höher für andere Werte). 'butt' kann auch als Synonym für 'flat' verwendet werden.

  • 'join=round|mitre|bevel' : join style (defaults to "round"). 'miter' kann auch als Synonym für 'mitre' verwendet werden.

  • 'mitre_limit=#.#' : Gehrungsobergrenze (beeinflusst nur Gehrungsverbindungen). 'miter_limit' kann auch als Synonym von 'mitre_limit' verwendet werden.

  • 'side=both|left|right' : 'left' or 'right' performs a single-sided buffer on the geometry, with the buffered side relative to the direction of the line. This is only really relevant to LINESTRING geometry and does not affect POINT or POLYGON geometries. By default end caps are square.

Die Einheiten des Radius werden in den Einheiten des Koordinatenreferenzsystems gemessen.

Es können POINTS, MULTIPOINTS, LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS, und Sammelgeometrien/GeometryCollections eingegeben werden.

[Note]

Diese Funktion ignoriert die dritte Dimension (z) und gibt immer einen 2-D Buffer zurück, sogar dann wenn eine 3D-Geometrie überreicht wird.

Wird vom GEOS Modul ausgeführt

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.17

[Note]

Fälschlicherweise wird diese Funktion oft zur Umkreissuche verwendet. Die Erzeugung eines Puffers zur Umkreissuche ist langsam und witzlos. Benutzen Sie bitte stattdessen ???.

Beispiele

quad_segs=8 (Standardwert)

SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=8');
                                

quad_segs=2 (lahme Ente)

SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2');
                                

endcap=round join=round (Standardwert)

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'endcap=round join=round');
                                

endcap=square

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'endcap=square join=round');
                                

endcap=flat

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'endcap=flat join=round');
                                

join=bevel

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                                

join=mitre mitre_limit=5.0 (default mitre limit)

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=mitre mitre_limit=5.0');
                                

join=mitre mitre_limit=1

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=mitre mitre_limit=1.0');
                                

side=left

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                                

side=right

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                                

side=left join=mitre

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                                

right-hand-winding, polygon boundary side=left

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                                

right-hand-winding, polygon boundary side=right

SELECT ST_Buffer(
 ST_GeomFromText(
  'LINESTRING(50 50,150 150,150 50)'
 ), 10, 'join=bevel');
                                

-- Ein gepufferter Punkt nähert sich einem Kreis an (sh. Abbildung)
-- Ein gepufferter Punkt der die Annäherung mit 2 Punkten pro Viertelkreis erzwingt
-- ist ein Polygon mit 8 Seiten  (sh. Abbildung)
SELECT ST_NPoints(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50)) As promisingcircle_pcount,
ST_NPoints(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50, 2)) As lamecircle_pcount;

promisingcircle_pcount | lamecircle_pcount
------------------------+-------------------
                         33 |                9

-- Ein leichterer aber lahmer Kreis mit 2 Punkten pro Viertelkreis ist ein Achteck
-- Unterhalb ein 100 Meter Achteck
-- Die Koordinaten sind in NAD 83 Länge/Breite und werden nach
-- Mass state plane Meter transformiert um Messungen in Meter zu bekommen
-- und anschließend gepuffert

SELECT ST_AsText(ST_Buffer(
ST_Transform(
ST_SetSRID(ST_MakePoint(-71.063526, 42.35785),4269), 26986)
,100,2)) As octagon;
----------------------
POLYGON((236057.59057465 900908.759918696,236028.301252769 900838.049240578,235
957.59057465 900808.759918696,235886.879896532 900838.049240578,235857.59057465
900908.759918696,235886.879896532 900979.470596815,235957.59057465 901008.759918
696,236028.301252769 900979.470596815,236057.59057465 900908.759918696))
                

Name

ST_BuildArea — Erzeugt eine Flächengeometrie aus den einzelnen Linien einer gegebenen Geometrie

Synopsis

geometry ST_BuildArea(geometry A);

Beschreibung

Erzeugt eine Flächengeometrie aus den einzelnen Linien einer gegebenen Geometrie. Der zurückgegebene Datentyp ist, abhängig von der Eingabe, ein Polygon oder ein MultiPolygon. Wenn das Eingabe-Liniennetz keine Polygone bildet, wird NULL zurückgegeben. Die Eingabe können LineStrings, MultiLinestrings, Polygons, MultiPolygons und GeometryCollections sein.

Diese Funktion nimmt an, dass alle inneren Geometrien Lücken/Inseln darstellen.

[Note]

Damit diese Funktion korrekt arbeitet, müssen die Knoten des eingegebenen Liniennetzes richtig angeordnet sein

Verfügbarkeit: 1.5.0

Beispiele

Erzeugt einen Donut

SELECT ST_BuildArea(ST_Collect(smallc,bigc))
FROM (SELECT
        ST_Buffer(
          ST_GeomFromText('POINT(100 90)'), 25) As smallc,
        ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As bigc) As foo;
                                

Dies erzeugt eine auseinanderklaffende Lücke innerhalb des Kreises mit herausstehenden Zacken

SELECT ST_BuildArea(ST_Collect(line,circle))
FROM (SELECT
        ST_Buffer(
                ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(190, 190)),
                                5)  As line,
        ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As circle) As foo;

--dies erzeugt dieselbe auseinanderklaffende Lücke
--allerdings aus Linienzügen anstelle von Polygonen
SELECT ST_BuildArea(
        ST_Collect(ST_ExteriorRing(line),ST_ExteriorRing(circle))
        )
FROM (SELECT ST_Buffer(
        ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(190, 190))
                ,5)  As line,
        ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As circle) As foo;

                                

Siehe auch

ST_Node, ST_MakePolygon, ???, ??? Adapter für diese Funktion mit der OGC-Standardschnittstelle


Name

ST_Centroid — Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.

Synopsis

geometry ST_Intersection( geometry geomA , geometry geomB );

geography ST_Intersection( geography geogA , geography geogB );

Beschreibung

Computes the geometric center of a geometry, or equivalently, the center of mass of the geometry as a POINT. For [MULTI]POINTs, this is computed as the arithmetic mean of the input coordinates. For [MULTI]LINESTRINGs, this is computed as the weighted length of each line segment. For [MULTI]POLYGONs, "weight" is thought in terms of area. If an empty geometry is supplied, an empty GEOMETRYCOLLECTION is returned. If NULL is supplied, NULL is returned. If CIRCULARSTRING or COMPOUNDCURVE are supplied, they are converted to linestring wtih CurveToLine first, then same than for LINESTRING

New in 2.3.0 : support CIRCULARSTRING and COMPOUNDCURVE (using CurveToLine)

Verfügbarkeit: 1.5 die Unterstützung des geograpischen Datentyps wurde eingeführt

The centroid is equal to the centroid of the set of component Geometries of highest dimension (since the lower-dimension geometries contribute zero "weight" to the centroid).

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.7

Beispiele

In each of the following illustrations, the green dot represents the centroid of the source geometry.

Centroid of a MULTIPOINT

Centroid of a LINESTRING

Centroid of a POLYGON

Bitte nicht mit einer GEOMETRYCOLLECTION als Parameter aufrufen

SELECT ST_AsText(ST_Centroid('MULTIPOINT ( -1 0, -1 2, -1 3, -1 4, -1 7, 0 1, 0 3, 1 1, 2 0, 6 0, 7 8, 9 8, 10 6 )'));
                                st_astext
------------------------------------------
 POINT(2.30769230769231 3.30769230769231)
(1 row)

SELECT ST_AsText(ST_centroid(g))
FROM  ST_GeomFromText('CIRCULARSTRING(0 2, -1 1,0 0, 0.5 0, 1 0, 2 1, 1 2, 0.5 2, 0 2)')  AS g ;
------------------------------------------
POINT(0.5 1)


SELECT ST_AsText(ST_centroid(g))
FROM  ST_GeomFromText('COMPOUNDCURVE(CIRCULARSTRING(0 2, -1 1,0 0),(0 0, 0.5 0, 1 0),CIRCULARSTRING( 1 0, 2 1, 1 2),(1 2, 0.5 2, 0 2))' ) AS g;
------------------------------------------
POINT(0.5 1)


Name

ST_ClipByBox2D — Gibt jenen Teil der Geometrie zurück, der innerhalb eines Rechteckes liegt.

Synopsis

geometry ST_ClipByBox2D(geometry geom, box2d box);

Beschreibung

Schneidet eine Geometrie mittels einer 2D-Box aus; eine schnelle aber möglicherweise unsaubere Methode. Es ist nicht garantiert, dass die Ausgabegeometrie valide ist (bei Polygonen kann es zu Selbstüberschneidungen kommen). Topologisch invalide Eingabegeometrien führen zu keiner Fehlermeldung.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.2.0

Beispiele

-- Der zweite Eingabeparameter baut auf die implizite Typumwandlung von Geometrie nach Box2D auf
SELECT ST_ClipByBox2D(the_geom, ST_MakeEnvelope(0,0,10,10)) FROM mytab;
      

Name

ST_ConcaveHull — Die konkave Hülle einer Geometrie stellt eine möglicherweise konkave Geometrie dar, welche alle Geometrien der Menge einschließt. Sie können es sich wie in Folie einpacken vorstellen.

Synopsis

geometry ST_ConcaveHull(geometry geomA, float target_percent, boolean allow_holes=false);

Beschreibung

Die konkave Hülle einer Geometrie stellt eine möglicherweise konkave Geometrie dar, welche alle Geometrien der Menge einschließt. Ob Polygone Lücken aufweisen dürfen ist standardmäßig auf FALSE gesetzt. Das Ergebnis ist niemals mehr als ein einzelnes Polygon.

Der Eingabeparameter "target_percent" ist der Flächenanteil der konvexen Hülle für den PostGIS eine Lösung annähert bevor es aufgibt oder beendet. Man kann sich eine konkave Hülle als eine Geometrie vorstellen, die man erhält wenn man einen Satz an Geometrien vakuumversiegelt. Ein target_percent von 1 führt zum selben Ergebnis wie die konvexe Hülle. Ein target_percent zwischen 0 und 0.99 ergibt eine kleinere Fläche als die konvexe Hülle. Dies unterscheidet sich von der konvexen Hülle, welche eher einem Gummiband entspricht, das den Satz an Geometrien umwickelt.

Wird üblicherweise auf Mehrfach/MULTI- und Sammelgeometrien/GeometryCollections angewandt. Obwohl es sich nicht um eine Aggregatfunktion handelt, können Sie es in Verbindung mit ST_Collect oder ST_Union verwenden um die konkave Hülle eines Satzes an Points/Linestrings/Polygons zu erhalten - ST_ConcaveHull(ST_Collect(somepointfield), 0.80).

Die Berechnung der konkaven Hülle ist wesentlich langsamer als bei der konvexen Hülle, aber die Geometrie wird besser umhüllt und ist auch nützlich bei der Bilderkennung.

Wird vom GEOS Modul ausgeführt

[Note]

Anmerkung - Wenn Sie es auf Punkte, Linienzüge oder Sammelgeometrien anwenden, werwenden Sie bitte ST_Collect. Bei Polygonen verwenden Sie bitte ST_Union, da es bei invaliden Geometrien fehlschlagen kann.

[Note]

Anmerkung - Umso kleiner Sie die target_percent ansetzen, desto länger dauert die Berechnung der konkaven Hülle und desto wahrscheinlicher ist es, das topologische Fehler auftreten. Dies gilt auch umso größer die Anzahl der Kommastellen und die Anzahl der Punkte ist. Versuchen Sie zuerst eine 0.99, dies ist üblicherweise sehr schnell, manchmal so schnell wie die Berechnung der konvexen Hülle und ergibt meist einen viel besseren Wert als 99% Schrumpfung, da es fast immer über das Ziel hinausschießt. Als nächstes versuchen Sie 0.98; üblicherweise verlangsamt sich die Berechnung quadratisch. Um die Präzision und Kommastellen zu verringern, verwenden Sie bitte ST_SimplifyPreserveTopology oderST_SnapToGrid nach ST_ConcaveHull. ST_SnapToGrid ist ein wenig schneller, kann allerdings zu invaliden Geometrien führen, während ST_SimplifyPreserveTopology meist die Validität der Geometrie erhält.

Ein konkreteres Beispiel und eine kurze Erklärung der Technik finden Sie unter http://www.bostongis.com/postgis_concavehull.snippet

Siehe auch Simon Greeners Artikel über ConcaveHull, die in Oracle 11G-R2 eingeführt wurde. http://www.spatialdbadvisor.com/oracle_spatial_tips_tricks/172/concave-hull-geometries-in-oracle-11gr2. Die Lösung, die wir mit 0.75 target_percent der konvexen Hülle erhalten ähnelt der Geometrieform, die Simon mit Oracle SDO_CONCAVEHULL_BOUNDARY erhält.

Verfügbarkeit: 2.0.0

Beispiele

--Abschätzung der infizierten Fläche aus Punktbeobachtungen
SELECT d.disease_type,
        ST_ConcaveHull(ST_Collect(d.pnt_geom), 0.99) As geom
        FROM disease_obs As d
        GROUP BY d.disease_type;

ST_ConcaveHull von 2 Polygonen die von einer konkaven Hülle mit 100% Schrumpfung umhüllt werden.

-- Geometrien mit konkaver Hülle überlagert
-- Ziel 100% Schrumpfung (dies entspricht der konvexen Hülle - keine Schrumpfung)
SELECT
        ST_ConcaveHull(
                ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                ), 1)
         As convexhull;
                                

-- Geometrien überlagert mit der konkaven Hülle mit einem Zielwert von 90% der konvexen Hülle

-- Geometrien überlagert mit der konkaven Hülle, die einen Zielwert von 90% Schrumpfung hat
SELECT
        ST_ConcaveHull(
                ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                ), 0.9)
         As target_90;
                                

Als L angeordnete Punkte mit der konvexen Hülle überlagert.

-- Erzeugt eine Tabelle mit 42 Punkten, die eine L-Form bilden
SELECT (ST_DumpPoints(ST_GeomFromText(
'MULTIPOINT(14 14,34 14,54 14,74 14,94 14,114 14,134 14,
150 14,154 14,154 6,134 6,114 6,94 6,74 6,54 6,34 6,
14 6,10 6,8 6,7 7,6 8,6 10,6 30,6 50,6 70,6 90,6 110,6 130,
6 150,6 170,6 190,6 194,14 194,14 174,14 154,14 134,14 114,
14 94,14 74,14 54,14 34,14 14)'))).geom
        INTO TABLE l_shape;

SELECT ST_ConvexHull(ST_Collect(geom))
FROM l_shape;
                                

ST_ConcaveHull der als L angeordneten Punkte mit einem Zielwert von 99% der konvexen Hülle

SELECT ST_ConcaveHull(ST_Collect(geom), 0.99)
        FROM l_shape;
                                

ST_ConcaveHull der als L angeordneten Punkte mit einem Zielwert von 80% der Fläche der konvexen Hülle

-- Konkave Hülle derals L angeordneten Punkte
        -- mit einem Zielwert von 80% der konvexen Hülle
        SELECT ST_ConcaveHull(ST_Collect(geom), 0.80)
        FROM l_shape;
        

MultiLinestring überlagert mit konvexer Hülle

MultiLineString überlagert mit der konkaven Hülle der LineStrings mit einem Zielwert von 99% - erster Versuch

SELECT ST_ConcaveHull(ST_GeomFromText('MULTILINESTRING((106 164,30 112,74 70,82 112,130 94,
        130 62,122 40,156 32,162 76,172 88),
(132 178,134 148,128 136,96 128,132 108,150 130,
170 142,174 110,156 96,158 90,158 88),
(22 64,66 28,94 38,94 68,114 76,112 30,
132 10,168 18,178 34,186 52,184 74,190 100,
190 122,182 148,178 170,176 184,156 164,146 178,
132 186,92 182,56 158,36 150,62 150,76 128,88 118))'),0.99)
        


Name

ST_ConvexHull — Computes the convex hull of a geometry.

Synopsis

geometry ST_ConvexHull(geometry geomA);

Beschreibung

Die konvexe Hülle einer Geometrie stell die kleinste konvexe Geometrie dar, welche den Satz von Geometrien umschließt.

In the general case the convex hull is a Polygon. The convext hull of two or more collinear points is a two-point LineString. The convex hull of one or more identical points is a Point.

Wird üblicherweise auf Mehrfach/MULTI- und Sammelgeometrien/GeometryCollections angewandt. Obwohl es sich nicht um eine Aggregatfunktion handelt, können Sie es in Verbindung mit ST_Collect verwenden um die konvexe Hülle einer Punktmenge zu erhalten. ST_ConvexHull(ST_Collect(somepointfield)).

Man kann sich die konvexe Hülle als eine Geometrie vorstellen, die man erhält wenn man ein elastisches Band um einen Satz von Geometrien wickelt. Dies unterscheidet sich von der konkaven Hülle, die analog dem Vakuumverpacken von Geometrien ist.

Wird vom GEOS Modul ausgeführt

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.16

This function supports 3d and will not drop the z-index.

Beispiele

Konvexe Hülle eines MultiLineString und eines MultiPoint gemeinsam mit dem MultiLineString und dem MultiPoint

SELECT ST_AsText(ST_ConvexHull(
        ST_Collect(
                ST_GeomFromText('MULTILINESTRING((100 190,10 8),(150 10, 20 30))'),
                        ST_GeomFromText('MULTIPOINT(50 5, 150 30, 50 10, 10 10)')
                        )) );
---st_astext--
POLYGON((50 5,10 8,10 10,100 190,150 30,150 10,50 5))
        

Using with ST_Collect to compute the convex hulls of geometry sets.

-- Abschätzung des infizierten Gebietes aus Punktbeobachtungen
SELECT d.disease_type,
        ST_ConvexHull(ST_Collect(d.the_geom)) As the_geom
        FROM disease_obs As d
        GROUP BY d.disease_type;

Name

ST_CurveToLine — Wandelt einen CIRCULARSTRING/CURVEPOLYGON in ein LINESTRING/POLYGON um

Synopsis

geometry ST_OffsetCurve(geometry line, float signed_distance, text style_parameters='');

Beschreibung

Konvertiert einen Kreisbogen/CircularString in einen normalen LineString oder ein CurvePolygon in ein Polygon. Nützlich zur Ausgabe an Geräten, die Kreisbögen nicht unterstützen.

Wandelt eine gegebene Geometrie in eine lineare Geometrie um. Jede Kurvengeometrie und jedes Kurvensegment wird in linearer Näherung mit der gegebenen Toleranz und Optionen konvertiert ( Standardmäßig 32 Segmenten pro Viertelkreis und keine Optionen).

Der Übergabewert 'tolerance_type' gibt den Toleranztyp an. Er kann die folgenden Werte annehmen:

  • 0 (default): die Toleranz wird über die maximale Anzahl der Segmente pro Viertelkreis angegeben.

  • 1: Die Toleranz wird als maximale Abweichung der Linie von der Kurve in der Einheit der Herkunftsdaten angegeben.

  • 2: Die Toleranz entspricht dem maximalen Winkel zwischen zwei erzeugten Radien.

Der Parameter 'flags' ist ein Bitfeld mit dem Standardwert 0. Es werden folgende Bits unterstützt:

  • 1: Symmetrische (orientierungsunabhängige) Ausgabe.

  • 2: Erhält den Winkel, vermeidet die Winkel (Segmentlängen) bei der symmetrischen Ausgabe zu reduzieren. Hat keine Auswirkung, wenn die Symmetrie-Flag nicht aktiviert ist.

Verfügbarkeit: 1.3.3

Erweiterung: ab 2.4.0 kann die Toleranz über die 'maximale Abweichung' und den 'maximalen Winkel' angegeben werden. Die symmetrische Ausgabe wurde hinzugefügt.

Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.7

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)')));

--Result --
 LINESTRING(220268 150415,220269.95064912 150416.539364228,220271.823415575 150418.17258804,220273.613787707 150419.895736857,
 220275.317452352 150421.704659462,220276.930305234 150423.594998003,220278.448460847 150425.562198489,
 220279.868261823 150427.60152176,220281.186287736 150429.708054909,220282.399363347 150431.876723113,
 220283.50456625 150434.10230186,220284.499233914 150436.379429536,220285.380970099 150438.702620341,220286.147650624 150441.066277505,
 220286.797428488 150443.464706771,220287.328738321 150445.892130112,220287.740300149 150448.342699654,
 220288.031122486 150450.810511759,220288.200504713 150453.289621251,220288.248038775 150455.77405574,
 220288.173610157 150458.257830005,220287.977398166 150460.734960415,220287.659875492 150463.199479347,
 220287.221807076 150465.64544956,220286.664248262 150468.066978495,220285.988542259 150470.458232479,220285.196316903 150472.81345077,
 220284.289480732 150475.126959442,220283.270218395 150477.39318505,220282.140985384 150479.606668057,
 220280.90450212 150481.762075989,220279.5637474 150483.85421628,220278.12195122 150485.87804878,
 220276.582586992 150487.828697901,220274.949363179 150489.701464356,220273.226214362 150491.491836488,
 220271.417291757 150493.195501133,220269.526953216 150494.808354014,220267.559752731 150496.326509628,
 220265.520429459 150497.746310603,220263.41389631 150499.064336517,220261.245228106 150500.277412127,
 220259.019649359 150501.38261503,220256.742521683 150502.377282695,220254.419330878 150503.259018879,
 220252.055673714 150504.025699404,220249.657244448 150504.675477269,220247.229821107 150505.206787101,
 220244.779251566 150505.61834893,220242.311439461 150505.909171266,220239.832329968 150506.078553494,
 220237.347895479 150506.126087555,220234.864121215 150506.051658938,220232.386990804 150505.855446946,
 220229.922471872 150505.537924272,220227.47650166 150505.099855856,220225.054972724 150504.542297043,
 220222.663718741 150503.86659104,220220.308500449 150503.074365683,
 220217.994991777 150502.167529512,220215.72876617 150501.148267175,
 220213.515283163 150500.019034164,220211.35987523 150498.7825509,
 220209.267734939 150497.441796181,220207.243902439 150496,
 220205.293253319 150494.460635772,220203.420486864 150492.82741196,220201.630114732 150491.104263143,
 220199.926450087 150489.295340538,220198.313597205 150487.405001997,220196.795441592 150485.437801511,
 220195.375640616 150483.39847824,220194.057614703 150481.291945091,220192.844539092 150479.123276887,220191.739336189 150476.89769814,
 220190.744668525 150474.620570464,220189.86293234 150472.297379659,220189.096251815 150469.933722495,
 220188.446473951 150467.535293229,220187.915164118 150465.107869888,220187.50360229 150462.657300346,
 220187.212779953 150460.189488241,220187.043397726 150457.710378749,220186.995863664 150455.22594426,
 220187.070292282 150452.742169995,220187.266504273 150450.265039585,220187.584026947 150447.800520653,
 220188.022095363 150445.35455044,220188.579654177 150442.933021505,220189.25536018 150440.541767521,
 220190.047585536 150438.18654923,220190.954421707 150435.873040558,220191.973684044 150433.60681495,
 220193.102917055 150431.393331943,220194.339400319 150429.237924011,220195.680155039 150427.14578372,220197.12195122 150425.12195122,
 220198.661315447 150423.171302099,220200.29453926 150421.298535644,220202.017688077 150419.508163512,220203.826610682 150417.804498867,
 220205.716949223 150416.191645986,220207.684149708 150414.673490372,220209.72347298 150413.253689397,220211.830006129 150411.935663483,
 220213.998674333 150410.722587873,220216.22425308 150409.61738497,220218.501380756 150408.622717305,220220.824571561 150407.740981121,
 220223.188228725 150406.974300596,220225.586657991 150406.324522731,220227 150406)

--3D Beispiel
SELECT ST_AsEWKT(ST_CurveToLine(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)')));
Output
------
 LINESTRING(220268 150415 1,220269.95064912 150416.539364228 1.0181172856673,
 220271.823415575 150418.17258804 1.03623457133459,220273.613787707 150419.895736857 1.05435185700189,....AD INFINITUM ....
        220225.586657991 150406.324522731 1.32611114201132,220227 150406 3)

--nur 2 Segmente zur Annäherung des Viertelkreises
SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'),2));
st_astext
------------------------------
 LINESTRING(220268 150415,220287.740300149 150448.342699654,220278.12195122 150485.87804878,
 220244.779251566 150505.61834893,220207.243902439 150496,220187.50360229 150462.657300346,
 220197.12195122 150425.12195122,220227 150406)

-- Sicherstellen, dass die angenäherte Linie nicht weiter als 20 Einheiten
-- von der ursprünglichen Kurve entfernt liegt, und das Ergebnis richtungsunabhängig machen
SELECT ST_AsText(ST_CurveToLine(
 'CIRCULARSTRING(0 0,100 -100,200 0)'::geometry,
        20, -- Tolerance
        1, -- oberhalb die maximale Entfernung zwischen Kurve und Linie
        1  -- Symmetrie Flag
));
st_astext
-------------------------------------------------------------------------------------------
 LINESTRING(0 0,50 -86.6025403784438,150 -86.6025403784439,200 -1.1331077795296e-13,200 0)


                

Siehe auch

ST_LineToCurve


Name

ST_DelaunayTriangles — Gibt die Delaunay-Triangulierung für gegebene Punkte zurück.

Synopsis

geometry ST_DelaunayTriangles(geometry g1, float tolerance, int4 flags);

Beschreibung

Gibt eine Delaunay-Triangulierung rund um die Knoten der Eingabegeometrie zurück. Die Ausgabe ist eine COLLECTION von Polygonen (flags=0), ein MultiLineString (flags=1) oder ein TIN (flags=2). Die Toleranz, sofern angegeben, wird zum Zusammenfangen von Knoten verwendet.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

This function supports 3d and will not drop the z-index.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

2D Beispiele

Ursprüngliche Polygone

-- Unsere ursprüngliche Geometrie --
        ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                )

ST_DelaunayTriangles von 2 Polygonen: delaunay triangulierte Polygone, jedes der Dreiecke ist in einer eigenen Farbe dargestellt

-- geometries overlaid multilinestring triangles
SELECT
        ST_DelaunayTriangles(
                ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                ))
         As  dtriag;
                                

-- Delaunay-Dreiecke als MultiLinestring

SELECT
        ST_DelaunayTriangles(
                ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
                        50 60, 125 100, 175 150))'),
                ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
                ),0.001,1)
         As  dtriag;

-- Delaunay Dreiecke von 45 Punkten als 55 Dreieckspolygone

-- erzeugt eine Tabelle mit 42 Punkten die eine L-Form bilden
SELECT (ST_DumpPoints(ST_GeomFromText(
'MULTIPOINT(14 14,34 14,54 14,74 14,94 14,114 14,134 14,
150 14,154 14,154 6,134 6,114 6,94 6,74 6,54 6,34 6,
14 6,10 6,8 6,7 7,6 8,6 10,6 30,6 50,6 70,6 90,6 110,6 130,
6 150,6 170,6 190,6 194,14 194,14 174,14 154,14 134,14 114,
14 94,14 74,14 54,14 34,14 14)'))).geom
        INTO TABLE l_shape;
-- Ausgabe als einzelne Dreieckspolygone
SELECT ST_AsText((ST_Dump(geom)).geom) As wkt
FROM ( SELECT ST_DelaunayTriangles(ST_Collect(geom)) As geom
FROM l_shape) As foo;

---wkt ---
POLYGON((6 194,6 190,14 194,6 194))
POLYGON((14 194,6 190,14 174,14 194))
POLYGON((14 194,14 174,154 14,14 194))
POLYGON((154 14,14 174,14 154,154 14))
POLYGON((154 14,14 154,150 14,154 14))
POLYGON((154 14,150 14,154 6,154 14))
:
:

3D Beispiele

-- 3D-MULTIPOINT --
SELECT ST_AsText(ST_DelaunayTriangles(ST_GeomFromText(
'MULTIPOINT Z(14 14 10,
150 14 100,34 6 25, 20 10 150)'))) As wkt;

-----wkt----
GEOMETRYCOLLECTION Z (POLYGON Z ((14 14 10,20 10 150,34 6 25,14 14 10))
 ,POLYGON Z ((14 14 10,34 6 25,150 14 100,14 14 10)))

Name

ST_Difference — Gibt eine Geometrie zurück, die jenen Teil der Geometrie A abbildet, der sich nicht mit der Geometrie B überschneidet.

Synopsis

geometry ST_Difference(geometry geomA, geometry geomB);

Beschreibung

Gibt eine Geometrie zurück, die jenen Teil der Geometrie A abbildet, der sich nicht mit der Geometrie B überschneidet. Man kann sich das als GeometryA - ST_Intersection(A,B) vorstellen. Wenn A zur Gänze in B enthalten ist wird eine leere GeometryCollection zurückgegeben.

[Note]

Anmerkung: Die Reihenfolge spielt eine Rolle. B - A gibt immer einen Teil von B zurück

Wird vom GEOS Modul ausgeführt

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.20

This function supports 3d and will not drop the z-index. Allerdings scheint nur x y bei der Berechnung der Differenz herangezogen und anschließend an den Z-Index zurückgeheftet zu werden

Beispiele

Die ursprünglichen Linienzüge zusammen.

Die Differenz der beiden Linienzüge

Safe for 2D. This is same geometries as what is shown for st_symdifference

--Sicher bei 2D. Dies sind dieselben Geometrien als bei st_symdifference angezeigt
SELECT ST_AsText(
        ST_Difference(
                        ST_GeomFromText('LINESTRING(50 100, 50 200)'),
                        ST_GeomFromText('LINESTRING(50 50, 50 150)')
                )
        );

st_astext
---------
LINESTRING(50 150,50 200)

When used in 3d doesn't quite do the right thing.

--verhält sich bei 3D nicht richtig
SELECT ST_AsEWKT(ST_Difference(ST_GeomFromEWKT('MULTIPOINT(-118.58 38.38 5,-118.60 38.329 6,-118.614 38.281 7)'), ST_GeomFromEWKT('POINT(-118.614 38.281 5)')));
st_asewkt
---------
MULTIPOINT(-118.6 38.329 6,-118.58 38.38 5)

Name

ST_FlipCoordinates — Gibt eine Version der gegebenen Geometrie zurück, wobei die X und Y Achse vertauscht sind. Nützlich wenn man Geoobjekte in Breite/Länge vorliegen hat und dies beheben möchte.

Synopsis

geometry ST_FlipCoordinates(geometry geom);

Beschreibung

Gibt eine Version der gegebenen Geometrie zurück, wobei die X und Y Achse vertauscht sind.

Verfügbarkeit: 2.0.0

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiel

SELECT ST_AsEWKT(ST_FlipCoordinates(GeomFromEWKT('POINT(1 2)')));
 st_asewkt
------------
POINT(2 1)
                 

Name

ST_GeneratePoints — Wandelt ein Polygon oder ein MultiPolygon in einen MultiPoint um, welcher aus wahllos angeordeten, innerhalb der ursprünglichen Flächen liegenden Punkten besteht.

Synopsis

geometry ST_Intersection( geometry geomA , geometry geomB );

geography ST_Intersection( geography geogA , geography geogB );

Beschreibung

ST_GeneratePoints erzeugt solange pseudomäßige Zufallspunkte, bis die angefragte Anzahl innerhalb der Eingabefläche gefunden wurde.

Verfügbarkeit: 2.3.0

Enhanced: 3.0.0, added seed parameter

Beispiele

Ursprüngliches Polygon

Ursprungspolygon mit 12 erzeugten Punkte überlagert

SELECT ST_GeneratePoints(
        ST_Buffer(
                ST_GeomFromText(
                'LINESTRING(50 50,150 150,150 50)'
                ), 10, 'endcap=round join=round'), 12);


Name

ST_GeometricMedian — Returns the geometric median of a MultiPoint.

Synopsis

geometry ST_DelaunayTriangles(geometry g1, float tolerance, int4 flags);

Beschreibung

Computes the approximate geometric median of a MultiPoint geometry using the Weiszfeld algorithm. The geometric median provides a centrality measure that is less sensitive to outlier points than the centroid.

The algorithm will iterate until the distance change between successive iterations is less than the supplied tolerance parameter. If this condition has not been met after max_iterations iterations, the function will produce an error and exit, unless fail_if_not_converged is set to false.

If a tolerance value is not provided, a default tolerance value will be calculated based on the extent of the input geometry.

M value of points, if present, is interpreted as their relative weight.

Verfügbarkeit: 2.3.0

Enhanced: 2.5.0 Added support for M as weight of points.

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

Beispiele

Comparison of the centroid (turquoise point) and geometric median (red point) of a four-point MultiPoint (yellow points).

WITH test AS (
SELECT 'MULTIPOINT((0 0), (1 1), (2 2), (200 200))'::geometry geom)
SELECT
  ST_AsText(ST_Centroid(geom)) centroid,
  ST_AsText(ST_GeometricMedian(geom)) median
FROM test;
      centroid      |                 median
--------------------+----------------------------------------
 POINT(50.75 50.75) | POINT(1.9761550281255 1.9761550281255)
(1 row)
          

Siehe auch

ST_Centroid


Name

ST_Intersection — (T) Gibt eine Geometrie zurück, welche den gemeinsamen Anteil von geomA und geomB repräsentiert.

Synopsis

geometry ST_Intersection( geometry geomA , geometry geomB );

geography ST_Intersection( geography geogA , geography geogB );

Beschreibung

Gibt eine Geometrie zurück, welche der mengentheoretischen Verschneidung der Geometrien entspricht.

Mit anderen Worten - jener Teil von der Geometrie A und der Geometrie B den sich die beiden Geometrien teilen.

Wenn sich die Geometrien keinen gemeinsamen Raum teilen (sind getrennt), so wird eine leere GeometryCollection zurückgegeben.

ST_Intersection ist in Verbindung mit ST_Intersects zum Ausscchneiden von Geometrien sehr nützlich. Wie bei einem Umgebungsrechteck, einem Buffer, oder bei regionalen Abfragen, bei denen nur jener Teil der Geometrie zurückgegeben werden soll, der in einem bestimmten Staat oder einer bestimmten Interessensregion liegt.

[Note]

Geographie: Beim geographischen Datentyp handelt es sich lediglich um einen schlanken Adapter, der um die geometrische Implementation herumgelegt wurde. Zuerst wird die passenste SRID für das Umgebungsrechteck der beiden geographischen Objekte bestimmt (wenn die geographischen Objekte innerhalb eines UTM Überlappungsbereichs, aber nicht in derselben UTM Zone liegen, wird eine Zone herausgepickt) (bevorzugt UTM oder Lambert Azimuthal Equal Area (LAEA) Nord/Süd Pol, im schlimmsten Fall wird auf Mercator zurückgegriffen), dann im planaren Koordinatenreferenzsystem verschnitten und anschließend nach WGS84 Geographie zurück transformiert.

[Warning]

Diese Funktion löscht die Werte der M-Koordinate, falls vorhanden.

[Warning]

Wenn Sie mit 3D-Geometrie arbeiten kann es sinnvoll sein die SFGCAL basierte Funktion ST_3DIntersection zu verwenden, da diese eine korrekte 3D Verschneidung mit 3D Geometrie ausführt. Obwohl die Funktion mit der Z-Koordinate arbeitet, führt sie eine Mittelung der Z-Koordinatenwerte durch, wenn postgis.backend=geos. Auch wenn postgis.backend=sfcgal wird die Z-Koordinate ignoriert und eine 2D-Geometrie ausgegeben. Siehe postgis.backend für Details.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 1.5 die Unterstützung des geograpischen Datentyps wurde eingeführt

Changed: 3.0.0 does not depend on SFCGAL.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.18

Beispiele

SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry));
 st_astext
---------------
GEOMETRYCOLLECTION EMPTY

SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING ( 0 0, 0 2 )'::geometry));
 st_astext
---------------
POINT(0 0)

Clip all lines (trails) by country. Hhere we assume country geom are POLYGON or MULTIPOLYGONS. NOTE: we are only keeping intersections that result in a LINESTRING or MULTILINESTRING because we don't care about trails that just share a point. The dump is needed to expand a geometry collection into individual single MULT* parts. The below is fairly generic and will work for polys, etc. by just changing the where clause.

select clipped.gid, clipped.f_name, clipped_geom
from (
         select trails.gid, trails.f_name,
             (ST_Dump(ST_Intersection(country.geom, trails.geom))).geom clipped_geom
         from country
              inner join trails on ST_Intersects(country.geom, trails.geom)
     ) as clipped
where ST_Dimension(clipped.clipped_geom) = 1;

For polys e.g. polygon landmarks, you can also use the sometimes faster hack that buffering anything by 0.0 except a polygon results in an empty geometry collection. (So a geometry collection containing polys, lines and points buffered by 0.0 would only leave the polygons and dissolve the collection shell.)

select poly.gid,
    ST_Multi(
        ST_Buffer(
            ST_Intersection(country.geom, poly.geom),
            0.0
        )
    ) clipped_geom
from country
     inner join poly on ST_Intersects(country.geom, poly.geom)
where not ST_IsEmpty(ST_Buffer(ST_Intersection(country.geom, poly.geom), 0.0));

Beispiele: 2.5D-isch

GEOS ist standardmäßig das Back-end, falls nicht anders gesetzt. Beachten Sie bitte, das dies keine richtige Verschneidung ist. Vergleiche das gleiche Beispiel mit ST_3DIntersection.

set postgis.backend=geos;
select ST_AsText(ST_Intersection(linestring, polygon)) As wkt
from  ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS linestring
 CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;

               st_astext
---------------------------------------
 LINESTRING Z (1 1 8,0.5 0.5 8,0 0 10)
                

Name

ST_LineToCurve — Wandelt einen LINESTRING/POLYGON in einen CIRCULARSTRING, CURVEPOLYGON um

Synopsis

geometry ST_LineToCurve(geometry geomANoncircular);

Beschreibung

Wandelt einen einfachen LineString/Polygon in Kreisbögen/CIRCULARSTRINGs und Kurvenpolygone um. Beachten Sie, dass wesentlich weniger Punkte zur Beschreibung des Kurvenäquivalents benötigt werden.

[Note]

Wenn der gegebene LINESTRING/POLYGON nicht genug gekrümmt ist um eine deutliche Kurve zu repräsentieren, wird die Geometrie von der Funktion unverändert zurückgegeben.

Verfügbarkeit: 1.3.3

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Beispiele

-- 2D-Beispiel
SELECT ST_AsText(ST_LineToCurve(foo.the_geom)) As curvedastext,ST_AsText(foo.the_geom) As non_curvedastext
        FROM (SELECT ST_Buffer('POINT(1 3)'::geometry, 3) As the_geom) As foo;

curvedatext                                                            non_curvedastext
--------------------------------------------------------------------|-----------------------------------------------------------------
CURVEPOLYGON(CIRCULARSTRING(4 3,3.12132034355964 0.878679656440359, | POLYGON((4 3,3.94235584120969 2.41472903395162,3.77163859753386 1.85194970290473,
1 0,-1.12132034355965 5.12132034355963,4 3))                        |  3.49440883690764 1.33328930094119,3.12132034355964 0.878679656440359,
                                                                    |  2.66671069905881 0.505591163092366,2.14805029709527 0.228361402466141,
                                                                    |  1.58527096604839 0.0576441587903094,1 0,
                                                                    |  0.414729033951621 0.0576441587903077,-0.148050297095264 0.228361402466137,
                                                                    |  -0.666710699058802 0.505591163092361,-1.12132034355964 0.878679656440353,
                                                                    |  -1.49440883690763 1.33328930094119,-1.77163859753386 1.85194970290472
                                                                    |  --ETC-- ,3.94235584120969 3.58527096604839,4 3))

--3D-Beispiel
SELECT ST_AsText(ST_LineToCurve(geom)) As curved, ST_AsText(geom) AS not_curved
FROM (SELECT ST_Translate(ST_Force3D(ST_Boundary(ST_Buffer(ST_Point(1,3), 2,2))),0,0,3) AS geom) AS foo;

                        curved                        |               not_curved
------------------------------------------------------+---------------------------------------------------------------------
 CIRCULARSTRING Z (3 3 3,-1 2.99999999999999 3,3 3 3) | LINESTRING Z (3 3 3,2.4142135623731 1.58578643762691 3,1 1 3,
                                                      |        -0.414213562373092 1.5857864376269 3,-1 2.99999999999999 3,
                                                      | -0.414213562373101 4.41421356237309 3,
                                                      |        0.999999999999991 5 3,2.41421356237309 4.4142135623731 3,3 3 3)
(1 row)

Siehe auch

ST_CurveToLine


Name

ST_MakeValid — Versucht eine ungültige Geometrie, ohne den Verlust an Knoten zu bereinigen.

Synopsis

geometry ST_MakeValid(geometry input);

Beschreibung

Diese Funktion versucht aus einer invaliden Geometrie eine valide Darstellung zu erzeugen, ohne irgendeinen gegebenen Knoten zu verlieren. Geometrien, die bereits valide sind, werden ohne weiteren Eingriff zurückgegeben.

Unterstützte Eingaben sind: POINTS, MULTIPOINTS, LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS und GEOMETRYCOLLECTIONS aus einer Mischung der Vorigen.

Im Falle eines völligen oder teilweisen dimensionalen Kollapses kann die Ausgabegeometrie eine Sammelgeometrie von niedriger oder gleicher geometrischer Dimension oder eine Geometrie mit niedrigerer geometrischer Dimension sein.

Im Fall von Selbstüberschneidungen können Polygone zu Mehrfachgeometrien werden.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

Erweiterung: 2.0.1, Geschwindigkeitsverbesserungen, benötigt GEOS-3.3.4

Erweiterung: 2.1.0 die Unterstützung von GeometryCollection und MultiPoint hinzugefügt.

This function supports 3d and will not drop the z-index.


Name

ST_MemUnion — Das gleiche wie ST_Union, nur freundlicher zum Arbeitsspeicher (verwendet weniger Arbeitsspeicher und mehr Rechnerzeit).

Synopsis

geometry ST_MemUnion(geometry set geomfield);

Beschreibung

Hier fehlt eine brauchbare Beschreibung.

[Note]

Das gleiche wie ST_Union, nur freundlicher zum Arbeitsspeicher (verwendet weniger Arbeitsspeicher und mehr Rechnerzeit). Diese Aggregatfunktion vereingt eine Geometrie nach der anderen zu dem vorhergegangenen Ergebnis, während die Aggregatfunktion ST_Union zuerst ein Feld erzeugt und anschließend vereinigt

This function supports 3d and will not drop the z-index.

Beispiele

Siehe ST_Union

Siehe auch

ST_Union


Name

ST_MinimumBoundingCircle — Gibt das kleinstmögliche Kreispolygon zurück, welches eine Geometrie zur Gänze beinhaltet. Standardmäßig werden 48 Segmente pro Viertelkreiss verwendet.

Synopsis

geometry ST_MinimumBoundingCircle(geometry geomA, integer num_segs_per_qt_circ=48);

Beschreibung

Gibt das kleinstmögliche Kreispolygon zurück, welches eine Geometrie zur Gänze beinhaltet.

[Note]

Der Kreis wird standardmäßig durch ein Polygon mit 48 Segmenten pro Viertelkreis angenähert. Da das Polygon eine Annäherung an den minimalen Umgebungskreis ist, können einige Punkte der Eingabegeometrie nicht in dem Polygon enthalten sein. Die Annäherung kann durch Erhöhung der Anzahl der Segmente mit geringen Einbußen bei der Rechenleistung verbessert werden. Bei Anwendungen wo eine polygonale Annäherung nicht ausreicht, kann ST_MinimumBoundingRadius verwendet werden.

Wird üblicherweise auf Mehrfach/MULTI- und Sammelgeometrien/GeometryCollections angewandt. Obwohl es sich nicht um eine Aggregatfunktion handelt, können Sie es in Verbindung mit ST_Collect verwenden um den kleinstmöglichen Umgebungskreis eines Satzes an Geometrien zu erhalten. ST_MinimumBoundingCircle(ST_Collect(somepointfield)).

Das Verhältnis zwischen der Fläche des Polygons und der Fläche ihres kleinstmöglichen Umgebungskreises wird öfter als Roeck Test bezeichnet.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 1.5.0

Beispiele

SELECT d.disease_type,
        ST_MinimumBoundingCircle(ST_Collect(d.the_geom)) As the_geom
        FROM disease_obs As d
        GROUP BY d.disease_type;

Minimaler Umgebungskreis eines Punktes und eines Linienzuges. Verwendet 8 Segmente um einen Viertelkreis anzunähern.

SELECT ST_AsText(ST_MinimumBoundingCircle(
                ST_Collect(
                        ST_GeomFromEWKT('LINESTRING(55 75,125 150)'),
                                ST_Point(20, 80)), 8
                                )) As wktmbc;
wktmbc
-----------
POLYGON((135.59714732062 115,134.384753327498 102.690357210921,130.79416296937 90.8537670908995,124.963360620072 79.9451031602111,117.116420743937 70.3835792560632,107.554896839789 62.5366393799277,96.6462329091006 56.70583703063,84.8096427890789 53.115246672502,72.5000000000001 51.9028526793802,60.1903572109213 53.1152466725019,48.3537670908996 56.7058370306299,37.4451031602112 62.5366393799276,27.8835792560632 70.383579256063,20.0366393799278 79.9451031602109,14.20583703063 90.8537670908993,10.615246672502 102.690357210921,9.40285267938019 115,10.6152466725019 127.309642789079,14.2058370306299 139.1462329091,20.0366393799275 150.054896839789,27.883579256063 159.616420743937,
37.4451031602108 167.463360620072,48.3537670908992 173.29416296937,60.190357210921 176.884753327498,
72.4999999999998 178.09714732062,84.8096427890786 176.884753327498,96.6462329091003 173.29416296937,107.554896839789 167.463360620072,
117.116420743937 159.616420743937,124.963360620072 150.054896839789,130.79416296937 139.146232909101,134.384753327498 127.309642789079,135.59714732062 115))
                                

Name

ST_MinimumBoundingRadius — Gibt den Mittelpunkt und den Radius des kleinstmöglichen Kreises zurück, der die gesamte Geometrie beinhaltet.

Synopsis

(geometry, double precision) ST_MinimumBoundingRadius(geometry geom);

Beschreibung

Gibt einen Datensatz zurück, der aus dem Mittelpunkt und dem Radius des kleinstmöglichen Kreises, der die gesamte Geometrie beinhaltet, besteht.

Kann in Verbindung mit ST_GeomCollFromText verwendet werden, um den minimalen Umgebungskreis einer Menge von Geometrien zu erhalten.

Verfügbarkeit: 2.3.0

Beispiele

SELECT ST_AsText(center), radius FROM ST_MinimumBoundingRadius('POLYGON((26426 65078,26531 65242,26075 65136,26096 65427,26426 65078))');

                st_astext                 |      radius
------------------------------------------+------------------
 POINT(26284.8418027133 65267.1145090825) | 247.436045591407

Name

ST_OrientedEnvelope — Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.

Synopsis

geometry ST_Node(geometry geom);

Beschreibung

Returns a mimimum rotated rectangle enclosing a geometry. Note that more than one minimum rotated rectangle may exist. May return a Point or LineString in the case of degenerate inputs.

Verfügbarkeit: 2.0.0

Beispiele

SELECT ST_AsText(ST_OrientedEnvelope('MULTIPOINT ((0 0), (-1 -1), (3 2))'));

                                st_astext
                                ------------------------------------------------
                                POLYGON((3 2,2.88 2.16,-1.12 -0.84,-1 -1,3 2))
                        

Oriented envelope of a point and linestring.

SELECT ST_AsText(ST_OrientedEnvelope(
                ST_Collect(
                        ST_GeomFromText('LINESTRING(55 75,125 150)'),
                                ST_Point(20, 80))
                                )) As wktenv;
wktenv
-----------
POLYGON((19.9999999999997 79.9999999999999,33.0769230769229 60.3846153846152,138.076923076924 130.384615384616,125.000000000001 150.000000000001,19.9999999999997 79.9999999999999))

Name

ST_Polygonize — Aggregatfunktion. Erzeugt eine Sammelgeometrie/GeometryCollection, welche Polygone enthält, die aus den einzelnen Linien einer Menge von Geometrien gebildet werden können.

Synopsis

geometry ST_Polygonize(geometry set geomfield);

geometry ST_Polygonize(geometry[] geom_array);

Beschreibung

Erzeugt eine Sammelgeometrie/GeometryCollection, welche Polygone enthält, die aus den einzelnen Linien einer Menge von Geometrien gebildet werden können.

[Note]

Tools von Drittanbietern haben öfters Probleme mit einer Sammelgeometrie. Verwenden Sie daher ST_Polygonize in Verbindung mit ST_Dump, um die Polygone in Einzelpoygone zu zerlegen.

[Note]

Damit diese Funktion korrekt arbeitet, müssen die Knoten des eingegebenen Liniennetzes richtig angeordnet sein

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 1.5.0

Beispiele: Einzelne Linienzüge in ein Polygon umwandeln.

SELECT ST_AsEWKT(ST_Polygonize(the_geom_4269)) As geomtextrep
FROM (SELECT the_geom_4269 FROM ma.suffolk_edges ORDER BY tlid LIMIT 45) As foo;

geomtextrep
-------------------------------------
 SRID=4269;GEOMETRYCOLLECTION(POLYGON((-71.040878 42.285678,-71.040943 42.2856,-71.04096 42.285752,-71.040878 42.285678)),
 POLYGON((-71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358,-71.171794 42.354971,-71.170511 42.354855,
 -71.17112 42.354238,-71.17166 42.353675)))
(1 row)

--Verwendung von ST_Dump um die polygonisierten Geometrien in einzelne Polygone auszuladen
SELECT ST_AsEWKT((ST_Dump(foofoo.polycoll)).geom) As geomtextrep
FROM (SELECT ST_Polygonize(the_geom_4269) As polycoll
        FROM (SELECT the_geom_4269 FROM ma.suffolk_edges
                ORDER BY tlid LIMIT 45) As foo) As foofoo;

geomtextrep
------------------------
 SRID=4269;POLYGON((-71.040878 42.285678,-71.040943 42.2856,-71.04096 42.285752,
-71.040878 42.285678))
 SRID=4269;POLYGON((-71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358
,-71.171794 42.354971,-71.170511 42.354855,-71.17112 42.354238,-71.17166 42.353675))
(2 rows)

                          

Siehe auch

ST_Node, ST_Dump


Name

ST_Node — Knotenberechnung für eine Menge von Linienzügen.

Synopsis

geometry ST_Node(geometry geom);

Beschreibung

Komplette Knotenberechnung für eine Menge von Linienzügen unter Verwendung der kleinstmöglichen Knotenanzahl und Erhaltung aller bestehenden Knoten.

This function supports 3d and will not drop the z-index.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

Änderung: Ab 2.4.0 verwendet diese Funktion intern GEOSNode anstatt GEOSUnaryUnion. Dies kann bedingen, dass die resultierenden Linienzüge eine andere Reihenfolge und Ausrichtung haben als bei PostGIS < 2.4.

Beispiele

SELECT ST_AsText(
                ST_Node('LINESTRINGZ(0 0 0, 10 10 10, 0 10 5, 10 0 3)'::geometry)
        ) As  output;
output
-----------
MULTILINESTRING Z ((0 0 0,5 5 4.5),(5 5 4.5,10 10 10,0 10 5,5 5 4.5),(5 5 4.5,10 0 3))
                

Siehe auch

ST_UnaryUnion


Name

ST_OffsetCurve — Gibt eine Linie zurück, die um eine gegebenen Entfernung und Seite von der Eingabelinie versetzt ist. Nützlich zur Berechnung von Linien, die zu einer Mittellinie parallel verlaufen

Synopsis

geometry ST_OffsetCurve(geometry line, float signed_distance, text style_parameters='');

Beschreibung

Gibt eine versetzte Linie zurück; in der gegebenen Entfernung und auf der Seite der Eingabelinie, die angegebenen wurden. Alle Punkte der Ausgabegeometrie liegen nicht weiter weg, als die zur Eingangsgeometrie angegebene Entfernung.

Bei positiven Entfernungsangaben/distance findet der Versatz auf der linken Seite der Eingabelinie statt und die Richtung wird beibehalten. Bei negativen Entfernungsangaben auf der rechten Seite und in entgegengesetzter Richtung.

Note that output may be a MULTILINESTRING or EMPTY for some jigsaw-shaped input geometries.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 die Unterstützung von GeometryCollection und MultiPoint hinzugefügt.

Der optionale dritte Parameter ermöglicht es eine Liste von leerzeichengetrennten key=value Paaren anzulegen, um die Berechnungen wie folgt zu optimieren:

  • 'quad_segs=#' : Anzahl der Segmente die verwendet werden um einen Viertelkreis anzunähern (standardmäßig 8).

  • 'join=round|mitre|bevel' : join style (defaults to "round"). 'miter' kann auch als Synonym für 'mitre' verwendet werden.

  • 'mitre_limit=#.#' : Gehrungsobergrenze (beeinflusst nur Gehrungsverbindungen). 'miter_limit' kann auch als Synonym von 'mitre_limit' verwendet werden.

Die Einheiten der Entfernung werden in den Einheiten des Koordinatenreferenzsystems gemessen.

Wird vom GEOS Modul ausgeführt

[Note]

Diese Funktion ignoriert die dritte Dimension (z) und gibt immer ein 2-D Ergebnis zurück, sogar dann wenn eine 3D-Geometrie überreicht wird.

Beispiele

Einen offenen Puffer um die Straßen rechnen

SELECT ST_Union(
 ST_OffsetCurve(f.the_geom,  f.width/2, 'quad_segs=4 join=round'),
 ST_OffsetCurve(f.the_geom, -f.width/2, 'quad_segs=4 join=round')
) as track
FROM someroadstable;

                                

15, 'quad_segs=4 join=round' Ausgangslinie und die um 15 Einheiten versetzte Parallele.

SELECT ST_AsText(ST_OffsetCurve(ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
        44 16,24 16,20 16,18 16,17 17,
        16 18,16 20,16 40,16 60,16 80,16 100,
        16 120,16 140,16 160,16 180,16 195)'),
        15, 'quad_segs=4 join=round'));
--output --
LINESTRING(164 1,18 1,12.2597485145237 2.1418070123307,
        7.39339828220179 5.39339828220179,
        5.39339828220179 7.39339828220179,
        2.14180701233067 12.2597485145237,1 18,1 195)
                                

-15, 'quad_segs=4 join=round' Ausgangslinie und die um -15 Einheiten versetzte Parallele.

SELECT ST_AsText(ST_OffsetCurve(geom,
        -15, 'quad_segs=4 join=round')) As notsocurvy
        FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
        44 16,24 16,20 16,18 16,17 17,
        16 18,16 20,16 40,16 60,16 80,16 100,
        16 120,16 140,16 160,16 180,16 195)') As geom;
-- notsocurvy --
LINESTRING(31 195,31 31,164 31)
                                

doppelter Versatz um es kurviger zu bekommen; beachte die Richtungsänderung, also -30 + 15 = -15

SELECT ST_AsText(ST_OffsetCurve(ST_OffsetCurve(geom,
        -30, 'quad_segs=4 join=round'), -15, 'quad_segs=4 join=round')) As morecurvy
        FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
        44 16,24 16,20 16,18 16,17 17,
        16 18,16 20,16 40,16 60,16 80,16 100,
        16 120,16 140,16 160,16 180,16 195)') As geom;
-- morecurvy --
LINESTRING(164 31,46 31,40.2597485145236 32.1418070123307,
35.3933982822018 35.3933982822018,
32.1418070123307 40.2597485145237,31 46,31 195)
                                

Doppelter Versatz um es kurviger zu bekommen, kombiniert mit einem normalen Versatz von 15 um parallele Linien zu erhalten. Überlagert mit dem Original.

SELECT ST_AsText(ST_Collect(
        ST_OffsetCurve(geom, 15, 'quad_segs=4 join=round'),
        ST_OffsetCurve(ST_OffsetCurve(geom,
        -30, 'quad_segs=4 join=round'), -15, 'quad_segs=4 join=round')
        )
) As parallel_curves
        FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
        44 16,24 16,20 16,18 16,17 17,
        16 18,16 20,16 40,16 60,16 80,16 100,
        16 120,16 140,16 160,16 180,16 195)') As geom;
-- parallel curves  --
MULTILINESTRING((164 1,18 1,12.2597485145237 2.1418070123307,
7.39339828220179 5.39339828220179,5.39339828220179 7.39339828220179,
2.14180701233067 12.2597485145237,1 18,1 195),
(164 31,46 31,40.2597485145236 32.1418070123307,35.3933982822018 35.3933982822018,
32.1418070123307 40.2597485145237,31 46,31 195))
                                

15, 'quad_segs=4 join=bevel' gemeinsam mit der Ausgangslinie

SELECT ST_AsText(ST_OffsetCurve(ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
        44 16,24 16,20 16,18 16,17 17,
        16 18,16 20,16 40,16 60,16 80,16 100,
        16 120,16 140,16 160,16 180,16 195)'),
                15, 'quad_segs=4 join=bevel'));
-- output --
LINESTRING(164 1,18 1,7.39339828220179 5.39339828220179,
        5.39339828220179 7.39339828220179,1 18,1 195)
                                

15,-15 collected, join=mitre mitre_limit=2.1

SELECT ST_AsText(ST_Collect(
        ST_OffsetCurve(geom, 15, 'quad_segs=4 join=mitre mitre_limit=2.2'),
        ST_OffsetCurve(geom, -15, 'quad_segs=4 join=mitre mitre_limit=2.2')
        ) )
        FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
        44 16,24 16,20 16,18 16,17 17,
        16 18,16 20,16 40,16 60,16 80,16 100,
        16 120,16 140,16 160,16 180,16 195)') As geom;
-- output --
MULTILINESTRING((164 1,11.7867965644036 1,1 11.7867965644036,1 195),
        (31 195,31 31,164 31))
                                

Siehe auch

ST_Buffer


Name

ST_PointOnSurface — Returns a POINT guaranteed to lie on the surface.

Synopsis

geometry ST_Node(geometry geom);

Beschreibung

Returns a POINT guaranteed to intersect a surface.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

This method implements the SQL/MM specification. SQL-MM 3: 8.1.5, 9.5.6. According to the specs, ST_PointOnSurface works for surface geometries (POLYGONs, MULTIPOLYGONS, CURVED POLYGONS). So PostGIS seems to be extending what the spec allows here. Most databases Oracle,DB II, ESRI SDE seem to only support this function for surfaces. SQL Server 2008 like PostGIS supports for all common geometries.

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsText(ST_PointOnSurface('POINT(0 5)'::geometry));
 st_astext
------------
 POINT(0 5)
(1 row)

SELECT ST_AsText(ST_PointOnSurface('LINESTRING(0 5, 0 10)'::geometry));
 st_astext
------------
 POINT(0 5)
(1 row)

SELECT ST_AsText(ST_PointOnSurface('POLYGON((0 0, 0 5, 5 5, 5 0, 0 0))'::geometry));
   st_astext
----------------
 POINT(2.5 2.5)
(1 row)

SELECT ST_AsEWKT(ST_PointOnSurface(ST_GeomFromEWKT('LINESTRING(0 5 1, 0 0 1, 0 10 2)')));
   st_asewkt
----------------
 POINT(0 0 1)
(1 row)

Name

ST_RemoveRepeatedPoints — Gibt eine Version der Eingabegeometrie zurück, wobei duplizierte Punkte entfernt werden.

Synopsis

geometry ST_RemoveRepeatedPoints(geometry geom, float8 tolerance);

Beschreibung

Gibt eine Version der gegebenen Geometrie zurück, wobei duplizierte Punkte gelöscht werden. Tut zurzeit nur mit (Multi)Lines, (Multi)Polygons und MultiPoints etwas, kann aber gefahrlos mit jedem geometrischen Datentyp verwendet werden. Da die Vereinfachung auf einer Objekt zu Objekt Basis passiert, können Sie diese Funktion auch mit einer Sammelgeometrie speisen.

Wenn der Parameter "tolerance" angegeben ist, werden Knoten, die einen geringeren Abstand untereinander haben zwecks Löschen als ident betrachtet.

Verfügbarkeit: 2.2.0

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

Siehe auch

ST_Simplify


Name

ST_SharedPaths — Gibt eine Sammelgeometrie zurück, welche die gemeinsamen Strecken der beiden eingegebenen LineStrings/MultiLinestrings enthält.

Synopsis

geometry ST_SharedPaths(geometry lineal1, geometry lineal2);

Beschreibung

Gibt eine Sammelgeometrie zurück, die die gemeinsamen Pfade zweier Eingabegeometrie enthält. Jene, die in derselben Richtung orientiert sind, werden im ersten Element der Sammelgeometrie, jene die in die entgegengesetzte Richtung orientiert sind, werden im zweiten Element gespeichert. Die Pfade selbst befinden sich in der ersten Geometrie.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

Beispiele: Gemeinsame Strecken finden

Ein MultiLinestring und ein LineString

Die gemeinsame Strecke eines MultiLinestring und Linestring mit überlagerter Ursprungsgeometrie.

SELECT ST_AsText(
  ST_SharedPaths(
    ST_GeomFromText('MULTILINESTRING((26 125,26 200,126 200,126 125,26 125),
           (51 150,101 150,76 175,51 150))'),
        ST_GeomFromText('LINESTRING(151 100,126 156.25,126 125,90 161, 76 175)')
        )
  ) As wkt

                                wkt
-------------------------------------------------------------
GEOMETRYCOLLECTION(MULTILINESTRING((126 156.25,126 125),
 (101 150,90 161),(90 161,76 175)),MULTILINESTRING EMPTY)
                          

-- Das selbe Beispiel, aber die Richtung des Linienzuges ist umgedreht/flipped
SELECT ST_AsText(
  ST_SharedPaths(
   ST_GeomFromText('LINESTRING(76 175,90 161,126 125,126 156.25,151 100)'),
   ST_GeomFromText('MULTILINESTRING((26 125,26 200,126 200,126 125,26 125),
           (51 150,101 150,76 175,51 150))')
        )
  ) As wkt

                                wkt
-------------------------------------------------------------
GEOMETRYCOLLECTION(MULTILINESTRING EMPTY,
MULTILINESTRING((76 175,90 161),(90 161,101 150),(126 125,126 156.25)))
                          


Name

ST_ShiftLongitude — Schaltet geometrische Koordinaten zwischen den Bereichen -180..180 und 0..360 um.

Synopsis

geometry ST_ShiftLongitude(geometry geomA);

Beschreibung

Liest jeden Punkt/Knoten jeder Featurekomponente einer Geometrie, und wenn die Längenkoordinate <0 ist wird 360 hinzugezählt. Das Ergebnis ist eine 0-360 Grad Version der Daten, die auf einer bei 180 Grad zentrierten Karte dargestellt werden kann.

[Note]

Dies ist nur sinnvoll bei Längen- und Breitenangabe, z.B.: 4326 (WGS 84 long lat)

[Warning]

Pre-1.3.4 Aufgrund eines Bugs funktionierte dies für MULTIPOINT nicht. Mit 1.3.4+ funktioniert es auch mit MULTIPOINT.

This function supports 3d and will not drop the z-index.

Erweiterung: Mit 2.0.0 wurde die Unterstützung für polyedrische Oberflächen und TIN eingeführt.

Anmerkung: Vor 2.2.0 hieß diese Funktion "ST_Shift_Longitude"

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Beispiele

--3D Punkte
SELECT ST_AsEWKT(ST_ShiftLongitude(ST_GeomFromEWKT('SRID=4326;POINT(-118.58 38.38 10)'))) As geomA,
        ST_AsEWKT(ST_ShiftLongitude(ST_GeomFromEWKT('SRID=4326;POINT(241.42 38.38 10)'))) As geomb
geomA                                                          geomB
----------                                                  -----------
SRID=4326;POINT(241.42 38.38 10) SRID=4326;POINT(-118.58 38.38 10)

--normaler Linienzug
SELECT ST_AsText(ST_ShiftLongitude(ST_GeomFromText('LINESTRING(-118.58 38.38, -118.20 38.45)')))

st_astext
----------
LINESTRING(241.42 38.38,241.8 38.45)
                

Siehe auch

ST_WrapX


Name

ST_WrapX — Versammelt eine Geometrie um einen X-Wert

Synopsis

geometry ST_WrapX(geometry geom, float8 wrap, float8 move);

Beschreibung

Diese Funktion trennt die Ausgangsgeometrie auf und verschiebt jeden resultierenden Bestandteil der auf die rechte (bei negativem 'move') oder auf die linke Seite (bei positivem 'move) der gegebenen 'wrap'-Linie fällt in die Richtung die durch den 'move' Parameter angegeben ist. Schließlich werden die Teile wieder vereinigt.

[Note]

Nützlich, um eine Eingabe in Länge und Breite neu zu zentrieren, damit die wesentlichen Geoobjekte nicht von einer Seite bis zur anderen abgebildet werden.

Verfügbarkeit: 2.3.0

This function supports 3d and will not drop the z-index.

Beispiele

-- Verschiebt alle Komponenten einer gegebenen Geometrie, deren Umgebungsrechteck
-- zur Gänze links von x=0 liegen um +360
select ST_WrapX(the_geom, 0, 360);

-- Verschiebt alle Komponenten einer gegebenen Geometrie, deren Umgebungsrechteck
-- zur Gänze links von x=30 liegen um +360
select ST_WrapX(the_geom, -30, 360);
                

Name

ST_Simplify — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Douglas-Peucker Algorithmus.

Synopsis

geometry ST_Simplify(geometry geomA, float tolerance, boolean preserveCollapsed);

Beschreibung

Gibt eine "vereinfachte" Version der gegebenen Geometrie zurück. Verwendet den Douglas-Peucker Algorithmus. Tut zurzeit nur mit (Multi)Lines und (Multi)Polygons etwas, kann aber gefahrlos mit jedem geometrischen Datentyp verwendet werden. Da die Vereinfachung auf einer Objekt zu Objekt Basis passiert, können Sie diese Funktion auch mit einer Sammelgeometrie speisen.

Der Flag "preservve collapsed" erhält Geoobjekte, die andernfalls zu klein für die gegebene Toleranz wären. Zum Beispiel eine 1m lange Linie die mit 10m Toleranz vereinfacht wurde. Wenn die Flag "preserve collapsed" angegeben ist, wird die Linie erhalten. Dieser Flag ist nützlich für Rendering-Engines, um in Kartendarstellungen das Verlorengehen einer großen Anzahl von kleinen Objekten und die dadurch entstehende Lücken zu vermeiden.

[Note]

Bemerke, dass die zurückgegebene Geometrie ihre Simplizität verlieren kann (siehe ST_IsSimple).

[Note]

Beachten Sie bitte, das die Topologie möglicherweise nicht erhalten bleibt und ungültige Geometrien entstehen können. Benutzen Sie bitte (see ST_SimplifyPreserveTopology) um die Topologie zu erhalten.

Verfügbarkeit: 1.2.2

Beispiele

Ein zu stark vereinfachter Kreis wird zu einem Dreieck, mittelmäßig vereinfacht zum Achteck:

SELECT ST_Npoints(the_geom) As np_before, ST_NPoints(ST_Simplify(the_geom,0.1)) As np01_notbadcircle, ST_NPoints(ST_Simplify(the_geom,0.5)) As np05_notquitecircle,
ST_NPoints(ST_Simplify(the_geom,1)) As np1_octagon, ST_NPoints(ST_Simplify(the_geom,10)) As np10_triangle,
(ST_Simplify(the_geom,100) is null) As  np100_geometrygoesaway
FROM (SELECT ST_Buffer('POINT(1 3)', 10,12) As the_geom) As foo;
-result
 np_before | np01_notbadcircle | np05_notquitecircle | np1_octagon | np10_triangle | np100_geometrygoesaway
-----------+-------------------+---------------------+-------------+---------------+------------------------
                49 |                33 |                  17 |           9 |             4 | t
      

Name

ST_SimplifyPreserveTopology — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Douglas-Peucker Algorithmus. Vermeidet es abgeleitete Geometrien zu erzeugen (insbesondere Polygone), die invalide sind.

Synopsis

geometry ST_SimplifyPreserveTopology(geometry geomA, float tolerance);

Beschreibung

Gibt eine "vereinfachte" Version der gegebenen Geometrie zurück. Verwendet den Douglas-Peucker Algorithmus. Vermeidet es, eine invalide Geometrie (insbesondere Polygone) zu erzeugen. Tut zurzeit nur mit (Multi)Lines und (Multi)Polygons etwas, kann aber gefahrlos mit jedem geometrischen Datentyp verwendet werden. Da die Vereinfachung auf einer Objekt zu Objekt Basis passiert, können Sie diese Funktion auch mit einer Sammelgeometrie speisen.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 1.3.3

Beispiele

Das gleiche Beispiel wie mit ST_Simplify, aber wir sehen, dass ST_SimplifyPreserveTopology übermäßige Vereinfachung verhindert. Der Kreis kann maximal ein Quadrat werden.

SELECT ST_Npoints(the_geom) As np_before, ST_NPoints(ST_SimplifyPreserveTopology(the_geom,0.1)) As np01_notbadcircle, ST_NPoints(ST_SimplifyPreserveTopology(the_geom,0.5)) As np05_notquitecircle,
ST_NPoints(ST_SimplifyPreserveTopology(the_geom,1)) As np1_octagon, ST_NPoints(ST_SimplifyPreserveTopology(the_geom,10)) As np10_square,
ST_NPoints(ST_SimplifyPreserveTopology(the_geom,100)) As  np100_stillsquare
FROM (SELECT ST_Buffer('POINT(1 3)', 10,12) As the_geom) As foo;

--result--
 np_before | np01_notbadcircle | np05_notquitecircle | np1_octagon | np10_square | np100_stillsquare
-----------+-------------------+---------------------+-------------+---------------+-------------------
                49 |                33 |                  17 |           9 |             5 |                 5
                                

Siehe auch

ST_Simplify


Name

ST_SimplifyVW — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Visvalingam-Whyatt Algorithmus.

Synopsis

geometry ST_SimplifyVW(geometry geomA, float tolerance);

Beschreibung

Gibt eine "vereinfachte" Version der gegebenen Geometrie zurück. Verwendet den Visvalingam-Whyatt Algorithmus. Tut zurzeit nur mit (Multi)Lines und (Multi)Polygons etwas, kann aber gefahrlos mit jedem geometrischen Datentyp verwendet werden. Da die Vereinfachung auf einer Objekt zu Objekt Basis passiert, können Sie diese Funktion auch mit einer Sammelgeometrie speisen.

[Note]

Bemerke, dass die zurückgegebene Geometrie ihre Simplizität verlieren kann (siehe ST_IsSimple).

[Note]

Beachten Sie bitte, das die Topologie möglicherweise nicht erhalten bleibt und ungültige Geometrien entstehen können. Benutzen Sie bitte (see ST_SimplifyPreserveTopology) um die Topologie zu erhalten.

[Note]

Diese Funktion kann mit 3D umgehen und die dritte Dimension beeinflusst auch das Ergebnis.

Verfügbarkeit: 2.2.0

Beispiele

Ein Linienzug vereinfacht mit einem Schwellenwert von 30 für die minimale Fläche.

select ST_AsText(ST_SimplifyVW(geom,30)) simplified
FROM (SELECT  'LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry geom) As foo;
-result
 simplified
-----------+-------------------+
LINESTRING(5 2,7 25,10 10)

                                

Name

ST_ChaikinSmoothing — Gibt eine vereinfachte Version der Ausgangsgeometrie zurück. Verwendet den Visvalingam-Whyatt Algorithmus.

Synopsis

geometry ST_Simplify(geometry geomA, float tolerance, boolean preserveCollapsed);

Beschreibung

Returns a "smoothed" version of the given geometry using the Chaikin algorithm. See Chaikins-Algorithm for an explanation of the process. For each iteration the number of vertex points will double. The function puts new vertex points at 1/4 of the line before and after each point and removes the original point. To reduce the number of points use one of the simplification functions on the result. The new points gets interpolated values for all included dimensions, also z and m.

Second argument, number of iterations is limited to max 5 iterations

Note third argument is only valid for polygons, and will be ignored for linestrings

Diese Funktion kann mit 3D umgehen und die dritte Dimension beeinflusst auch das Ergebnis.

[Note]

Note that returned geometry will get more points than the original. To reduce the number of points again use one of the simplification functions on the result. (see ST_Simplify and ST_SimplifyVW)

Verfügbarkeit: 2.0.0

Beispiele

A triangle is smoothed

select ST_AsText(ST_ChaikinSmoothing(geom)) smoothed
FROM (SELECT  'POLYGON((0 0, 8 8, 0 16, 0 0))'::geometry geom) As foo;
┌───────────────────────────────────────────┐
│                 smoothed                  │
├───────────────────────────────────────────┤
│ POLYGON((2 2,6 6,6 10,2 14,0 12,0 4,2 2)) │
└───────────────────────────────────────────┘
                                

Siehe auch

ST_Simplify, ST_Dump


Name

ST_FilterByM — Filters vertex points based on their m-value

Synopsis

geometry ST_Simplify(geometry geomA, float tolerance, boolean preserveCollapsed);

Beschreibung

Filters away vertex points based on their m-value. Returns a geometry with only vertex points that have a m-value larger or equal to the min value and smaller or equal to the max value. If max-value argument is left out only min value is considered. If fourth argument is left out the m-value will not be in the resulting geometry. If resulting geometry have too few vertex points left for its geometry type an empty geometry will be returned. In a geometry collection geometries without enough points will just be left out silently. If

This function is mainly intended to be used in conjunction with ST_SetEffectiveArea. ST_EffectiveArea sets the effective area of a vertex in it's m-value. With ST_FilterByM it then is possible to get a simplified version of the geometry without any calculations, just by filtering

[Note]

There is a difference in what ST_SimplifyVW returns when not enough points meets the creterias compared to ST_FilterByM. ST_SimplifyVW returns the geometry with enough points while ST_FilterByM returns an empty geometry

[Note]

Note that the retuned geometry might be invalid

[Note]

This function returns all dimensions, also the z and m-value

Verfügbarkeit: 2.0.0

Beispiele

A linestring is filtered

select ST_AsText(ST_SimplifyVW(geom,30)) simplified
FROM (SELECT  'LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry geom) As foo;
-result
 simplified
-----------+-------------------+
LINESTRING(5 2,7 25,10 10)

                                

Name

ST_SetEffectiveArea — Setzt die Nutzfläche für jeden Knoten und speichert den Wert in der M-Ordinate. Eine vereinfachte Geometrie kann dann über einen Filter auf die M-Ordinate erzeugt werden.

Synopsis

geometry ST_SetEffectiveArea(geometry geomA, float threshold = 0, integer set_area = 1);

Beschreibung

Setzt die Nutzfläche für jeden Knoten. Verwendet den Visvalingam-Whyatt Algorithmus. Die Nutzfläche wird als M-Wert des Knoten gespeichert. Wird der optionale Parameter "threshold" verwendet, so wird eine vereinfachte Geometrie zurückgegeben, die nur jene Knoten enthält, deren Nutzfläche größer oder gleich dem Schwellenwert ist.

Diese Funktion kann für die serverseitige Vereinfachung, mittels eines Schwellenwerts verwendet werden. Eine andere Möglichkeit besteht darin, einen Schwellenwert von null anzugeben. In diesem Fall wird die gesamte Geometrie inklusive der Nutzflächen als M-Werte zurückgegeben, welche dann am Client für eine rasche Vereinfachung genutzt werden können.

Tut zurzeit nur mit (Multi)Lines und (Multi)Polygons etwas, kann aber gefahrlos mit jedem geometrischen Datentyp verwendet werden. Da die Vereinfachung auf einer Objekt zu Objekt Basis passiert, können Sie diese Funktion auch mit einer Sammelgeometrie speisen.

[Note]

Bemerke, dass die zurückgegebene Geometrie ihre Simplizität verlieren kann (siehe ST_IsSimple).

[Note]

Beachten Sie bitte, das die Topologie möglicherweise nicht erhalten bleibt und ungültige Geometrien entstehen können. Benutzen Sie bitte (see ST_SimplifyPreserveTopology) um die Topologie zu erhalten.

[Note]

Die Ausgabegeometrie verliert die gesamte vorhandene Information über die M-Werte

[Note]

Diese Funktion kann mit 3D umgehen und die dritte Dimension beeinflusst auch die tatsächliche Fläche

Verfügbarkeit: 2.2.0

Beispiele

Berechnung der Nutzfläche eines Linienzugs. Da wir einen Schwellenwert von null verwenden, werden alle Knoten der Eingabegeomettrie zurückgegeben.

select ST_AsText(ST_SetEffectiveArea(geom)) all_pts, ST_AsText(ST_SetEffectiveArea(geom,30) ) thrshld_30
FROM (SELECT  'LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry geom) As foo;
-result
 all_pts | thrshld_30
-----------+-------------------+
LINESTRING M (5 2 3.40282346638529e+38,3 8 29,6 20 1.5,7 25 49.5,10 10 3.40282346638529e+38) | LINESTRING M (5 2 3.40282346638529e+38,7 25 49.5,10 10 3.40282346638529e+38)

                                

Siehe auch

ST_SimplifyVW


Name

ST_Split — Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.

Synopsis

geometry ST_Split(geometry input, geometry blade);

Beschreibung

Diese Funktion unterstützt das Auftrennen einer Linie durch einen MultiPoint, eine MultiLine oder eine (Multi)Polygongrenze und das Auftrennen eines (Multi)Polygons durch eine Linie. Die zurückgegebene Geometrie ist immer eine Sammelgeometrie.

Diese Funktion ist das Gegenstück zu ST_Union. Theoretisch sollte die Anwendung von ST_Union auf die Elemente der zurückgegebenen Sammelgeometrie immer zur ursprünglichen Geometrie führen.

Verfügbarkeit: 2.0.0

Änderung: 2.2.0 Unterstützung für das Auftrennen von Linien durch eine MultiLine, einen MultiPoint oder eine (Multi)Polygongrenze eingeführt

Änderung: 2.2.0 Unterstützung für das Auftrennen von Linien durch eine MultiLine, einen MultiPoint oder eine (Multi)Polygongrenze eingeführt

[Note]

Um die Robustheit von ST_Split zu erhöhen, kann es zweckmäßig sein ein ST_Snap mit einem sehr niedrigen Toleranzwert auszuführen, bevor die Eingabe an die "Schneide" erfolgt. Andernfalls kann das intern verwendete Koordinatengitter Toleranzprobleme verursachen, wodurch die Koordinaten der Eingabe und der "Schneide" nicht zusammenfallen und die Eingabegeometrie nicht korrekt aufgetrennt wird (siehe #2192).

[Note]

Wenn ein Mehrfachpolygon als "Schneide" übergeben wird, so wird deren linearer Bestandteil (die Begrenzung) verwendet, um die Eingabegeometrie aufzutrennen.

Beispiele

Polygon aufgetrennt durch eine Linie

Vor der Teilungsoperation

Nach der Teilungsoperation

-- erzeugt eine Sammelgeometrie die aus 2 Hälften des Polygons besteht
-- ähnlich dem Beispiel unter ST_BuildArea
SELECT ST_Split(circle, line)
FROM (SELECT
    ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(190, 190)) As line,
    ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As circle) As foo;

-- result --
 GEOMETRYCOLLECTION(POLYGON((150 90,149.039264020162 80.2454838991936,146.193976625564 70.8658283817455,..), POLYGON(..)))

-- Um in einzelne Polygone umzurechnen können Sie ST_Dump oder ST_GeometryN verwenden
SELECT ST_AsText((ST_Dump(ST_Split(circle, line))).geom) As wkt
FROM (SELECT
    ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(190, 190)) As line,
    ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As circle) As foo;

-- result --
wkt
---------------
POLYGON((150 90,149.039264020162 80.2454838991936,..))
POLYGON((60.1371179574584 60.1371179574584,58.4265193848728 62.2214883490198,53.8060233744357 ..))
            

Ein MultiLiniestring durch einen Punkt aufgetrennt

Vor der Teilungsoperation

Nach der Teilungsoperation

SELECT ST_AsText(ST_Split(mline, pt)) As wktcut
        FROM (SELECT
    ST_GeomFromText('MULTILINESTRING((10 10, 190 190), (15 15, 30 30, 100 90))') As mline,
    ST_Point(30,30) As pt) As foo;

wktcut
------
GEOMETRYCOLLECTION(
    LINESTRING(10 10,30 30),
    LINESTRING(30 30,190 190),
    LINESTRING(15 15,30 30),
    LINESTRING(30 30,100 90)
)
            

Name

ST_SymDifference — Gibt eine Geometrie zurück, die jene Teile von A und B repräsentiert, die sich nicht überlagern. Wird symmetrische Differenz genannt, da ST_SymDifference(A,B) = ST_SymDifference(B,A).

Synopsis

geometry ST_SymDifference(geometry geomA, geometry geomB);

Beschreibung

Gibt eine Geometrie zurück, die jene Teile von A und B repräsentiert, die sich nicht überlagern. Wird symmetrische Differenz genannt, da ST_SymDifference(A,B) = ST_SymDifference(B,A). Man kann sich das auch als ST_Union(geomA,geomB) - ST_Intersection(A,B) vorstellen.

Wird vom GEOS Modul ausgeführt

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.21

This function supports 3d and will not drop the z-index. Allerdings scheint nur x y bei der Berechnung der Differenz herangezogen und anschließend an den Z-Index zurückgeheftet zu werden

Beispiele

Die ursprünglichen Linienzüge gemeinsam dargesellt

Die symmetrische Differenz zweier Linienzüge

--Sicher für 2D - symmetrische Differenz von 2 Linienzügen
SELECT ST_AsText(
        ST_SymDifference(
                ST_GeomFromText('LINESTRING(50 100, 50 200)'),
                ST_GeomFromText('LINESTRING(50 50, 50 150)')
        )
);

st_astext
---------
MULTILINESTRING((50 150,50 200),(50 50,50 100))
--Mit 3D passiert nicht ganz das richtige
SELECT ST_AsEWKT(ST_SymDifference(ST_GeomFromEWKT('LINESTRING(1 2 1, 1 4 2)'),
        ST_GeomFromEWKT('LINESTRING(1 1 3, 1 3 4)')))

st_astext
------------
MULTILINESTRING((1 3 2.75,1 4 2),(1 1 3,1 2 2.25))
                

Name

ST_Subdivide — Gibt eine Geometriemenge zurück, wobei keine Geometrie der Menge mehr als die festgelegte Anzahl an Knoten aufweist.

Synopsis

setof geometry ST_Subdivide(geometry geom, integer max_vertices=256);

Beschreibung

Divides geometry into parts until a part can be represented using no more than max_vertices. Point-in-polygon and other overlay operations are normally faster for indexed subdivided dataset: "miss" cases are faster to check as boxes for all parts typically cover smaller area than original geometry box, "hit" cases are faster because recheck operates on less points. Uses the same envelope clipping as ST_ClipByBox2D. max_vertices must be 5 or more, as 5 points are needed to represent a closed box.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.2.0

Enhanced: 2.5.0 reuses existing points on polygon split, vertex count is lowered from 8 to 5.

Beispiele

-- Subdivide complex geometries in table, in place
with complex_areas_to_subdivide as (
    delete from polygons_table
    where ST_NPoints(geom) > 255
    returning id, column1, column2, column3, geom
)
insert into polygons_table (fid, column1, column2, column3, geom)
    select
        fid, column1, column2, column3,
        ST_Subdivide(geom, 255) as geom
    from complex_areas_to_subdivide;
 
-- Erzeugt eine neu gegliederte Tabelle, passend um es mit dem Original zu verknüpfen
CREATE TABLE subdivided_geoms AS
SELECT pkey, ST_Subdivide(geom) AS geom
FROM original_geoms;
 

In maximal 10 Knoten unterteilen

SELECT row_number() OVER() As rn, ST_AsText(geom) As wkt
FROM ( SELECT ST_SubDivide('POLYGON((132 10,119 23,85 35,68 29,66 28,49 42,32 56,22 64,32 110,40 119,36 150,
57 158,75 171,92 182,114 184,132 186,146 178,176 184,179 162,184 141,190 122,
190 100,185 79,186 56,186 52,178 34,168 18,147 13,132 10))'::geometry,10))  As f(geom);

rn │                                                      wkt
────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────
  1 │ POLYGON((119 23,85 35,68 29,66 28,32 56,22 64,29.8260869565217 100,119 100,119 23))
  2 │ POLYGON((132 10,119 23,119 56,186 56,186 52,178 34,168 18,147 13,132 10))
  3 │ POLYGON((119 56,119 100,190 100,185 79,186 56,119 56))
  4 │ POLYGON((29.8260869565217 100,32 110,40 119,36 150,57 158,75 171,92 182,114 184,114 100,29.8260869565217 100))
  5 │ POLYGON((114 184,132 186,146 178,176 184,179 162,184 141,190 122,190 100,114 100,114 184))

Nützlich in Verbindung mit ST_Segmentize um zusätzliche Knoten zu erzeugen, die dann zum Auftrennen verwendet werden können

SELECT ST_AsText(ST_SubDivide(ST_Segmentize('LINESTRING(0 0, 100 100, 150 150)'::geometry,10),8));

LINESTRING(0 0,0.487578359029357 5.57659056746196,0.984542144675897 11.1527721155093,1.50101059639722 16.7281035483571,1.94532113630331 21.25)
LINESTRING(1.94532113630331 21.25,2.04869538062779 22.3020741387339,2.64204641967673 27.8740533545155,3.29994062412787 33.443216802941,4.04836719489742 39.0084282520239,4.59890468420694 42.5)
LINESTRING(4.59890468420694 42.5,4.92498503922732 44.5680389206321,5.98737409390639 50.1195229244701,7.3290919767674 55.6587646879025,8.79638749938413 60.1969505994924)
LINESTRING(8.79638749938413 60.1969505994924,9.11375579533779 61.1785363177625,11.6558166691368 66.6648504160202,15.642041247655 72.0867690601745,22.8716627200212 77.3609628116894,24.6991785131552 77.8939011989848)
LINESTRING(24.6991785131552 77.8939011989848,39.4046096622744 82.1822848017636,44.7994523421035 82.5156766227011)
LINESTRING(44.7994523421035 82.5156766227011,85 85)


Name

ST_Union — Gibt eine Geometrie zurück, welche der mengentheoretischen Vereinigung der Geometrien entspricht.

Synopsis

geometry ST_Union(geometry set g1field);

geometry ST_Union(geometry g1, geometry g2);

geometry ST_Union(geometry[] g1_array);

Beschreibung

Der Ausgabetyp kann eine MULTI*/Mehrfach-, eine Einzel- oder eine Sammelgeometrie sein. Hat 2 Varianten. Variante 1 vereinigt 2 Geometrien zu einer neuen Geometrie, welche keine überschneidenden Bereiche mehr aufweist. Variante 2 ist eine Aggregatfunktion, die eine Geometriemenge entgegennimmt und diese zu einer einzelnen ST_Geometry vereinigt, welche ebenfalls keine überschneidenden Bereiche mehr aufweist.

Aggregat Version:: Diese Funktion gibt eine Mehrfachgeometrie oder eine Einzelgeometrie von einem Satz an Geometrien zurück. Die Funktion ST_Union() ist in der Terminologie von PostgreSQL eine Aggregatfunktion. Dies bedeutet, dass sie so wie die SUM() und AVG() Funktionen und so wie die meisten Aggregatfunktionen mit Datenzeilen arbeitet. Eine NULL-Geometrie wird ignoriert.

Nicht-Aggregat Version: Diese Funktion gibt eine Geometrie zurück, die eine Vereinigung von zwei Eingabegeometrien darstellt. Der Ausgabetyp kann eine MULTI*, NON-MULTI oder eine GEOMETRYCOLLECTION sein. Wenn eine der beiden Geometrien NULL ist, so wird NULL zurückgegeben.

[Note]

ST_Collect und ST_Union sind oftmals untereinander austauschbar. ST_Union ist im Allgemeinen um Größenordnungen langsamer als ST_Collect, da es versucht die Grenzen aufzulösen und die Geometrie neu zu sortieren um sicherzustellen, dass eine erzeugte MULTI* keine überschneidenden Bereiche aufweist.

Verfügbarkeit: 1.4.0 - ST_Union wurde erweitert. ST_Union(geomarray) wurde eingeführt und ebenso wurde die Aggragatfunktion in PostgreSQL schneller gemacht. Wenn Sie GEOS 3.1.0+ verwenden, so verwendet ST_Union den schnelleren, kaskadierenden Algorithmus für die Vereinigung. Letzterer ist unter http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html beschrieben

Wird vom GEOS Modul ausgeführt

Anmerkung: diese Funktion wurde früher GeomUnion() genannt und wurde von "Union" umbenannt, da UNION ein reserviertes SQL-Wort ist.

Verfügbarkeit: 1.4.0 - ST_Collect(geomarray) wurde eingeführt. ST_Collect wurde verbessert, um mehrere Geometrien schneller handhaben zu können.

Changed: 3.0.0 does not depend on SFCGAL.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

[Note]

Die Aggregatversion ist in der OGC SPEC nicht ausdrücklich definiert.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.19 der Z-Index (Höhe) wenn Polygone beteiligt sind.

Beispiele

Aggregat Beispiel

SELECT stusps,
           ST_Multi(ST_Union(f.the_geom)) as singlegeom
         FROM sometable As f
GROUP BY stusps
                          

Nicht-Aggregat Beispiel

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(-2 3)' :: geometry))

st_astext
----------
MULTIPOINT(-2 3,1 2)

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(1 2)' :: geometry))

st_astext
----------
POINT(1 2)

3D example - sort of supports 3D (and with mixed dimensions!)

select ST_AsEWKT(ST_Union(geom))
from (
         select 'POLYGON((-7 4.2,-7.1 4.2,-7.1 4.3, -7 4.2))'::geometry geom
         union all
         select 'POINT(5 5 5)'::geometry geom
         union all
         select 'POINT(-2 3 1)'::geometry geom
         union all
         select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
     ) as foo;

st_asewkt
---------
GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 5,-7.1 4.2 5,-7.1 4.3 5,-7 4.2 5)));

3d example not mixing dimensions

select ST_AsEWKT(ST_Union(geom))
from (
         select 'POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2, -7 4.2 2))'::geometry geom
         union all
         select 'POINT(5 5 5)'::geometry geom
         union all
         select 'POINT(-2 3 1)'::geometry geom
         union all
         select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
     ) as foo;

st_asewkt
---------
GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2,-7 4.2 2)))

--Examples using new Array construct
SELECT ST_Union(ARRAY(SELECT the_geom FROM sometable));

SELECT ST_AsText(ST_Union(ARRAY[ST_GeomFromText('LINESTRING(1 2, 3 4)'),
                        ST_GeomFromText('LINESTRING(3 4, 4 5)')])) As wktunion;

--wktunion---
MULTILINESTRING((3 4,4 5),(1 2,3 4))

                          

Name

ST_UnaryUnion — Wie ST_Union, arbeitet aber auf der Ebene der Geometriebestandteile.

Synopsis

geometry ST_UnaryUnion(geometry geom);

Beschreibung

Anders als ST_union löst ST_UnaryUnion die Grenzen zwischen den Bestandteilen des Mehrfachpolygons (invalid) auf und führt eine Vereinigung der Komponenten einer Sammelgeometrie durch. Alle Bestandteile der Eingabegeometrie werden als valide angenommen, sodass Sie kein valides Mehrfachpolygon von einem invaliden, sich selbst überschneidenden Polygon erhalten können.

Diese Funktion kann für Knotenberechnungen an einer Menge von Linienzügen verwendet werden. Sie können ST_UnaryUnion und ST_Collect mischen, um die Anzahl der Geometrien, bei denen die Grenzen auf einmal aufgelöst werden abzustimmen. Auf diese Weise kann eine Balance zwischen ST_Union und ST_MemUnion gefunden werden, die sowohl den Arbeitsspeicher als auch die CPU-Zeit schont.

This function supports 3d and will not drop the z-index.

Verfügbarkeit: 2.0.0


Name

ST_VoronoiLines — Gibt die Grenzen zwischen den Zellen des Voronoi Diagramms aus, das aus den Knoten der Geometrie konstruiert wurde.

Synopsis

geometry ST_VoronoiLines( g1 geometry , tolerance float8 , extend_to geometry );

Beschreibung

ST_VoronoiLines berechnet ein zweidimensonales Voronoi Diagramm aus den Knoten der gegebenen Geometrie und stellt die Grenzen zwischen den Zellen des Diagramms als MultiLineString dar.

Optionale Parameter:

  • 'tolerance' : Die Entfernung innerhalb derer Knoten als ident betrachtet werden. Die Robustheit des Algorithmus kann verbessert werden, wenn die Entfernungstoleranz nicht mit Null angegeben wird. (Standardwert = 0.0)

  • 'extend_to' : Wird eine Geometrie als "extend_to" Parameter zur Verfügung gestellt, so wird das Diagramm erweitert, um die Einhüllende der "extend_to"-Geometrie zu erfassen. Dies geschieht solange die Einhüllende nicht kleiner als die Standardeinhüllende ist. (Standardwert = NULL) 

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.3.0

Beispiele

Voronoi Linien mit einer Toleranz von 30 Einheiten

SELECT ST_VoronoiLines(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100,10 150, 110 120)'::geometry As geom ) As g

-- ST_AsText output
MULTILINESTRING((135.555555555556 270,36.8181818181818 92.2727272727273),(36.8181818181818 92.2727272727273,-110 43.3333333333333),(230 -45.7142857142858,36.8181818181818 92.2727272727273))


Name

ST_VoronoiPolygons — Gibt die Zellen des Voronoi Diagramms zurück, die aus den Knoten der Geometrie erzeugt wurden.

Synopsis

geometry ST_VoronoiPolygons( g1 geometry , tolerance float8 , extend_to geometry );

Beschreibung

ST_VoronoiPolygons berechnet ein zweidimensionales Voronoi diagram aus den Knoten der gegebenen Geometrie. Das Ergebnis ist eine Sammelgeometrie/GeometryCollection von Polygonen, deren Einhüllende größer ist als die Ausdehnung der Ausgangsknoten.

Optionale Parameter:

  • 'tolerance' : Die Entfernung innerhalb derer Knoten als ident betrachtet werden. Die Robustheit des Algorithmus kann verbessert werden, wenn die Entfernungstoleranz nicht mit Null angegeben wird. (Standardwert = 0.0)

  • 'extend_to' : Wird eine Geometrie als "extend_to" Parameter zur Verfügung gestellt, so wird das Diagramm erweitert, um die Einhüllende der "extend_to"-Geometrie zu erfassen. Dies geschieht solange die Einhüllende nicht kleiner als die Standardeinhüllende ist. (Standardwert = NULL) 

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.3.0

Beispiele

Punkte über dem Voronoi Diagramm

SELECT
        ST_VoronoiPolygons(geom) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100,10 150, 110 120)'::geometry As geom ) As g;

-- Ausgabe mit ST_AsText
GEOMETRYCOLLECTION(POLYGON((-110 43.3333333333333,-110 270,100.5 270,59.3478260869565 132.826086956522,36.8181818181818 92.2727272727273,-110 43.3333333333333)),
POLYGON((55 -90,-110 -90,-110 43.3333333333333,36.8181818181818 92.2727272727273,55 79.2857142857143,55 -90)),
POLYGON((230 47.5,230 -20.7142857142857,55 79.2857142857143,36.8181818181818 92.2727272727273,59.3478260869565 132.826086956522,230 47.5)),POLYGON((230 -20.7142857142857,230 -90,55 -90,55 79.2857142857143,230 -20.7142857142857)),
POLYGON((100.5 270,230 270,230 47.5,59.3478260869565 132.826086956522,100.5 270)))

Voronoi mit einer Toleranz von 30 Einheiten

SELECT ST_VoronoiPolygons(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100,10 150, 110 120)'::geometry As geom ) As g;

-- Ausgabe mit ST_AsText
GEOMETRYCOLLECTION(POLYGON((-110 43.3333333333333,-110 270,100.5 270,59.3478260869565 132.826086956522,36.8181818181818 92.2727272727273,-110 43.3333333333333)),
POLYGON((230 47.5,230 -45.7142857142858,36.8181818181818 92.2727272727273,59.3478260869565 132.826086956522,230 47.5)),POLYGON((230 -45.7142857142858,230 -90,-110 -90,-110 43.3333333333333,36.8181818181818 92.2727272727273,230 -45.7142857142858)),
POLYGON((100.5 270,230 270,230 47.5,59.3478260869565 132.826086956522,100.5 270)))

Voronoi als MultiLinestring mit einer Toleranz von 30 Einheiten

SELECT ST_VoronoiLines(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100,10 150, 110 120)'::geometry As geom ) As g

-- ST_AsText output
MULTILINESTRING((135.555555555556 270,36.8181818181818 92.2727272727273),(36.8181818181818 92.2727272727273,-110 43.3333333333333),(230 -45.7142857142858,36.8181818181818 92.2727272727273))

8.12. Kilometrierung

ST_LineInterpolatePoint — Fügt einen Punkt entlang einer Linie ein. Der zweite Parameter, in Float8-Darstellung mit den Werten von 0 bis 1, gibt jenen Bruchteil der Gesamtlänge des Linienzuges an, wo der Punkt liegen soll.
ST_LineInterpolatePoint — Fügt einen Punkt entlang einer Linie ein. Der zweite Parameter, in Float8-Darstellung mit den Werten von 0 bis 1, gibt jenen Bruchteil der Gesamtlänge des Linienzuges an, wo der Punkt liegen soll.
ST_LineInterpolatePoints — Gibt einen oder mehrere, entlang einer Linie interpolierte Punkte zurück.
ST_LineLocatePoint — Gibt eine Gleitpunktzahl zwischen 0 und 1 zurück, welche die Lage des Punktes auf einer Linie angibt, der zu einem gegebenen Punkt am nächsten liegt. Die Lage wird als Anteil an der Gesamtlänge der 2D Linie angegeben.
ST_LineSubstring — Gibt ein Linienstück zurück, dass ein Teil des gegebenen Linienzuges ist und den Anfang und das Ende an gegebenen Anteilen der 2D-Gesamtlänge hat. Der zweite und der dritte Übergabewert sind Werte in float8 zwischen 0 und 1.
ST_LocateAlong — Gibt eine abgeleitete Sammelgeometrie zurück, welche jene Elemente enthält die mit dem gegebenen Kilometrierungsmaß zusammenpassen. Polygonale Elemente werden nicht untersützt.
ST_LocateBetween — Gibt eine abgeleitete Sammelgeometrie mit jenen Elementen zurück, die in dem gegebenen Kilometrierungsintervall liegen; das Intervall ist unbeschränkt. Polygonale Elemente werden nicht untersützt.
ST_LocateBetweenElevations — Gibt eine abgeleitete Sammelgeometrie zurück, welche jene Elemente enthält die mit dem gegebenen Kilometrierungsmaß zusammenpassen. Polygonale Elemente werden nicht untersützt.
ST_InterpolatePoint — Für einen gegebenen Punkt wird die Kilometrierung auf dem nächstliegenden Punkt einer Geometrie zurück.
ST_AddMeasure — Gibt eine abgeleitete Geometrie mit einer zwischen Anfangs- und Endpunkt linear interpolierten Kilometrierung zurück.

Name

ST_LineInterpolatePoint — Fügt einen Punkt entlang einer Linie ein. Der zweite Parameter, in Float8-Darstellung mit den Werten von 0 bis 1, gibt jenen Bruchteil der Gesamtlänge des Linienzuges an, wo der Punkt liegen soll.

Synopsis

geometry ST_LineInterpolatePoint(geometry a_linestring, float8 a_fraction);

Beschreibung

Fügt einen Punkt entlang einer Linie ein. Der erste Parameter muss einen Linienzug beschreiben. Der zweite Parameter, in Float8-Darstellung mit den Werten von 0 bis 1, gibt jenen Bruchteil der Gesamtlänge des Linienzuges an, wo der Punkt liegen soll.

Siehe ST_LineLocatePoint um die nächstliegende Linie zu einem Punkt zu berechnen.

[Note]

Ab Version 1.1.1 interpoliert diese Funktion auch M- und Z-Werte (falls vorhanden), während frühere Versionen diese Werte auf 0.0 setzten.

Verfügbarkeit: 0.8.2, Z und M Unterstützung wurde mit 1.1.1 hinzugefügt

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Line_Interpolate_Point bezeichnet.

This function supports 3d and will not drop the z-index.

Beispiele

Ein Linienzug mit dem interpolierten Punkt bei Position 0.20 (20%)

--Gibt einen Punkt zurück, der entlang einer Linie bei 20% liegt
SELECT ST_AsEWKT(ST_LineInterpolatePoint(the_line, 0.20))
        FROM (SELECT ST_GeomFromEWKT('LINESTRING(25 50, 100 125, 150 190)') as the_line) As foo;
   st_asewkt
----------------
 POINT(51.5974135047432 76.5974135047432)

--Gibt einen Punkt auf halber Strecke einer 3D-Linie zurück
SELECT ST_AsEWKT(ST_LineInterpolatePoint(the_line, 0.5))
        FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 4 5 6, 6 7 8)') as the_line) As foo;

        st_asewkt
--------------------
 POINT(3.5 4.5 5.5)


--findet den nächstgelegenen Punkt auf einer Linie zu einem Punkt oder zu einer andere Geometrie
 SELECT ST_AsText(ST_LineInterpolatePoint(foo.the_line, ST_LineLocatePoint(foo.the_line, ST_GeomFromText('POINT(4 3)'))))
FROM (SELECT ST_GeomFromText('LINESTRING(1 2, 4 5, 6 7)') As the_line) As foo;
   st_astext
----------------
 POINT(3 4)


Name

ST_LineInterpolatePoint — Fügt einen Punkt entlang einer Linie ein. Der zweite Parameter, in Float8-Darstellung mit den Werten von 0 bis 1, gibt jenen Bruchteil der Gesamtlänge des Linienzuges an, wo der Punkt liegen soll.

Synopsis

geometry ST_LineInterpolatePoint(geometry a_linestring, float8 a_fraction);

Beschreibung

Fügt einen Punkt entlang einer Linie ein. Der erste Parameter muss einen Linienzug beschreiben. Der zweite Parameter, in Float8-Darstellung mit den Werten von 0 bis 1, gibt jenen Bruchteil der Gesamtlänge des Linienzuges an, wo der Punkt liegen soll.

[Note]

ST_LineInterpolatePoint computes resulting point in 2D and then interpolates value for Z and M, while ST_3DLineInterpolatePoint computes directly point in 3D and only M value is interpolated then.

Verfügbarkeit: 2.0.0

Beispiele

Gibt einen oder mehrere, entlang einer Linie interpolierte Punkte zurück.

--Gibt einen Punkt zurück, der entlang einer Linie bei 20% liegt
SELECT ST_AsEWKT(ST_LineInterpolatePoint(the_line, 0.20))
        FROM (SELECT ST_GeomFromEWKT('LINESTRING(25 50, 100 125, 150 190)') as the_line) As foo;
   st_asewkt
----------------
 POINT(51.5974135047432 76.5974135047432)

Name

ST_LineInterpolatePoints — Gibt einen oder mehrere, entlang einer Linie interpolierte Punkte zurück.

Synopsis

geometry ST_LineInterpolatePoints(geometry a_linestring, float8 a_fraction, boolean repeat);

Beschreibung

Gibt einen oder mehrere, entlang einer Linie interpolierte Punkte zurück. Der erste Übergabewert muss ein LINESTRING sein. Der zweite Übergabewert, in Float8-Darstellung mit den Werten von 0 bis 1, gibt den Abstand zwischen den Punkten als Anteil an der Gesamtlänge des Linienzuges an. Wenn der dritte Übergabewert FALSE ist, dann wird höchstens ein Punkt konstruiert (die Funktion ist äquivalent zu ST_LineInterpolatePoint).

Wenn das Ergebnis aus keinem oder einem Punkt besteht wird der Datentyp POINT, bei zwei oder mehreren Punkten der Datentyp MULTIPOINT zurückgegeben.

Verfügbarkeit: 2.5.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

Beispiele

Ein Linienzug mit interpolierten Punkten alle 20%

-- Gibt alle 20% entlang einer 2D-Linie einen Punkt zurück
SELECT ST_AsText(ST_LineInterpolatePoints('LINESTRING(25 50, 100 125, 150 190)', 0.20))
   st_astext
----------------
 MULTIPOINT(51.5974135047432 76.5974135047432,78.1948270094864 103.194827009486,104.132163186446 130.37181214238,127.066081593223 160.18590607119,150 190)

Name

ST_LineLocatePoint — Gibt eine Gleitpunktzahl zwischen 0 und 1 zurück, welche die Lage des Punktes auf einer Linie angibt, der zu einem gegebenen Punkt am nächsten liegt. Die Lage wird als Anteil an der Gesamtlänge der 2D Linie angegeben.

Synopsis

float8 ST_LineLocatePoint(geometry a_linestring, geometry a_point);

Beschreibung

Gibt eine Gleitpunktzahl zwischen 0 und 1 zurück, welche die Lage des Punktes auf einer Linie angibt, der zu einem gegebenen Punkt am nächsten liegt. Die Lage wird als Anteil an der Gesamtlänge der 2D Linie angegeben.

Sie können die zurückgegebene Lage nutzen, um einen Punkt (ST_LineInterpolatePoint) oder eine Teilzeichenfolge (ST_LineSubstring) zu extrahieren.

Nützlich, um die Hausnummern von Adressen anzunähern

Verfügbarkeit: 1.1.0

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Line_Locate_Point bezeichnet.

Beispiele

--Grobe Näherung zum Auffinden der Hausnummer für einen Punkt entlang der Strasse
--Das ganze "foo"-Ding ist nur dazu da um Testdaten zu erstellen
--die wie Hausmittelpunkte und Strassen aussehen
--Wir verwenden ST_DWithin to exclude
--um Häuser, die zu weit von der Strasse weg sind auszuschließen
SELECT ST_AsText(house_loc) As as_text_house_loc,
        startstreet_num +
                CAST( (endstreet_num - startstreet_num)
                        * ST_LineLocatePoint(street_line, house_loc) As integer) As street_num
FROM
(SELECT ST_GeomFromText('LINESTRING(1 2, 3 4)') As street_line,
        ST_MakePoint(x*1.01,y*1.03) As house_loc, 10 As startstreet_num,
                20 As endstreet_num
FROM generate_series(1,3) x CROSS JOIN generate_series(2,4) As y)
As foo
WHERE ST_DWithin(street_line, house_loc, 0.2);

 as_text_house_loc | street_num
-------------------+------------
 POINT(1.01 2.06)  |         10
 POINT(2.02 3.09)  |         15
 POINT(3.03 4.12)  |         20

 --findet den Punkt auf einer Linie der am nächsten zu einem Punkt oder zu einer anderen Geometre liegt
 SELECT ST_AsText(ST_LineInterpolatePoint(foo.the_line, ST_LineLocatePoint(foo.the_line, ST_GeomFromText('POINT(4 3)'))))
FROM (SELECT ST_GeomFromText('LINESTRING(1 2, 4 5, 6 7)') As the_line) As foo;
   st_astext
----------------
 POINT(3 4)


Name

ST_LineSubstring — Gibt ein Linienstück zurück, dass ein Teil des gegebenen Linienzuges ist und den Anfang und das Ende an gegebenen Anteilen der 2D-Gesamtlänge hat. Der zweite und der dritte Übergabewert sind Werte in float8 zwischen 0 und 1.

Synopsis

geometry ST_LineSubstring(geometry a_linestring, float8 startfraction, float8 endfraction);

Beschreibung

Gibt ein Linienstück zurück, dass ein Teil des gegebenen Linienzuges ist und den Anfang und das Ende an gegebenen Anteilen der 2D-Gesamtlänge hat. Der zweite und der dritte Übergabewert sind Werte in float8 zwischen 0 und 1. Diese Funktion funktioniert nur mit LINESTRINGs. Bei zusammenhängenden MULTILINESTRINGs kann die Funktion in Verbindung mit ST_LineMerge verwendet werden.

Gleichbedeutend mit ST_LineInterpolatePoint, wenn Anfangswert und Endwert ident sind.

Siehe ST_LineLocatePoint um die nächstliegende Linie zu einem Punkt zu berechnen.

[Note]

Ab Version 1.1.1 interpoliert diese Funktion auch M- und Z-Werte (falls vorhanden), während frühere Versionen unbestimmte Werte setzten.

Verfügbarkeit: 1.1.0, mit 1.1.1 wurde die Unterstützung für Z und M hinzugefügt

Änderung: 2.1.0. Bis zu 2.0.x wurde diese Funktion mit ST_Line_Substring bezeichnet.

This function supports 3d and will not drop the z-index.

Beispiele

Ein Linienstück von einem Mittelstück mit 1/3 Länge überlagert (0.333, 0.666)

--Gibt den 1/3 großen Mittelteil einer Line näherungsweise zurück
SELECT ST_AsText(ST_Line_SubString(ST_GeomFromText('LINESTRING(25 50, 100 125, 150 190)'), 0.333, 0.666));

                                                                                   st_astext
------------------------------------------------------------------------------------------------
LINESTRING(69.2846934853974 94.2846934853974,100 125,111.700356260683 140.210463138888)

--Das untere Beispiel simuliert eine While-Schleife in SQL
--indem PostgreSQL generate_series() verwendet wird
--um alle Linienstücke einer Tabelle in Abschnitte von 100 Einheiten zu zerlegen
-- Kein Abschnitt ist länger als 100 Einheiten
-- Die Einheiten für die Messungen sind in den Einheiten der SRID
-- Es wird angenommen, dass alle geometrischen Objekte LINESTRINGs oder zusammenhängende MULTILINESTRINGs sind
--und keine Geometrie länger als 100 Einheiten*10000 ist
--Für eine bessere Performanz können Sie 10000 reduzieren
--um die maximale Anzahl der erwarteten Abschnitte anzupassen

SELECT field1, field2, ST_LineSubstring(the_geom, 100.00*n/length,
  CASE
        WHEN 100.00*(n+1) < length THEN 100.00*(n+1)/length
        ELSE 1
  END) As the_geom
FROM
  (SELECT sometable.field1, sometable.field2,
  ST_LineMerge(sometable.the_geom) AS the_geom,
  ST_Length(sometable.the_geom) As length
  FROM sometable
  ) AS t
CROSS JOIN generate_series(0,10000) AS n
WHERE n*100.00/length < 1;
                        

Name

ST_LocateAlong — Gibt eine abgeleitete Sammelgeometrie zurück, welche jene Elemente enthält die mit dem gegebenen Kilometrierungsmaß zusammenpassen. Polygonale Elemente werden nicht untersützt.

Synopsis

geometry ST_LocateAlong(geometry ageom_with_measure, float8 a_measure, float8 offset);

Beschreibung

Gibt eine abgeleitete Sammelgeometrie zurück, welche jene Elemente enthält die mit dem gegebenen Kilometrierungsmaß zusammenpassen. Polygonale Elemente werden nicht untersützt.

Wenn ein Versatz angegeben ist, werden die Resultierenden um diese Anzahl an Einheiten nach links oder rechts von der gegebenen Linie versetzt. Ein positiver Versatz geschieht nach links, ein negativer nach rechts.

Die Semantik wurde durch "ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD Editing Meeting" festgelegt

Verfügbarkeit: 1.1.0 über die alte Bezeichnung ST_Locate_Along_Measure.

Änderung: 2.0.0 In Vorgängerversionen als ST_Locate_Along_Measure bezeichet. Der alte Name ist überholt und wird in der Zukunft entfernt ist aber noch verfügbar.

[Note]

Verwenden Sie diese Funktion bitte nur mit einer Geometrie mit M-Komponente

This function supports M coordinates.

Beispiele

SELECT ST_AsText(the_geom)
                FROM
                (SELECT ST_LocateAlong(
                        ST_GeomFromText('MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
                (1 2 3, 5 4 5))'),3) As the_geom) As foo;

                                                 st_asewkt
-----------------------------------------------------------
 MULTIPOINT M (1 2 3)

--Sammelgeometrien sind schwierige Viecher, weshalb man sie
--entladen/dump sollte um sie verdaulicher zu machen
SELECT ST_AsText((ST_Dump(the_geom)).geom)
        FROM
        (SELECT ST_LocateAlong(
                        ST_GeomFromText('MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
        (1 2 3, 5 4 5))'),3) As the_geom) As foo;

   st_asewkt
---------------
 POINTM(1 2 3)
 POINTM(9 4 3)
 POINTM(1 2 3)
        

Name

ST_LocateBetween — Gibt eine abgeleitete Sammelgeometrie mit jenen Elementen zurück, die in dem gegebenen Kilometrierungsintervall liegen; das Intervall ist unbeschränkt. Polygonale Elemente werden nicht untersützt.

Synopsis

geometry ST_LocateBetween(geometry geomA, float8 measure_start, float8 measure_end, float8 offset);

Beschreibung

Gibt eine abgeleitete Sammelgeometrie mit jenen Elementen zurück, die in dem gegebenen Kilometrierungsintervall liegen; das Intervall ist unbeschränkt. Polygonale Elemente werden nicht untersützt.

Clipping a non-convex POLYGON may produce invalid geometry.

Wenn ein Versatz angegeben ist, werden die Resultierenden um diese Anzahl an Einheiten nach links oder rechts von der gegebenen Linie versetzt. Ein positiver Versatz geschieht nach links, ein negativer nach rechts.

Die Semantik wurde durch "ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD Editing Meeting" festgelegt

Verfügbarkeit: 1.1.0 über die alte Bezeichnung ST_Locate_Between_Measures.

Änderung: 2.0.0 In Vorgängerversionen als ST_Locate_Between_Measures bezeichet. Der alte Name ist überholt und wird in der Zukunft entfernt, ist aber aus Gründen der Abwärtskompatibilität noch verfügbar.

Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE.

This function supports M coordinates.

Beispiele

SELECT ST_AsText(the_geom)
                FROM
                (SELECT ST_LocateBetween(
                        ST_GeomFromText('MULTILINESTRING M ((1 2 3, 3 4 2, 9 4 3),
                (1 2 3, 5 4 5))'),1.5, 3) As the_geom) As foo;

                                                         st_asewkt
------------------------------------------------------------------------
 GEOMETRYCOLLECTION M (LINESTRING M (1 2 3,3 4 2,9 4 3),POINT M (1 2 3))

--Sammelgeometrien sind schwierige Viecher, weshalb man sie --entladen/dump sollte um sie verdaulicher zu machen
SELECT ST_AsText((ST_Dump(the_geom)).geom)
                FROM
                (SELECT ST_LocateBetween(
                        ST_GeomFromText('MULTILINESTRING M ((1 2 3, 3 4 2, 9 4 3),
                (1 2 3, 5 4 5))'),1.5, 3) As the_geom) As foo;

                   st_asewkt
--------------------------------
 LINESTRING M (1 2 3,3 4 2,9 4 3)
 POINT M (1 2 3)

Name

ST_LocateBetweenElevations — Gibt eine abgeleitete Sammelgeometrie zurück, welche jene Elemente enthält die mit dem gegebenen Kilometrierungsmaß zusammenpassen. Polygonale Elemente werden nicht untersützt.

Synopsis

geometry ST_LocateBetweenElevations(geometry geom_mline, float8 elevation_start, float8 elevation_end);

Beschreibung

Gibt eine abgeleitete Sammelgeometrie zurück, welche jene Elemente enthält die mit dem gegebenen Kilometrierungsmaß zusammenpassen. Polygonale Elemente werden nicht untersützt.

Clipping a non-convex POLYGON may produce invalid geometry.

Verfügbarkeit: 1.4.0

Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE.

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsEWKT(ST_LocateBetweenElevations(
                        ST_GeomFromEWKT('LINESTRING(1 2 3, 4 5 6)'),2,4)) As ewelev;
                                                                   ewelev
----------------------------------------------------------------
        MULTILINESTRING((1 2 3,2 3 4))

SELECT ST_AsEWKT(ST_LocateBetweenElevations(
                        ST_GeomFromEWKT('LINESTRING(1 2 6, 4 5 -1, 7 8 9)'),6,9)) As ewelev;

                                ewelev
----------------------------------------------------------------
GEOMETRYCOLLECTION(POINT(1 2 6),LINESTRING(6.1 7.1 6,7 8 9))

--Sammelgeometrien sind schwierige Viecher, weshalb man sie --entladen/dump sollte um sie verdaulicher zu machen
SELECT ST_AsEWKT((ST_Dump(the_geom)).geom)
                FROM
                (SELECT ST_LocateBetweenElevations(
                        ST_GeomFromEWKT('LINESTRING(1 2 6, 4 5 -1, 7 8 9)'),6,9) As the_geom) As foo;

                   st_asewkt
--------------------------------
POINT(1 2 6)
LINESTRING(6.1 7.1 6,7 8 9)

Name

ST_InterpolatePoint — Für einen gegebenen Punkt wird die Kilometrierung auf dem nächstliegenden Punkt einer Geometrie zurück.

Synopsis

float8 ST_InterpolatePoint(geometry line, geometry point);

Beschreibung

Für einen gegebenen Punkt wird die Kilometrierung auf dem nächstliegenden Punkt einer Geometrie zurück.

Verfügbarkeit: 2.0.0

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_InterpolatePoint('LINESTRING M (0 0 0, 10 0 20)', 'POINT(5 5)');
 st_interpolatepoint
 ---------------------
                                    10
        

Name

ST_AddMeasure — Gibt eine abgeleitete Geometrie mit einer zwischen Anfangs- und Endpunkt linear interpolierten Kilometrierung zurück.

Synopsis

geometry ST_AddMeasure(geometry geom_mline, float8 measure_start, float8 measure_end);

Beschreibung

Gibt eine abgeleitete Geometrie mit einer zwischen Anfangs- und Endpunkt linear interpolierten Kilometrierung zurück. Wenn die Geometrie keine Dimension für die Kilometrierung aufweist, wird diese hinzugefügt. Wenn die Geometrie eine Dimension für die Kilometrierung hat, wird diese mit den neuen Werten überschrieben. Es werden nur LINESTRINGs und MULTILINESTRINGs unterstützt.

Verfügbarkeit: 1.5.0

This function supports 3d and will not drop the z-index.

Beispiele

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRING(1 0, 2 0, 4 0)'),1,4)) As ewelev;
           ewelev
--------------------------------
 LINESTRINGM(1 0 1,2 0 2,4 0 4)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRING(1 0 4, 2 0 4, 4 0 4)'),10,40)) As ewelev;
                 ewelev
----------------------------------------
 LINESTRING(1 0 4 10,2 0 4 20,4 0 4 40)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRINGM(1 0 4, 2 0 4, 4 0 4)'),10,40)) As ewelev;
                 ewelev
----------------------------------------
 LINESTRINGM(1 0 10,2 0 20,4 0 40)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('MULTILINESTRINGM((1 0 4, 2 0 4, 4 0 4),(1 0 4, 2 0 4, 4 0 4))'),10,70)) As ewelev;
                             ewelev
-----------------------------------------------------------------
 MULTILINESTRINGM((1 0 10,2 0 20,4 0 40),(1 0 40,2 0 50,4 0 70))

8.13. Unterstützung von lang andauernden Transaktionen/Long Transactions

Abstract

Dieses Modul und die zugehörigen pl/pgsql Funktionen wurden implementiert, um "long locking" Unterstützung anzubieten. Dies wird von der Web Feature Service Spezifikation verlangt.

AddAuth — Fügt einen Berechtigungsschlüssel für die aktuelle Transaktion hinzu.
CheckAuth — Legt einen Trigger auf eine Tabelle an um, basierend auf einen Token, Updates und Deletes von Zeilen zu verhindern oder zu erlauben.
DisableLongTransactions — DisableLongTransactions
EnableLongTransactions — EnableLongTransactions
LockRow — Setzt einen Lock/Autorisierung auf eine bestimmte Zeile in der Tabelle
UnlockRows — Removes all locks held by an authorization token.
[Note]

Es muss serializable transaction level angewandt werden, da sonst der "Locking" Mechanismus versagt.

Name

AddAuth — Fügt einen Berechtigungsschlüssel für die aktuelle Transaktion hinzu.

Synopsis

boolean AddAuth(text auth_token);

Beschreibung

Fügt einen Berechtigungsschlüssel für die aktuelle Transaktion hinzu.

Adds the current transaction identifier and authorization token to a temporary table called temp_lock_have_table.

Verfügbarkeit: 1.1.3

Beispiele

SELECT LockRow('towns', '353', 'priscilla');
                BEGIN TRANSACTION;
                        SELECT AddAuth('joey');
                        UPDATE towns SET the_geom = ST_Translate(the_geom,2,2) WHERE gid = 353;
                COMMIT;


                ---Error--
                ERROR:  UPDATE where "gid" = '353' requires authorization 'priscilla'
                

Siehe auch

LockRow


Name

CheckAuth — Legt einen Trigger auf eine Tabelle an um, basierend auf einen Token, Updates und Deletes von Zeilen zu verhindern oder zu erlauben.

Synopsis

integer CheckAuth(text a_schema_name, text a_table_name, text a_key_column_name);

integer CheckAuth(text a_table_name, text a_key_column_name);

Beschreibung

Legt einen Trigger auf eine Tabelle an, um über ein Autorisierungs-Token, Updates und Deletes von Zeilen zu verhindern oder zu erlauben. Identifiziert Zeilen über die Spalte <rowid_col>.

Wenn "a_schema_name" nicht angegeben ist, wird im aktuellen Schema nach der Tabelle gesucht.

[Note]

Wenn ein Autorisierungstrigger auf dieser Tabelle bereits existiert, gibt die Funktion eine Fehlermeldung aus.

Wenn die Transaktionsunterstützung nicht aktiviert wurde, wird ein Fehler gemeldet.

Verfügbarkeit: 1.1.3

Beispiele

SELECT CheckAuth('public', 'towns', 'gid');
                        result
                        ------
                        0
                        

Name

DisableLongTransactions — DisableLongTransactions

Synopsis

text DisableLongTransactions();

Beschreibung

Deaktiver die Unterstützung von lang andauernden Transaktionen. Diese Funktion entfernt die Metadatentabellen der Unterstützung für lang andauernde Transaktionen und löscht alle Trigger der auf Locks überprüften Tabellen.

Löscht die Metadatentabelle mit der Bezeichnung authorization_table und den View mit der Bezeichnung authorized_tables, sowie alle Trigger mit der Bezeichnung checkauthtrigger

Verfügbarkeit: 1.1.3

Beispiele

SELECT DisableLongTransactions();
--result--
Long transactions support disabled
                  

Name

EnableLongTransactions — EnableLongTransactions

Synopsis

text EnableLongTransactions();

Beschreibung

Akktivert die Unterstützung für lang andauernde Transaktionen. Diese Funktion erzeut die benötigten Metadatentabellen und muss einmal aufgerufen werden bevor die anderen Funktionen dieses Abschnitts angewandt werden. Ein zweimaliger Aufruf ist harmlos.

Erzeugt eine Metatabelle mit der Bezeichnung authorization_table und den View authorized_tables

Verfügbarkeit: 1.1.3

Beispiele

SELECT EnableLongTransactions();
--result--
Long transactions support enabled
                  

Name

LockRow — Setzt einen Lock/Autorisierung auf eine bestimmte Zeile in der Tabelle

Synopsis

integer LockRow(text a_schema_name, text a_table_name, text a_row_key, text an_auth_token, timestamp expire_dt);

integer LockRow(text a_table_name, text a_row_key, text an_auth_token, timestamp expire_dt);

integer LockRow(text a_table_name, text a_row_key, text an_auth_token);

Beschreibung

Setzt einen Lock/eine Autorisierung für eine bestimmte Zeile in der Tabelle <authid> . <authid> ist ein Text, <expires> ist ein Zeitstempel mit dem Standardwert now()+1hour. Gibt 1 aus, wenn ein Lock zugewiesen wurde, ansonsten 0 (bereits über eine andere Authentifizierung gesperrt)

Verfügbarkeit: 1.1.3

Beispiele

SELECT LockRow('public', 'towns', '2', 'joey');
LockRow
-------
1

--Joey hat den Datensatz bereits gesperrt und die arme Priscilla hat das Nachsehen
SELECT LockRow('public', 'towns', '2', 'priscilla');
LockRow
-------
0

                

Siehe auch

UnlockRows


Name

UnlockRows — Removes all locks held by an authorization token.

Synopsis

integer UnlockRows(text auth_token);

Beschreibung

Entfernt alle Locks einer bestimmten Authorisierungs-ID. Gibt die Anzahl der freigegebenen Locks aus.

Verfügbarkeit: 1.1.3

Beispiele

SELECT LockRow('towns', '353', 'priscilla');
                SELECT LockRow('towns', '2', 'priscilla');
                SELECT UnLockRows('priscilla');
                UnLockRows
                ------------
                2
                

Siehe auch

LockRow

Chapter 9. Referenz Raster

Im Folgenden sind die gebräuchlichsten Funktionen aufgeführt, die zur Zeit durch PostGIS-Raster zur Verfügung gestellt werden. Es gibt noch zusätzliche Funktionen, die zur Unterstützung von Rasterobjekten benötigt werden und für den Anwender nur geringe Bedeutung haben.

raster ist ein neuer PostGIS Datentyp, der zum Speichern und zur Analyse von Rasterdaten verwendet wird.

Um Raster aus Rasterdateien zu laden, siehe Section 5.1, “Laden und Erstellen von Rastertabellen”

Die Beispiele dieser Referenz benutzen eine Rastertabelle, die mit folgendem Code aus Dummy-Rastern erstellt wurde

CREATE TABLE dummy_rast(rid integer, rast raster);
INSERT INTO dummy_rast(rid, rast)
VALUES (1,
('01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0000' -- nBands (uint16 0)
||
'0000000000000040' -- scaleX (float64 2)
||
'0000000000000840' -- scaleY (float64 3)
||
'000000000000E03F' -- ipX (float64 0.5)
||
'000000000000E03F' -- ipY (float64 0.5)
||
'0000000000000000' -- skewX (float64 0)
||
'0000000000000000' -- skewY (float64 0)
||
'00000000' -- SRID (int32 0)
||
'0A00' -- width (uint16 10)
||
'1400' -- height (uint16 20)
)::raster
),
-- Raster: 5 x 5 Zellen, 3 Bänder, PT_8BUI Zelltyp, NODATA = 0
(2,  ('01000003009A9999999999A93F9A9999999999A9BF000000E02B274A' ||
'41000000007719564100000000000000000000000000000000FFFFFFFF050005000400FDFEFDFEFEFDFEFEFDF9FAFEF' ||
'EFCF9FBFDFEFEFDFCFAFEFEFE04004E627AADD16076B4F9FE6370A9F5FE59637AB0E54F58617087040046566487A1506CA2E3FA5A6CAFFBFE4D566DA4CB3E454C5665')::raster);

9.1. Datentypen zur Unterstützung von Rastern.

Abstract

Dieser Abschnitt listet die PostgreSQL Datentypen, welche zur Rasterunterstützung angelegt wurden.

geomval — Ein räumlicher Datatyp mit zwei Feldern - geom (enthält das geometrische Element) und val (enthält den Zellwert eines Rasterbandes in Doppelter Genauigkeit).
addbandarg — Ein zusammengesetzter Datentyp, der als Eingabewert für die Funktion "ST_AddBand" verwendet wird und sowohl Attribute als auch Initialwert des neuen Bandes festlegt.
rastbandarg — Ein zusammengesetzter Datentyp, der verwendet wird um den Raster und, über einen Index, das Band des Rasters anzugeben.
raster — Der räumliche Datentyp Raster
reclassarg — Ein Zusammengesetzter Datentyp, der als Eingabewert für die Funktion "ST_Reclass" dient und die Neuklassifizierung festlegt.
summarystats — Ein zusammgesetzter Datentyp, welcher von den Funktionen ST_SummaryStats und ST_SummaryStatsAgg zurückgegeben wird.
unionarg — Ein zusammengesetzter Datentyp, der als Eingabewert für die Funktion "ST_Union" dient. Dieser Datentyp bestimmt die zu behandelnden Bänder, sowie die Verhaltensweise des UNION Operators.

Name

geomval — Ein räumlicher Datatyp mit zwei Feldern - geom (enthält das geometrische Element) und val (enthält den Zellwert eines Rasterbandes in Doppelter Genauigkeit).

Beschreibung

geomval ist ein a zusammengesetzter Datentyp, der aus einem geometrischen Objekt, auf welches vom Attribut ".geom" her verwiesen wird, und "val" besteht. "val" hält einen Wert in Double Precision, der dem Pixelwert an einer bestimmten geometrischen Stelle in einem Rasterband entspricht. Verwendung findet dieser Datentyp in ST_DumpAsPolygon und als Ausgabetyp in der Familie der Rasterüberlagerungsfunktionen um ein Rasterband in Polygone zu zerlegen.


Name

addbandarg — Ein zusammengesetzter Datentyp, der als Eingabewert für die Funktion "ST_AddBand" verwendet wird und sowohl Attribute als auch Initialwert des neuen Bandes festlegt.

Beschreibung

Ein zusammengesetzter Datentyp, der als Eingabewert für die Funktion "ST_AddBand" verwendet wird und sowohl Attribute als auch Initialwert des neuen Bandes festlegt.

index integer

Ein von 1 aufwärts zählender Wert, der die Positionunter den Rasterbänder angibt, an der das neue Band eingefügt werden soll. Wenn er NULL ist wird das neue Band am Ende der Rasterbänder hinzugefügt.

pixeltype text

Der Datentyp der Rasterzellen/"Pixel Type" des neuen Bandes. Einer jener Datentypen, die unter ST_BandPixelType definiert sind.

initialvalue double precision

Der Ausgangswert, auf den die Zellen eines neuen Bandes gesetzt werden.

nodataval double precision

Der NODATA-Wert des neuen Bandes. Wenn NULL, dann wird für das neue Band kein NODATA-Wert vergeben.

Siehe auch

ST_AddBand


Name

rastbandarg — Ein zusammengesetzter Datentyp, der verwendet wird um den Raster und, über einen Index, das Band des Rasters anzugeben.

Beschreibung

Ein zusammengesetzter Datentyp, der verwendet wird um den Raster und, über einen Index, das Band des Rasters anzugeben.

rast raster

Besagter Raster

nband integer

Der 1-basierte Wert, welcher das betreffende Rasterband kennzeichnet


Name

raster — Der räumliche Datentyp Raster

Beschreibung

Raster ist ein Geodatentyp, der verwendet wird um digitale Bilder darzustellen. Diese Daten können zum Beispiel von JPEGs, TIFFs, PNGs oder digitalen Höhenmodellen stammen. Jeder Raster kann aus 1 oder mehreren Bänder bestehen, diese wiederum bestehen aus einzelnen Zellen denen Werte zugewiesen werden können. Raster können georeferenziert werden.

[Note]

Verlangt, dass PostGIS mit GDAL-Unterstützung kompiliert wurde. Gegenwärtig können Raster implizit in den Geometry Datentyp umgewandelt werden, allerdings gibt diese Umwandlung die ST_ConvexHull des Rasters zurück. Diese automatische Typumwandlung kann möglicherweise in der nahen Zukunft entfernt werden; verlassen Sie sich daher bitte nicht darauf.

Typumwandlung

Dieser Abschnitt beschreibt die automatischen/impliziten als auch expliziten Typumwandlungen, die für diesen Datentyp erlaubt sind.

Typumwandlung nachVerhaltensweise
Geometrieimplizit

Name

reclassarg — Ein Zusammengesetzter Datentyp, der als Eingabewert für die Funktion "ST_Reclass" dient und die Neuklassifizierung festlegt.

Beschreibung

Ein Zusammengesetzter Datentyp, der als Eingabewert für die Funktion "ST_Reclass" dient und die Neuklassifizierung festlegt.

nband integer

Die Nummer des Bandes das neu klasssifiziert werden soll.

reclassexpr text

Ein Ausdruck, der aus "range:map_range" Abbildungen besteht, die als Intervalle dargestellt und durch Beistriche getrennt sind. Der Ausdruck gibt an, wie die alten Zellwerte auf die neuen Zellwerte des Bandes abgebildet werden sollen. "(" bedeutet >, ")" bedeutet <, "]" < oder gleich, "[" > oder gleich

1. [a-b] = a <= x <= b

2. (a-b] = a < x <= b

3. [a-b) = a <= x < b

4. (a-b) = a < x < b

Die runden Klammern sind bei dieser Notation optional, d.h. "a-b" ist gleichbedeutend mit "(a-b)".

pixeltype text

Einer der unter ST_BandPixelType definierten Datentypen

nodataval double precision

Der Zellwert, der als NODATA/NULL betrachtet werden soll. Bei der Ausgabe von Bildern, die Transparenz unterstützen, bleibt dieser leer.

Beispiel: Band 2 in 8BUI, mit einem NODATA-Wert von 255, umgruppieren.

SELECT ROW(2, '0-100:1-10, 101-500:11-150,501 - 10000: 151-254', '8BUI', 255)::reclassarg;

Beispiel: Band 1 in 1BB, mit einem unbestimmten NODATA-Wert, umgruppieren.

SELECT ROW(1, '0-100]:0, (100-255:1', '1BB', NULL)::reclassarg;

Siehe auch

ST_Reclass


Name

summarystats — Ein zusammgesetzter Datentyp, welcher von den Funktionen ST_SummaryStats und ST_SummaryStatsAgg zurückgegeben wird.

Beschreibung

Ein zusammgesetzter Datentyp, welcher von ST_SummaryStats und ST_SummaryStatsAgg zurückgegeben wird.

count integer

Die Summe aller Zellen, die für eine zusammenfassende Statistik abgezählt wurden.

sum double precision

Die Summe aller abgezählten Zellwerte.

mean double precision

Der arithmetische Mittelwert aller abgezählten Zellwerte.

stddev double precision

Die Standardabweichung aller abgezählten Zellwerte.

min double precision

Der Minimalwert aller abgezählten Zellwerte.

max double precision

Der Maximalwert aller abgezählten Zellwerte.


Name

unionarg — Ein zusammengesetzter Datentyp, der als Eingabewert für die Funktion "ST_Union" dient. Dieser Datentyp bestimmt die zu behandelnden Bänder, sowie die Verhaltensweise des UNION Operators.

Beschreibung

Ein zusammengesetzter Datentyp, der als Eingabewert für die Funktion "ST_Union" dient. Dieser Datentyp bestimmt die zu behandelnden Bänder, sowie die Verhaltensweise des UNION Operators.

nband integer

Der 1-basierte Wert, welcher das Band aller Input-Rraster kennzeichnet, die bearbeitet werden sollen.

uniontype text

Die Variante des UNION Operators. Eine der unter ST_Union definierten Varianten.

Siehe auch

ST_Union

9.2. Rastermanagement

AddRasterConstraints — Fügt die Raster-Constraints zu einer bestimmten Spalte einer bereits geladenen Rastertabelle hinzu. Diese Constraints beschränken das Koordinatentransformationssystem, den Maßstab, die Blockgröße, die Ausrichtung, die Bänder, den Bandtyp und eine Flag, die anzeigt ob die Rasterspalte regelmäßig geblockt ist. Es müssen bereits Daten in die Tabelle geladen sein, damit die Constraints abgeleitet werden können. Gibt TRUE zurück, wenn das Setzen der Constraints ausgeführt wurde; bei Problemen wird eine Meldung angezeigt.
DropRasterConstraints — Löscht die Constraints eines PostGIS Rasters die sich auf eine Rastertabellenspalte beziehen. Nützlich um Daten erneut zu laden oder um die Daten einer Rasterspalte zu aktualisieren.
AddOverviewConstraints — Eine Rasterspalte als Übersicht für eine andere Rasterspalte kennzeichnen.
DropOverviewConstraints — Löscht die Markierung einer Rasterspalte, die festlegt dass sie als Übersicht für eine andere Spalte dient.
PostGIS_GDAL_Version — Gibt die von PostGIS verwendete Version der GDAL-Bibliothek aus.
PostGIS_Raster_Lib_Build_Date — Gibt einen vollständigen Bericht aus, wann die Rasterbibliothek kompiliert wurde.
PostGIS_Raster_Lib_Version — Gibt einen vollständigen Bericht über die Version und das Kompilationsdatum der Rasterbibliothek aus.
ST_GDALDrivers — Gibt eine Liste der Rasterformate aus, die von PostGIS über die Bibliothek GDAL unterstützt werden. Nur die Formate mit can_write=True können von ST_AsGDALRaster verwendet werden.
UpdateRasterSRID — Änderung der SRID aller Raster in der vom Anwender angegebenen Spalte und Tabelle.
ST_CreateOverview — Erzeugt eine Version des gegebenen Raster-Coverage mit geringerer Auflösung.

Name

AddRasterConstraints — Fügt die Raster-Constraints zu einer bestimmten Spalte einer bereits geladenen Rastertabelle hinzu. Diese Constraints beschränken das Koordinatentransformationssystem, den Maßstab, die Blockgröße, die Ausrichtung, die Bänder, den Bandtyp und eine Flag, die anzeigt ob die Rasterspalte regelmäßig geblockt ist. Es müssen bereits Daten in die Tabelle geladen sein, damit die Constraints abgeleitet werden können. Gibt TRUE zurück, wenn das Setzen der Constraints ausgeführt wurde; bei Problemen wird eine Meldung angezeigt.

Synopsis

boolean AddRasterConstraints(name rasttable, name rastcolumn, boolean srid, boolean scale_x, boolean scale_y, boolean blocksize_x, boolean blocksize_y, boolean same_alignment, boolean regular_blocking, boolean num_bands=true , boolean pixel_types=true , boolean nodata_values=true , boolean out_db=true , boolean extent=true );

boolean AddRasterConstraints(name rasttable, name rastcolumn, text[] VARIADIC constraints);

boolean AddRasterConstraints(name rastschema, name rasttable, name rastcolumn, text[] VARIADIC constraints);

boolean AddRasterConstraints(name rastschema, name rasttable, name rastcolumn, boolean srid=true, boolean scale_x=true, boolean scale_y=true, boolean blocksize_x=true, boolean blocksize_y=true, boolean same_alignment=true, boolean regular_blocking=false, boolean num_bands=true, boolean pixel_types=true, boolean nodata_values=true , boolean out_db=true , boolean extent=true );

Beschreibung

Setzt die Constraints auf eine Rasterspalte Diese werden verwendet um die Information in dem Rasterkatalog raster_columns anzuzeigeen. Der Parameter rastschema bezeichnet das Tabellenschema in dem die Tabelle liegt. Die Ganzzahl srid verweist auf einen Eintrag in der Tabelle "spatial_ref_sys".

Der raster2pgsql Lader verwendet diese Funktion um Rastertabellen zu registrieren.

Gültige Bezeichnungen für Constraints: siehe Section 5.2.1, “Rasterspalten Katalog” für weitere Details.

  • blocksize bestimmt die Datenblockgröße von X und Y

  • blocksize_x setzt die X-Kachel (die Breite der Kacheln in Pixel)

  • blocksize_y setzt die Y-Kachel (die Höhe der Kacheln in Pixel)

  • extent berechnet die räumliche Ausdehnung der ganzen Tabelle und setzt einen Constraint, der alle Raster auf diesen Ausschnitt beschränkt.

  • num_bands Anzahl der Bänder

  • pixel_types liest ein Feld mit Pixeltypen für jedes Band ein, und stellt sicher, dass alle Bänder denselben Pixeltyp haben

  • regular_blocking setzt die Constraints für die räumliche Eindeutigkeit (keine zwei Raster dürfen räumlich ident sein) und für die Coverage-Kachel (der Raster wird an einem Coverage ausgerichtet)

  • same_alignment stellt sicher, dass alle die selbe Ausrichtung haben, d.h. der Vergleich von zwei beliebigen Kacheln gibt TRUE zurück. Siehe ST_SameAlignment.

  • srid stellt sicher, dass alle die selbe SRID aufweisen

  • Mehr -- alles was als Eingabe in die obere Funktion aufgeführt ist

[Note]

Diese Funktion leitet die Constraints von den Daten ab, die bereits in der Tabelle vorliegen. Damit Sie die Funktion anwenden können, müssen Sie zuerst die Rasterspalte erzeugen in die Sie anschließend die Daten laden.

[Note]

Falls Sie weitere Daten in Ihre Tabellen laden müssen, nachdem Sie bereits die Constraints gesetzt haben, können Sie DropRasterConstraints ausführen, wenn sich die räumliche Ausdehnung Ihrer Daten geändert hat.

Verfügbarkeit: 2.0.0

Beispiele: Basierend auf den Daten sämtliche Connstraints auf die Spalte setzen

CREATE TABLE myrasters(rid SERIAL primary key, rast raster);
INSERT INTO myrasters(rast)
SELECT ST_AddBand(ST_MakeEmptyRaster(1000, 1000, 0.3, -0.3, 2, 2, 0, 0,4326), 1, '8BSI'::text, -129, NULL);

SELECT AddRasterConstraints('myrasters'::name, 'rast'::name);


-- überprüfen, ob die Registrierung in dem View "raster_columns" korrekt ist --
SELECT srid, scale_x, scale_y, blocksize_x, blocksize_y, num_bands, pixel_types, nodata_values
        FROM raster_columns
        WHERE r_table_name = 'myrasters';

 srid | scale_x | scale_y | blocksize_x | blocksize_y | num_bands | pixel_types| nodata_values
------+---------+---------+-------------+-------------+-----------+-------------+---------------
 4326 |       2 |       2 |        1000 |        1000 |         1 | {8BSI}      | {0}
                

Beispiele: Einen einzelnen Constraint setzen

CREATE TABLE public.myrasters2(rid SERIAL primary key, rast raster);
INSERT INTO myrasters2(rast)
SELECT ST_AddBand(ST_MakeEmptyRaster(1000, 1000, 0.3, -0.3, 2, 2, 0, 0,4326), 1, '8BSI'::text, -129, NULL);

SELECT AddRasterConstraints('public'::name, 'myrasters2'::name, 'rast'::name,'regular_blocking', 'blocksize');
-- Bestätigung--
NOTICE:  Adding regular blocking constraint
NOTICE:  Adding blocksize-X constraint
NOTICE:  Adding blocksize-Y constraint

Name

DropRasterConstraints — Löscht die Constraints eines PostGIS Rasters die sich auf eine Rastertabellenspalte beziehen. Nützlich um Daten erneut zu laden oder um die Daten einer Rasterspalte zu aktualisieren.

Synopsis

boolean DropRasterConstraints(name rasttable, name rastcolumn, boolean srid, boolean scale_x, boolean scale_y, boolean blocksize_x, boolean blocksize_y, boolean same_alignment, boolean regular_blocking, boolean num_bands=true, boolean pixel_types=true, boolean nodata_values=true, boolean out_db=true , boolean extent=true);

boolean DropRasterConstraints(name rastschema, name rasttable, name rastcolumn, boolean srid=true, boolean scale_x=true, boolean scale_y=true, boolean blocksize_x=true, boolean blocksize_y=true, boolean same_alignment=true, boolean regular_blocking=false, boolean num_bands=true, boolean pixel_types=true, boolean nodata_values=true, boolean out_db=true , boolean extent=true);

boolean DropRasterConstraints(name rastschema, name rasttable, name rastcolumn, text[] constraints);

Beschreibung

Löscht die Constraints eines PostGIS Rasters die sich auf eine Rastertabellenspalte beziehen und mit AddRasterConstraints hinzugefügt wurden. Nützlich um weitere Daten zu laden oder um die Daten einer Rasterspalte zu aktualisieren. Dies ist nicht notwendig, wenn Sie eine Rastertabelle oder eine Rasterspalte löschen wollen.

Zum Löschen einer Rastertabelle benutzen Sie bitte Standard-SQL:

DROP TABLE mytable

Um nur eine Rasterspalte zu löschen und den Rest der Tabelle zu belassen, verwenden Sie bitte Standard-SQL

ALTER TABLE mytable DROP COLUMN rast

Die Tabelle verschwindet aus dem raster_columns Katalog, wenn die Tabelle oder die Spalte gelöscht wurde. Wenn allerdings nur die Constraints gelöscht werden, so wird die Rasterspalte weiterhin im raster_columns Katalog aufgeführt, aber es ist keine zusätzliche Information mehr vorhanden - abgesehen vom Spalten- und Tabellennamen.

Verfügbarkeit: 2.0.0

Beispiele

SELECT DropRasterConstraints ('myrasters','rast');
----RESULT output ---
t

-- die Änderungen in raster_columns überprüfen --
SELECT srid, scale_x, scale_y, blocksize_x, blocksize_y, num_bands, pixel_types, nodata_values
        FROM raster_columns
        WHERE r_table_name = 'myrasters';

 srid | scale_x | scale_y | blocksize_x | blocksize_y | num_bands | pixel_types| nodata_values
------+---------+---------+-------------+-------------+-----------+-------------+---------------
    0 |         |         |             |             |           |             |
                

Name

AddOverviewConstraints — Eine Rasterspalte als Übersicht für eine andere Rasterspalte kennzeichnen.

Synopsis

boolean AddOverviewConstraints(name ovschema, name ovtable, name ovcolumn, name refschema, name reftable, name refcolumn, int ovfactor);

boolean AddOverviewConstraints(name ovtable, name ovcolumn, name reftable, name refcolumn, int ovfactor);

Beschreibung

Fügt Constraints zu der Rasterspalte hinzu. Diese werden verwendet um die Information im raster_overviews Katalog anzuzeigen.

Der Parameter ovfactorr gibt den Multiplikator für den Maßstab der Übersichtsspalte an: ein höherer "overview factor" bedingt eine niedrigere Auflösung.

Falls die Parameter ovschema und refschema weggelassen werden, so wird die erste so benannte Tabelle verwendet, die beim Durchlaufen des search_path gefunden wird.

Verfügbarkeit: 2.0.0

Beispiele

CREATE TABLE res1 AS SELECT
ST_AddBand(
  ST_MakeEmptyRaster(1000, 1000, 0, 0, 2),
  1, '8BSI'::text, -129, NULL
) r1;

CREATE TABLE res2 AS SELECT
ST_AddBand(
  ST_MakeEmptyRaster(500, 500, 0, 0, 4),
  1, '8BSI'::text, -129, NULL
) r2;

SELECT AddOverviewConstraints('res2', 'r2', 'res1', 'r1', 2);

-- überprüfen, ob die Registrierung im View "raster_overviews" korrekt ist --
SELECT o_table_name ot, o_raster_column oc,
       r_table_name rt, r_raster_column rc,
       overview_factor f
FROM raster_overviews WHERE o_table_name = 'res2';
  ot  | oc |  rt  | rc | f
------+----+------+----+---
 res2 | r2 | res1 | r1 | 2
(1 row)
                

Name

DropOverviewConstraints — Löscht die Markierung einer Rasterspalte, die festlegt dass sie als Übersicht für eine andere Spalte dient.

Synopsis

boolean DropOverviewConstraints(name ovschema, name ovtable, name ovcolumn);

boolean DropOverviewConstraints(name ovtable, name ovcolumn);

Beschreibung

Jene Constraints einer Rasterspalte löschen, die sie als Übersicht einer anderen Rasterspalte in dem Rasterkatalog raster_overviews ausweisen.

Falls der Parameter ovschema weggelassen wird, so wird die erste so benannte Tabelle verwendet, die beim Durchlaufen des search_path gefunden wird.

Verfügbarkeit: 2.0.0


Name

PostGIS_GDAL_Version — Gibt die von PostGIS verwendete Version der GDAL-Bibliothek aus.

Synopsis

text PostGIS_GDAL_Version();

Beschreibung

Gibt die von PostGIS verwendete Version der GDAL-Bibliothek aus. Überprüft und meldet, ob GDAL die zugehörigen Dateien findet.

Beispiele

SELECT PostGIS_GDAL_Version();
       postgis_gdal_version
-----------------------------------
 GDAL 1.11dev, released 2013/04/13
                                

Name

PostGIS_Raster_Lib_Build_Date — Gibt einen vollständigen Bericht aus, wann die Rasterbibliothek kompiliert wurde.

Synopsis

text PostGIS_Raster_Lib_Build_Date();

Beschreibung

Gibt einen Bericht aus, wann die Rasterbibliothek kompiliert wurde.

Beispiele

SELECT PostGIS_Raster_Lib_Build_Date();
postgis_raster_lib_build_date
-----------------------------
2010-04-28 21:15:10

Name

PostGIS_Raster_Lib_Version — Gibt einen vollständigen Bericht über die Version und das Kompilationsdatum der Rasterbibliothek aus.

Synopsis

text PostGIS_Raster_Lib_Version();

Beschreibung

Gibt einen vollständigen Bericht über die Version und das Kompilationsdatum der Rasterbibliothek aus.

Beispiele

SELECT PostGIS_Raster_Lib_Version();
postgis_raster_lib_version
-----------------------------
 2.0.0

Siehe auch

???


Name

ST_GDALDrivers — Gibt eine Liste der Rasterformate aus, die von PostGIS über die Bibliothek GDAL unterstützt werden. Nur die Formate mit can_write=True können von ST_AsGDALRaster verwendet werden.

Synopsis

setof record ST_GDALDrivers(integer OUT idx, text OUT short_name, text OUT long_name, text OUT can_read, text OUT can_write, text OUT create_options);

Beschreibung

Gibt eine Liste der Rasterformate aus - short_name, long_name und die Optionen des Urhebers - die von GDAL unterstützt werden. Verwenden Sie den "short_name" als Übergabewert für den Parameter format vonST_AsGDALRaster. Die Optionen variieren, je nach dem mit welchen Treibern Ihre "libgdal" kompiliert wurde. create_optionsgibt einen XML-formatierten Satz an CreationOptionList/Option zurück, der aus dem Namen und optional aus type, descriptionund VALUE für jede Option eines bestimmten Treibers besteht.

Änderung: 2.5.0 - die Spalten can_read und can_write hinzugefügt.

Änderung: 2.0.6, 2.1.3 - standardmäßig ist kein Treiber aktiviert, solange die GUC oder die Umgebungsvariable "gdal_enabled_drivers" nicht gesetzt sind.

Verfügbarkeit: 2.0.0 - GDAL >= 1.6.0.

Beispiele: Treiber-Liste

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SELECT short_name, long_name, can_write
FROM st_gdaldrivers()
ORDER BY short_name;

   short_name    |                          long_name                          | can_write
-----------------+-------------------------------------------------------------+-----------
 AAIGrid         | Arc/Info ASCII Grid                                         | t
 ACE2            | ACE2                                                        | f
 ADRG            | ARC Digitized Raster Graphics                               | f
 AIG             | Arc/Info Binary Grid                                        | f
 AirSAR          | AirSAR Polarimetric Image                                   | f
 ARG             | Azavea Raster Grid format                                   | t
 BAG             | Bathymetry Attributed Grid                                  | f
 BIGGIF          | Graphics Interchange Format (.gif)                          | f
 BLX             | Magellan topo (.blx)                                        | t
 BMP             | MS Windows Device Independent Bitmap                        | f
 BSB             | Maptech BSB Nautical Charts                                 | f
 PAux            | PCI .aux Labelled                                           | f
 PCIDSK          | PCIDSK Database File                                        | f
 PCRaster        | PCRaster Raster File                                        | f
 PDF             | Geospatial PDF                                              | f
 PDS             | NASA Planetary Data System                                  | f
 PDS4            | NASA Planetary Data System 4                                | t
 PLMOSAIC        | Planet Labs Mosaics API                                     | f
 PLSCENES        | Planet Labs Scenes API                                      | f
 PNG             | Portable Network Graphics                                   | t
 PNM             | Portable Pixmap Format (netpbm)                             | f
 PRF             | Racurs PHOTOMOD PRF                                         | f
 R               | R Object Data Store                                         | t
 Rasterlite      | Rasterlite                                                  | t
 RDA             | DigitalGlobe Raster Data Access driver                      | f
 RIK             | Swedish Grid RIK (.rik)                                     | f
 RMF             | Raster Matrix Format                                        | f
 ROI_PAC         | ROI_PAC raster                                              | f
 RPFTOC          | Raster Product Format TOC format                            | f
 RRASTER         | R Raster                                                    | f
 RS2             | RadarSat 2 XML Product                                      | f
 RST             | Idrisi Raster A.1                                           | t
 SAFE            | Sentinel-1 SAR SAFE Product                                 | f
 SAGA            | SAGA GIS Binary Grid (.sdat, .sg-grd-z)                     | t
 SAR_CEOS        | CEOS SAR Image                                              | f
 SDTS            | SDTS Raster                                                 | f
 SENTINEL2       | Sentinel 2                                                  | f
 SGI             | SGI Image File Format 1.0                                   | f
 SNODAS          | Snow Data Assimilation System                               | f
 SRP             | Standard Raster Product (ASRP/USRP)                         | f
 SRTMHGT         | SRTMHGT File Format                                         | t
 Terragen        | Terragen heightfield                                        | f
 TIL             | EarthWatch .TIL                                             | f
 TSX             | TerraSAR-X Product                                          | f
 USGSDEM         | USGS Optional ASCII DEM (and CDED)                          | t
 VICAR           | MIPL VICAR file                                             | f
 VRT             | Virtual Raster                                              | t
 WCS             | OGC Web Coverage Service                                    | f
 WMS             | OGC Web Map Service                                         | t
 WMTS            | OGC Web Map Tile Service                                    | t
 XPM             | X11 PixMap Format                                           | t
 XYZ             | ASCII Gridded XYZ                                           | t
 ZMap            | ZMap Plus Grid                                              | t

Beispiele: Liste mit den Optionen für jeden Treiber

-- Ausgabe der XML-Spalte, mit den Erstellungsoptionen eines JPEGs, in eine Tabelle --
-- Sie können diese Optionen als Übergabewert für ST_AsGDALRaster verwenden
SELECT (xpath('@name', g.opt))[1]::text As oname,
       (xpath('@type', g.opt))[1]::text As otype,
       (xpath('@description', g.opt))[1]::text As descrip
FROM (SELECT unnest(xpath('/CreationOptionList/Option', create_options::xml)) As opt
FROM  st_gdaldrivers()
WHERE short_name = 'JPEG') As g;

       oname        |  otype  |      descrip
--------------------+---------+-------------------------------------------------
 PROGRESSIVE        | boolean | whether to generate a progressive JPEG
 QUALITY            | int     | good=100, bad=0, default=75
 WORLDFILE          | boolean | whether to geneate a worldfile
 INTERNAL_MASK      | boolean | whether to generate a validity mask
 COMMENT            | string  | Comment
 SOURCE_ICC_PROFILE | string  | ICC profile encoded in Base64
 EXIF_THUMBNAIL     | boolean | whether to generate an EXIF thumbnail(overview).
                                By default its max dimension will be 128
 THUMBNAIL_WIDTH    | int     | Forced thumbnail width
 THUMBNAIL_HEIGHT   | int     | Forced thumbnail height
(9 rows)
-- unbearbeitete XML-Ausgabe für die Erstellungsoptionen eines eoTiff --
SELECT create_options
FROM st_gdaldrivers()
WHERE short_name = 'GTiff';

<CreationOptionList>
    <Option name="COMPRESS" type="string-select">
        <Value
>NONE</Value>
        <Value
>LZW</Value>
        <Value
>PACKBITS</Value>
        <Value
>JPEG</Value>
        <Value
>CCITTRLE</Value>
        <Value
>CCITTFAX3</Value>
        <Value
>CCITTFAX4</Value>
        <Value
>DEFLATE</Value>
    </Option>
    <Option name="PREDICTOR" type="int" description="Predictor Type"/>
    <Option name="JPEG_QUALITY" type="int" description="JPEG quality 1-100" default="75"/>
    <Option name="ZLEVEL" type="int" description="DEFLATE compression level 1-9" default="6"/>
    <Option name="NBITS" type="int" description="BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31)"/>
    <Option name="INTERLEAVE" type="string-select" default="PIXEL">
        <Value
>BAND</Value>
        <Value
>PIXEL</Value>
    </Option>
    <Option name="TILED" type="boolean" description="Switch to tiled format"/>
    <Option name="TFW" type="boolean" description="Write out world file"/>
    <Option name="RPB" type="boolean" description="Write out .RPB (RPC) file"/>
    <Option name="BLOCKXSIZE" type="int" description="Tile Width"/>
    <Option name="BLOCKYSIZE" type="int" description="Tile/Strip Height"/>
    <Option name="PHOTOMETRIC" type="string-select">
        <Value
>MINISBLACK</Value>
        <Value
>MINISWHITE</Value>
        <Value
>PALETTE</Value>
        <Value
>RGB</Value>
        <Value
>CMYK</Value>
        <Value
>YCBCR</Value>
        <Value
>CIELAB</Value>
        <Value
>ICCLAB</Value>
        <Value
>ITULAB</Value>
    </Option>
    <Option name="SPARSE_OK" type="boolean" description="Can newly created files have missing blocks?" default="FALSE"/>
    <Option name="ALPHA" type="boolean" description="Mark first extrasample as being alpha"/>
    <Option name="PROFILE" type="string-select" default="GDALGeoTIFF">
        <Value
>GDALGeoTIFF</Value>
        <Value
>GeoTIFF</Value>
        <Value
>BASELINE</Value>
    </Option>
    <Option name="PIXELTYPE" type="string-select">
        <Value
>DEFAULT</Value>
        <Value
>SIGNEDBYTE</Value>
    </Option>
    <Option name="BIGTIFF" type="string-select" description="Force creation of BigTIFF file">
        <Value
>YES</Value>
        <Value
>NO</Value>
        <Value
>IF_NEEDED</Value>
        <Value
>IF_SAFER</Value>
    </Option>
    <Option name="ENDIANNESS" type="string-select" default="NATIVE" description="Force endianness of created file. For DEBUG purpose mostly">
        <Value
>NATIVE</Value>
        <Value
>INVERTED</Value>
        <Value
>LITTLE</Value>
        <Value
>BIG</Value>
    </Option>
    <Option name="COPY_SRC_OVERVIEWS" type="boolean" default="NO" description="Force copy of overviews of source dataset (CreateCopy())"/>
</CreationOptionList
>

-- Ausgabe der XML-Spalte, mit den Erstellungsoptionen eines GTiff, in eine Tabelle  --
SELECT (xpath('@name', g.opt))[1]::text As oname,
       (xpath('@type', g.opt))[1]::text As otype,
       (xpath('@description', g.opt))[1]::text As descrip,
       array_to_string(xpath('Value/text()', g.opt),', ') As vals
FROM (SELECT unnest(xpath('/CreationOptionList/Option', create_options::xml)) As opt
FROM  st_gdaldrivers()
WHERE short_name = 'GTiff') As g;

       oname        |     otype     |                               descrip                                |                                   vals
--------------------+---------------+----------------------------------------------------------------------+---------------------------------------------------------------------------
 COMPRESS           | string-select |                                                                      | NONE, LZW, PACKBITS, JPEG, CCITTRLE, CCITTFAX3, CCITTFAX4, DEFLATE
 PREDICTOR          | int           | Predictor Type                                                       |
 JPEG_QUALITY       | int           | JPEG quality 1-100                                                   |
 ZLEVEL             | int           | DEFLATE compression level 1-9                                        |
 NBITS              | int           | BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31) |
 INTERLEAVE         | string-select |                                                                      | BAND, PIXEL
 TILED              | boolean       | Switch to tiled format                                               |
 TFW                | boolean       | Write out world file                                                 |
 RPB                | boolean       | Write out .RPB (RPC) file                                            |
 BLOCKXSIZE         | int           | Tile Width                                                           |
 BLOCKYSIZE         | int           | Tile/Strip Height                                                    |
 PHOTOMETRIC        | string-select |                                                                      | MINISBLACK, MINISWHITE, PALETTE, RGB, CMYK, YCBCR, CIELAB, ICCLAB, ITULAB
 SPARSE_OK          | boolean       | Can newly created files have missing blocks?                         |
 ALPHA              | boolean       | Mark first extrasample as being alpha                                |
 PROFILE            | string-select |                                                                      | GDALGeoTIFF, GeoTIFF, BASELINE
 PIXELTYPE          | string-select |                                                                      | DEFAULT, SIGNEDBYTE
 BIGTIFF            | string-select | Force creation of BigTIFF file                                       | YES, NO, IF_NEEDED, IF_SAFER
 ENDIANNESS         | string-select | Force endianness of created file. For DEBUG purpose mostly           | NATIVE, INVERTED, LITTLE, BIG
 COPY_SRC_OVERVIEWS | boolean       | Force copy of overviews of source dataset (CreateCopy())             |
(19 rows)

Name

UpdateRasterSRID — Änderung der SRID aller Raster in der vom Anwender angegebenen Spalte und Tabelle.

Synopsis

raster UpdateRasterSRID(name schema_name, name table_name, name column_name, integer new_srid);

raster UpdateRasterSRID(name table_name, name column_name, integer new_srid);

Beschreibung

Änderung der SRID aller Raster in der vom Anwender angegebenen Spalte und Tabelle. Diese Funktion löscht alle entsprechenden Constraints (extent, alignment und die SRID) der Spalte bevor die SRID der Rasterspalte geändert wird.

[Note]

Die Daten des Rasters (Pixelwerte der Bänder) bleiben von dieser Funktion unangetastet. Es werden lediglich die Metadaten des Rasters geändert.

Verfügbarkeit: 2.1.0

Siehe auch

UpdateGeometrySRID


Name

ST_CreateOverview — Erzeugt eine Version des gegebenen Raster-Coverage mit geringerer Auflösung.

Synopsis

regclass ST_CreateOverview(regclass tab, name col, int factor, text algo='NearestNeighbor');

Beschreibung

Erzeugt eine Übersichtstabelle mit skalierten Kacheln der Ursprungstabelle. Die Ausgabekacheln haben dieselbe Größe und haben die gleiche räumliche Ausdehnung wie die Eingabekacheln mit einer niedrigeren Auflösung (die Pixelgröße ist in beiden Richtungen 1/factor der Ursprünglichen).

Auf die Übersichtstabelle werden die Constraints gesetzt und sie steht über den Katalog raster_overviews zur Verfügung.

Die Optionen für den Algorithmus sind: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline' und 'Lanczos'. Siehe GDAL Warp resampling methods für weitere Details.

Verfügbarkeit: 2.2.0

Beispiel

Ausgabe mit besserer Qualität, aber langsamerer Formaterstellung

SELECT ST_CreateOverview('mydata.mytable'::regclass, 'rast', 2, 'Lanczos');

Schnellere Berechnung der Ausgabe mittels "Nearest Neighbor" (Standardeinstellung)

SELECT ST_CreateOverview('mydata.mytable'::regclass, 'rast', 2);

9.3. Raster Constructors

ST_AddBand — Gibt einen Raster mit den neu hinzugefügten Band(Bändern) aus. Der Typ , der Ausgangswert und der Index für den Speicherort des Bandes kann angegeben werden. Wenn kein Index angegeben ist, wird das Band am Ende hinzugefügt.
ST_AsRaster — Konvertiert den geometrischen Datentyp von PostGIS in einen PostGIS Raster.
ST_Band — Gibt einen oder mehrere Bänder eines bestehenden Rasters als neuen Raster aus. Nützlich um neue Raster aus bestehenden Rastern abzuleiten.
ST_MakeEmptyCoverage — Bedeckt die georeferenzierte Fläche mit einem Gitter aus leeren Rasterkacheln.
ST_MakeEmptyRaster — Gibt einen leeren Raster (ohne Bänder), mit den gegebenen Dimensionen (width & height), upperleft X und Y, Pixelgröße, Rotation (scalex, scaley, skewx & skewy) und Koordinatenreferenzsystem (SRID), zurück. Wenn ein Raster übergeben wird, dann wird ein neuer Raster mit der selben Größe, Ausrichtung und SRID zurückgegeben. Wenn SRID nicht angegeben ist, wird das Koordinatenreferenzsystem auf "unknown" (0) gesetzt.
ST_Tile — Gibt Raster, die aus einer Teilungsoperation des Eingaberasters resultieren, mit den gewünschten Dimensionen aus.
ST_Retile — Gibt konfigurierte Kacheln eines beliebig gekachelten Rastercoverage aus.
ST_FromGDALRaster — Erzeugt einen Raster aus einer von GDAL unterstützten Rasterdatei.

Name

ST_AddBand — Gibt einen Raster mit den neu hinzugefügten Band(Bändern) aus. Der Typ , der Ausgangswert und der Index für den Speicherort des Bandes kann angegeben werden. Wenn kein Index angegeben ist, wird das Band am Ende hinzugefügt.

Synopsis

(1) raster ST_AddBand(raster rast, addbandarg[] addbandargset);

(2) raster ST_AddBand(raster rast, integer index, text pixeltype, double precision initialvalue=0, double precision nodataval=NULL);

(3) raster ST_AddBand(raster rast, text pixeltype, double precision initialvalue=0, double precision nodataval=NULL);

(4) raster ST_AddBand(raster torast, raster fromrast, integer fromband=1, integer torastindex=at_end);

(5) raster ST_AddBand(raster torast, raster[] fromrasts, integer fromband=1, integer torastindex=at_end);

(6) raster ST_AddBand(raster rast, integer index, text outdbfile, integer[] outdbindex, double precision nodataval=NULL);

(7) raster ST_AddBand(raster rast, text outdbfile, integer[] outdbindex, integer index=at_end, double precision nodataval=NULL);

Beschreibung

Gibt einen Raster mit einem an der gegebenen Position (index) neu hinzugefügten Band zurück. aus. Der Typ, der Ausgangswert und der Wert für NODATA kann übergeben werden. Wenn kein Index angegeben ist, wird das Band am Ende hinzugefügt. Wenn fromband nicht angegeben ist, wird Band 1 angenommen. Der Pixeltyp wird als Zeichenfolge übergeben, wie in ST_BandPixelType festgelegt. Falls ein bereits bestehender Index angegeben wird, werden alle folgenden Bänder >= diesem Index um 1 erhöht. Wenn ein größerer Ausgangswert als das Maximum des Pixeltyps angegeben ist, dann wird der Ausgangswert auf den höchsten erlaubten Wert des Pixeltyps gesetzt.

Bei der Variante, welche ein Feld von addbandarg entgegennimmt (Variante 1), ist ein bestimmter Indexwert von "addbandarg" auf den Raster zu dem Zeitpunkt bezogen, als das Band mit diesem "addbandarg" zum Raster hinzugefügt wurde. Siehe das Beispiel "Mehrere neue Bänder" unterhalb.

Bei der Variante, die ein Feld an Rastern (Variante 5) entgegennimmt, wird wenn torast NULL ist, das fromband Band eines jeden Rasters in diesem Feld, in einem neuen Raster akkumuliert.

Bei den Varianten, die ein outdbfile (Varianten 6 und 7) entgegennehmen, muss der Wert den vollständigen Pfad der Rasterdatei enthalten. Die Datei muss auch für die PostgreSQL-Instanz zugänglich sein.

Erweiterung: 2.1.0 - Unterstützung für "addbandarg" hinzugefügt.

Erweiterung: 2.1.0 Unterstützung für die neuen "out-db" Bänder hinzugefügt.

Beispiele: Ein einzelnes, neues Band

-- Ein weiteres Band vom Typ "vorzeichenlose 8-Bit Ganzzahl" mit einem Anfangswert von 200 für die Pixel
UPDATE dummy_rast
    SET rast = ST_AddBand(rast,'8BUI'::text,200)
WHERE rid = 1;
                                
-- Erstellt einen leeren Raster mit 100x100 Einheiten, x und y der oberen linken Ecke sind jeweils 0, fügt 2 Bänder hinzu (Band 1 ist ein boolescher 0/1 Bit-Switch, Band2 beschränkt die Werte auf 0-15)
-- verwendet "addbandargs"
INSERT INTO dummy_rast(rid,rast)
    VALUES(10, ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 1, -1, 0, 0, 0),
        ARRAY[
                ROW(1, '1BB'::text, 0, NULL),
                ROW(2, '4BUI'::text, 0, NULL)
                        ]::addbandarg[]
     )
    );

-- Ausgabe der Metadaten der Rasterbänder zur Kontrolle --
SELECT  (bmd).*
FROM (SELECT ST_BandMetaData(rast,generate_series(1,2)) As bmd
    FROM dummy_rast WHERE rid = 10) AS foo;
 --result --
 pixeltype | nodatavalue | isoutdb | path
-----------+----------------+-------------+---------+------
 1BB       |             | f       |
 4BUI      |             | f       |


-- Ausgabe der Metadaten des Rasters -
SELECT  (rmd).width, (rmd).height, (rmd).numbands
FROM (SELECT ST_MetaData(rast) As rmd
    FROM dummy_rast WHERE rid = 10) AS foo;
-- result --
 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
------------+------------+-------+--------+------------+------------+-------+-------+------+----------
          0 |          0 |   100 |    100 |      1 |     -1 |     0 |     0 |   0 |        2
                                

Beispiele: Mehrere neue Bänder

SELECT
        *
FROM ST_BandMetadata(
        ST_AddBand(
                ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
                ARRAY[
                        ROW(NULL, '8BUI', 255, 0),
                        ROW(NULL, '16BUI', 1, 2),
                        ROW(2, '32BUI', 100, 12),
                        ROW(2, '32BF', 3.14, -1)
                ]::addbandarg[]
        ),
        ARRAY[]::integer[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path
---------+-----------+-------------+---------+------
       1 | 8BUI      |           0 | f       |
       2 | 32BF      |          -1 | f       |
       3 | 32BUI     |          12 | f       |
       4 | 16BUI     |           2 | f       |
                                
-- Aggregiert das 1ste Band einer Tabelle mit änlichen Rastern zu einem einzelnen Raster
-- Soviele Bänder wie "test_types" und soviele Zeilen (neuer Raster) wie Mäuse
-- ANMERKUNG: "ORDER BY test_type" wird erst ab PostgreSQL 9.0 unterstützt,
-- bei 8.4 und niedriger funktioniert dies meist, indem man die Daten in einer Unterabfrage sortiert (ohne Gewähr)
-- Der resultierende Raster hat ein Band für jeden "test_type", die Bänder sind alphabetisch nach dem "test_type" sortiert
-- Für Mausliebhaber: Bei dieser Übung werden keine Mäuse verletzt
SELECT
        mouse,
        ST_AddBand(NULL, array_agg(rast ORDER BY test_type), 1) As rast
FROM mice_studies
GROUP BY mouse;
                                

Beispiele: Neues Out-db Band

SELECT
        *
FROM ST_BandMetadata(
        ST_AddBand(
                ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
                '/home/raster/mytestraster.tif'::text, NULL::int[]
        ),
        ARRAY[]::integer[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path
---------+-----------+-------------+---------+------
       1 | 8BUI      |             | t       | /home/raster/mytestraster.tif
       2 | 8BUI      |             | t       | /home/raster/mytestraster.tif
       3 | 8BUI      |             | t       | /home/raster/mytestraster.tif
                                

Name

ST_AsRaster — Konvertiert den geometrischen Datentyp von PostGIS in einen PostGIS Raster.

Synopsis

raster ST_AsRaster(geometry geom, raster ref, text pixeltype, double precision value=1, double precision nodataval=0, boolean touched=false);

raster ST_AsRaster(geometry geom, raster ref, text[] pixeltype=ARRAY['8BUI'], double precision[] value=ARRAY[1], double precision[] nodataval=ARRAY[0], boolean touched=false);

raster ST_AsRaster(geometry geom, double precision scalex, double precision scaley, double precision gridx, double precision gridy, text pixeltype, double precision value=1, double precision nodataval=0, double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, double precision scalex, double precision scaley, double precision gridx=NULL, double precision gridy=NULL, text[] pixeltype=ARRAY['8BUI'], double precision[] value=ARRAY[1], double precision[] nodataval=ARRAY[0], double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, double precision scalex, double precision scaley, text pixeltype, double precision value=1, double precision nodataval=0, double precision upperleftx=NULL, double precision upperlefty=NULL, double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, double precision scalex, double precision scaley, text[] pixeltype, double precision[] value=ARRAY[1], double precision[] nodataval=ARRAY[0], double precision upperleftx=NULL, double precision upperlefty=NULL, double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, integer width, integer height, double precision gridx, double precision gridy, text pixeltype, double precision value=1, double precision nodataval=0, double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, integer width, integer height, double precision gridx=NULL, double precision gridy=NULL, text[] pixeltype=ARRAY['8BUI'], double precision[] value=ARRAY[1], double precision[] nodataval=ARRAY[0], double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, integer width, integer height, text pixeltype, double precision value=1, double precision nodataval=0, double precision upperleftx=NULL, double precision upperlefty=NULL, double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, integer width, integer height, text[] pixeltype, double precision[] value=ARRAY[1], double precision[] nodataval=ARRAY[0], double precision upperleftx=NULL, double precision upperlefty=NULL, double precision skewx=0, double precision skewy=0, boolean touched=false);

Beschreibung

Konvertiert den geometrischen Datentyp von PostGIS in einen PostGIS Raster. Es gibt viele Varianten, die jeweils drei Gruppen von Möglichkeiten bieten um die Ausrichtung/alignment und die Pixelgröße des resultierenden Rasters zu bestimmen.

Die erste Gruppe besteht aus den ersten zwei Varianten und erzeugt einen Raster mit derselben Ausrichtung (scalex, scaley, gridx und gridy), dem selben Pixeltyp und NODATA Wert wie der gegebene Referenzraster. Üblicherweise wird der Referenzraster über einen Join übergeben, der aus der Tabelle mit der Geometrie und der Tabelle mit dem Referenzraster gebildet wird.

Die zweite Gruppe setzt sich aus vier Varianten zusammen und erlaubt Ihnen, die Dimensionen des Rasters über die Parameter der Pixelgröße festzulegen (scalex & scaley und skewx & skewy). Die width & height des resultierenden Rasters wird an die Ausdehnung der Geometrie angepasst. In den meisten Fällen müssen Sie eine Typumwandlung der Eingabewerte scalex & scaley von Integer nach Double Precision vornehmen, damit PostgreSQL die richtige Variante auswählt.

Die zweite Gruppe setzt sich aus vier Varianten zusammen und erlaubt Ihnen, die Dimensionen des Rasters über die Dimensionen des Rasters zu fixieren (width & height). Die Parameter der Pixelgröße (scalex & scaley und skewx & skewy). des resultierenden Rasters werden an die Ausdehnung der Geometrie angepasst.

Die ersten zwei Varianten der beiden letzten Gruppen erlauben es Ihnen, an einer beliebigen Ecke des Führungsgitters (gridx& gridy) auszurichten; und die letzten zwei Varianten nehmen die obere linke Ecke (upperleftx & upperlefty) entgegen.

Jede Variantengruppe erlaubt die Erstellung eines Rasters sowohl mit einem als auch mit mehreren Bändern. Um einen Raster mit mehreren Bändern zu erstellen, können Sie ein Feld mit Pixeltypen (pixeltype[]), ein Feld mit Ausgangswerten (value) und ein Feld mit NODATA Werten (nodataval) bereitstellen. Falls nicht, werden die Standardwerte - 8BUI für den Pixeltyp, 1 für den Ausgangswert und 0 für NODATA - angenommen.

Der Ausgaberaster hat dieselbe Koordinatenreferenz wie die Ausgangsgeometrie. Die einzige Ausnahme bilden Varianten mit einem Referenzraster. In diesem Fall erhält der resultierende Raster dieselbe SRID wie der Referenzraster.

Der optionale Parameter touched ist standardmäßig FALSE und wird auf die GDAL Rasterungsoption ALL_TOUCHED abgebildet, welche bestimmt, ob Pixel die von Linien oder Polygonen nur berührt werden, ebenfalls gerastert werden sollen; und nicht nur die Pixel auf einem Linienzug oder mit dem Mittelpunkt innerhalb des Polygons.

Dies ist insbesondere in Verbindung mit ST_AsPNG und der Funktionsfamilie ST_AsGDALRaster, für die Erstellung von JPEGs oder PNGs aus einer Geometrie direkt von der Datenbank heraus, nützlich.

Verfügbarkeit: 2.0.0 - GDAL >= 1.6.0.

[Note]

Zur Zeit können komplexe geometrische Datentypen wie Kurven, TINS und polyedrische Oberflächen nicht gerendert werden, was aber möglich sein sollte, sobald GDAL dies kann.

Beispiele: Ausgabe der Geometrien als PNG-Datei

Ein schwarzer Kreis

-- gibt einen schwarzen Kreiis aus, der 150 x 150 Pixel einnimmt --
SELECT ST_AsPNG(ST_AsRaster(ST_Buffer(ST_Point(1,5),10),150, 150));

Ein Beispiel für einen Puffer; die Grafik ist direkt in PostGIS erstellt

-- Die Bänder werden als RGB Bänder abgebildet - der Wert (118,154,118) ist aquamarin  --
SELECT ST_AsPNG(
        ST_AsRaster(
                ST_Buffer(
                        ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 10,'join=bevel'),
                        200,200,ARRAY['8BUI', '8BUI', '8BUI'], ARRAY[118,154,118], ARRAY[0,0,0]));

Name

ST_Band — Gibt einen oder mehrere Bänder eines bestehenden Rasters als neuen Raster aus. Nützlich um neue Raster aus bestehenden Rastern abzuleiten.

Synopsis

raster ST_Band(raster rast, integer[] nbands = ARRAY[1]);

raster ST_Band(raster rast, integer nband);

raster ST_Band(raster rast, text nbands, character delimiter=,);

Beschreibung

Gibt einen oder mehrere Bänder eines bestehenden Rasters in Form eines neuen Raster aus. Nützlich um neue Raster aus bestehenden Rastern abzuleiten, um einen Export auf ausgewählte Bänder einzuschränken, oder um die Reihenfolge der Rasterbänder neu zu ordnen. Wenn kein Band angegeben ist, oder keines der spezifizierten Bänder im Raster existiert, dann werden alle Bänder zurückgegeben. Dient auch als Hilfsfunktion für verschiedene Funktionen, wie das Löschen eines Bandes.

[Warning]

Bei der Funktionsvariante mit nbands als Text, ist das Standardtrennzeichen ,; d.h.: Sie können '1,2,3' abfragen und falls Sie ein anderes Trennzeichen verwenden wollen ST_Band(rast, '1@2@3', '@'). Wenn Sie mehrere Bänder abfragen, empfehlen wir Ihnen unbedingt die Feldvariante der Funktion zu verwenden, z.B. ST_Band(rast, '{1,2,3}'::int[]);, da die Variante mit der text Liste der Bänder in zukünftigen Versionen von PostGIS entfernt werden könnte.

Verfügbarkeit: 2.0.0

Beispiele

-- Erzeugt 2 neue Raster:: 1 enthält das Band 1 des Dummy, das Zweite enthält Band 2 des Dummy; anschließend als 2BUI neu klassifiziert
SELECT ST_NumBands(rast1) As numb1, ST_BandPixelType(rast1) As pix1,
 ST_NumBands(rast2) As numb2,  ST_BandPixelType(rast2) As pix2
FROM (
    SELECT ST_Band(rast) As rast1, ST_Reclass(ST_Band(rast,3), '100-200):1, [200-254:2', '2BUI') As rast2
        FROM dummy_rast
        WHERE rid = 2) As foo;

 numb1 | pix1 | numb2 | pix2
-------+------+-------+------
     1 | 8BUI |     1 | 2BUI
                                        
-- Gibt die Bänder 2 und 3 aus. Verwendet den Syntax zur Typumwandlung von Feldern
SELECT ST_NumBands(ST_Band(rast, '{2,3}'::int[])) As num_bands
    FROM dummy_rast WHERE rid=2;

num_bands
----------
2

-- Gibt Die Bänder 2 und 3 aus. Verwendet ein Feld um die Bänder zu bestimmen
SELECT ST_NumBands(ST_Band(rast, ARRAY[2,3])) As num_bands
    FROM dummy_rast
WHERE rid=2;
                                        

Original (COLUMN rast)

dupe_band

sing_band

--Erstellt einen neuen Raster mit dem 2ten Band des Originals und zweimal dem 1sten Band,
-- sowie einen weiteren Raster mit dem dritten Band
SELECT rast, ST_Band(rast, ARRAY[2,1,1]) As dupe_band,
        ST_Band(rast, 3) As sing_band
FROM samples.than_chunked
WHERE rid=35;
                                        

Name

ST_MakeEmptyCoverage — Bedeckt die georeferenzierte Fläche mit einem Gitter aus leeren Rasterkacheln.

Synopsis

raster ST_MakeEmptyCoverage(integer tilewidth, integer tileheight, integer width, integer height, double precision upperleftx, double precision upperlefty, double precision scalex, double precision scaley, double precision skewx, double precision skewy, integer srid=unknown);

Beschreibung

Erzeugt Rasterkacheln mit ST_MakeEmptyRaster. Die Größe des Gitters wird über width & height angegeben. Die Kachelgröße über tilewidth & tileheight. Die abgedeckte georeferenzierte Fläche reicht vom oberen linken Eck (upperleftx, upperlefty) bis zum unteren rechten Eck (upperleftx + width * scalex, upperlefty + height * scaley).

[Note]

Beachten Sie bitte, dass bei Rastern "scaley" im Allgemeinen negativ und "scalex" positiv ist. Dadurch hat das untere rechte Eck einen niedrigeren Y-Wert und einen höheren X-Wert als die obere rechte Ecke.

Verfügbarkeit: 2.4.0

Grundlegende Beispiele

Erzeugt ein 4x4 Gitter aus 16 Kacheln, um die WGS84 Fläche vom linken oberen Eck (22, 77) zum rechten unteren Eck (55, 33) abzudecken.

SELECT (ST_MetaData(tile)).* FROM ST_MakeEmptyCoverage(1, 1, 4, 4, 22, 33, (55 - 22)/(4)::float, (33 - 77)/(4)::float, 0., 0., 4326) tile;

 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
-------------------------------------------------------------------------------------
         22 |         33 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
      30.25 |         33 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
       38.5 |         33 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
      46.75 |         33 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
         22 |         22 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
      30.25 |         22 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
       38.5 |         22 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
      46.75 |         22 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
         22 |         11 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
      30.25 |         11 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
       38.5 |         11 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
      46.75 |         11 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
         22 |          0 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
      30.25 |          0 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
       38.5 |          0 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0
      46.75 |          0 |     1 |      1 |   8.25 |    -11 |     0 |     0 | 4326 |        0

Siehe auch

ST_MakeEmptyRaster


Name

ST_MakeEmptyRaster — Gibt einen leeren Raster (ohne Bänder), mit den gegebenen Dimensionen (width & height), upperleft X und Y, Pixelgröße, Rotation (scalex, scaley, skewx & skewy) und Koordinatenreferenzsystem (SRID), zurück. Wenn ein Raster übergeben wird, dann wird ein neuer Raster mit der selben Größe, Ausrichtung und SRID zurückgegeben. Wenn SRID nicht angegeben ist, wird das Koordinatenreferenzsystem auf "unknown" (0) gesetzt.

Synopsis

raster ST_MakeEmptyRaster(raster rast);

raster ST_MakeEmptyRaster(integer width, integer height, float8 upperleftx, float8 upperlefty, float8 scalex, float8 scaley, float8 skewx, float8 skewy, integer srid=unknown);

raster ST_MakeEmptyRaster(integer width, integer height, float8 upperleftx, float8 upperlefty, float8 pixelsize);

Beschreibung

Gibt einen leeren Raster (ohne Bänder), mit den gegebenen Dimensionen (width & height), georeferenziert in geodätischen (oder geographischen) Koordinaten, oberes linkes X (upperleftx), oberes linkes Y (upperlefty), Pixelgröße, Rotation (scalex, scaley, skewx & skewy) und Koordinatenreferenzsystem (SRID), zurück.

Die letzte Version verwendet einen einzelnen Parameter um die Pixelgröße festzulegen. "scalex" wird auf diesen Übergabewert und "scaley" auf den negativen Wert davon gesetzt. "skewx" und "skewy" werden auf 0 gesetzt.

Wird ein bestehender Raster übergeben, so wird ein neuer Raster mit den gleichen Metadateneinstellungen erstellt (ohne die Bänder).

Wenn die SRID nicht angegeben ist, wird sie standardmäßig auf 0 gesetzt. Nachdem Sie einen leeren Raster erzeugt haben, werden Sie vermutlich Bänder hinzufügen und eventuell auch bearbeiten wollen. Siehe ST_AddBand um die Bänder festzulegen und ST_SetValue um Ausgangswerte für die Pixel zu setzen.

Beispiele

INSERT INTO dummy_rast(rid,rast)
VALUES(3, ST_MakeEmptyRaster( 100, 100, 0.0005, 0.0005, 1, 1, 0, 0, 4326) );

--verwendet einen bestehenden Raster als Vorlage für einen neuen Raster
INSERT INTO dummy_rast(rid,rast)
SELECT 4, ST_MakeEmptyRaster(rast)
FROM dummy_rast WHERE rid = 3;

-- Ausgabe der Metadaten des oben hinzugefügten Rasterss
SELECT rid, (md).*
FROM (SELECT rid, ST_MetaData(rast) As md
        FROM dummy_rast
        WHERE rid IN(3,4)) As foo;

-- output --
 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
-----+------------+------------+-------+--------+------------+------------+-------+-------+------+----------
   3 |     0.0005 |     0.0005 |   100 |    100 |          1 |          1 |    0  |     0 | 4326 |        0
   4 |     0.0005 |     0.0005 |   100 |    100 |          1 |          1 |    0  |     0 | 4326 |        0
                                

Name

ST_Tile — Gibt Raster, die aus einer Teilungsoperation des Eingaberasters resultieren, mit den gewünschten Dimensionen aus.

Synopsis

setof raster ST_Tile(raster rast, int[] nband, integer width, integer height, boolean padwithnodata=FALSE, double precision nodataval=NULL);

setof raster ST_Tile(raster rast, integer nband, integer width, integer height, boolean padwithnodata=FALSE, double precision nodataval=NULL);

setof raster ST_Tile(raster rast, integer width, integer height, boolean padwithnodata=FALSE, double precision nodataval=NULL);

Beschreibung

Gibt Raster, die aus einer Teilungsoperation des Eingaberasters resultieren, mit den gewünschten Dimensionen aus.

Wenn padwithnodata = FALSE, dann können die Eckkacheln auf der rechten Seite und auf der unteren Seite andere Dimensionen als die übrigen Kacheln aufweisen. Wenn padwithnodata = TRUE, dann haben alle Kacheln dieselbe Dimension und die Eckkacheln werden eventuell mit NODATA Werten aufgefüllt. Wenn für die Rasterbänder keine NODATA Werte festgelegt sind, können Sie diese mit nodataval spezifizieren.

[Note]

Wenn das Band des Eingaberasters "out-of-db" ist, dann ist das entsprechende Band des Ausgaberasters auch "out-of-db".

Verfügbarkeit: 2.1.0

Beispiele

WITH foo AS (
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '8BUI', 10, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, 0, 1, -1, 0, 0, 0), 1, '8BUI', 2, 0), 2, '8BUI', 20, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, 0, 1, -1, 0, 0, 0), 1, '8BUI', 3, 0), 2, '8BUI', 30, 0) AS rast UNION ALL

        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -3, 1, -1, 0, 0, 0), 1, '8BUI', 4, 0), 2, '8BUI', 40, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -3, 1, -1, 0, 0, 0), 1, '8BUI', 5, 0), 2, '8BUI', 50, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -3, 1, -1, 0, 0, 0), 1, '8BUI', 6, 0), 2, '8BUI', 60, 0) AS rast UNION ALL

        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -6, 1, -1, 0, 0, 0), 1, '8BUI', 7, 0), 2, '8BUI', 70, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -6, 1, -1, 0, 0, 0), 1, '8BUI', 8, 0), 2, '8BUI', 80, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -6, 1, -1, 0, 0, 0), 1, '8BUI', 9, 0), 2, '8BUI', 90, 0) AS rast
), bar AS (
        SELECT ST_Union(rast) AS rast FROM foo
), baz AS (
        SELECT ST_Tile(rast, 3, 3, TRUE) AS rast FROM bar
)
SELECT
        ST_DumpValues(rast)
FROM baz;

              st_dumpvalues
------------------------------------------
 (1,"{{1,1,1},{1,1,1},{1,1,1}}")
 (2,"{{10,10,10},{10,10,10},{10,10,10}}")
 (1,"{{2,2,2},{2,2,2},{2,2,2}}")
 (2,"{{20,20,20},{20,20,20},{20,20,20}}")
 (1,"{{3,3,3},{3,3,3},{3,3,3}}")
 (2,"{{30,30,30},{30,30,30},{30,30,30}}")
 (1,"{{4,4,4},{4,4,4},{4,4,4}}")
 (2,"{{40,40,40},{40,40,40},{40,40,40}}")
 (1,"{{5,5,5},{5,5,5},{5,5,5}}")
 (2,"{{50,50,50},{50,50,50},{50,50,50}}")
 (1,"{{6,6,6},{6,6,6},{6,6,6}}")
 (2,"{{60,60,60},{60,60,60},{60,60,60}}")
 (1,"{{7,7,7},{7,7,7},{7,7,7}}")
 (2,"{{70,70,70},{70,70,70},{70,70,70}}")
 (1,"{{8,8,8},{8,8,8},{8,8,8}}")
 (2,"{{80,80,80},{80,80,80},{80,80,80}}")
 (1,"{{9,9,9},{9,9,9},{9,9,9}}")
 (2,"{{90,90,90},{90,90,90},{90,90,90}}")
(18 rows)
                                
WITH foo AS (
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '8BUI', 10, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, 0, 1, -1, 0, 0, 0), 1, '8BUI', 2, 0), 2, '8BUI', 20, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, 0, 1, -1, 0, 0, 0), 1, '8BUI', 3, 0), 2, '8BUI', 30, 0) AS rast UNION ALL

        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -3, 1, -1, 0, 0, 0), 1, '8BUI', 4, 0), 2, '8BUI', 40, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -3, 1, -1, 0, 0, 0), 1, '8BUI', 5, 0), 2, '8BUI', 50, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -3, 1, -1, 0, 0, 0), 1, '8BUI', 6, 0), 2, '8BUI', 60, 0) AS rast UNION ALL

        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -6, 1, -1, 0, 0, 0), 1, '8BUI', 7, 0), 2, '8BUI', 70, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -6, 1, -1, 0, 0, 0), 1, '8BUI', 8, 0), 2, '8BUI', 80, 0) AS rast UNION ALL
        SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -6, 1, -1, 0, 0, 0), 1, '8BUI', 9, 0), 2, '8BUI', 90, 0) AS rast
), bar AS (
        SELECT ST_Union(rast) AS rast FROM foo
), baz AS (
        SELECT ST_Tile(rast, 3, 3, 2) AS rast FROM bar
)
SELECT
        ST_DumpValues(rast)
FROM baz;

              st_dumpvalues
------------------------------------------
 (1,"{{10,10,10},{10,10,10},{10,10,10}}")
 (1,"{{20,20,20},{20,20,20},{20,20,20}}")
 (1,"{{30,30,30},{30,30,30},{30,30,30}}")
 (1,"{{40,40,40},{40,40,40},{40,40,40}}")
 (1,"{{50,50,50},{50,50,50},{50,50,50}}")
 (1,"{{60,60,60},{60,60,60},{60,60,60}}")
 (1,"{{70,70,70},{70,70,70},{70,70,70}}")
 (1,"{{80,80,80},{80,80,80},{80,80,80}}")
 (1,"{{90,90,90},{90,90,90},{90,90,90}}")
(9 rows)
                                

Siehe auch

ST_Union, ST_Retile


Name

ST_Retile — Gibt konfigurierte Kacheln eines beliebig gekachelten Rastercoverage aus.

Synopsis

SETOF raster ST_Retile(regclass tab, name col, geometry ext, float8 sfx, float8 sfy, int tw, int th, text algo='NearestNeighbor');

Beschreibung

Gibt die Kacheln in einem bestimmten Maßstab (sfx, sfy), maximaler Größe (tw, th) und räumlicher Ausdehnung (ext) mit den Daten des angegebenen Raster-Coverages (tab, col) zurück.

Die Optionen für den Algorithmus sind: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline' und 'Lanczos'. Siehe GDAL Warp resampling methods für weitere Details.

Verfügbarkeit: 2.2.0

Siehe auch

ST_CreateOverview


Name

ST_FromGDALRaster — Erzeugt einen Raster aus einer von GDAL unterstützten Rasterdatei.

Synopsis

raster ST_FromGDALRaster(bytea gdaldata, integer srid=NULL);

Beschreibung

Erzeugt einen Raster aus einer von GDAL unterstützten Rasterdatei. gdaldata hat den Datentyp BYTEA und den Inhalt der GDAL Rasterdatei.

Wenn srid NULL ist, dann versucht die Funktion die SRID aus dem GDAL Raster automatisch zuzuweisen. Wenn srid angegeben ist, überschreibt dieser Werrt jede automatisch zugewiesene SRID.

Verfügbarkeit: 2.1.0

Beispiele

WITH foo AS (
        SELECT ST_AsPNG(ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0.1, -0.1, 0, 0, 4326), 1, '8BUI', 1, 0), 2, '8BUI', 2, 0), 3, '8BUI', 3, 0)) AS png
),
bar AS (
        SELECT 1 AS rid, ST_FromGDALRaster(png) AS rast FROM foo
        UNION ALL
        SELECT 2 AS rid, ST_FromGDALRaster(png, 3310) AS rast FROM foo
)
SELECT
        rid,
        ST_Metadata(rast) AS metadata,
        ST_SummaryStats(rast, 1) AS stats1,
        ST_SummaryStats(rast, 2) AS stats2,
        ST_SummaryStats(rast, 3) AS stats3
FROM bar
ORDER BY rid;

 rid |         metadata          |    stats1     |    stats2     |     stats3
-----+---------------------------+---------------+---------------+----------------
   1 | (0,0,2,2,1,-1,0,0,0,3)    | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3)
   2 | (0,0,2,2,1,-1,0,0,3310,3) | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3)
(2 rows)
                                

Siehe auch

ST_AsGDALRaster

9.4. Zugriffsfunktionen auf Raster

ST_GeoReference — Gibt die Metadaten der Georeferenzierung, die sich üblicherweise in einem sogenannten "World File befinden, im GDAL oder ESRI Format aus. Die Standardeinstellung ist GDAL.
ST_Height — Gibt die Höhe des Rasters in Pixel aus.
ST_IsEmpty — Gibt TRUE zurück, wenn der Raster leer ist (width = 0 and height = 0). Andernfalls wird FALSE zurückgegeben.
ST_MemSize — Gibt den Platzbedarf des Rasters (in Byte) aus.
ST_MetaData — Gibt die wesentlichen Metadaten eines Rasterobjektes, wie Zellgröße, Rotation (Versatz) etc. aus
ST_NumBands — Gibt die Anzahl der Bänder des Rasters aus.
ST_PixelHeight — Gibt die Pixelhöhe in den Einheiten des Koordinatenreferenzsystem aus.
ST_PixelWidth — Gibt die Pixelbreite in den Einheiten des Koordinatenreferenzsystems aus.
ST_ScaleX — Gibt die X-Komponente der Pixelbreite in den Einheiten des Koordinatenreferenzsystems aus.
ST_ScaleY — Gibt die Y-Komponente der Pixelhöhe in den Einheiten des Koordinatenreferenzsystems aus.
ST_RasterToWorldCoord — Gibt die obere linke Ecke des Rasters in geodätischem X und Y (Länge und Breite) für eine gegebene Spalte und Zeile aus. Spalte und Zeile wird von 1 aufwärts gezählt.
ST_RasterToWorldCoordX — Gibt die geodätische X Koordinate links oberhalb des Rasters, der Spalte und der Zeile aus. Die Nummerierung der Spalten und Zeilen beginnt mit 1.
ST_RasterToWorldCoordY — Gibt die geodätische Y Koordinate links oberhalb des Rasters, der Spalte und der Zeile aus. Die Nummerierung der Spalten und Zeilen beginnt mit 1.
ST_Rotation — Gibt die Rotation des Rasters im Bogenmaß aus.
ST_SkewX — Gibt den georeferenzierten Versatz in X-Richtung (oder den Rotationsparameter) aus.
ST_SkewY — Gibt den georeferenzierten Versatz in Y-Richtung (oder den Rotationsparameter) aus.
ST_SRID — Gibt den Identifikator des Koordinatenreferenzsystems des Rasters aus, das in der Tabelle "spatial_ref_sys" definiert ist.
ST_Summary — Gibt eine textliche Zusammenfassung des Rasterinhalts zurück.
ST_UpperLeftX — Gibt die obere linke X-Koordinate des Rasters im Koordinatenprojektionssystem aus.
ST_UpperLeftY — Gibt die obere linke Y-Koordinate des Rasters im Koordinatenprojektionssystem aus.
ST_Width — Gibt die Breite des Rasters in Pixel aus.
ST_WorldToRasterCoord — Gibt für ein geometrisches X und Y (geographische Länge und Breite) oder für eine Punktgeometrie im Koordinatenreferenzsystem des Rasters, die obere linke Ecke als Spalte und Zeile aus.
ST_WorldToRasterCoordX — Gibt für eine Punktgeometrie (pt) oder eine globale X- und Y-Koordinate (xw, yw) die Rasterspalte im globalen Koordinatenreferenzsystem des Rasters aus.
ST_WorldToRasterCoordY — Gibt für eine Punktgeometrie (pt) oder eine globale X- und Y-Koordinate (xw, yw) die Rasterzeile im globalen Koordinatenreferenzsystem des Rasters aus.

Name

ST_GeoReference — Gibt die Metadaten der Georeferenzierung, die sich üblicherweise in einem sogenannten "World File befinden, im GDAL oder ESRI Format aus. Die Standardeinstellung ist GDAL.

Synopsis

text ST_GeoReference(raster rast, text format=GDAL);

Beschreibung

Gibt die Metadaten der Georeferenzierung, die sich üblicherweise in einem sogenannten "World File befinden, inklusive "Carriage Return" im GDAL oder ESRI Format aus. Die Standardeinstellung ist GDAL. Der Datentyp ist die Zeichenfolge 'GDAL' oder 'ESRI'.

Die Formate unterscheiden sich wie folgt:

GDAL:

scalex
skewy
skewx
scaley
upperleftx
upperlefty

ESRI:

scalex
skewy
skewx
scaley
upperleftx + scalex*0.5
upperlefty + scaley*0.5

Beispiele

SELECT ST_GeoReference(rast, 'ESRI') As esri_ref, ST_GeoReference(rast, 'GDAL') As gdal_ref
 FROM dummy_rast WHERE rid=1;

   esri_ref   |   gdal_ref
--------------+--------------
 2.0000000000 | 2.0000000000
 0.0000000000 : 0.0000000000
 0.0000000000 : 0.0000000000
 3.0000000000 : 3.0000000000
 1.5000000000 : 0.5000000000
 2.0000000000 : 0.5000000000
                                

Name

ST_Height — Gibt die Höhe des Rasters in Pixel aus.

Synopsis

integer ST_Height(raster rast);

Beschreibung

Gibt die Höhe des Rasters aus.

Beispiele

SELECT rid, ST_Height(rast) As rastheight
FROM dummy_rast;

 rid | rastheight
-----+------------
   1 |         20
   2 |          5
                                

Siehe auch

ST_Width


Name

ST_IsEmpty — Gibt TRUE zurück, wenn der Raster leer ist (width = 0 and height = 0). Andernfalls wird FALSE zurückgegeben.

Synopsis

boolean ST_IsEmpty(raster rast);

Beschreibung

Gibt TRUE zurück, wenn der Raster leer ist (width = 0 and height = 0). Andernfalls wird FALSE zurückgegeben.

Verfügbarkeit: 2.0.0

Beispiele

SELECT ST_IsEmpty(ST_MakeEmptyRaster(100, 100, 0, 0, 0, 0, 0, 0))
st_isempty |
-----------+
f          |


SELECT ST_IsEmpty(ST_MakeEmptyRaster(0, 0, 0, 0, 0, 0, 0, 0))
st_isempty |
-----------+
t          |

                

Siehe auch

ST_HasNoBand


Name

ST_MemSize — Gibt den Platzbedarf des Rasters (in Byte) aus.

Synopsis

integer ST_MemSize(raster rast);

Beschreibung

Gibt den Platzbedarf des Rasters (in Byte) aus.

Dies Funktion ist eine schöne Ergänzung zu den in PostgreSQL eingebauten Funktionen pg_column_size, pg_size_pretty, pg_relation_size und pg_total_relation_size.

[Note]

pg_relation_size, das die Größe einer Tabelle in Byte angibt kann niedrigere Werte liefern als ST_MemSize. Dies kann vorkommen, da pg_relation_size den TOAST-Speicher der Tabellen nicht mitrechnet und eine große Geometrie in TOAST-Tabellen gespeichert wird. pg_column_size kann einen niedrigeren Wert anzeigen, da es die komprimierte Dateigröße ausgibt.

pg_total_relation_size - schließt die Tabelle, die TOAST-Tabellen und di Indizes mit ein.

Verfügbarkeit: 2.2.0

Beispiele

SELECT ST_MemSize(ST_AsRaster(ST_Buffer(ST_Point(1,5),10,1000),150, 150, '8BUI')) As rast_mem;

                rast_mem
                --------
                22568
        

Siehe auch


Name

ST_MetaData — Gibt die wesentlichen Metadaten eines Rasterobjektes, wie Zellgröße, Rotation (Versatz) etc. aus

Synopsis

record ST_MetaData(raster rast);

Beschreibung

Gibt die grundlegenden Metadaten eines Rasters aus, wie Pixelgröße, Rotation (skew), obere, untere linke, etc.. Die zurückgegebenen Spalten sind: upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands

Beispiele

SELECT rid, (foo.md).*
 FROM (SELECT rid, ST_MetaData(rast) As md
FROM dummy_rast) As foo;

 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
 ----+------------+------------+-------+--------+--------+-----------+-------+-------+------+-------
   1 |        0.5 |        0.5 |    10 |     20 |      2 |      3 |                0 |     0 |    0 |        0
   2 | 3427927.75 |    5793244 |     5 |      5 |   0.05 |  -0.05 |                0 |     0 |    0 |        3
                                

Name

ST_NumBands — Gibt die Anzahl der Bänder des Rasters aus.

Synopsis

integer ST_NumBands(raster rast);

Beschreibung

Gibt die Anzahl der Bänder des Rasters aus.

Beispiele

SELECT rid, ST_NumBands(rast) As numbands
FROM dummy_rast;

rid | numbands
----+----------
  1 |        0
  2 |        3
                                

Siehe auch

ST_Value


Name

ST_PixelHeight — Gibt die Pixelhöhe in den Einheiten des Koordinatenreferenzsystem aus.

Synopsis

double precision ST_PixelHeight(raster rast);

Beschreibung

Gibt die Höhe eines Pixels in den Einheiten des Koordinatenreferenzsystem aus. Beim üblichen Fall ohne Versatz/skew, entspricht die Pixelhöhe dem Maßstabsverhältnis zwischen den geometrischen Koordinaten und den Rasterpixeln.

Siehe ST_PixelWidth für eine schematische Darstellung der Verhältnisse.

Beispiele: Raster ohne Versatz/skew

SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
        ST_SkewY(rast) As skewy
FROM dummy_rast;

 rastheight | pixheight | scalex | scaley | skewx | skewy
------------+-----------+--------+--------+-------+----------
         20 |         3 |      2 |      3 |     0 |        0
          5 |      0.05 |   0.05 |  -0.05 |     0 |        0
                        

Beispiele: Raster mit einem Versatz ungleich 0

SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
        ST_SkewY(rast) As skewy
FROM (SELECT ST_SetSKew(rast,0.5,0.5) As rast
        FROM dummy_rast) As skewed;

rastheight |     pixheight     | scalex | scaley | skewx | skewy
-----------+-------------------+--------+--------+-------+----------
        20 |  3.04138126514911 |      2 |      3 |   0.5 |      0.5
         5 | 0.502493781056044 |   0.05 |  -0.05 |   0.5 |      0.5
                        

Name

ST_PixelWidth — Gibt die Pixelbreite in den Einheiten des Koordinatenreferenzsystems aus.

Synopsis

double precision ST_PixelWidth(raster rast);

Beschreibung

Gibt die Pixelbreite in den Einheiten des Koordinatenreferenzsystems aus. Beim üblichen Fall ohne Versatz entspricht die Pixelbreite dem Maßstabsverhältnis zwischen den geometrischen Koordinaten und den Rasterpixel.

Das folgende Schema zeigt die Beziehungen:

Pixelbreite: Pixelgröße in "i"-Richtung

Pixelhöhe: Pixelgröße in "j"-Richtung

Beispiele: Raster ohne Versatz/skew

SELECT ST_Width(rast) As rastwidth, ST_PixelWidth(rast) As pixwidth,
        ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
        ST_SkewY(rast) As skewy
        FROM dummy_rast;

        rastwidth | pixwidth | scalex | scaley | skewx | skewy
        -----------+----------+--------+--------+-------+----------
        10 |        2 |      2 |      3 |     0 |        0
         5 |     0.05 |   0.05 |  -0.05 |     0 |        0
                

Beispiele: Raster mit einem Versatz ungleich 0

SELECT ST_Width(rast) As rastwidth, ST_PixelWidth(rast) As pixwidth,
        ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
        ST_SkewY(rast) As skewy
        FROM (SELECT ST_SetSkew(rast,0.5,0.5) As rast
        FROM dummy_rast) As skewed;

        rastwidth |     pixwidth      | scalex | scaley | skewx | skewy
        -----------+-------------------+--------+--------+-------+----------
        10 |  2.06155281280883 |      2 |      3 |   0.5 |      0.5
         5 | 0.502493781056044 |   0.05 |  -0.05 |   0.5 |      0.5
                

Name

ST_ScaleX — Gibt die X-Komponente der Pixelbreite in den Einheiten des Koordinatenreferenzsystems aus.

Synopsis

float8 ST_ScaleX(raster rast);

Beschreibung

Gibt die X-Komponente der Pixelbreite in den Einheiten des Koordinatenreferenzsystems aus. Siehe World File für weitere Details.

Änderung: 2.0.0 In WKTRaster Versionen wurde dies als ST_PixelSizeX bezeichnet.

Beispiele

SELECT rid, ST_ScaleX(rast) As rastpixwidth
FROM dummy_rast;

 rid | rastpixwidth
-----+--------------
   1 |            2
   2 |         0.05
                                

Siehe auch

ST_Width


Name

ST_ScaleY — Gibt die Y-Komponente der Pixelhöhe in den Einheiten des Koordinatenreferenzsystems aus.

Synopsis

float8 ST_ScaleY(raster rast);

Beschreibung

Gibt die Y-Komponente der Pixelhöhe in den Einheiten des Koordinatenreferenzsystems aus. Kann negative Werte annehmen. Siehe World File für weitere Details.

Änderung: 2.0.0. Versionen von WKTRaster haben dies als "ST_PixelSizeY" bezeichnet.

Beispiele

SELECT rid, ST_ScaleY(rast) As rastpixheight
FROM dummy_rast;

 rid | rastpixheight
-----+---------------
   1 |             3
   2 |         -0.05
                                

Siehe auch

ST_Height


Name

ST_RasterToWorldCoord — Gibt die obere linke Ecke des Rasters in geodätischem X und Y (Länge und Breite) für eine gegebene Spalte und Zeile aus. Spalte und Zeile wird von 1 aufwärts gezählt.

Synopsis

record ST_RasterToWorldCoord(raster rast, integer xcolumn, integer yrow);

Beschreibung

Gibt die obere linke Ecke einer Spalte und Zeile als geometrisches X und Y (als geographische Länge und Breite) aus. Die zurückgegebenen X und Y sind in den Einheiten des georeferenzierten Rasters. Die Nummerierung der Spalten und Zeilen beginnt mit 1. Allerdings, wenn für einen der Parameter 0, eine negative Zahl, oder eine höhere Zahl als die betreffende Größe des Rasters übergeben wird, dann werden Koordinaten außerhalb des Rasters ausgegeben; dabei wird angenommen, dass das Gitter des Rasters auch außerhalb der Begrenzung des Rasters angewendet werden kann.

Verfügbarkeit: 2.1.0

Beispiele

-- Raster ohne Versatz/skew
SELECT
        rid,
        (ST_RasterToWorldCoord(rast,1, 1)).*,
        (ST_RasterToWorldCoord(rast,2, 2)).*
FROM dummy_rast

 rid | longitude  | latitude | longitude |  latitude
-----+------------+----------+-----------+------------
   1 |        0.5 |      0.5 |       2.5 |        3.5
   2 | 3427927.75 |  5793244 | 3427927.8 | 5793243.95
                                
-- Raster mit Versatz/skew
SELECT
        rid,
        (ST_RasterToWorldCoord(rast, 1, 1)).*,
        (ST_RasterToWorldCoord(rast, 2, 3)).*
FROM (
        SELECT
                rid,
                ST_SetSkew(rast, 100.5, 0) As rast
        FROM dummy_rast
) As foo

 rid | longitude  | latitude | longitude | latitude
-----+------------+----------+-----------+-----------
   1 |        0.5 |      0.5 |     203.5 |       6.5
   2 | 3427927.75 |  5793244 | 3428128.8 | 5793243.9
                                

Name

ST_RasterToWorldCoordX — Gibt die geodätische X Koordinate links oberhalb des Rasters, der Spalte und der Zeile aus. Die Nummerierung der Spalten und Zeilen beginnt mit 1.

Synopsis

float8 ST_RasterToWorldCoordX(raster rast, integer xcolumn);

float8 ST_RasterToWorldCoordX(raster rast, integer xcolumn, integer yrow);

Beschreibung

Gibt die obere linke X-Koordinate einer Rasterzeile in den geometrischen Einheiten des georeferenzierten Rasters aus. Die Nummerierung der Spalten und Zeilen beginnt mit 1. Wenn Sie eine negative Zahl oder eine höhere Zahl als die Anzahl der Spalten des Rasters angeben, dann bekommen Sie die Koordinaten links außerhalb und rechts außerhalb des Rasters zurück; dabei wird angenommen, dass der Versatz und die Pixelgröße gleich wie bei dem ausgewählten Raster sind.

[Note]

Bei Rastern ohne Versatz, ist die Angabe der X-Spalte ausreichend. Bei Rastern mit Versatz ist die georeferenzierte Koordinate eine Funktion von "ST_ScaleX", "ST_SkewX", der Zeile und der Spalte. Wenn Sie bei einem Raster mit Versatz nur die X-Spalte angeben, dann wird eine Fehlermeldung ausgegeben.

Änderung: 2.1.0 Vorgängerversionen haben dies als "ST_Raster2WorldCoordX" bezeichnet.

Beispiele

-- Bei einem Raster ohne Versatz ist die Angabe der Spalte ausreichend
SELECT rid, ST_RasterToWorldCoordX(rast,1) As x1coord,
        ST_RasterToWorldCoordX(rast,2) As x2coord,
        ST_ScaleX(rast) As pixelx
FROM dummy_rast;

 rid |  x1coord   |  x2coord  | pixelx
-----+------------+-----------+--------
   1 |        0.5 |       2.5 |      2
   2 | 3427927.75 | 3427927.8 |   0.05
                                
-- Lasst es Uns nur so zum Spass drehen
SELECT rid, ST_RasterToWorldCoordX(rast, 1, 1) As x1coord,
        ST_RasterToWorldCoordX(rast, 2, 3) As x2coord,
        ST_ScaleX(rast) As pixelx
FROM (SELECT rid, ST_SetSkew(rast, 100.5, 0) As rast FROM dummy_rast) As foo;

 rid |  x1coord   |  x2coord  | pixelx
-----+------------+-----------+--------
   1 |        0.5 |     203.5 |      2
   2 | 3427927.75 | 3428128.8 |   0.05
                                

Name

ST_RasterToWorldCoordY — Gibt die geodätische Y Koordinate links oberhalb des Rasters, der Spalte und der Zeile aus. Die Nummerierung der Spalten und Zeilen beginnt mit 1.

Synopsis

float8 ST_RasterToWorldCoordY(raster rast, integer yrow);

float8 ST_RasterToWorldCoordY(raster rast, integer xcolumn, integer yrow);

Beschreibung

Gibt die obere linke Y-Koordinate einer Rasterspalte in den Einheiten des georeferenzierten Rasters aus. Die Nummerierung der Spalten und Zeilen beginnt mit 1. Wenn Sie eine negative Zahl oder eine höhere Zahl als die Anzahl der Spalten/Zeilen des Rasters angeben, dann bekommen Sie die Koordinaten außerhalb des Rasters zurück; dabei wird angenommen, dass Versatz und Pixelgröße gleich wie bei der ausgewählten Rasterkachel sind.

[Note]

Bei Rastern ohne Versatz ist die Angabe der Y-Spalte ausreichend. Bei Rastern mit Versatz entspricht die georeferenzierte Koordinate einer Funktion von ST_ScaleY, ST_SkewY, Zeile und Spalte. Wenn Sie bei einem Raster mit Versatz nur die Y-Spalte angeben, wird eine Fehlermeldung ausgegeben.

Änderung: 2.1.0 In Vorgängerversionen wurde dies als ST_Raster2WorldCoordY bezeichnet

Beispiele

-- Bei einem Raster ohne Versatz ist die Angabe der Zeile ausreichend
SELECT rid, ST_RasterToWorldCoordY(rast,1) As y1coord,
        ST_RasterToWorldCoordY(rast,3) As y2coord,
        ST_ScaleY(rast) As pixely
FROM dummy_rast;

 rid | y1coord |  y2coord  | pixely
-----+---------+-----------+--------
   1 |     0.5 |       6.5 |      3
   2 | 5793244 | 5793243.9 |  -0.05
                                
-- zum Spaß führen wir einen Versatz ein
SELECT rid, ST_RasterToWorldCoordY(rast,1,1) As y1coord,
        ST_RasterToWorldCoordY(rast,2,3) As y2coord,
        ST_ScaleY(rast) As pixely
FROM (SELECT rid, ST_SetSkew(rast,0,100.5) As rast FROM dummy_rast) As foo;

 rid | y1coord |  y2coord  | pixely
-----+---------+-----------+--------
   1 |     0.5 |       107 |      3
   2 | 5793244 | 5793344.4 |  -0.05
                                

Name

ST_Rotation — Gibt die Rotation des Rasters im Bogenmaß aus.

Synopsis

float8 ST_Rotation(raster rast);

Beschreibung

Gibt die einheitliche Rotation des Rasters in Radiant aus. Wenn der Raster keine einheitliche Rotation aufweist wird NaN zurückgegeben. Siehe World File für weitere Details.

Beispiele

SELECT rid, ST_Rotation(ST_SetScale(ST_SetSkew(rast, sqrt(2)), sqrt(2))) as rot FROM dummy_rast;

 rid |        rot
-----+-------------------
   1 | 0.785398163397448
   2 | 0.785398163397448
                

Name

ST_SkewX — Gibt den georeferenzierten Versatz in X-Richtung (oder den Rotationsparameter) aus.

Synopsis

float8 ST_SkewX(raster rast);

Beschreibung

Gibt den georeferenzierten Versatz in X-Richtung (oder den Rotationsparameter) aus. Siehe World File für weitere Details.

Beispiele

SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
    ST_GeoReference(rast) as georef
FROM dummy_rast;

 rid | skewx | skewy |       georef
-----+-------+-------+--------------------
   1 |     0 |     0 | 2.0000000000
                     : 0.0000000000
                     : 0.0000000000
                     : 3.0000000000
                     : 0.5000000000
                     : 0.5000000000
                     :
   2 |     0 |     0 | 0.0500000000
                     : 0.0000000000
                     : 0.0000000000
                     : -0.0500000000
                     : 3427927.7500000000
                     : 5793244.0000000000
                                

Name

ST_SkewY — Gibt den georeferenzierten Versatz in Y-Richtung (oder den Rotationsparameter) aus.

Synopsis

float8 ST_SkewY(raster rast);

Beschreibung

Gibt den georeferenzierten Versatz in Y-Richtung (oder den Rotationsparameter) aus. Siehe World File für weitere Details.

Beispiele

SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
    ST_GeoReference(rast) as georef
FROM dummy_rast;

 rid | skewx | skewy |       georef
-----+-------+-------+--------------------
   1 |     0 |     0 | 2.0000000000
                     : 0.0000000000
                     : 0.0000000000
                     : 3.0000000000
                     : 0.5000000000
                     : 0.5000000000
                     :
   2 |     0 |     0 | 0.0500000000
                     : 0.0000000000
                     : 0.0000000000
                     : -0.0500000000
                     : 3427927.7500000000
                     : 5793244.0000000000
                                

Name

ST_SRID — Gibt den Identifikator des Koordinatenreferenzsystems des Rasters aus, das in der Tabelle "spatial_ref_sys" definiert ist.

Synopsis

integer ST_SRID(raster rast);

Beschreibung

Gibt den Identifikator des Koordinatenreferenzsystems des Rasters aus, das in der Tabelle "spatial_ref_sys" definiert ist.

[Note]

Ab PostGIS 2.0 ist die SRID eines nicht georeferenzierten Rasters/Geometrie 0 anstelle wie früher -1.

Beispiele

SELECT ST_SRID(rast) As srid
FROM dummy_rast WHERE rid=1;

srid
----------------
0
                                

Name

ST_Summary — Gibt eine textliche Zusammenfassung des Rasterinhalts zurück.

Synopsis

text ST_Summary(raster rast);

Beschreibung

Gibt eine textliche Zusammenfassung des Rasterinhalts zurück

Verfügbarkeit: 2.1.0

Beispiele

SELECT ST_Summary(
        ST_AddBand(
                ST_AddBand(
                        ST_AddBand(
                                ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0)
                                , 1, '8BUI', 1, 0
                        )
                        , 2, '32BF', 0, -9999
                )
                , 3, '16BSI', 0, NULL
        )
);

                            st_summary
------------------------------------------------------------------
 Raster of 10x10 pixels has 3 bands and extent of BOX(0 -10,10 0)+
     band 1 of pixtype 8BUI is in-db with NODATA value of 0      +
     band 2 of pixtype 32BF is in-db with NODATA value of -9999  +
     band 3 of pixtype 16BSI is in-db with no NODATA value
(1 row)
                                

Name

ST_UpperLeftX — Gibt die obere linke X-Koordinate des Rasters im Koordinatenprojektionssystem aus.

Synopsis

float8 ST_UpperLeftX(raster rast);

Beschreibung

Gibt die obere linke X-Koordinate des Rasters im Koordinatenprojektionssystem aus.

Beispiele

SELECt rid, ST_UpperLeftX(rast) As ulx
FROM dummy_rast;

 rid |    ulx
-----+------------
   1 |        0.5
   2 | 3427927.75
                                

Name

ST_UpperLeftY — Gibt die obere linke Y-Koordinate des Rasters im Koordinatenprojektionssystem aus.

Synopsis

float8 ST_UpperLeftY(raster rast);

Beschreibung

Gibt die obere linke Y-Koordinate des Rasters im Koordinatenprojektionssystem aus.

Beispiele

SELECT rid, ST_UpperLeftY(rast) As uly
FROM dummy_rast;

 rid |   uly
-----+---------
   1 |     0.5
   2 | 5793244
                                

Name

ST_Width — Gibt die Breite des Rasters in Pixel aus.

Synopsis

integer ST_Width(raster rast);

Beschreibung

Gibt die Breite des Rasters in Pixel aus.

Beispiele

SELECT ST_Width(rast) As rastwidth
FROM dummy_rast WHERE rid=1;

rastwidth
----------------
10
                                

Siehe auch

ST_Height


Name

ST_WorldToRasterCoord — Gibt für ein geometrisches X und Y (geographische Länge und Breite) oder für eine Punktgeometrie im Koordinatenreferenzsystem des Rasters, die obere linke Ecke als Spalte und Zeile aus.

Synopsis

record ST_WorldToRasterCoord(raster rast, geometry pt);

record ST_WorldToRasterCoord(raster rast, double precision longitude, double precision latitude);

Beschreibung

Gibt für ein geometrisches X und Y (geographische Länge und Breite), oder für eine Punktgeometrie, die obere linke Ecke als Spalte und Zeile aus. Diese Funktion funktioniert auch dann, wenn sich X und Y, bzw. die Punktgeometrie außerhalb der Ausdehnung des Rasters befindet. X und Y müssen im Koordinatenreferenzsystem des Rasters angegeben werden.

Verfügbarkeit: 2.1.0

Beispiele

SELECT
        rid,
        (ST_WorldToRasterCoord(rast,3427927.8,20.5)).*,
        (ST_WorldToRasterCoord(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast)))).*
FROM dummy_rast;

 rid | columnx |   rowy    | columnx |   rowy
-----+---------+-----------+---------+-----------
   1 | 1713964 |         7 | 1713964 |         7
   2 |       2 | 115864471 |       2 | 115864471
                                

Name

ST_WorldToRasterCoordX — Gibt für eine Punktgeometrie (pt) oder eine globale X- und Y-Koordinate (xw, yw) die Rasterspalte im globalen Koordinatenreferenzsystem des Rasters aus.

Synopsis

integer ST_WorldToRasterCoordX(raster rast, geometry pt);

integer ST_WorldToRasterCoordX(raster rast, double precision xw);

integer ST_WorldToRasterCoordX(raster rast, double precision xw, double precision yw);

Beschreibung

Gibt für eine Punktgeometrie (pt) oder eine globale X- und Y-Koordinate (xw, yw) die Rasterspalte aus. Es werden ein Punkt oder sowohl "xw" als auch "yw" in globalen Koordinaten benötigt, wenn der Raster einen Versatz aufweist. Wenn der Raster keinen Versatz aufweist, ist "xw" ausreichend. Die globalen Koordinaten sind im Koordinatenreferenzsystem des Rasters.

Änderung: 2.1.0 In Vorgängerversionen wurde dies als ST_World2RasterCoordX bezeichnet

Beispiele

SELECT rid, ST_WorldToRasterCoordX(rast,3427927.8) As xcoord,
                ST_WorldToRasterCoordX(rast,3427927.8,20.5) As xcoord_xwyw,
                ST_WorldToRasterCoordX(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast))) As ptxcoord
FROM dummy_rast;

 rid | xcoord  |  xcoord_xwyw   | ptxcoord
-----+---------+---------+----------
   1 | 1713964 | 1713964 |  1713964
   2 |       1 |       1 |        1
                                

Name

ST_WorldToRasterCoordY — Gibt für eine Punktgeometrie (pt) oder eine globale X- und Y-Koordinate (xw, yw) die Rasterzeile im globalen Koordinatenreferenzsystem des Rasters aus.

Synopsis

integer ST_WorldToRasterCoordY(raster rast, geometry pt);

integer ST_WorldToRasterCoordY(raster rast, double precision xw);

integer ST_WorldToRasterCoordY(raster rast, double precision xw, double precision yw);

Beschreibung

Gibt für eine Punktgeometrie (pt) oder eine globale X- und Y-Koordinate (xw, yw) die Rasterzeile aus. Es werden ein Punkt oder sowohl "xw" als auch "yw" in globalen Koordinaten benötigt, wenn der Raster einen Versatz aufweist. Wenn der Raster keinen Versatz aufweist, ist "xw" ausreichend. Die globalen Koordinaten sind im Koordinatenreferenzsystem des Rasters.

Änderung: 2.1.0 In Vorgängerversionen wurde dies als ST_World2RasterCoordY bezeichnet

Beispiele

SELECT rid, ST_WorldToRasterCoordY(rast,20.5) As ycoord,
                ST_WorldToRasterCoordY(rast,3427927.8,20.5) As ycoord_xwyw,
                ST_WorldToRasterCoordY(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast))) As ptycoord
FROM dummy_rast;

 rid |  ycoord   | ycoord_xwyw | ptycoord
-----+-----------+-------------+-----------
   1 |         7 |           7 |         7
   2 | 115864471 |   115864471 | 115864471
                                

9.5. Zugriffsfunktionen auf Rasterbänder

ST_BandMetaData — Gibt die grundlegenden Metadaten eines bestimmten Rasterbandes aus. Wenn der Parameter "bandnum" nicht angegeben ist, wird das 1ste Band angenommen.
ST_BandNoDataValue — Gibt den NODATA Wert des gegebenen Bandes aus. Wenn der Parameter "bandnum" nicht angegeben ist, wird das 1ste Band angenommen.
ST_BandIsNoData — Gibt TRUE aus, wenn das Band ausschließlich aus NODATA Werten besteht.
ST_BandPath — Gibt den Dateipfad aus, unter dem das Band im Dateisystem gespeichert ist. Wenn "bandnum" nicht angegeben ist, wird 1 angenommen.
ST_BandFileSize — Gibt die Dateigröße eines im Dateisystem gespeicherten Bandes aus. Wenn "bandnum" nicht angegeben ist, wird 1 angenommen.
ST_BandFileTimestamp — Gibt den Zeitstempel eines im Dateisystem gespeicherten Bandes aus. Wenn "bandnum" nicht angegeben ist, wird 1 angenommen.
ST_BandPixelType — Gibt den Pixeltyp des angegebenen Bandes aus. Wenn der Parameter "bandnum" nicht angegeben ist, wird das 1ste Band angenommen.
ST_HasNoBand — Gibt TRUE aus, wenn kein Band mit der angegebenen Bandnummer existiert. Gibt den Pixeltyp des angegebenen Bandes aus. Wenn keine Bandnummer angegeben ist, wird das 1ste Band angenommen.

Name

ST_BandMetaData — Gibt die grundlegenden Metadaten eines bestimmten Rasterbandes aus. Wenn der Parameter "bandnum" nicht angegeben ist, wird das 1ste Band angenommen.

Synopsis

(1) record ST_BandMetaData(raster rast, integer band=1);

(2) record ST_BandMetaData(raster rast, integer[] band);

Beschreibung

Gibt die grundlegenden Metadaten eines Rasterbandes aus. Die zurückgegebenen Spalten sind pixeltype, nodatavalue, isoutdb, path, filesize und filetimestamp.

[Note]

Wenn der Raster keine Bänder beinhaltet wird ein Fehler gemeldet.

[Note]

Wenn für das Band kein NODATA-Wert vergeben wurde, wird der NODATA-Wert auf NULL gesetzt.

[Note]

Wenn isoutdb False ist, dann sind path, outdbbandnum, filesize und filetimestamp NULL. Wenn der Zugriff auf otdb-Raster deaktiviert ist, dann sind filesize und filetimestamp ebenfalls NULL.

Erweiterung: 2.5.0 inkludiert jetztoutdbbandnum, filesize und filetimestamp für outdb Raster.

Beispiele: Variante 1

SELECT
        rid,
        (foo.md).*
FROM (
        SELECT
                rid,
                ST_BandMetaData(rast, 1) AS md
        FROM dummy_rast
        WHERE rid=2
) As foo;

 rid | pixeltype | nodatavalue | isoutdb | path | outdbbandnum
-----+-----------+---- --------+---------+------+--------------
   2 | 8BUI      |           0 | f       |      |
                                

Beispiele: Variante 2

WITH foo AS (
        SELECT
                ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
)
SELECT
        *
FROM ST_BandMetadata(
        (SELECT rast FROM foo),
         ARRAY[1,3,2]::int[]
);

 bandnum | pixeltype | nodatavalue | isoutdb |                                      path                                      | outdbbandnum  | filesize | filetimestamp |
---------+-----------+-------------+---------+--------------------------------------------------------------------------------+---------------+----------+---------------+-
       1 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif      |            1  |    12345 |    1521807257 |
       3 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif      |            3  |    12345 |    1521807257 |
       2 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif      |            2  |    12345 |    1521807257 |
                                

Name

ST_BandNoDataValue — Gibt den NODATA Wert des gegebenen Bandes aus. Wenn der Parameter "bandnum" nicht angegeben ist, wird das 1ste Band angenommen.

Synopsis

double precision ST_BandNoDataValue(raster rast, integer bandnum=1);

Beschreibung

Gibt den NODATA Wert des Bandes aus.

Beispiele

SELECT ST_BandNoDataValue(rast,1) As bnval1,
    ST_BandNoDataValue(rast,2) As bnval2, ST_BandNoDataValue(rast,3) As bnval3
FROM dummy_rast
WHERE rid = 2;

 bnval1 | bnval2 | bnval3
--------+--------+--------
      0 |      0 |      0
                                

Siehe auch

ST_NumBands


Name

ST_BandIsNoData — Gibt TRUE aus, wenn das Band ausschließlich aus NODATA Werten besteht.

Synopsis

boolean ST_BandIsNoData(raster rast, integer band, boolean forceChecking=true);

boolean ST_BandIsNoData(raster rast, boolean forceChecking=true);

Beschreibung

Gibt TRUE aus, wenn das Band ausschließlich aus NODATA Werten besteht. Wenn kein Band angegeben ist, wird Band 1 angenommen. Wenn der letzte Übergabewert TRUE ist, dann wird das gesamte Band, Pixel für Pixel, überprüft. Sonst gibt die Funktion nur den Wert der Flag "isnodata" für das Band aus. Wenn dieser Parameter nicht gesetzt wurde, wird der Standardwert "FALSE" angenommen.

Verfügbarkeit: 2.0.0

[Note]

Wenn die Flag geändert wurde (d.h.: das Ergebnis unterscheidet sich wenn man TRUE als letzten Parameter angibt, von jenem bei dem dieser Parameter nicht verwendet wird), sollten Sie den Raster aktualisieren um diese Flag auf TRUE zu setzen, indem Sie ST_SetBandIsNodata() anwenden, oder ST_SetBandNodataValue() mit TRUE als letzten Übergabewert ausführen. Siehe ST_SetBandIsNoData.

Beispiele

-- Erstellt eine Dummy-Tabelle mit einer Rasterspalte
create table dummy_rast (rid integer, rast raster);

-- Einen Raster mit zwei Bändern hinzufügen, ein Pixel/Band. Beim ersten Band - NODATA Wert = Pixelwert = 3.
-- Beim zweiten Band - NODATA Wert = 1, Pixelwert = 4
insert into dummy_rast values(1,
(
'01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0200' -- nBands (uint16 0)
||
'17263529ED684A3F' -- scaleX (float64 0.000805965234044584)
||
'F9253529ED684ABF' -- scaleY (float64 -0.00080596523404458)
||
'1C9F33CE69E352C0' -- ipX (float64 -75.5533328537098)
||
'718F0E9A27A44840' -- ipY (float64 49.2824585505576)
||
'ED50EB853EC32B3F' -- skewX (float64 0.000211812383858707)
||
'7550EB853EC32B3F' -- skewY (float64 0.000211812383858704)
||
'E6100000' -- SRID (int32 4326)
||
'0100' -- width (uint16 1)
||
'0100' -- height (uint16 1)
||
'6' -- hasnodatavalue and isnodata value set to true.
||
'2' -- first band type (4BUI)
||
'03' -- novalue==3
||
'03' -- pixel(0,0)==3 (same that nodata)
||
'0' -- hasnodatavalue set to false
||
'5' -- second band type (16BSI)
||
'0D00' -- novalue==13
||
'0400' -- pixel(0,0)==4
)::raster
);

select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected true
select st_bandisnodata(rast, 2) from dummy_rast where rid = 1; -- Expected false
                        

Name

ST_BandPath — Gibt den Dateipfad aus, unter dem das Band im Dateisystem gespeichert ist. Wenn "bandnum" nicht angegeben ist, wird 1 angenommen.

Synopsis

text ST_BandPath(raster rast, integer bandnum=1);

Beschreibung

Gibt den Dateipfad des Bandes im System aus. Wenn man die Funktion mit einem "in-db"-Rasterband aufruft, wird eine Fehlermeldung ausgegeben.

Beispiele

                                        

Siehe auch


Name

ST_BandFileSize — Gibt die Dateigröße eines im Dateisystem gespeicherten Bandes aus. Wenn "bandnum" nicht angegeben ist, wird 1 angenommen.

Synopsis

bigint ST_BandFileSize(raster rast, integer bandnum=1);

Beschreibung

Gibt die Dateigröße eines im Dateisystem gespeicherten Bandes aus. Wenn die Funktion mit einem indb-Band aufgerufen wird oder der outdb-Zugriff deaktiviert ist, wird eine Fehlermeldung ausgegeben.

Diese Funkction wird üblicherweise gemeinsam imit ST_BandPath() und ST_BandFileTimestamp() verwendet. Auf diese Weise kann ein Client feststellen, ob er die selbe Sicht auf den Dateinamen eines outdb-Rasters hat wie der Server.

Verfügbarkeit: 2.5.0

Beispiele

SELECT ST_BandFileSize(rast,1) FROM dummy_rast WHERE rid = 1;

 st_bandfilesize
-----------------
          240574
                                

Name

ST_BandFileTimestamp — Gibt den Zeitstempel eines im Dateisystem gespeicherten Bandes aus. Wenn "bandnum" nicht angegeben ist, wird 1 angenommen.

Synopsis

bigint ST_BandFileTimestamp(raster rast, integer bandnum=1);

Beschreibung

Gibt den Zeitstempel (Anzahl der Sekunden seit Jan 1st 1970 00:00:00 UTC) eines im Dateisystem gespeicherten Bandes aus. Wenn die Funktion mit einem indb-Band aufgerufen wird oder der outdb-Zugriff deaktiviert ist, wird eine Fehlermeldung ausgegeben.

Diese Funkction wird üblicherweise gemeinsam imit ST_BandPath() und ST_BandFileSize() verwendet. Auf diese Weise kann ein Client feststellen, ob er die selbe Sicht auf den Dateinamen eines outdb-Rasters hat wie der Server.

Verfügbarkeit: 2.5.0

Beispiele

SELECT ST_BandFileTimestamp(rast,1) FROM dummy_rast WHERE rid = 1;

 st_bandfiletimestamp
----------------------
           1521807257
                                

Name

ST_BandPixelType — Gibt den Pixeltyp des angegebenen Bandes aus. Wenn der Parameter "bandnum" nicht angegeben ist, wird das 1ste Band angenommen.

Synopsis

text ST_BandPixelType(raster rast, integer bandnum=1);

Beschreibung

Returns name describing data type and size of values stored in each cell of given band.

Im Folgenden die 11 unterstützten Pixeltypen

  • 1BB - 1-Bit Boolean

  • 2BUI - 2-Bit vorzeichenlose Ganzzahl

  • 4BUI - 4-Bit vorzeichenlose Ganzzahl

  • 8BSI - 8-Bit Ganzzahl

  • 8BUI - 8-Bit vorzeichenlose Ganzzahl

  • 16BSI - 16-Bit Ganzzahl

  • 16BUI - 16-bit vorzeichenlose Ganzzahl

  • 32BSI - 32-Bit Ganzzahl

  • 32BUI - 32-Bit vorzeichenlose Ganzzahl

  • 32BF - 32-Bit Float

  • 64BF - 64-Bit Float

Beispiele

SELECT ST_BandPixelType(rast,1) As btype1,
    ST_BandPixelType(rast,2) As btype2, ST_BandPixelType(rast,3) As btype3
FROM dummy_rast
WHERE rid = 2;

 btype1 | btype2 | btype3
--------+--------+--------
 8BUI   | 8BUI   | 8BUI
                                

Siehe auch

ST_NumBands


Name

ST_HasNoBand — Gibt TRUE aus, wenn kein Band mit der angegebenen Bandnummer existiert. Gibt den Pixeltyp des angegebenen Bandes aus. Wenn keine Bandnummer angegeben ist, wird das 1ste Band angenommen.

Synopsis

boolean ST_HasNoBand(raster rast, integer bandnum=1);

Beschreibung

Gibt TRUE aus, wenn kein Band mit der angegebenen Bandnummer existiert. Gibt den Pixeltyp des angegebenen Bandes aus. Wenn keine Bandnummer angegeben ist, wird das 1ste Band angenommen.

Verfügbarkeit: 2.0.0

Beispiele

SELECT rid, ST_HasNoBand(rast) As hb1, ST_HasNoBand(rast,2) as hb2,
ST_HasNoBand(rast,4) as hb4, ST_NumBands(rast) As numbands
FROM dummy_rast;

rid | hb1 | hb2 | hb4 | numbands
-----+-----+-----+-----+----------
1 | t   | t   | t   |        0
2 | f   | f   | t   |        3
                        

Siehe auch

ST_NumBands

9.6. Zugriffsfunktionen und Änderungsmethoden für Rasterpixel

ST_PixelAsPolygon — Gibt die Polygongeometrie aus, die das Pixel einer bestimmten Zeile und Spalte begrenzt.
ST_PixelAsPolygons — Gibt die umhüllende Polygongeometrie, den Zellwert, sowie die X- und Y-Rasterkoordinate für jedes Pixel aus.
ST_PixelAsPoint — Gibt eine Punktgeometrie der oberen linken Ecke des Rasters zurück.
ST_PixelAsPoints — Gibt eine Punktgeometrie für jedes Pixel des Rasterbandes zurück, zusammen mit dem Zellwert und den X- und Y-Rasterkoordinaten eines jeden Pixels. Die Koordinaten der Punkte entsprechen dem oberen linken Eck der Pixel.
ST_PixelAsCentroid — Gibt den geometrischen Schwerpunkt (Punktgeometrie) der Fläche aus, die durch das Pixel repräsentiert wird.
ST_PixelAsCentroids — Gibt den geometrischen Schwerpunkt (Punktgeometrie) für jedes Pixel des Rasterbandes zurück, zusammen mit dem Zellwert und den X- und Y-Rasterkoordinaten eines jeden Pixels. Die Koordinaten der Punkte entsprechen dem geometrischen Schwerpunkt der Pixel.
ST_Value — Gibt den Zellwert eines Pixels aus, das über columnx und rowy oder durch einen bestimmten geometrischen Punkt angegeben wird. Die Bandnummern beginnen mit 1 und wenn keine Bandnummer angegeben ist, dann wird Band 1 angenommen. Wenn exclude_nodata_value auf FALSE gesetzt ist, werden auch die Pixel mit einem nodata Wert mit einbezogen. Wenn exclude_nodata_value nicht übergeben wird, dann wird er über die Metadaten des Rasters ausgelesen.
ST_NearestValue — Gibt den nächstgelegenen nicht NODATA Wert eines bestimmten Pixels aus, das über "columnx" und "rowy" oder durch eine Punktgeometrie - im gleichen Koordinatenreferenzsystem wie der Raster - ausgewählt wird.
ST_Neighborhood — Gibt ein 2-D Feld in "Double Precision" aus, das sich aus nicht NODATA Werten um ein bestimmtes Pixel herum zusammensetzt. Das Pixel Kann über "columnx" und "rowy" oder über eine Punktgeometrie - im gleichen Koordinatenreferenzsystem wie der Raster - ausgewählt werden.
ST_SetValue — Setzt den Wert für ein Pixel eines Bandes, das über columnx und rowy festgelegt wird, oder für die Pixel die eine bestimmte Geometrie schneiden, und gibt den veränderten Raster zurück. Die Bandnummerierung beginnt mit 1; wenn die Bandnummer nicht angegeben ist, wird 1 angenommen.
ST_SetValues — Gibt einen Raster zurück, der durch das Setzen der Werte eines bestimmten Bandes verändert wurde.
ST_DumpValues — Gibt die Werte eines bestimmten Bandes als 2-dimensionales Feld aus.
ST_PixelOfValue — Gibt die columnx- und rowy-Koordinaten jener Pixel aus, deren Zellwert gleich dem gesuchten Wert ist.

Name

ST_PixelAsPolygon — Gibt die Polygongeometrie aus, die das Pixel einer bestimmten Zeile und Spalte begrenzt.

Synopsis

geometry ST_PixelAsPolygon(raster rast, integer columnx, integer rowy);

Beschreibung

Gibt die Polygongeometrie aus, die das Pixel einer bestimmten Zeile und Spalte begrenzt.

Verfügbarkeit: 2.0.0

Beispiele

-- die Polygone der Rasterpixel ausgeben
SELECT i,j, ST_AsText(ST_PixelAsPolygon(foo.rast, i,j)) As b1pgeom
FROM dummy_rast As foo
        CROSS JOIN generate_series(1,2) As i
        CROSS JOIN generate_series(1,1) As j
WHERE rid=2;

 i | j |                                                    b1pgeom
---+---+-----------------------------------------------------------------------------
 1 | 1 | POLYGON((3427927.75 5793244,3427927.8 5793244,3427927.8 5793243.95,...
 2 | 1 | POLYGON((3427927.8 5793244,3427927.85 5793244,3427927.85 5793243.95, ..
  

Name

ST_PixelAsPolygons — Gibt die umhüllende Polygongeometrie, den Zellwert, sowie die X- und Y-Rasterkoordinate für jedes Pixel aus.

Synopsis

setof record ST_PixelAsPolygons(raster rast, integer band=1, boolean exclude_nodata_value=TRUE);

Beschreibung

Gibt die umhüllende Polygongeometrie, den Zellwert (double precision), sowie die X- und Y-Rasterkoordinate (Ganzzahl) für jedes Pixel aus.

Datensatzformatausgabe: geom geometry, val double precision, x integer, y integers.

[Note]

Wenn exclude_nodata_value = TRUE, dann werden nur jene Pixel als Punkte zurückgegeben deren Zellwerte nicht NODATA sind.

[Note]

ST_PixelAsPolygons gibt eine Polygongeometrie pro Pixel zurück. Dies unterscheidet sich von ST_DumpAsPolygons, wo jede Geometrie einen oder mehrere Pixel mit gleichem Zellwert darstellt.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Der optionale Übergabewert "exclude_nodata_value" wurde hinzugefügt.

Änderung: 2.1.1 Die Verhaltensweise von "exclude_nodata_value" wurde geändert.

Beispiele

-- ein Rasterpixelpolygon ausgeben
SELECT (gv).x, (gv).y, (gv).val, ST_AsText((gv).geom) geom
FROM (SELECT ST_PixelAsPolygons(
                 ST_SetValue(ST_SetValue(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0.001, -0.001, 0.001, 0.001, 4269),
                                                    '8BUI'::text, 1, 0),
                                         2, 2, 10),
                             1, 1, NULL)
) gv
) foo;

 x | y | val |                geom
---+---+-----------------------------------------------------------------------------
 1 | 1 |     | POLYGON((0 0,0.001 0.001,0.002 0,0.001 -0.001,0 0))
 1 | 2 |   1 | POLYGON((0.001 -0.001,0.002 0,0.003 -0.001,0.002 -0.002,0.001 -0.001))
 2 | 1 |   1 | POLYGON((0.001 0.001,0.002 0.002,0.003 0.001,0.002 0,0.001 0.001))
 2 | 2 |  10 | POLYGON((0.002 0,0.003 0.001,0.004 0,0.003 -0.001,0.002 0))
  

Name

ST_PixelAsPoint — Gibt eine Punktgeometrie der oberen linken Ecke des Rasters zurück.

Synopsis

geometry ST_PixelAsPoint(raster rast, integer columnx, integer rowy);

Beschreibung

Gibt eine Punktgeometrie der oberen linken Ecke des Rasters zurück.

Verfügbarkeit: 2.1.0

Beispiele

SELECT ST_AsText(ST_PixelAsPoint(rast, 1, 1)) FROM dummy_rast WHERE rid = 1;

   st_astext
----------------
 POINT(0.5 0.5)
                                

Name

ST_PixelAsPoints — Gibt eine Punktgeometrie für jedes Pixel des Rasterbandes zurück, zusammen mit dem Zellwert und den X- und Y-Rasterkoordinaten eines jeden Pixels. Die Koordinaten der Punkte entsprechen dem oberen linken Eck der Pixel.

Synopsis

setof record ST_PixelAsPoints(raster rast, integer band=1, boolean exclude_nodata_value=TRUE);

Beschreibung

Gibt eine Punktgeometrie für jedes Pixel des Rasterbandes zurück, zusammen mit dem Zellwert und den X- und Y-Rasterkoordinaten eines jeden Pixels. Die Koordinaten der Punkte entsprechen dem oberen linken Eck der Pixel.

Datensatzformatausgabe: geom geometry, val double precision, x integer, y integers.

[Note]

Wenn exclude_nodata_value = TRUE, dann werden nur jene Pixel als Punkte zurückgegeben deren Zellwerte nicht NODATA sind.

Verfügbarkeit: 2.1.0

Änderung: 2.1.1 Die Verhaltensweise von "exclude_nodata_value" wurde geändert.

Beispiele

SELECT x, y, val, ST_AsText(geom) FROM (SELECT (ST_PixelAsPoints(rast, 1)).* FROM dummy_rast WHERE rid = 2) foo;

 x | y | val |          st_astext
---+---+-----+------------------------------
 1 | 1 | 253 | POINT(3427927.75 5793244)
 2 | 1 | 254 | POINT(3427927.8 5793244)
 3 | 1 | 253 | POINT(3427927.85 5793244)
 4 | 1 | 254 | POINT(3427927.9 5793244)
 5 | 1 | 254 | POINT(3427927.95 5793244)
 1 | 2 | 253 | POINT(3427927.75 5793243.95)
 2 | 2 | 254 | POINT(3427927.8 5793243.95)
 3 | 2 | 254 | POINT(3427927.85 5793243.95)
 4 | 2 | 253 | POINT(3427927.9 5793243.95)
 5 | 2 | 249 | POINT(3427927.95 5793243.95)
 1 | 3 | 250 | POINT(3427927.75 5793243.9)
 2 | 3 | 254 | POINT(3427927.8 5793243.9)
 3 | 3 | 254 | POINT(3427927.85 5793243.9)
 4 | 3 | 252 | POINT(3427927.9 5793243.9)
 5 | 3 | 249 | POINT(3427927.95 5793243.9)
 1 | 4 | 251 | POINT(3427927.75 5793243.85)
 2 | 4 | 253 | POINT(3427927.8 5793243.85)
 3 | 4 | 254 | POINT(3427927.85 5793243.85)
 4 | 4 | 254 | POINT(3427927.9 5793243.85)
 5 | 4 | 253 | POINT(3427927.95 5793243.85)
 1 | 5 | 252 | POINT(3427927.75 5793243.8)
 2 | 5 | 250 | POINT(3427927.8 5793243.8)
 3 | 5 | 254 | POINT(3427927.85 5793243.8)
 4 | 5 | 254 | POINT(3427927.9 5793243.8)
 5 | 5 | 254 | POINT(3427927.95 5793243.8)
                                

Name

ST_PixelAsCentroid — Gibt den geometrischen Schwerpunkt (Punktgeometrie) der Fläche aus, die durch das Pixel repräsentiert wird.

Synopsis

geometry ST_PixelAsCentroid(raster rast, integer x, integer y);

Beschreibung

Gibt den geometrischen Schwerpunkt (Punktgeometrie) der Fläche aus, die durch das Pixel repräsentiert wird.

Verfügbarkeit: 2.1.0

Beispiele

SELECT ST_AsText(ST_PixelAsCentroid(rast, 1, 1)) FROM dummy_rast WHERE rid = 1;

  st_astext
--------------
 POINT(1.5 2)
                                

Name

ST_PixelAsCentroids — Gibt den geometrischen Schwerpunkt (Punktgeometrie) für jedes Pixel des Rasterbandes zurück, zusammen mit dem Zellwert und den X- und Y-Rasterkoordinaten eines jeden Pixels. Die Koordinaten der Punkte entsprechen dem geometrischen Schwerpunkt der Pixel.

Synopsis

setof record ST_PixelAsCentroids(raster rast, integer band=1, boolean exclude_nodata_value=TRUE);

Beschreibung

Gibt den geometrischen Schwerpunkt (Punktgeometrie) für jedes Pixel des Rasterbandes zurück, zusammen mit dem Zellwert und den X- und Y-Rasterkoordinaten eines jeden Pixels. Die Koordinaten der Punkte entsprechen dem geometrischen Schwerpunkt der Pixel.

Datensatzformatausgabe: geom geometry, val double precision, x integer, y integers.

[Note]

Wenn exclude_nodata_value = TRUE, dann werden nur jene Pixel als Punkte zurückgegeben deren Zellwerte nicht NODATA sind.

Verfügbarkeit: 2.1.0

Änderung: 2.1.1 Die Verhaltensweise von "exclude_nodata_value" wurde geändert.

Beispiele

--LATERAL JOIN - benötigt PostgreSQL 9.3+
SELECT x, y, val, ST_AsText(geom)
        FROM (SELECT dp.* FROM dummy_rast, LATERAL ST_PixelAsCentroids(rast, 1) AS dp WHERE rid = 2) foo;
 x | y | val |           st_astext
---+---+-----+--------------------------------
 1 | 1 | 253 | POINT(3427927.775 5793243.975)
 2 | 1 | 254 | POINT(3427927.825 5793243.975)
 3 | 1 | 253 | POINT(3427927.875 5793243.975)
 4 | 1 | 254 | POINT(3427927.925 5793243.975)
 5 | 1 | 254 | POINT(3427927.975 5793243.975)
 1 | 2 | 253 | POINT(3427927.775 5793243.925)
 2 | 2 | 254 | POINT(3427927.825 5793243.925)
 3 | 2 | 254 | POINT(3427927.875 5793243.925)
 4 | 2 | 253 | POINT(3427927.925 5793243.925)
 5 | 2 | 249 | POINT(3427927.975 5793243.925)
 1 | 3 | 250 | POINT(3427927.775 5793243.875)
 2 | 3 | 254 | POINT(3427927.825 5793243.875)
 3 | 3 | 254 | POINT(3427927.875 5793243.875)
 4 | 3 | 252 | POINT(3427927.925 5793243.875)
 5 | 3 | 249 | POINT(3427927.975 5793243.875)
 1 | 4 | 251 | POINT(3427927.775 5793243.825)
 2 | 4 | 253 | POINT(3427927.825 5793243.825)
 3 | 4 | 254 | POINT(3427927.875 5793243.825)
 4 | 4 | 254 | POINT(3427927.925 5793243.825)
 5 | 4 | 253 | POINT(3427927.975 5793243.825)
 1 | 5 | 252 | POINT(3427927.775 5793243.775)
 2 | 5 | 250 | POINT(3427927.825 5793243.775)
 3 | 5 | 254 | POINT(3427927.875 5793243.775)
 4 | 5 | 254 | POINT(3427927.925 5793243.775)
 5 | 5 | 254 | POINT(3427927.975 5793243.775)
                                

Name

ST_Value — Gibt den Zellwert eines Pixels aus, das über columnx und rowy oder durch einen bestimmten geometrischen Punkt angegeben wird. Die Bandnummern beginnen mit 1 und wenn keine Bandnummer angegeben ist, dann wird Band 1 angenommen. Wenn exclude_nodata_value auf FALSE gesetzt ist, werden auch die Pixel mit einem nodata Wert mit einbezogen. Wenn exclude_nodata_value nicht übergeben wird, dann wird er über die Metadaten des Rasters ausgelesen.

Synopsis

double precision ST_Value(raster rast, geometry pt, boolean exclude_nodata_value=true);

double precision ST_Value(raster rast, integer band, geometry pt, boolean exclude_nodata_value=true);

double precision ST_Value(raster rast, integer x, integer y, boolean exclude_nodata_value=true);

double precision ST_Value(raster rast, integer band, integer x, integer y, boolean exclude_nodata_value=true);

Beschreibung

Gibt den Zellwert eines Pixels aus, das über columnx und rowy oder durch einen geometrischen Punkt angegeben wird. Die Bandnummern beginnen mit 1 und wenn keine Bandnummer angegeben ist, dann wird Band 1 angenommen. Wenn exclude_nodata_value auf TRUE gesetzt ist, werden nur die Pixel ohne nodata Wert betrachtet. Wenn exclude_nodata_value auf FALSE gesetzt ist, dann werden alle Pixel berücksichtigt.

Erweiterung: 2.0.0 Der optionale Übergabewert "exclude_nodata_value" wurde hinzugefügt.

Beispiele

-- gibt die Rasterwerte an bestimmten Punkten einer PostGIS Geometrie aus
-- die SRID der Geometrie und des Rasters muss übereinstimmen
SELECT rid, ST_Value(rast, foo.pt_geom) As b1pval, ST_Value(rast, 2, foo.pt_geom) As b2pval
FROM dummy_rast CROSS JOIN (SELECT ST_SetSRID(ST_Point(3427927.77, 5793243.76), 0) As pt_geom) As foo
WHERE rid=2;

 rid | b1pval | b2pval
-----+--------+--------
   2 |    252 |     79


-- allgemeines, fiktives Beispiel, das eine echte Tabelle verwendet
SELECT rid, ST_Value(rast, 3, sometable.geom) As b3pval
FROM sometable
WHERE ST_Intersects(rast,sometable.geom);
                                
SELECT rid, ST_Value(rast, 1, 1, 1) As b1pval,
    ST_Value(rast, 2, 1, 1) As b2pval, ST_Value(rast, 3, 1, 1) As b3pval
FROM dummy_rast
WHERE rid=2;

 rid | b1pval | b2pval | b3pval
-----+--------+--------+--------
   2 |    253 |     78 |     70
                                
--- Alle Werte aller Pixel in den Bändern 1,2,3 auslesen --
SELECT x, y, ST_Value(rast, 1, x, y) As b1val,
        ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1, 1000) As x CROSS JOIN generate_series(1, 1000) As y
WHERE rid =  2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

 x | y | b1val | b2val | b3val
---+---+-------+-------+-------
 1 | 1 |   253 |    78 |    70
 1 | 2 |   253 |    96 |    80
 1 | 3 |   250 |    99 |    90
 1 | 4 |   251 |    89 |    77
 1 | 5 |   252 |    79 |    62
 2 | 1 |   254 |    98 |    86
 2 | 2 |   254 |   118 |   108
 :
 :
                                
--- Alle Werte der Bänder 1,2,3 so wie oben auslesen und zusätzlich den oberen linken Punkt für jedes Pixel als Punktgeometrie ausgeben --
SELECT ST_AsText(ST_SetSRID(
        ST_Point(ST_UpperLeftX(rast) + ST_ScaleX(rast)*x,
                ST_UpperLeftY(rast) + ST_ScaleY(rast)*y),
                ST_SRID(rast))) As uplpt
    , ST_Value(rast, 1, x, y) As b1val,
        ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid =  2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

            uplpt            | b1val | b2val | b3val
-----------------------------+-------+-------+-------
 POINT(3427929.25 5793245.5) |   253 |    78 |    70
 POINT(3427929.25 5793247)   |   253 |    96 |    80
 POINT(3427929.25 5793248.5) |   250 |    99 |    90
:
                                
--- Ein Polygon erzeugen, dass sich aus der Vereinigung aller Pixel ergibt,
--       die in einen bestimmten Wertebereich fallen und ein bestimmtes Polygon schneiden --
SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
                ST_UpperLeftX(rast), ST_UpperLeftY(rast),
                        ST_UpperLeftX(rast) + ST_ScaleX(rast),
                        ST_UpperLeftY(rast) + ST_ScaleY(rast), 0
                        ), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
                ) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
        FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid =  2
        AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
        ST_Intersects(
                pixpolyg,
                ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
                ) AND b2val != 254;


                shadow
------------------------------------------------------------------------------------
 MULTIPOLYGON(((3427928 5793243.9,3427928 5793243.85,3427927.95 5793243.85,3427927.95 5793243.9,
 3427927.95 5793243.95,3427928 5793243.95,3427928.05 5793243.95,3427928.05 5793243.9,3427928 5793243.9)),((3427927.95 5793243.9,3427927.95 579324
3.85,3427927.9 5793243.85,3427927.85 5793243.85,3427927.85 5793243.9,3427927.9 5793243.9,3427927.9 5793243.95,
3427927.95 5793243.95,3427927.95 5793243.9)),((3427927.85 5793243.75,3427927.85 5793243.7,3427927.8 5793243.7,3427927.8 5793243.75
,3427927.8 5793243.8,3427927.8 5793243.85,3427927.85 5793243.85,3427927.85 5793243.8,3427927.85 5793243.75)),
((3427928.05 5793243.75,3427928.05 5793243.7,3427928 5793243.7,3427927.95 5793243.7,3427927.95 5793243.75,3427927.95 5793243.8,3427
927.95 5793243.85,3427928 5793243.85,3427928 5793243.8,3427928.05 5793243.8,
3427928.05 5793243.75)),((3427927.95 5793243.75,3427927.95 5793243.7,3427927.9 5793243.7,3427927.85 5793243.7,
3427927.85 5793243.75,3427927.85 5793243.8,3427927.85 5793243.85,3427927.9 5793243.85,
3427927.95 5793243.85,3427927.95 5793243.8,3427927.95 5793243.75)))
                                
--- Die Überprüfung sämtlicher Pixel einer großen Rasterkachel kann viel Zeit in Anspruch nehmen.
--- Sie können die Geschwindigkeit, zu Kosten einiger Größenordnungen an Genauigkeit beträchtlich steigern,
--  indem Sie Pixel mit dem optionalen Parameter "step" von "generate_series auswählen.
--  Das nächste Beispiel gleicht dem Vorigen, aber es überprüft nur 1es von jeweils 4 (2x2) Pixel und setzt das zuletzt untersuchte Pixel als Wert für die nachfolgenden 3 Pixel ein

SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
                ST_UpperLeftX(rast), ST_UpperLeftY(rast),
                        ST_UpperLeftX(rast) + ST_ScaleX(rast)*2,
                        ST_UpperLeftY(rast) + ST_ScaleY(rast)*2, 0
                        ), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
                ) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
        FROM dummy_rast CROSS JOIN
generate_series(1,1000,2) As x CROSS JOIN generate_series(1,1000,2) As y
WHERE rid =  2
        AND x <= ST_Width(rast)  AND y <= ST_Height(rast)  ) As foo
WHERE
        ST_Intersects(
                pixpolyg,
                ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
                ) AND b2val != 254;

                shadow
------------------------------------------------------------------------------------
 MULTIPOLYGON(((3427927.9 5793243.85,3427927.8 5793243.85,3427927.8 5793243.95,
 3427927.9 5793243.95,3427928 5793243.95,3427928.1 5793243.95,3427928.1 5793243.85,3427928 5793243.85,3427927.9 5793243.85)),
 ((3427927.9 5793243.65,3427927.8 5793243.65,3427927.8 5793243.75,3427927.8 5793243.85,3427927.9 5793243.85,
 3427928 5793243.85,3427928 5793243.75,3427928.1 5793243.75,3427928.1 5793243.65,3427928 5793243.65,3427927.9 5793243.65)))
                                

Name

ST_NearestValue — Gibt den nächstgelegenen nicht NODATA Wert eines bestimmten Pixels aus, das über "columnx" und "rowy" oder durch eine Punktgeometrie - im gleichen Koordinatenreferenzsystem wie der Raster - ausgewählt wird.

Synopsis

double precision ST_NearestValue(raster rast, integer bandnum, geometry pt, boolean exclude_nodata_value=true);

double precision ST_NearestValue(raster rast, geometry pt, boolean exclude_nodata_value=true);

double precision ST_NearestValue(raster rast, integer bandnum, integer columnx, integer rowy, boolean exclude_nodata_value=true);

double precision ST_NearestValue(raster rast, integer columnx, integer rowy, boolean exclude_nodata_value=true);

Beschreibung

Gibt den nächstgelegenen, nicht-NODATA Wert eines bestimmten Pixels aus, das über "columnx" und "rowy", oder durch einen geometrischen Punkt angegeben wird. Falls das angegebene Pixel den Wert NODATA hat, findet die Funktion das nächstgelegene Pixel, das nicht den Wert NODATA hat.

Die Bandnummern beginnen mit 1 und wenn keine Bandnummer angegeben ist, dann wird für bandnum 1 angenommen. Wenn exclude_nodata_value auf FALSE gesetzt ist, werden auch die Pixel mit einem nodata Wert einbezogen. Wenn exclude_nodata_value nicht übergeben wird, dann wird er über die Metadaten des Rasters ausgelesen. 

Verfügbarkeit: 2.1.0

[Note]

ST_NearestValue ist eine Alternative zu ST_Value.

Beispiele

-- Pixel 2x2 hat einen Wert
SELECT
        ST_Value(rast, 2, 2) AS value,
        ST_NearestValue(rast, 2, 2) AS nearestvalue
FROM (
        SELECT
                ST_SetValue(
                        ST_SetValue(
                                ST_SetValue(
                                        ST_SetValue(
                                                ST_SetValue(
                                                        ST_AddBand(
                                                                ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
                                                                '8BUI'::text, 1, 0
                                                        ),
                                                        1, 1, 0.
                                                ),
                                                2, 3, 0.
                                        ),
                                        3, 5, 0.
                                ),
                                4, 2, 0.
                        ),
                        5, 4, 0.
                ) AS rast
) AS foo

 value | nearestvalue
-------+--------------
     1 |            1
                                
-- Pixel 2x3 ist NODATA
SELECT
        ST_Value(rast, 2, 3) AS value,
        ST_NearestValue(rast, 2, 3) AS nearestvalue
FROM (
        SELECT
                ST_SetValue(
                        ST_SetValue(
                                ST_SetValue(
                                        ST_SetValue(
                                                ST_SetValue(
                                                        ST_AddBand(
                                                                ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
                                                                '8BUI'::text, 1, 0
                                                        ),
                                                        1, 1, 0.
                                                ),
                                                2, 3, 0.
                                        ),
                                        3, 5, 0.
                                ),
                                4, 2, 0.
                        ),
                        5, 4, 0.
                ) AS rast
) AS foo

 value | nearestvalue
-------+--------------
       |            1
                                

Name

ST_Neighborhood — Gibt ein 2-D Feld in "Double Precision" aus, das sich aus nicht NODATA Werten um ein bestimmtes Pixel herum zusammensetzt. Das Pixel Kann über "columnx" und "rowy" oder über eine Punktgeometrie - im gleichen Koordinatenreferenzsystem wie der Raster - ausgewählt werden.

Synopsis

double precision[][] ST_Neighborhood(raster rast, integer bandnum, integer columnX, integer rowY, integer distanceX, integer distanceY, boolean exclude_nodata_value=true);

double precision[][] ST_Neighborhood(raster rast, integer columnX, integer rowY, integer distanceX, integer distanceY, boolean exclude_nodata_value=true);

double precision[][] ST_Neighborhood(raster rast, integer bandnum, geometry pt, integer distanceX, integer distanceY, boolean exclude_nodata_value=true);

double precision[][] ST_Neighborhood(raster rast, geometry pt, integer distanceX, integer distanceY, boolean exclude_nodata_value=true);

Beschreibung

Gibt für ein Pixel eines Bandes die ringsherum liegenden nicht-NODATA Werte in einem 2D-Feld mit Double Precision zurück. Das Pixel kann entweder über columnX und rowY, oder über einen geometrischen Punkt der im selben Koordinatenreferenzsystem wie der Raster vorliegt übergeben werden. Die Parameter distanceX und distanceY bestimmen die Anzahl der Pixel auf der X- und Y-Achse, um das festgelegte Pixel herum; z.B.: Sie möchten alle Werte innerhalb einer Entfernung von 3 Pixel entlang der X-Achse und einer Entfernung von 2 Pixel entlang der Y-Achse, um das Pixel von Interesse herum. Der Wert im Zentrum des 2-D Feldes ist der Wert jenes Pixels, das über columnX und rowY oder über einen geometrischen Punkt übergeben wurde.

Die Bandnummern beginnen mit 1 und wenn keine Bandnummer angegeben ist, dann wird für bandnum 1 angenommen. Wenn exclude_nodata_value auf FALSE gesetzt ist, werden auch die Pixel mit einem nodata Wert einbezogen. Wenn exclude_nodata_value nicht übergeben wird, dann wird er über die Metadaten des Rasters ausgelesen. 

[Note]

Die Anzahl der Elemente entlang jeder Achse des zurückgegebenen 2D-Feldes ergibt sich aus 2 * (distanceX|distanceY) + 1. So ergibt sich bei einer distanceX und einer distanceY von je 1, ein Feld von 3x3.

[Note]

Das 2-D Feld kann einer beliebigen, integrierten Funktion zur Weiterverarbeitung übergeben werden, wie z.B. an ST_Min4ma, ST_Sum4ma, ST_Mean4ma.

Verfügbarkeit: 2.1.0

Beispiele

-- Pixel 2x2 hat einen Wert
SELECT
        ST_Neighborhood(rast, 2, 2, 1, 1)
FROM (
        SELECT
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
                                '8BUI'::text, 1, 0
                        ),
                        1, 1, 1, ARRAY[
                                [0, 1, 1, 1, 1],
                                [1, 1, 1, 0, 1],
                                [1, 0, 1, 1, 1],
                                [1, 1, 1, 1, 0],
                                [1, 1, 0, 1, 1]
                        ]::double precision[],
                        1
                ) AS rast
) AS foo

         st_neighborhood
---------------------------------
 {{NULL,1,1},{1,1,NULL},{1,1,1}}
                                
-- Pixel 2x3 ist NODATA
SELECT
        ST_Neighborhood(rast, 2, 3, 1, 1)
FROM (
        SELECT
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
                                '8BUI'::text, 1, 0
                        ),
                        1, 1, 1, ARRAY[
                                [0, 1, 1, 1, 1],
                                [1, 1, 1, 0, 1],
                                [1, 0, 1, 1, 1],
                                [1, 1, 1, 1, 0],
                                [1, 1, 0, 1, 1]
                        ]::double precision[],
                        1
                ) AS rast
) AS foo

       st_neighborhood
------------------------------
 {{1,1,1},{1,NULL,1},{1,1,1}}
                                
-- Pixel 3x3 hat einen Wert
-- exclude_nodata_value = FALSE
SELECT
        ST_Neighborhood(rast, 3, 3, 1, 1, false)
FROM (
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
                                '8BUI'::text, 1, 0
                        ),
                        1, 1, 1, ARRAY[
                                [0, 1, 1, 1, 1],
                                [1, 1, 1, 0, 1],
                                [1, 0, 1, 1, 1],
                                [1, 1, 1, 1, 0],
                                [1, 1, 0, 1, 1]
                        ]::double precision[],
                        1
                ) AS rast
) AS foo

      st_neighborhood
---------------------------
 {{1,0,1},{1,1,1},{0,1,1}}
                                

Name

ST_SetValue — Setzt den Wert für ein Pixel eines Bandes, das über columnx und rowy festgelegt wird, oder für die Pixel die eine bestimmte Geometrie schneiden, und gibt den veränderten Raster zurück. Die Bandnummerierung beginnt mit 1; wenn die Bandnummer nicht angegeben ist, wird 1 angenommen.

Synopsis

raster ST_SetValue(raster rast, integer bandnum, geometry geom, double precision newvalue);

raster ST_SetValue(raster rast, geometry geom, double precision newvalue);

raster ST_SetValue(raster rast, integer bandnum, integer columnx, integer rowy, double precision newvalue);

raster ST_SetValue(raster rast, integer columnx, integer rowy, double precision newvalue);

Beschreibung

Setzt die Werte bestimmter Pixel eines Bandes auf einen neuen Wert und gibt den veränderten Raster zurück. Die Pixel können über die Rasterzeile und die Rasterspalte, oder über eine Geometrie festgelegt werden. Wenn die Bandnummer nicht angegeben ist, wird 1 angenommen.

Erweiterung: 2.1.0 Die geometrische Variante von ST_SetValue() unterstützt nun jeden geometrischen Datentyp, nicht nur POINT. Die geometrische Variante ist ein Adapter für die geomval[] Variante von ST_SetValues()

Beispiele

-- Beispiel mit Geometrie
SELECT (foo.geomval).val, ST_AsText(ST_Union((foo.geomval).geom))
FROM (SELECT ST_DumpAsPolygons(
                ST_SetValue(rast,1,
                                ST_Point(3427927.75, 5793243.95),
                                50)
                        ) As geomval
FROM dummy_rast
where rid = 2) As foo
WHERE (foo.geomval).val < 250
GROUP BY (foo.geomval).val;

 val |                                                     st_astext
-----+-------------------------------------------------------------------
  50 | POLYGON((3427927.75 5793244,3427927.75 5793243.95,3427927.8 579324 ...
 249 | POLYGON((3427927.95 5793243.95,3427927.95 5793243.85,3427928 57932 ...

                                
-- Den veränderten Raster speichern --
        UPDATE dummy_rast SET rast = ST_SetValue(rast,1, ST_Point(3427927.75, 5793243.95),100)
                WHERE rid = 2   ;

                                

Name

ST_SetValues — Gibt einen Raster zurück, der durch das Setzen der Werte eines bestimmten Bandes verändert wurde.

Synopsis

raster ST_SetValues(raster rast, integer nband, integer columnx, integer rowy, double precision[][] newvalueset, boolean[][] noset=NULL, boolean keepnodata=FALSE);

raster ST_SetValues(raster rast, integer nband, integer columnx, integer rowy, double precision[][] newvalueset, double precision nosetvalue, boolean keepnodata=FALSE);

raster ST_SetValues(raster rast, integer nband, integer columnx, integer rowy, integer width, integer height, double precision newvalue, boolean keepnodata=FALSE);

raster ST_SetValues(raster rast, integer columnx, integer rowy, integer width, integer height, double precision newvalue, boolean keepnodata=FALSE);

raster ST_SetValues(raster rast, integer nband, geomval[] geomvalset, boolean keepnodata=FALSE);

Beschreibung

Gibt einen Raster zurück, der durch das Setzen bestimmter Pixel auf einen neuen Wert (neue Werte) für das ausgewiesene Band verändert wurde.

Wenn keepnodata TRUE ist, dann werden die Pixel mit dem Wert NODATA nicht mit dem entsprechenden Wert in newvalueset belegt.

Bei der Variante 1 werden die betreffenden Pixel über die Pixelkoordinaten columnx und rowy, und durch die Größe des Feldes newvalueset festgelegt. Über den Parameter noset kann verhindert werden, dass bestimmte, in newvalueset auftretende Pixelwerte gesetzt werden (da PostgreSQL keine unregelmäßigen Felder/"ragged arrays" zulässt). Siehe das Beispiel mit der Variante 1.

Variante 2 gleicht Variante 1, aber mit einem einfachen nosetvalue in Double Precision anstelle des booleschen Feldes noset. Elemente in newvalueset mit dem Wert nosetvalue werden übersprungen. Siehe das Beispiel mit der Variante 2.

Bei der Variante 3 werden die betreffenden Pixel über die Pixelkoordinaten columnx und rowy, und durch width und height festgelegt. Siehe das Beispiel mit der Variante 3.

Variante 4 entspricht Variante3 mit der Ausnahme, dass die Pixel des ersten Bandes von rast gesetzt werden.

Bei der Variante 5 wird ein Feld von geomval verwendet um die Pixel zu bestimmen. Wenn die gesamte Geometrie des Feldes vom Datentyp POINT oder MULTIPOINT ist, verwendet die Funktion Länge und Breite eines jeden Punktes um den Wert eines Pixels direkt zu setzen. Andernfalls wird die Geometrie in Raster umgewandelt über die dann in einem Schritt iteriert wird. Siehe das Beispiel mit der Variante 5.

Verfügbarkeit: 2.1.0

Beispiele: Variante 1

/*
ST_SetValues() zeigt folgendes Verhalten...

+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 1 | 1 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |    =
>    | 1 | 9 | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 9 | 9 |
+ - + - + - +          + - + - + - +
*/
SELECT
        (poly).x,
        (poly).y,
        (poly).val
FROM (
SELECT
        ST_PixelAsPolygons(
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                                1, '8BUI', 1, 0
                        ),
                        1, 2, 2, ARRAY[[9, 9], [9, 9]]::double precision[][]
                )
        ) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |   1
 1 | 2 |   1
 1 | 3 |   1
 2 | 1 |   1
 2 | 2 |   9
 2 | 3 |   9
 3 | 1 |   1
 3 | 2 |   9
 3 | 3 |   9
                                
/*
ST_SetValues() zeigt folgendes Verhalten...

+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 9 | 9 | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |    =
>    | 9 |   | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 9 | 9 | 9 |
+ - + - + - +          + - + - + - +
*/
SELECT
        (poly).x,
        (poly).y,
        (poly).val
FROM (
SELECT
        ST_PixelAsPolygons(
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                                1, '8BUI', 1, 0
                        ),
                        1, 1, 1, ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][]
                )
        ) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |   9
 1 | 2 |   9
 1 | 3 |   9
 2 | 1 |   9
 2 | 2 |
 2 | 3 |   9
 3 | 1 |   9
 3 | 2 |   9
 3 | 3 |   9
                                
/*
ST_SetValues() zeigt folgendes Verhalten...

+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 9 | 9 | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |    =
>    | 1 |   | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 9 | 9 | 9 |
+ - + - + - +          + - + - + - +
*/
SELECT
        (poly).x,
        (poly).y,
        (poly).val
FROM (
SELECT
        ST_PixelAsPolygons(
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                                1, '8BUI', 1, 0
                        ),
                        1, 1, 1,
                                ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
                                ARRAY[[false], [true]]::boolean[][]
                )
        ) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |   9
 1 | 2 |   1
 1 | 3 |   9
 2 | 1 |   9
 2 | 2 |
 2 | 3 |   9
 3 | 1 |   9
 3 | 2 |   9
 3 | 3 |   9
                                
/*
ST_SetValues() zeigt folgendes Verhalten...

+ - + - + - +          + - + - + - +
|   | 1 | 1 |          |   | 9 | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |    =
>    | 1 |   | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 9 | 9 | 9 |
+ - + - + - +          + - + - + - +
*/
SELECT
        (poly).x,
        (poly).y,
        (poly).val
FROM (
SELECT
        ST_PixelAsPolygons(
                ST_SetValues(
                        ST_SetValue(
                                ST_AddBand(
                                        ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                                        1, '8BUI', 1, 0
                                ),
                                1, 1, 1, NULL
                        ),
                        1, 1, 1,
                                ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
                                ARRAY[[false], [true]]::boolean[][],
                                TRUE
                )
        ) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |
 1 | 2 |   1
 1 | 3 |   9
 2 | 1 |   9
 2 | 2 |
 2 | 3 |   9
 3 | 1 |   9
 3 | 2 |   9
 3 | 3 |   9
                                

Beispiele: Variante 2

/*
ST_SetValues() zeigt folgendes Verhalten...

+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 1 | 1 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |    =
>    | 1 | 9 | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 9 | 9 |
+ - + - + - +          + - + - + - +
*/
SELECT
        (poly).x,
        (poly).y,
        (poly).val
FROM (
SELECT
        ST_PixelAsPolygons(
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                                1, '8BUI', 1, 0
                        ),
                        1, 1, 1, ARRAY[[-1, -1, -1], [-1, 9, 9], [-1, 9, 9]]::double precision[][], -1
                )
        ) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |   1
 1 | 2 |   1
 1 | 3 |   1
 2 | 1 |   1
 2 | 2 |   9
 2 | 3 |   9
 3 | 1 |   1
 3 | 2 |   9
 3 | 3 |   9
                                
/*
Diese Beispiel ähnelt dem Vorigen. An Stelle von nosetvalue = -1, ist nosetvalue = NULL gesetzt

ST_SetValues() zeigt folgendes Verhalten...
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 1 | 1 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |    =
>    | 1 | 9 | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 9 | 9 |
+ - + - + - +          + - + - + - +
*/
SELECT
        (poly).x,
        (poly).y,
        (poly).val
FROM (
SELECT
        ST_PixelAsPolygons(
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                                1, '8BUI', 1, 0
                        ),
                        1, 1, 1, ARRAY[[NULL, NULL, NULL], [NULL, 9, 9], [NULL, 9, 9]]::double precision[][], NULL::double precision
                )
        ) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |   1
 1 | 2 |   1
 1 | 3 |   1
 2 | 1 |   1
 2 | 2 |   9
 2 | 3 |   9
 3 | 1 |   1
 3 | 2 |   9
 3 | 3 |   9
                                

Beispiele: Variante 3

/*
ST_SetValues() führt folgendes aus...

+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 1 | 1 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |    =
>    | 1 | 9 | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 9 | 9 |
+ - + - + - +          + - + - + - +
*/
SELECT
        (poly).x,
        (poly).y,
        (poly).val
FROM (
SELECT
        ST_PixelAsPolygons(
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                                1, '8BUI', 1, 0
                        ),
                        1, 2, 2, 2, 2, 9
                )
        ) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |   1
 1 | 2 |   1
 1 | 3 |   1
 2 | 1 |   1
 2 | 2 |   9
 2 | 3 |   9
 3 | 1 |   1
 3 | 2 |   9
 3 | 3 |   9
                                
/*
ST_SetValues() führt folgendes aus...

+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 1 | 1 |
+ - + - + - +          + - + - + - +
| 1 |   | 1 |    =
>    | 1 |   | 9 |
+ - + - + - +          + - + - + - +
| 1 | 1 | 1 |          | 1 | 9 | 9 |
+ - + - + - +          + - + - + - +
*/
SELECT
        (poly).x,
        (poly).y,
        (poly).val
FROM (
SELECT
        ST_PixelAsPolygons(
                ST_SetValues(
                        ST_SetValue(
                                ST_AddBand(
                                        ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                                        1, '8BUI', 1, 0
                                ),
                                1, 2, 2, NULL
                        ),
                        1, 2, 2, 2, 2, 9, TRUE
                )
        ) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |   1
 1 | 2 |   1
 1 | 3 |   1
 2 | 1 |   1
 2 | 2 |
 2 | 3 |   9
 3 | 1 |   1
 3 | 2 |   9
 3 | 3 |   9
                                

Beispiele: Variante 5

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
        SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
        SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
        SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
        SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
        rid, gid, ST_DumpValues(ST_SetValue(rast, 1, geom, gid))
FROM foo t1
CROSS JOIN bar t2
ORDER BY rid, gid;

 rid | gid |                                                                st_dumpvalues
-----+-----+---------------------------------------------------------------------------------------------------------------------------------------------
   1 |   1 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,1,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL}}")
   1 |   2 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
   1 |   3 | (1,"{{3,3,3,3,3},{3,NULL,NULL,NULL,NULL},{3,NULL,NULL,NULL,NULL},{3,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL}}")
   1 |   4 | (1,"{{4,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,4}}")
(4 rows)
                                

Das folgende Beispiel zeigt, dass bestehende "geomvals" durch ein Feld mit "geomvals" später überschrieben werden können

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
        SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
        SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
        SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
        SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
        t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 1
        AND t3.gid = 2
ORDER BY t1.rid, t2.gid, t3.gid;

 rid | gid | gid |                                                    st_dumpvalues
-----+-----+-----+---------------------------------------------------------------------------------------------------------------------
   1 |   1 |   2 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)
                                

Dieses Beispiel ist das Gegenteil des vorigen Beispiels

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
        SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
        SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
        SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
        SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
        t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 2
        AND t3.gid = 1
ORDER BY t1.rid, t2.gid, t3.gid;

 rid | gid | gid |                                                    st_dumpvalues
-----+-----+-----+---------------------------------------------------------------------------------------------------------------------
   1 |   2 |   1 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,1,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)
                                

Name

ST_DumpValues — Gibt die Werte eines bestimmten Bandes als 2-dimensionales Feld aus.

Synopsis

setof record ST_DumpValues( raster rast , integer[] nband=NULL , boolean exclude_nodata_value=true );

double precision[][] ST_DumpValues( raster rast , integer nband , boolean exclude_nodata_value=true );

Beschreibung

Gibt die Werte eines bestimmten Bandes als 2-dimensionales Feld (der erste Index entspricht der Zeile, der zweite der Spalte) aus. Wenn nband NULL oder nicht gegeben ist, werden alle Rasterbänder abgearbeitet.

Verfügbarkeit: 2.1.0

Beispiele

WITH foo AS (
        SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI'::text, 1, 0), 2, '32BF'::text, 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT
        (ST_DumpValues(rast)).*
FROM foo;

 nband |                       valarray
-------+------------------------------------------------------
     1 | {{1,1,1},{1,1,1},{1,1,1}}
     2 | {{3,3,3},{3,3,3},{3,3,3}}
     3 | {{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL}}
(3 rows)
                                
WITH foo AS (
        SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI'::text, 1, 0), 2, '32BF'::text, 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT
        (ST_DumpValues(rast, ARRAY[3, 1])).*
FROM foo;

 nband |                       valarray
-------+------------------------------------------------------
     3 | {{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL}}
     1 | {{1,1,1},{1,1,1},{1,1,1}}
(2 rows)
                                
WITH foo AS (
        SELECT ST_SetValue(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 1, 2, 5) AS rast
)
SELECT
        (ST_DumpValues(rast, 1))[2][1]
FROM foo;

 st_dumpvalues
---------------
             5
(1 row)
                                

Name

ST_PixelOfValue — Gibt die columnx- und rowy-Koordinaten jener Pixel aus, deren Zellwert gleich dem gesuchten Wert ist.

Synopsis

setof record ST_PixelOfValue( raster rast , integer nband , double precision[] search , boolean exclude_nodata_value=true );

setof record ST_PixelOfValue( raster rast , double precision[] search , boolean exclude_nodata_value=true );

setof record ST_PixelOfValue( raster rast , integer nband , double precision search , boolean exclude_nodata_value=true );

setof record ST_PixelOfValue( raster rast , double precision search , boolean exclude_nodata_value=true );

Beschreibung

Gibt die columnx- und rowy-Koordinaten jener Pixel aus, deren Zellwert gleich dem gesuchten Wert ist. Wenn kein Band angegeben ist, wird Band 1 angenommen.

Verfügbarkeit: 2.1.0

Beispiele

SELECT
        (pixels).*
FROM (
        SELECT
                ST_PixelOfValue(
                        ST_SetValue(
                                ST_SetValue(
                                        ST_SetValue(
                                                ST_SetValue(
                                                        ST_SetValue(
                                                                ST_AddBand(
                                                                        ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
                                                                        '8BUI'::text, 1, 0
                                                                ),
                                                                1, 1, 0
                                                        ),
                                                        2, 3, 0
                                                ),
                                                3, 5, 0
                                        ),
                                        4, 2, 0
                                ),
                                5, 4, 255
                        )
                , 1, ARRAY[1, 255]) AS pixels
) AS foo

 val | x | y
-----+---+---
   1 | 1 | 2
   1 | 1 | 3
   1 | 1 | 4
   1 | 1 | 5
   1 | 2 | 1
   1 | 2 | 2
   1 | 2 | 4
   1 | 2 | 5
   1 | 3 | 1
   1 | 3 | 2
   1 | 3 | 3
   1 | 3 | 4
   1 | 4 | 1
   1 | 4 | 3
   1 | 4 | 4
   1 | 4 | 5
   1 | 5 | 1
   1 | 5 | 2
   1 | 5 | 3
 255 | 5 | 4
   1 | 5 | 5
                                

9.7. Raster Editoren

ST_SetGeoReference — Georeferenziert einen Raster über 6 Parameter in einem einzigen Aufruf. Die Zahlen müssen durch Leerzeichen getrennt sein. Die Funktion akzeptiert die Eingabe im Format von 'GDAL' und von 'ESRI'. Der Standardwert ist GDAL.
ST_SetRotation — Bestimmt die Rotation des Rasters in Radiant.
ST_SetScale — Setzt die X- und Y-Größe der Pixel in den Einheiten des Koordinatenreferenzsystems. Entweder eine Zahl pro Pixel oder Breite und Höhe.
ST_SetSkew — Setzt den georeferenzierten X- und Y-Versatz (oder den Rotationsparameter). Wenn nur ein Wert übergeben wird, werden X und Y auf den selben Wert gesetzt.
ST_SetSRID — Setzt die SRID eines Rasters auf einen bestimmten Ganzzahlwert. Die SRID wird in der Tabelle "spatial_ref_sys" definiert.
ST_SetUpperLeft — Setzt den Wert der oberen linke Ecke des Rasters auf die projizierten X- und Y-Koordinaten.
ST_Resample — Skaliert einen Raster mit einem bestimmten Algorithmus, neuen Dimensionen, einer beliebigen Gitterecke und über Parameter zur Georeferenzierung des Rasters, die angegeben oder von einem anderen Raster übernommen werden können.
ST_Rescale — Skaliert einen Raster indem lediglich der Maßstab (oder die Pixelgröße) angepasst wird. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung ist NearestNeighbor.
ST_Reskew — Skaliert einen Raster, indem lediglich der Versatz (oder Rotationsparameter) angepasst wird. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung ist NearestNeighbor.
ST_SnapToGrid — Skaliert einen Raster durch Fangen an einem Führungsgitter. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung ist NearestNeighbor. 
ST_Resize — Ändert die Zellgröße - width/height - eines Rasters
ST_Transform — Projiziert einen Raster von einem bekannten Koordinatenreferenzsystem in ein anderes bekanntes Koordinatenreferenzsystem um. Die Optionen für die Skalierung sind NearestNeighbor, Bilinear, Cubisch, CubicSpline und der Lanczos-Filter, die Standardeinstellung ist NearestNeighbor.

Name

ST_SetGeoReference — Georeferenziert einen Raster über 6 Parameter in einem einzigen Aufruf. Die Zahlen müssen durch Leerzeichen getrennt sein. Die Funktion akzeptiert die Eingabe im Format von 'GDAL' und von 'ESRI'. Der Standardwert ist GDAL.

Synopsis

raster ST_SetGeoReference(raster rast, text georefcoords, text format=GDAL);

raster ST_SetGeoReference(raster rast, double precision upperleftx, double precision upperlefty, double precision scalex, double precision scaley, double precision skewx, double precision skewy);

Beschreibung

Georeferenziert einen Raster über 6 Parameter in einem einzigen Aufruf. Die Funktion akzeptiert die Eingabe im Format von 'GDAL' und von 'ESRI'. Der Standardwert ist GDAL. Wenn die 6 Parameter nicht angegeben sind, wird NULL zurückgegeben.

Die Formate unterscheiden sich wie folgt:

GDAL:

scalex skewy skewx scaley upperleftx upperlefty

ESRI:

scalex skewy skewx scaley upperleftx + scalex*0.5 upperlefty + scaley*0.5
[Note]

Wenn der Raster out-db Bänder aufweist, dann kann eine Änderung der Georeferenzierung zu einem unkorrekten Zugriff auf die extern gespeicherten Daten des Bandes führen.

Erweiterung: 2.1.0 ST_SetGeoReference(raster, double precision, ...) Variante hinzugefügt

Beispiele

WITH foo AS (
        SELECT ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0) AS rast
)
SELECT
        0 AS rid, (ST_Metadata(rast)).*
FROM foo
UNION ALL
SELECT
        1, (ST_Metadata(ST_SetGeoReference(rast, '10 0 0 -10 0.1 0.1', 'GDAL'))).*
FROM foo
UNION ALL
SELECT
        2, (ST_Metadata(ST_SetGeoReference(rast, '10 0 0 -10 5.1 -4.9', 'ESRI'))).*
FROM foo
UNION ALL
SELECT
        3, (ST_Metadata(ST_SetGeoReference(rast, 1, 1, 10, -10, 0.001, 0.001))).*
FROM foo

 rid |     upperleftx     |     upperlefty     | width | height | scalex | scaley | skewx | skewy | srid | numbands
-----+--------------------+--------------------+-------+--------+--------+--------+-------+-------+------+----------
   0 |                  0 |                  0 |     5 |      5 |      1 |     -1 |     0 |     0 |    0 |        0
   1 |                0.1 |                0.1 |     5 |      5 |     10 |    -10 |     0 |     0 |    0 |        0
   2 | 0.0999999999999996 | 0.0999999999999996 |     5 |      5 |     10 |    -10 |     0 |     0 |    0 |        0
   3 |                  1 |                  1 |     5 |      5 |     10 |    -10 | 0.001 | 0.001 |    0 |        0
                                

Name

ST_SetRotation — Bestimmt die Rotation des Rasters in Radiant.

Synopsis

float8 ST_SetRotation(raster rast, float8 rotation);

Beschreibung

Einheitliche Rotation des Rasters. Die Rotation wird in Radiant angegeben. Siehe World File für mehr Details.

Beispiele

SELECT
  ST_ScaleX(rast1), ST_ScaleY(rast1), ST_SkewX(rast1), ST_SkewY(rast1),
  ST_ScaleX(rast2), ST_ScaleY(rast2), ST_SkewX(rast2), ST_SkewY(rast2)
FROM (
  SELECT ST_SetRotation(rast, 15) AS rast1, rast as rast2 FROM dummy_rast
) AS foo;
      st_scalex      |      st_scaley      |      st_skewx      |      st_skewy      | st_scalex | st_scaley | st_skewx | st_skewy
---------------------+---------------------+--------------------+--------------------+-----------+-----------+----------+----------
   -1.51937582571764 |   -2.27906373857646 |   1.95086352047135 |   1.30057568031423 |         2 |         3 |        0 |        0
 -0.0379843956429411 | -0.0379843956429411 | 0.0325143920078558 | 0.0325143920078558 |      0.05 |     -0.05 |        0 |        0
                

Name

ST_SetScale — Setzt die X- und Y-Größe der Pixel in den Einheiten des Koordinatenreferenzsystems. Entweder eine Zahl pro Pixel oder Breite und Höhe.

Synopsis

raster ST_SetScale(raster rast, float8 xy);

raster ST_SetScale(raster rast, float8 x, float8 y);

Beschreibung

Setzt die X- und Y-Größe der Pixel in den Einheiten des Koordinatenreferenzsystems. Entweder eine Zahl pro Pixel oder Breite und Höhe. X und Y werden als gleich groß angenommen, wenn nur eine Zahl übergeben wird.

[Note]

ST_SetScale unterscheidet sich von ST_Rescale dadurch, dass bei ST_SetScale der Raster nicht skaliert wird um mit der Rasterausdehnung übereinzustimmen. Es werden nur die Metadaten (oder die Georeferenz) des Rasters geändert, um eine ursprünglich falsch angegebene Skalierung zu korrigieren. ST_Rescale berechnet die Breite und Höhe eines Rasters so, dass er mit der geographischen Ausdehnung des Rasters übereinstimmt. ST_SetScale verändert weder die Breite noch die Höhe des Rasters.

Änderung: 2.0.0. Versionen von WKTRaster haben dies als "ST_SetPixelSizeY" bezeichnet. Dies wurde mit 2.0.0 geändert.

Beispiele

UPDATE dummy_rast
        SET rast = ST_SetScale(rast, 1.5)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;

 pixx | pixy |                    newbox
------+------+----------------------------------------------
  1.5 |  1.5 | BOX(3427927.75 5793244 0, 3427935.25 5793251.5 0)
                                
UPDATE dummy_rast
        SET rast = ST_SetScale(rast, 1.5, 0.55)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;

 pixx | pixy |                   newbox
------+------+--------------------------------------------
  1.5 | 0.55 | BOX(3427927.75 5793244 0,3427935.25 5793247 0)
                                

Name

ST_SetSkew — Setzt den georeferenzierten X- und Y-Versatz (oder den Rotationsparameter). Wenn nur ein Wert übergeben wird, werden X und Y auf den selben Wert gesetzt.

Synopsis

raster ST_SetSkew(raster rast, float8 skewxy);

raster ST_SetSkew(raster rast, float8 skewx, float8 skewy);

Beschreibung

Setzt den georeferenzierten X- und Y-Versatz (oder den Rotationsparameter). Wenn nur ein Wert übergeben wird, werden X und Y auf den selben Wert gesetzt. Siehe World File für weitere Details.

Beispiele

-- Beispiel 1
UPDATE dummy_rast SET rast = ST_SetSkew(rast,1,2) WHERE rid = 1;
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
    ST_GeoReference(rast) as georef
FROM dummy_rast WHERE rid = 1;

rid | skewx | skewy |    georef
----+-------+-------+--------------
  1 |     1 |     2 | 2.0000000000
                    : 2.0000000000
                    : 1.0000000000
                    : 3.0000000000
                    : 0.5000000000
                    : 0.5000000000

                                
-- Beispiel 2 Beide auf die gleiche Zahl setzen:
UPDATE dummy_rast SET rast = ST_SetSkew(rast,0) WHERE rid = 1;
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
    ST_GeoReference(rast) as georef
FROM dummy_rast WHERE rid = 1;

 rid | skewx | skewy |    georef
-----+-------+-------+--------------
   1 |     0 |     0 | 2.0000000000
                     : 0.0000000000
                     : 0.0000000000
                     : 3.0000000000
                     : 0.5000000000
                     : 0.5000000000
                                

Name

ST_SetSRID — Setzt die SRID eines Rasters auf einen bestimmten Ganzzahlwert. Die SRID wird in der Tabelle "spatial_ref_sys" definiert.

Synopsis

raster ST_SetSRID(raster rast, integer srid);

Beschreibung

Weist der SRID des Rasters einen bestimmten Ganzzahlwert zu.

[Note]

Diese Funktion führt keine Koordinatentransformation des Rasters durch - sie setzt nur die Metadaten, welche das Koordinatenreferenzsystem definieren, in dem der Raster vorliegt. Nützlich für spätere Koordinatentransformationen.


Name

ST_SetUpperLeft — Setzt den Wert der oberen linke Ecke des Rasters auf die projizierten X- und Y-Koordinaten.

Synopsis

raster ST_SetUpperLeft(raster rast, double precision x, double precision y);

Beschreibung

Setzt den Wert der oberen linke Ecke des Rasters auf die projizierten X- und Y-Koordinaten.

Beispiele

SELECT ST_SetUpperLeft(rast,-71.01,42.37)
FROM dummy_rast
WHERE rid = 2;
                                        

Name

ST_Resample — Skaliert einen Raster mit einem bestimmten Algorithmus, neuen Dimensionen, einer beliebigen Gitterecke und über Parameter zur Georeferenzierung des Rasters, die angegeben oder von einem anderen Raster übernommen werden können.

Synopsis

raster ST_Resample(raster rast, integer width, integer height, double precision gridx=NULL, double precision gridy=NULL, double precision skewx=0, double precision skewy=0, text algorithm=NearestNeighbour, double precision maxerr=0.125);

raster ST_Resample(raster rast, double precision scalex=0, double precision scaley=0, double precision gridx=NULL, double precision gridy=NULL, double precision skewx=0, double precision skewy=0, text algorithm=NearestNeighbor, double precision maxerr=0.125);

raster ST_Resample(raster rast, raster ref, text algorithm=NearestNeighbour, double precision maxerr=0.125, boolean usescale=true);

raster ST_Resample(raster rast, raster ref, boolean usescale, text algorithm=NearestNeighbour, double precision maxerr=0.125);

Beschreibung

Skaliert einen Raster mit einem bestimmten Algorithmus, neuen Dimensionen (width & height), einer Gitterecke (gridx & gridy) und über Parameter zur Georeferenzierung des Rasters (scalex, scaley, skewx & skewy), die angegeben oder von einem anderen Raster übernommen werden können. Wenn Sie einen Referenzraster verwenden, müssen beide Raster die selbe SRID haben.

Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung "NearestNeighbor" ist am schnellsten, erzeugt aber auch die schlechteste Interpolation.

Wenn maxerr nicht angegeben ist, wird der maximale Fehler mit 0.125 Prozent angesetzt.

[Note]

Siehe GDAL Warp resampling methods für mehr Details.

Verfügbarkeit: 2.0.0 benötigt GDAL 1.6.1+

Änderung: 2.1.0 Der Parameter SRID wurde entfernt. Varianten mit einem Referenzraster setzen nicht länger die SRID des Referenzrasters ein. Verwenden Sie bitte ST_Transform() um einen Raster umzuprojizieren. Funktioniert mit Raster ohne SRID.

Beispiele

SELECT
        ST_Width(orig) AS orig_width,
        ST_Width(reduce_100) AS new_width
FROM (
        SELECT
                rast AS orig,
                ST_Resample(rast,100,100) AS reduce_100
        FROM aerials.boston
        WHERE ST_Intersects(rast,
                ST_Transform(
                        ST_MakeEnvelope(-71.128, 42.2392,-71.1277, 42.2397, 4326),26986)
        )
        LIMIT 1
) AS foo;

 orig_width | new_width
------------+-------------
        200 |         100
                                

Name

ST_Rescale — Skaliert einen Raster indem lediglich der Maßstab (oder die Pixelgröße) angepasst wird. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung ist NearestNeighbor.

Synopsis

raster ST_Rescale(raster rast, double precision scalexy, text algorithm=NearestNeighbour, double precision maxerr=0.125);

raster ST_Rescale(raster rast, double precision scalex, double precision scaley, text algorithm=NearestNeighbour, double precision maxerr=0.125);

Beschreibung

Skaliert einen Raster indem lediglich der Maßstab (oder die Pixelgröße) angepasst wird. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung "NearestNeighbor" ist am schnellsten, ergibt aber die schlechteste Interpolation.

scalex und scaley bestimmen die neue Pixelgröße. Der Wert von "scaley" muss oftmals negativ sein, um einen ordnungsgemäß ausgerichteten Raster zu erhalten.

Wenn "scalex" oder "scaley" teilerfremd zur Breite oder Höhe des Rasters sind, dann wird der Zielraster auf die Ausdehnung des Ausgangsrasters erweitert. Um die exakte Ausdehnung des Ausgangsrasters sicher zu erhalten, siehe ST_Resize

maxerr is the threshold for transformation approximation by the resampling algorithm (in pixel units). A default of 0.125 is used if no maxerr is specified, which is the same value used in GDAL gdalwarp utility. If set to zero, no approximation takes place.

[Note]

Siehe GDAL Warp resampling methods für mehr Details.

[Note]

ST_Rescale unterscheidet sich von ST_SetScale darin, dass ST_SetScale den Raster nicht skaliert um mit der Ausdehnung des Ausgangsrasters übereinzustimmen. ST_SetScale ändert lediglich die Metadaten (oder die Georeferenz) des Rasters, um eine ursprünglich falsch angegebene Skalierung zu korrigieren. ST_Rescale berechnet die Breite und Höhe eines Rasters so, dass er mit der geographischen Ausdehnung des Ausgangsraster übereinstimmt. ST_SetScale verändert weder die Breite noch die Höhe des Rasters.

Verfügbarkeit: 2.0.0 benötigt GDAL 1.6.1+

Änderung: 2.1.0 Funktioniert jetzt auch mit Raster ohne SRID

Beispiele

Ein einfaches Beispiel, das die Pixelgröße eines Raster von 0.001 Grad auf 0.0015 Grad ändert.

-- die ursprüngliche Pixelgröße des Rasters
SELECT ST_PixelWidth(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0)) width

   width
----------
0.001

-- die Pixelgröße des skalierten Rasters
SELECT ST_PixelWidth(ST_Rescale(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0015)) width

   width
----------
0.0015

Name

ST_Reskew — Skaliert einen Raster, indem lediglich der Versatz (oder Rotationsparameter) angepasst wird. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung ist NearestNeighbor.

Synopsis

raster ST_Reskew(raster rast, double precision skewxy, text algorithm=NearestNeighbour, double precision maxerr=0.125);

raster ST_Reskew(raster rast, double precision skewx, double precision skewy, text algorithm=NearestNeighbour, double precision maxerr=0.125);

Beschreibung

Skaliert einen Raster, indem lediglich der Versatz (oder Rotationsparameter) angepasst wird. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung "NearestNeighbor" ist am schnellsten, ergibt aber die schlechteste Interpolation.

skewx und skewy legen den neuen Versatz fest.

Die Ausdehnung des Zielrasters erfasst die Ausdehnung des Ausgangsrasters.

Wenn maxerr nicht angegeben ist, wird der maximale Fehler mit 0.125 Prozent angesetzt.

[Note]

Siehe GDAL Warp resampling methods für mehr Details.

[Note]

ST_Reskew unterscheidet sich von ST_SetSkew darin, dass ST_SetSkew den Raster nicht skaliert um mit der Ausdehnung des Ausgangsrasters übereinzustimmen. ST_SetSkew ändert lediglich die Metadaten (oder die Georeferenz) des Rasters, um einen ursprünglich falsch angegebenen Versatz zu korrigieren. ST_Reskew ergibt einen Raster mit geänderter Breite und Höhe, da die Berechnung so durchgeführt wird, dass die geographischen Ausdehnung des Zielrasters mit der des Ausgangsrasters übereinstimmt. ST_SetSkew verändert weder die Breite noch die Höhe des Rasters.

Verfügbarkeit: 2.0.0 benötigt GDAL 1.6.1+

Änderung: 2.1.0 Funktioniert jetzt auch mit Raster ohne SRID

Beispiele

Ein einfaches Beispiel, das den Versatz eines Rasters von 0.0 auf 0.0015 ändert.

-- der ursprüngliche Raster, nicht rotiert
SELECT ST_Rotation(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0));

-- result
0

-- die Rotation des versetzten Rasters
SELECT ST_Rotation(ST_Reskew(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0015));

-- result
-0.982793723247329

Name

ST_SnapToGrid — Skaliert einen Raster durch Fangen an einem Führungsgitter. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung ist NearestNeighbor. 

Synopsis

raster ST_SnapToGrid(raster rast, double precision gridx, double precision gridy, text algorithm=NearestNeighbour, double precision maxerr=0.125, double precision scalex=DEFAULT 0, double precision scaley=DEFAULT 0);

raster ST_SnapToGrid(raster rast, double precision gridx, double precision gridy, double precision scalex, double precision scaley, text algorithm=NearestNeighbour, double precision maxerr=0.125);

raster ST_SnapToGrid(raster rast, double precision gridx, double precision gridy, double precision scalexy, text algorithm=NearestNeighbour, double precision maxerr=0.125);

Beschreibung

Skaliert einen Raster durch Fangen an einem Führungsgitter, welches durch einen beliebige Pixeleckpunkt (gridx & gridy) und eine optionale Pixelgröße (scalex & scaley) definiert ist. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung "NearestNeighbor" ist am schnellsten, ergibt aber die schlechteste Interpolation. 

gridx und gridy bestimmen einen beliebigen Pixeleckpunkt des neuen Gitters. Dies muss nicht unbedingt die obere linke Ecke des Zielrasters sein, darf aber nicht innerhalb oder am Rand der Ausdehnung des Zielrasters liegen.

Optional können Sie die Pixelgröße des neuen Gitters mit scalex und scaley festlegen.

Die Ausdehnung des Zielrasters erfasst die Ausdehnung des Ausgangsrasters.

Wenn maxerr nicht angegeben ist, wird der maximale Fehler mit 0.125 Prozent angesetzt.

[Note]

Siehe GDAL Warp resampling methods für mehr Details.

[Note]

Verwenden Sie bitte ST_Resample, wenn Sie eine bessere Kontrolle über die Gitterparameter benötigen.

Verfügbarkeit: 2.0.0 benötigt GDAL 1.6.1+

Änderung: 2.1.0 Funktioniert jetzt auch mit Raster ohne SRID

Beispiele

Ein einfaches Beispiel, bei dem ein Raster an einem sich geringfügig unterscheidenden Gitter gefangen wird.

-- das obere linke X des ursprünglichen Rasters
SELECT ST_UpperLeftX(ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0));
-- result
0

-- das obere linke X des Rasters nach dem Fangen
SELECT ST_UpperLeftX(ST_SnapToGrid(ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0002, 0.0002));

--result
-0.0008

Name

ST_Resize — Ändert die Zellgröße - width/height - eines Rasters

Synopsis

raster ST_Resize(raster rast, integer width, integer height, text algorithm=NearestNeighbor, double precision maxerr=0.125);

raster ST_Resize(raster rast, double precision percentwidth, double precision percentheight, text algorithm=NearestNeighbor, double precision maxerr=0.125);

raster ST_Resize(raster rast, text width, text height, text algorithm=NearestNeighbor, double precision maxerr=0.125);

Beschreibung

Passt die Größe des Rasters an eine neue Breite/Höhe an. Die neue Breite/Höhe kann durch die genaue Anzahl der Pixel, oder durch einen Prozentsatz der Breite/Höhe des Rasters, angegeben werden. Die Ausdehnung des Zielrasters ist mit der Ausdehnung des Ausgangsrasters ident.

Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung "NearestNeighbor" ist am schnellsten, erzeugt aber auch die schlechteste Interpolation.

Variante 1 erwartet die tatsächliche width/height des Ausgaberasters.

Variante 2 erwartet Dezimalwerte zwischen null (0) und eins (1), welche das Verhältnis zur Pixelbreite und zur Pixelhöhe des Eingaberasters angeben.

Variante 3 nimmt entweder die tatsächliche Breite/Höhe des Zielrasters oder einen Prozentsatz der Breite/Höhe des Ausgangsrasters als Zeichenfolge ("20%") entgegen.

Verfügbarkeit: 2.1.0 benötigt GDAL 1.6.1+

Beispiele

WITH foo AS(
SELECT
        1 AS rid,
        ST_Resize(
                ST_AddBand(
                        ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
                        , 1, '8BUI', 255, 0
                )
        , '50%', '500') AS rast
UNION ALL
SELECT
        2 AS rid,
        ST_Resize(
                ST_AddBand(
                        ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
                        , 1, '8BUI', 255, 0
                )
        , 500, 100) AS rast
UNION ALL
SELECT
        3 AS rid,
        ST_Resize(
                ST_AddBand(
                        ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
                        , 1, '8BUI', 255, 0
                )
        , 0.25, 0.9) AS rast
), bar AS (
        SELECT rid, ST_Metadata(rast) AS meta, rast FROM foo
)
SELECT rid, (meta).* FROM bar

 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
-----+------------+------------+-------+--------+--------+--------+-------+-------+------+----------
   1 |          0 |          0 |   500 |    500 |      1 |     -1 |     0 |     0 |    0 |        1
   2 |          0 |          0 |   500 |    100 |      1 |     -1 |     0 |     0 |    0 |        1
   3 |          0 |          0 |   250 |    900 |      1 |     -1 |     0 |     0 |    0 |        1
(3 rows)
                                

Name

ST_Transform — Projiziert einen Raster von einem bekannten Koordinatenreferenzsystem in ein anderes bekanntes Koordinatenreferenzsystem um. Die Optionen für die Skalierung sind NearestNeighbor, Bilinear, Cubisch, CubicSpline und der Lanczos-Filter, die Standardeinstellung ist NearestNeighbor.

Synopsis

raster ST_Transform(raster rast, integer srid, text algorithm=NearestNeighbor, double precision maxerr=0.125, double precision scalex, double precision scaley);

raster ST_Transform(raster rast, integer srid, double precision scalex, double precision scaley, text algorithm=NearestNeighbor, double precision maxerr=0.125);

raster ST_Transform(raster rast, raster alignto, text algorithm=NearestNeighbor, double precision maxerr=0.125);

Beschreibung

Projiziert einen Raster von einem bekannten Koordinatenreferenzsystem in ein anderes bekanntes Koordinatenreferenzsystem um. Verwendet den angegebenen Algorithmus für die Interpolation der Pixelwerte. Wenn kein Algorithmus angegeben ist, wird 'NearestNeighbor' verwendet. Wenn "maxerr" nicht angegeben ist, wird ein Prozentsatz von 0.125 angenommen.

Die Optionen für den Algorithmus sind: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline' und 'Lanczos'. Siehe GDAL Warp resampling methods für weitere Details.

ST_Transform wird oft mit ST_SetSRID() verwechselt. ST_Transform ändert die Koordinaten der Geometrie tatsächlich (und die Pixelwerte mittels "resampling") von einem Koordinatenreferenzsystem auf ein anderes, während ST_SetSRID() nur den Identifikator "SRID" des Rasters ändert.

Anders als die anderen Varianten, benötigt Variante 3 einen Referenzraster für den Parameter alignto. Der Raster wird in das Koordinatenreferenzsystem (SRID) des Referenzrasters transformiert und an dem Referenzraster ausgerichtet (ST_SameAlignment = TRUE).

[Note]

Falls Sie herausfinden, dass die Koordinatentransformation nicht richtig unterstützt wird, müssen Sie vermutlich die Umgebungsvariable PROJSO auf jene Projektionsbibliothek ".so" oder ".dll" setzen, die von Ihrer PostGIS Installation verwendet wird. Hierbei muss nur der Name der Datei angegeben werden. Auf Windows zum Beispiel würden Sie unter Control Panel -> System -> Environment Variables eine Systemvariable mit dem Namen PROJSO hinzufügen und auf libproj.dll setzen (falls Sie Proj 4.6.1 verwenden). Nach dieser Änderung müssen Sie den PostgreSQL-Dienst/Dämon neu starten.

Verfügbarkeit: 2.0.0 benötigt GDAL 1.6.1+

Erweiterung: 2.1.0 Variante ST_Transform(rast, alignto) hinzugefügt

Beispiele

SELECT ST_Width(mass_stm) As w_before, ST_Width(wgs_84) As w_after,
  ST_Height(mass_stm) As h_before, ST_Height(wgs_84) As h_after
        FROM
        ( SELECT rast As mass_stm, ST_Transform(rast,4326) As wgs_84
  ,  ST_Transform(rast,4326, 'Bilinear') AS wgs_84_bilin
                FROM aerials.o_2_boston
                        WHERE ST_Intersects(rast,
                                ST_Transform(ST_MakeEnvelope(-71.128, 42.2392,-71.1277, 42.2397, 4326),26986) )
                LIMIT 1) As foo;

 w_before | w_after | h_before | h_after
----------+---------+----------+---------
      200 |     228 |      200 |     170
                                        

ursprüngliche "Mass State Plane Meters" (mass_stm)

Nach der Transformation in WGS 84 Länge Breite (wgs_84)

Koordinatentransformation nach WGS 84 mit dem bilinearen Algorithmus anstelle der Standardeinstellung NN (wgs_84_bilin)

Beispiele: Variante 3

Im Folgenden wird der Unterschied zwischen der Verwendung von ST_Transform(raster, srid) und ST_Transform(raster, alignto) gezeigt

WITH foo AS (
        SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 1, 0) AS rast UNION ALL
        SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 2, 0) AS rast UNION ALL
        SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 3, 0) AS rast UNION ALL

        SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 10, 0) AS rast UNION ALL
        SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 20, 0) AS rast UNION ALL
        SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 30, 0) AS rast UNION ALL

        SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 100, 0) AS rast UNION ALL
        SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 200, 0) AS rast UNION ALL
        SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 300, 0) AS rast
), bar AS (
        SELECT
                ST_Transform(rast, 4269) AS alignto
        FROM foo
        LIMIT 1
), baz AS (
        SELECT
                rid,
                rast,
                ST_Transform(rast, 4269) AS not_aligned,
                ST_Transform(rast, alignto) AS aligned
        FROM foo
        CROSS JOIN bar
)
SELECT
        ST_SameAlignment(rast) AS rast,
        ST_SameAlignment(not_aligned) AS not_aligned,
        ST_SameAlignment(aligned) AS aligned
FROM baz

 rast | not_aligned | aligned
------+-------------+---------
 t    | f           | t
                                

Siehe auch

???, ST_SetSRID

9.8. Editoren für Rasterbänder

ST_SetBandNoDataValue — Setzt den NODATA Wert eines Bandes. Wenn kein Band angegeben ist, wird Band 1 angenommen. Falls ein Band keinen NODATA Wert aufweisen soll, übergeben Sie bitte für den Parameter "nodatavalue" NULL.
ST_SetBandIsNoData — Setzt die Flag "isnodata" für das Band auf TRUE.
ST_SetBandPath — Aktualisiert den externen Dateipfad und die Bandnummer eines out-db Bandes.
ST_SetBandIndex — Aktualisiert die externe Bandnummer eines out-db Bandes.

Name

ST_SetBandNoDataValue — Setzt den NODATA Wert eines Bandes. Wenn kein Band angegeben ist, wird Band 1 angenommen. Falls ein Band keinen NODATA Wert aufweisen soll, übergeben Sie bitte für den Parameter "nodatavalue" NULL.

Synopsis

raster ST_SetBandNoDataValue(raster rast, double precision nodatavalue);

raster ST_SetBandNoDataValue(raster rast, integer band, double precision nodatavalue, boolean forcechecking=false);

Beschreibung

Setzt den NODATA Wert eines Bandes. Wenn kein Band angegeben ist, wird Band 1 angenommen. Dies beeinflusst die Ergebnisse von ST_Polygon, ST_DumpAsPolygons und die Funktionen ST_PixelAs...().

Beispiele

-- den NODATA-Wert nur für das erste Band setzen
UPDATE dummy_rast
        SET rast = ST_SetBandNoDataValue(rast,1, 254)
WHERE rid = 2;

-- Den NODATA Wert der Bänder 1,2,3 ändern
UPDATE dummy_rast
        SET rast =
                ST_SetBandNoDataValue(
                        ST_SetBandNoDataValue(
                                ST_SetBandNoDataValue(
                                        rast,1, 254)
                                ,2,99),
                                3,108)
                WHERE rid = 2;

-- NODATA Werte ausblenden. Dadurch wird gewährleistet, dass sämtliche Pixel von allen Funktionsberechnungen herangezogen werden
UPDATE dummy_rast
        SET rast = ST_SetBandNoDataValue(rast,1, NULL)
WHERE rid = 2;
                                        

Name

ST_SetBandIsNoData — Setzt die Flag "isnodata" für das Band auf TRUE.

Synopsis

raster ST_SetBandIsNoData(raster rast, integer band=1);

Beschreibung

Setzt die Flag "isnodata" des Bandes auf TRUE. Wenn kein Band angegeben ist, wird Band 1 angenommen. Diese Funktion sollte nur aufgerufen werden, wenn sich die Flag verändert hat. Dies ist der Fall, wenn sich die Ergebnisse von ST_BandIsNoData unterscheiden, da einmal mit TRUE als letzten Übergabewert und ein anderes mal ohne diesen aufgerufen wurde.

Verfügbarkeit: 2.0.0

Beispiele

-- Eine dummy Tabelle mit einer Rasterspalte erstellen
create table dummy_rast (rid integer, rast raster);

-- Einen Raster mit zwei Bändern hinzufügen, ein Pixel pro Band. Im ersten Band, nodatavalue = pixel value = 3.
-- Im zweiten Band, nodatavalue = 13, pixel value = 4
insert into dummy_rast values(1,
(
'01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0200' -- nBands (uint16 0)
||
'17263529ED684A3F' -- scaleX (float64 0.000805965234044584)
||
'F9253529ED684ABF' -- scaleY (float64 -0.00080596523404458)
||
'1C9F33CE69E352C0' -- ipX (float64 -75.5533328537098)
||
'718F0E9A27A44840' -- ipY (float64 49.2824585505576)
||
'ED50EB853EC32B3F' -- skewX (float64 0.000211812383858707)
||
'7550EB853EC32B3F' -- skewY (float64 0.000211812383858704)
||
'E6100000' -- SRID (int32 4326)
||
'0100' -- width (uint16 1)
||
'0100' -- height (uint16 1)
||
'4' -- hasnodatavalue set to true, isnodata value set to false (when it should be true)
||
'2' -- first band type (4BUI)
||
'03' -- novalue==3
||
'03' -- pixel(0,0)==3 (same that nodata)
||
'0' -- hasnodatavalue set to false
||
'5' -- second band type (16BSI)
||
'0D00' -- novalue==13
||
'0400' -- pixel(0,0)==4
)::raster
);

select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected false
select st_bandisnodata(rast, 1, TRUE) from dummy_rast where rid = 1; -- Expected true

-- Die Flag "isnodata" ist versaut. Wir setzen sie auf TRUE
update dummy_rast set rast = st_setbandisnodata(rast, 1) where rid = 1;


select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected true

                    

Name

ST_SetBandPath — Aktualisiert den externen Dateipfad und die Bandnummer eines out-db Bandes.

Synopsis

raster ST_SetBandPath(raster rast, integer band, text outdbpath, integer outdbindex, boolean force=false);

Beschreibung

Aktualisiert den externen Rasterdateipfad und die externe Bandnummer eines out-db Bandes.

[Note]

Wenn force auf TRUE gesetzt ist, wird die Kompatibilität (z.B. Ausrichtung, Pixelunterstützung) zwischen der externen Rasterdatei und dem PostGIS Raster nicht überprüft. Dieser Modus ist für Dateisystemänderungen vorgesehen, bei denen der externe Raster bestehen bleibt.

[Note]

Intern wird bei dieser Methode das PostGIS Raster Band mit dem Index band durch ein neues Band ersetzt, ohne dass die existierende Pfadinformation aktualisiert wird.

Verfügbarkeit: 2.5.0

Beispiele

WITH foo AS (
        SELECT
                ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
)
SELECT
        1 AS query,
        *
FROM ST_BandMetadata(
        (SELECT rast FROM foo),
         ARRAY[1,3,2]::int[]
)
UNION ALL
SELECT
        2,
        *
FROM ST_BandMetadata(
        (
                SELECT
                        ST_SetBandPath(
                                rast,
                                2,
                                '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected2.tif',
                                1
                        ) AS rast
                 FROM foo
        ),
         ARRAY[1,3,2]::int[]
)
ORDER BY 1, 2;

 query | bandnum | pixeltype | nodatavalue | isoutdb |                                      path                                       | outdbbandnum
-------+---------+-----------+-------------+---------+---------------------------------------------------------------------------------+--------------
     1 |       1 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            1
     1 |       2 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            2
     1 |       3 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            3
     2 |       1 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            1
     2 |       2 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected2.tif      |            1
     2 |       3 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            3
                                

Name

ST_SetBandIndex — Aktualisiert die externe Bandnummer eines out-db Bandes.

Synopsis

raster ST_SetBandIndex(raster rast, integer band, integer outdbindex, boolean force=false);

Beschreibung

Aktualisiert die externe Bandnummer eines out-db Bandes. Die mit dem out-db Band assoziierte externe Rasterdatei wird davon nicht betroffen

[Note]

Wenn force auf TRUE gesetzt ist, wird die Kompatibilität (z.B. Ausrichtung, Pixelunterstützung) zwischen der externen Rasterdatei und dem PostGIS Raster nicht überprüft. Dieser Modus ist für das Verschieben von Bändern in einer externen Rasterdatei vorgesehen.

[Note]

Intern wird bei dieser Methode das PostGIS Raster Band mit dem Index band durch ein neues Band ersetzt, ohne dass die existierende Pfadinformation aktualisiert wird.

Verfügbarkeit: 2.5.0

Beispiele

WITH foo AS (
        SELECT
                ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
)
SELECT
        1 AS query,
        *
FROM ST_BandMetadata(
        (SELECT rast FROM foo),
         ARRAY[1,3,2]::int[]
)
UNION ALL
SELECT
        2,
        *
FROM ST_BandMetadata(
        (
                SELECT
                        ST_SetBandIndex(
                                rast,
                                2,
                                1
                        ) AS rast
                 FROM foo
        ),
         ARRAY[1,3,2]::int[]
)
ORDER BY 1, 2;

 query | bandnum | pixeltype | nodatavalue | isoutdb |                                      path                                       | outdbbandnum
-------+---------+-----------+-------------+---------+---------------------------------------------------------------------------------+--------------
     1 |       1 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            1
     1 |       2 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            2
     1 |       3 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            3
     2 |       1 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            1
     2 |       2 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            1
     2 |       3 | 8BUI      |             | t       | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif       |            3
                                

9.9. Rasterband Statistik und Analytik

ST_Count — Gibt die Anzahl der Pixel für ein Band eines Rasters oder eines Raster-Coverage zurück. Wenn kein Band angegeben ist, wird standardmäßig Band 1 gewählt. Wenn der Parameter "exclude_nodata_value" auf TRUE gesetzt ist, werden nur Pixel mit Werten ungleich NODATA gezählt.
ST_CountAgg — Aggregatfunktion. Gibt die Anzahl der Pixel in einem bestimmten Band der Raster aus. Wenn kein Band angegeben ist, wird Band 1 angenommen. Wenn "exclude_nodata_value" TRUE ist, werden nur die Pixel ohne NODATA Werte gezählt.
ST_Histogram — Gibt Datensätze aus, welche die Verteilung der Daten eines Rasters oder eines Rastercoverage darstellen. Dabei wird die Wertemenge in Klassen aufgeteilt und für jede Klasse zusammengefasst. Wenn die Anzahl der Klassen nicht angegeben ist, wird sie automatisch berechnet.
ST_Quantile — Berechnet die Quantile eines Rasters oder einer Rastercoverage Tabelle im Kontext von Stichproben oder Bevölkerung. Dadurch kann untersucht werden, ob ein Wert bei 25%, 50% oder 75% Perzentil des Rasters liegt.
ST_SummaryStats — Gibt eine zusammenfassende Statistik aus, bestehend aus der Anzahl, der Summe, dem arithmetischen Mittel, der Standardabweichung, dem Minimum und dem Maximum der Werte eines Rasterbandes oder eines Rastercoverage. Wenn kein Band angegeben ist, wird Band 1 angenommen.
ST_SummaryStatsAgg — Aggregatfunktion. Gibt eine zusammenfassende Statistik aus, die aus der Anzahl, der Summe, dem arithmetischen Mittel, dem Minimum und dem Maximum der Werte eines bestimmten Bandes eines Rastersatzes besteht. Wenn kein Band angegeben ist, wird Band 1 angenommen.
ST_ValueCount — Gibt Datensätze aus, die den Zellwert und die Anzahl der Pixel eines Rasterbandes (oder Rastercoveragebandes) für gegebene Werte enthalten. Wenn kein Band angegeben ist, wird Band 1 angenommen. Pixel mit dem Wert NODATA werden standardmäßig nicht gezählt; alle anderen Pixelwerte des Bandes werden ausgegeben und auf die nächste Ganzzahl gerundet.

Name

ST_Count — Gibt die Anzahl der Pixel für ein Band eines Rasters oder eines Raster-Coverage zurück. Wenn kein Band angegeben ist, wird standardmäßig Band 1 gewählt. Wenn der Parameter "exclude_nodata_value" auf TRUE gesetzt ist, werden nur Pixel mit Werten ungleich NODATA gezählt.

Synopsis

bigint ST_Count(raster rast, integer nband=1, boolean exclude_nodata_value=true);

bigint ST_Count(raster rast, boolean exclude_nodata_value);

bigint ST_Count(text rastertable, text rastercolumn, integer nband=1, boolean exclude_nodata_value=true);

bigint ST_Count(text rastertable, text rastercolumn, boolean exclude_nodata_value);

Beschreibung

Gibt die Anzahl der Pixel für ein Band eines Rasters oder eines Raster-Coverage zurück. Wenn kein Band angegeben ist, wird für nband 1 vorausgesetzt.

[Note]

Wenn der Parameter exclude_nodata_value auf TRUE gesetzt ist, werden nur die Pixel des Rasters gezählt, deren Werte ungleich nodata sind. Setzen Sie bitte exclude_nodata_value auf FALSE um die Anzahl aller Pixel zu erhalten

Verfügbarkeit: 2.0.0

[Warning]

Ab 2.0.0 sind die Varianten von ST_Count(rastertable, rastercolumn, ...) überholt. Verwenden Sie bitte stattdessenST_CountAgg.

Beispiele

-- das Beispiel zählt einmal die Pixel ohne den Wert 249 und einmal alle Pixel.  --
SELECT rid, ST_Count(ST_SetBandNoDataValue(rast,249)) As exclude_nodata,
        ST_Count(ST_SetBandNoDataValue(rast,249),false) As include_nodata
    FROM dummy_rast WHERE rid=2;

rid | exclude_nodata | include_nodata
-----+----------------+----------------
   2 |             23 |             25
                                

Name

ST_CountAgg — Aggregatfunktion. Gibt die Anzahl der Pixel in einem bestimmten Band der Raster aus. Wenn kein Band angegeben ist, wird Band 1 angenommen. Wenn "exclude_nodata_value" TRUE ist, werden nur die Pixel ohne NODATA Werte gezählt.

Synopsis

bigint ST_CountAgg(raster rast, integer nband, boolean exclude_nodata_value, double precision sample_percent);

bigint ST_CountAgg(raster rast, integer nband, boolean exclude_nodata_value);

bigint ST_CountAgg(raster rast, boolean exclude_nodata_value);

Beschreibung

Gibt die Anzahl der Pixel in einem bestimmten Band der Raster aus. Wenn kein Band angegeben ist, wird nband standardmäßig auf 1 gesetzt.

Wenn der Parameter exclude_nodata_value auf TRUE gesetzt ist, werden nur die Pixel des Rasters gezählt, deren Werte ungleich NODATA sind. Setzen Sie bitte exclude_nodata_value auf FALSE um die Anzahl aller Pixel zu erhalten

Standardmäßig werden alle Pixel abgetastet. Um eine schnellere Rückmeldung zu bekommen, können Sie den Parameter sample_percent auf einen Wert zwischen null (0) und eins (1) setzen.

Verfügbarkeit: 2.2.0

Beispiele

WITH foo AS (
        SELECT
                rast.rast
        FROM (
                SELECT ST_SetValue(
                        ST_SetValue(
                                ST_SetValue(
                                        ST_AddBand(
                                                ST_MakeEmptyRaster(10, 10, 10, 10, 2, 2, 0, 0,0)
                                                , 1, '64BF', 0, 0
                                        )
                                        , 1, 1, 1, -10
                                )
                                , 1, 5, 4, 0
                        )
                        , 1, 5, 5, 3.14159
                ) AS rast
        ) AS rast
        FULL JOIN (
                SELECT generate_series(1, 10) AS id
        ) AS id
                ON 1 = 1
)
SELECT
        ST_CountAgg(rast, 1, TRUE)
FROM foo;

 st_countagg
-------------
          20
(1 row)
                                

Name

ST_Histogram — Gibt Datensätze aus, welche die Verteilung der Daten eines Rasters oder eines Rastercoverage darstellen. Dabei wird die Wertemenge in Klassen aufgeteilt und für jede Klasse zusammengefasst. Wenn die Anzahl der Klassen nicht angegeben ist, wird sie automatisch berechnet.

Synopsis

SETOF record ST_Histogram(raster rast, integer nband=1, boolean exclude_nodata_value=true, integer bins=autocomputed, double precision[] width=NULL, boolean right=false);

SETOF record ST_Histogram(raster rast, integer nband, integer bins, double precision[] width=NULL, boolean right=false);

SETOF record ST_Histogram(raster rast, integer nband, boolean exclude_nodata_value, integer bins, boolean right);

SETOF record ST_Histogram(raster rast, integer nband, integer bins, boolean right);

SETOF record ST_Histogram(text rastertable, text rastercolumn, integer nband, integer bins, boolean right);

SETOF record ST_Histogram(text rastertable, text rastercolumn, integer nband, boolean exclude_nodata_value, integer bins, boolean right);

SETOF record ST_Histogram(text rastertable, text rastercolumn, integer nband=1, boolean exclude_nodata_value=true, integer bins=autocomputed, double precision[] width=NULL, boolean right=false);

SETOF record ST_Histogram(text rastertable, text rastercolumn, integer nband=1, integer bins, double precision[] width=NULL, boolean right=false);

Beschreibung

Gibt Datensätze aus, die das Minimum, das Maximum, die Anzahl und die Prozent der Werte des Rasterbandes für jede Klasse enthalten. Wenn kein Band angegeben ist, wird nband standardmäßig auf 1 gesetzt.

[Note]

Standardmäßig werden nur jene Pixelwerte berücksichtigt, die nicht den Wert NODATA haben. Setzen Sie bitte exclude_nodata_value auf FALSE um die Anzahl sämtlicher Pixel zu erhalten.

width double precision[]

Breite: ein Feld das die Breite für jede Kategorie/Klasse angibt. Wenn die Anzahl der Klassen größer ist als die Anzahl der Breiten, werden die Breiten wiederholt.

Beispiel: 9 Klassen, die Breiten sind [a, b, c] und werden als [a, b, c, a, b, c, a, b, c] übergegeben.

bins integer

Anzahl der Klassen - die Anzahl der Datensätze die von der Funktion ausgegeben werden. Wenn die Anzahl der Klassen nicht angegeben ist, wird sie automatisch berechnet.

right boolean

Berechnet das Histogramm von rechts anstatt von links (Standardwert). Dies ändert das Auswahlkriterium für einen Wert x von [a,b) auf (a,b].

Verfügbarkeit: 2.0.0

Beispiel: Einzelne Rasterkachel - Berechnung des Histogramm für die Bänder 1, 2, 3 und automatische Einteilung der Wertemenge in Klassen

SELECT band, (stats).*
FROM (SELECT rid, band, ST_Histogram(rast, band) As stats
    FROM dummy_rast CROSS JOIN generate_series(1,3) As band
     WHERE rid=2) As foo;

 band |  min  |  max  | count | percent
------+-------+-------+-------+---------
    1 |   249 |   250 |     2 |    0.08
    1 |   250 |   251 |     2 |    0.08
    1 |   251 |   252 |     1 |    0.04
    1 |   252 |   253 |     2 |    0.08
    1 |   253 |   254 |    18 |    0.72
    2 |    78 | 113.2 |    11 |    0.44
    2 | 113.2 | 148.4 |     4 |    0.16
    2 | 148.4 | 183.6 |     4 |    0.16
    2 | 183.6 | 218.8 |     1 |    0.04
    2 | 218.8 |   254 |     5 |     0.2
    3 |    62 | 100.4 |    11 |    0.44
    3 | 100.4 | 138.8 |     5 |     0.2
    3 | 138.8 | 177.2 |     4 |    0.16
    3 | 177.2 | 215.6 |     1 |    0.04
    3 | 215.6 |   254 |     4 |    0.16

Beispiel: Nur Band 2 und 6 Klassen

SELECT (stats).*
FROM (SELECT rid, ST_Histogram(rast, 2,6) As stats
    FROM dummy_rast
     WHERE rid=2) As foo;

    min     |    max     | count | percent
------------+------------+-------+---------
         78 | 107.333333 |     9 |    0.36
 107.333333 | 136.666667 |     6 |    0.24
 136.666667 |        166 |     0 |       0
        166 | 195.333333 |     4 |    0.16
 195.333333 | 224.666667 |     1 |    0.04
 224.666667 |        254 |     5 |     0.2
(6 rows)

-- Das gleiche Beispiel wie vorher, aber der Wertebereich der Pixel ist für jede Klasse explizit angegeben.
SELECT (stats).*
FROM (SELECT rid, ST_Histogram(rast, 2,6,ARRAY[0.5,1,4,100,5]) As stats
    FROM dummy_rast
     WHERE rid=2) As foo;

  min  |  max  | count | percent
-------+-------+-------+----------
    78 |  78.5 |     1 |     0.08
  78.5 |  79.5 |     1 |     0.04
  79.5 |  83.5 |     0 |        0
  83.5 | 183.5 |    17 |   0.0068
 183.5 | 188.5 |     0 |        0
 188.5 |   254 |     6 | 0.003664
(6 rows)

Name

ST_Quantile — Berechnet die Quantile eines Rasters oder einer Rastercoverage Tabelle im Kontext von Stichproben oder Bevölkerung. Dadurch kann untersucht werden, ob ein Wert bei 25%, 50% oder 75% Perzentil des Rasters liegt.

Synopsis

SETOF record ST_Quantile(raster rast, integer nband=1, boolean exclude_nodata_value=true, double precision[] quantiles=NULL);

SETOF record ST_Quantile(raster rast, double precision[] quantiles);

SETOF record ST_Quantile(raster rast, integer nband, double precision[] quantiles);

double precision ST_Quantile(raster rast, double precision quantile);

double precision ST_Quantile(raster rast, boolean exclude_nodata_value, double precision quantile=NULL);

double precision ST_Quantile(raster rast, integer nband, double precision quantile);

double precision ST_Quantile(raster rast, integer nband, boolean exclude_nodata_value, double precision quantile);

double precision ST_Quantile(raster rast, integer nband, double precision quantile);

SETOF record ST_Quantile(text rastertable, text rastercolumn, integer nband=1, boolean exclude_nodata_value=true, double precision[] quantiles=NULL);

SETOF record ST_Quantile(text rastertable, text rastercolumn, integer nband, double precision[] quantiles);

Beschreibung

Berechnet die Quantile eines Rasters oder einer Rastercoverage Tabelle im Kontext von Stichproben oder Bevölkerung. Dadurch kann untersucht werden, ob ein Wert bei 25%, 50% oder 75% Perzentil des Rasters liegt.

[Note]

Wenn exclude_nodata_value auf FALSE gesetzt ist, werden auch die Pixel mit NODATA Werten gezählt.

Verfügbarkeit: 2.0.0

Beispiele

UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,249) WHERE rid=2;
--Das Beispiel berücksichtigt nur die Pixel von Band 1, die nicht den Wert 249 haben und in den genannten Quantilen liegen --

SELECT (pvq).*
FROM (SELECT ST_Quantile(rast, ARRAY[0.25,0.75]) As pvq
    FROM dummy_rast WHERE rid=2) As foo
    ORDER BY (pvq).quantile;

 quantile | value
----------+-------
     0.25 |   253
     0.75 |   254

SELECT ST_Quantile(rast, 0.75) As value
    FROM dummy_rast WHERE rid=2;

value
------
  254
--ein Beispiel aus der Praxis. Die Quantile aller Pixel in Band 2 die eine Geometrie schneiden
SELECT rid, (ST_Quantile(rast,2)).* As pvc
    FROM o_4_boston
        WHERE ST_Intersects(rast,
            ST_GeomFromText('POLYGON((224486 892151,224486 892200,224706 892200,224706 892151,224486 892151))',26986)
            )
ORDER BY value, quantile,rid
;


 rid | quantile | value
-----+----------+-------
   1 |        0 |     0
   2 |        0 |     0
  14 |        0 |     1
  15 |        0 |     2
  14 |     0.25 |    37
   1 |     0.25 |    42
  15 |     0.25 |    47
   2 |     0.25 |    50
  14 |      0.5 |    56
   1 |      0.5 |    64
  15 |      0.5 |    66
   2 |      0.5 |    77
  14 |     0.75 |    81
  15 |     0.75 |    87
   1 |     0.75 |    94
   2 |     0.75 |   106
  14 |        1 |   199
   1 |        1 |   244
   2 |        1 |   255
  15 |        1 |   255

Name

ST_SummaryStats — Gibt eine zusammenfassende Statistik aus, bestehend aus der Anzahl, der Summe, dem arithmetischen Mittel, der Standardabweichung, dem Minimum und dem Maximum der Werte eines Rasterbandes oder eines Rastercoverage. Wenn kein Band angegeben ist, wird Band 1 angenommen.

Synopsis

summarystats ST_SummaryStats(raster rast, boolean exclude_nodata_value);

summarystats ST_SummaryStats(raster rast, integer nband, boolean exclude_nodata_value);

summarystats ST_SummaryStats(text rastertable, text rastercolumn, boolean exclude_nodata_value);

summarystats ST_SummaryStats(text rastertable, text rastercolumn, integer nband=1, boolean exclude_nodata_value=true);

Beschreibung

Gibt summarystats aus, bestehend aus der Anzahl, der Summe, dem arithmetischen Mittel, der Standardabweichung, dem Minimum und dem Maximum der Werte eines Rasterbandes oder eines Rastercoverage. Wenn kein Band angegeben ist, wird Band 1 angenommen.

[Note]

Standardmäßig werden nur jene Pixelwerte berücksichtigt, die nicht den Wert NODATA haben. Setzen Sie bitte exclude_nodata_value auf FALSE um die Anzahl sämtlicher Pixel zu erhalten.

[Note]

Standardmäßig werden alle Pixel abgetastet. Um eine schnellere Rückmeldung zu bekommen, können Sie den Parameter sample_percent auf einen Wert kleiner als 1 setzen.

Verfügbarkeit: 2.0.0

[Warning]

Die Varianten von ST_SummaryStats(rastertable, rastercolumn, ...) sind mit 2.2.0 überholt. Verwenden Sie bitte stattdessen ST_SummaryStatsAgg.

Beispiel: Einzelne Rasterkachel

SELECT rid, band, (stats).*
FROM (SELECT rid, band, ST_SummaryStats(rast, band) As stats
    FROM dummy_rast CROSS JOIN generate_series(1,3) As band
     WHERE rid=2) As foo;

 rid | band | count | sum  |    mean    |  stddev   | min | max
-----+------+-------+------+------------+-----------+-----+-----
   2 |    1 |    23 | 5821 | 253.086957 |  1.248061 | 250 | 254
   2 |    2 |    25 | 3682 |     147.28 | 59.862188 |  78 | 254
   2 |    3 |    25 | 3290 |      131.6 | 61.647384 |  62 | 254
                                

Beispiel: Zusammenfassen der Pixel, die interessante Bauwerke schneiden

Dieses Beispiel benötigte 574ms in PostGIS unter Windows 64-Bit, mit allen Bauwerken und Luftbildkacheln von Boston (Kacheln jeweils 150x150 Pixel ~ 134.000 Kacheln; ~ 102.000 Datensätze mit Bauwerken)

WITH
-- Geoobjekte, die von Interesse sind
   feat AS (SELECT gid As building_id, geom_26986 As geom FROM buildings AS b
    WHERE gid IN(100, 103,150)
   ),
-- schneidet Band 2 der Rasterkacheln an den Grenzen der Gebäuden aus
-- anschließend wird die Statistik "stats" für die ausgeschnittenen Regionen errechnet
        (SELECT  building_id, (stats).*
FROM (SELECT building_id, ST_SummaryStats(ST_Clip(rast,2,geom)) As stats
    FROM aerials.boston
                INNER JOIN feat
        ON ST_Intersects(feat.geom,rast)
 ) As foo
 )
-- schlussendlich wird die Statistik zusammengefasst
SELECT building_id, SUM(count) As num_pixels
  , MIN(min) As min_pval
  ,  MAX(max) As max_pval
  , SUM(mean*count)/SUM(count) As avg_pval
        FROM b_stats
 WHERE count 
> 0
        GROUP BY building_id
        ORDER BY building_id;
 building_id | num_pixels | min_pval | max_pval |     avg_pval
-------------+------------+----------+----------+------------------
         100 |       1090 |        1 |      255 | 61.0697247706422
         103 |        655 |        7 |      182 | 70.5038167938931
         150 |        895 |        2 |      252 | 185.642458100559

Beispiel: Rastercoverage

-- die Statistik "stats" für jedes Band --
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band) As stats
    FROM generate_series(1,3) As band) As foo;

 band |  count  |  sum   |       mean       |      stddev      | min | max
------+---------+--------+------------------+------------------+-----+-----
    1 | 8450000 | 725799 | 82.7064349112426 | 45.6800222638537 |   0 | 255
    2 | 8450000 | 700487 | 81.4197705325444 | 44.2161184161765 |   0 | 255
    3 | 8450000 | 575943 |  74.682739408284 | 44.2143885481407 |   0 | 255

-- Eine Tabelle erhält man in kürzerer Zeit, wenn die Stichprobe auf weniger als 100% gesetzt wird
-- Hier setzen wir die Stichprobe auf 25%, wodurch wir eine wesentlich schnellere Antwort erhalten
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band,true,0.25) As stats
    FROM generate_series(1,3) As band) As foo;

 band |  count  |  sum   |       mean       |      stddev      | min | max
------+---------+--------+------------------+------------------+-----+-----
    1 | 2112500 | 180686 | 82.6890480473373 | 45.6961043857248 |   0 | 255
    2 | 2112500 | 174571 |  81.448503668639 | 44.2252623171821 |   0 | 255
    3 | 2112500 | 144364 | 74.6765884023669 | 44.2014869384578 |   0 | 255
                                

Name

ST_SummaryStatsAgg — Aggregatfunktion. Gibt eine zusammenfassende Statistik aus, die aus der Anzahl, der Summe, dem arithmetischen Mittel, dem Minimum und dem Maximum der Werte eines bestimmten Bandes eines Rastersatzes besteht. Wenn kein Band angegeben ist, wird Band 1 angenommen.

Synopsis

summarystats ST_SummaryStatsAgg(raster rast, integer nband, boolean exclude_nodata_value, double precision sample_percent);

summarystats ST_SummaryStatsAgg(raster rast, boolean exclude_nodata_value, double precision sample_percent);

summarystats ST_SummaryStatsAgg(raster rast, integer nband, boolean exclude_nodata_value);

Beschreibung

Gibt summarystats aus, bestehend aus der Anzahl, der Summe, dem arithmetischen Mittel, der Standardabweichung, dem Minimum und dem Maximum der Werte eines Rasterbandes oder eines Rastercoverage. Wenn kein Band angegeben ist, wird Band 1 angenommen.

[Note]

Standardmäßig werden nur jene Pixelwerte berücksichtigt, die nicht NODATA sind. Setzen Sie bitte exclude_nodata_value auf FALSE um die Anzahl sämtlicher Pixel zu erhalten.

[Note]

Standardmäßig werden alle Pixel abgetastet. Um eine schnellere Rückmeldung zu bekommen, können Sie den Parameter sample_percent auf einen Wert zwischen 0 und 1 setzen.

Verfügbarkeit: 2.2.0

Beispiele

WITH foo AS (
        SELECT
                rast.rast
        FROM (
                SELECT ST_SetValue(
                        ST_SetValue(
                                ST_SetValue(
                                        ST_AddBand(
                                                ST_MakeEmptyRaster(10, 10, 10, 10, 2, 2, 0, 0,0)
                                                , 1, '64BF', 0, 0
                                        )
                                        , 1, 1, 1, -10
                                )
                                , 1, 5, 4, 0
                        )
                        , 1, 5, 5, 3.14159
                ) AS rast
        ) AS rast
        FULL JOIN (
                SELECT generate_series(1, 10) AS id
        ) AS id
                ON 1 = 1
)
SELECT
        (stats).count,
        round((stats).sum::numeric, 3),
        round((stats).mean::numeric, 3),
        round((stats).stddev::numeric, 3),
        round((stats).min::numeric, 3),
        round((stats).max::numeric, 3)
FROM (
        SELECT
                ST_SummaryStatsAgg(rast, 1, TRUE, 1) AS stats
        FROM foo
) bar;

 count |  round  | round  | round |  round  | round
-------+---------+--------+-------+---------+-------
    20 | -68.584 | -3.429 | 6.571 | -10.000 | 3.142
(1 row)
                                

Name

ST_ValueCount — Gibt Datensätze aus, die den Zellwert und die Anzahl der Pixel eines Rasterbandes (oder Rastercoveragebandes) für gegebene Werte enthalten. Wenn kein Band angegeben ist, wird Band 1 angenommen. Pixel mit dem Wert NODATA werden standardmäßig nicht gezählt; alle anderen Pixelwerte des Bandes werden ausgegeben und auf die nächste Ganzzahl gerundet.

Synopsis

SETOF record ST_ValueCount(raster rast, integer nband=1, boolean exclude_nodata_value=true, double precision[] searchvalues=NULL, double precision roundto=0, double precision OUT value, integer OUT count);

SETOF record ST_ValueCount(raster rast, integer nband, double precision[] searchvalues, double precision roundto=0, double precision OUT value, integer OUT count);

SETOF record ST_ValueCount(raster rast, double precision[] searchvalues, double precision roundto=0, double precision OUT value, integer OUT count);

bigint ST_ValueCount(raster rast, double precision searchvalue, double precision roundto=0);

bigint ST_ValueCount(raster rast, integer nband, boolean exclude_nodata_value, double precision searchvalue, double precision roundto=0);

bigint ST_ValueCount(raster rast, integer nband, double precision searchvalue, double precision roundto=0);

SETOF record ST_ValueCount(text rastertable, text rastercolumn, integer nband=1, boolean exclude_nodata_value=true, double precision[] searchvalues=NULL, double precision roundto=0, double precision OUT value, integer OUT count);

SETOF record ST_ValueCount(text rastertable, text rastercolumn, double precision[] searchvalues, double precision roundto=0, double precision OUT value, integer OUT count);

SETOF record ST_ValueCount(text rastertable, text rastercolumn, integer nband, double precision[] searchvalues, double precision roundto=0, double precision OUT value, integer OUT count);

bigintST_ValueCount(text rastertable, text rastercolumn, integer nband, boolean exclude_nodata_value, double precision searchvalue, double precision roundto=0);

bigint ST_ValueCount(text rastertable, text rastercolumn, double precision searchvalue, double precision roundto=0);

bigint ST_ValueCount(text rastertable, text rastercolumn, integer nband, double precision searchvalue, double precision roundto=0);

Beschreibung

Gibt Datensätze mit den Spalten value und count aus, welche die Pixelwerte und die Anzahl der Pixel im angegebenen Band der Rasterkachel oder des Rastercoverage enthalten.

Wenn kein Band angegeben ist, wird nband standardmäßig auf 1 gesetzt. Wenn keine searchvalues angegeben sind, werden alle Pixelwerte des Rasters oder des Rastercoverage ausgeben. Wenn nur ein Suchwert angegeben ist, wird eine Ganzzahl ausgegeben - anstelle von Datensätzen mit der Pixelanzahl eines jeden Pixelwertes für das Bandes.

[Note]

Wenn exclude_nodata_value auf FALSE gesetzt ist, werden auch die Pixel mit NODATA Werten gezählt.

Verfügbarkeit: 2.0.0

Beispiele

UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,249) WHERE rid=2;
--Diese Beispiel zählt die Anzahl der Pixel von Band 1, die nicht den Wert 249 haben. --

SELECT (pvc).*
FROM (SELECT ST_ValueCount(rast) As pvc
    FROM dummy_rast WHERE rid=2) As foo
    ORDER BY (pvc).value;

 value | count
-------+-------
   250 |     2
   251 |     1
   252 |     2
   253 |     6
   254 |    12

-- Dieses Beispiel zählt alle Pixel von Band 1, inklusive 249 --
SELECT (pvc).*
FROM (SELECT ST_ValueCount(rast,1,false) As pvc
    FROM dummy_rast WHERE rid=2) As foo
    ORDER BY (pvc).value;

 value | count
-------+-------
   249 |     2
   250 |     2
   251 |     1
   252 |     2
   253 |     6
   254 |    12

-- Dieses Beispiel zählt nur die Pixel mit NODATA Werten im Band 2
SELECT (pvc).*
FROM (SELECT ST_ValueCount(rast,2) As pvc
    FROM dummy_rast WHERE rid=2) As foo
    ORDER BY (pvc).value;
 value | count
-------+-------
    78 |     1
    79 |     1
    88 |     1
    89 |     1
    96 |     1
    97 |     1
    98 |     1
    99 |     2
   112 |     2
:

                                
--Ein Beispiel aus der Praxis. Zählt alle Pixel eines Luftbildrasters in Band 2, die eine Geometrie schneiden
-- und gibt nur jene Pixelwerte des Bandes aus, deren Anzahl 
> 500 ist
SELECT (pvc).value, SUM((pvc).count) As total
FROM (SELECT ST_ValueCount(rast,2) As pvc
    FROM o_4_boston
        WHERE ST_Intersects(rast,
            ST_GeomFromText('POLYGON((224486 892151,224486 892200,224706 892200,224706 892151,224486 892151))',26986)
             )
        ) As foo
    GROUP BY (pvc).value
    HAVING SUM((pvc).count) 
> 500
    ORDER BY (pvc).value;

 value | total
-------+-----
    51 | 502
    54 | 521
-- Die Anzahl der Pixel pro Rasterkachel, die den Wert 100 haben und deren Kacheln eine bestimmte Geometrie schneidet --
SELECT rid, ST_ValueCount(rast,2,100) As count
    FROM o_4_boston
        WHERE ST_Intersects(rast,
            ST_GeomFromText('POLYGON((224486 892151,224486 892200,224706 892200,224706 892151,224486 892151))',26986)
             ) ;

 rid | count
-----+-------
   1 |    56
   2 |    95
  14 |    37
  15 |    64

9.10. Rastereingabe

ST_RastFromWKB — Gibt einen Rasterwert von einer Well-known-Binary (WKB) Darstellung eines Rasters zurück.
ST_RastFromHexWKB — Gibt einen Rasterwert von einer Well-known-Binary (WKB) Hex-Darstellung eines Rasters zurück.

Name

ST_RastFromWKB — Gibt einen Rasterwert von einer Well-known-Binary (WKB) Darstellung eines Rasters zurück.

Synopsis

raster ST_RastFromWKB(bytea wkb);

Beschreibung

Gibt einen Raster von einem Raster in der Well-known-Binary (WKB) Darstellung zurück.

Verfügbarkeit: 2.5.0

Beispiele

SELECT (ST_Metadata(
        ST_RastFromWKB(
                '\001\000\000\000\000\000\000\000\000\000\000\000@\000\000\000\000\000\000\010@\000\000\000\000\000\000\340?\000\000\000\000\000\000\340?\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\012\000\000\000\012\000\024\000'::bytea
        )
)).* AS metadata;

 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
------------+------------+-------+--------+--------+--------+-------+-------+------+----------
        0.5 |        0.5 |    10 |     20 |      2 |      3 |     0 |     0 |   10 |        0
                                

Name

ST_RastFromHexWKB — Gibt einen Rasterwert von einer Well-known-Binary (WKB) Hex-Darstellung eines Rasters zurück.

Synopsis

raster ST_RastFromHexWKB(text wkb);

Beschreibung

Gibt einen Raster von einem Raster in der Well-known-Binary (WKB) Hex-Darstellung zurück.

Verfügbarkeit: 2.5.0

Beispiele

SELECT (ST_Metadata(
        ST_RastFromHexWKB(
                '010000000000000000000000400000000000000840000000000000E03F000000000000E03F000000000000000000000000000000000A0000000A001400'
        )
)).* AS metadata;

 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
------------+------------+-------+--------+--------+--------+-------+-------+------+----------
        0.5 |        0.5 |    10 |     20 |      2 |      3 |     0 |     0 |   10 |        0
                                

9.11. Ausgabe von Rastern

ST_AsBinary/ST_AsWKB — Gibt die Well-known-Binary (WKB) Darstellung eines Rasters zurück.
ST_AsHexWKB — Gibt die Well-known-Binary (WKB) Hex-Darstellung eines Rasters zurück.
ST_AsGDALRaster — Gibt die Rasterkachel in dem ausgewiesenen Rasterformat von GDAL aus. Sie können jedes Rasterformat angeben, das von Ihrer Bibliothek unterstützt wird. Um eine Liste mit den unterstützten Formaten auszugeben, verwenden Sie bitte ST_GDALDrivers().
ST_AsJPEG — Gibt die ausgewählten Bänder der Rasterkachel als einzelnes Bild (Byte-Array) im Format "Joint Photographic Exports Group" (JPEG) aus. Wenn kein Band angegeben ist und 1 oder mehr als 3 Bänder ausgewählt wurden, dann wird nur das erste Band verwendet. Wenn 3 Bänder ausgewählt wurden, werden alle 3 Bänder verwendet und auf RGB abgebildet.
ST_AsPNG — Gibt die ausgewählten Bänder der Rasterkachel als einzelnes, übertragbares Netzwerkgraphik (PNG) Bild (Byte-Feld) aus. Wenn der Raster 1,3 oder 4 Bänder hat und keine Bänder angegeben sind, dann werden alle Bänder verwendet. Wenn der Raster 2 oder mehr als 4 Bänder hat und keine Bänder angegeben sind, dann wird nur Band 1 verwendet. Die Bänder werden in den RGB- oder den RGBA-Raum abgebildet.
ST_AsTIFF — Gibt die ausgewählten Bänder des Raster als einzelnes TIFF Bild (Byte-Feld) zurück. Wenn kein Band angegeben ist oder keines der angegebenen Bänder im Raster existiert, werden alle Bänder verwendet.

Name

ST_AsBinary/ST_AsWKB — Gibt die Well-known-Binary (WKB) Darstellung eines Rasters zurück.

Synopsis

bytea ST_AsBinary(raster rast, boolean outasin=FALSE);

bytea ST_AsWKB(raster rast, boolean outasin=FALSE);

Beschreibung

Gibt den Raster in binärer Darstellung zurück. Wenn outasin TRUE ist, werden Bänder die außerhalb der Datenbank liegen (out-db) gleich behandelt wie Bänder, die direkt in der Datenbank gespeichert (in-db) sind. Siehe "raster/doc/RFC2-WellKnownBinaryFormat" im Quellverzeichnis von PostGIS für Details zu dieser Darstellung.

Dies ist nützlich, um mit einem "binary" Cursor die Daten direkt als Binärdatei von der Datenbank abzurufen - ohne Konvertierung in eine Textdarstellung.

[Note]

Standardmäßig ist in der WKB-Ausgabe der Pfad der out-db Bänder enthalten. Wenn ein Client keinen Zugriff auf die Rasterdatei eines "out-db" Bandes hat, können Sie outasin auf TRUE setzen.

Erweiterung: 2.1.0 outasin hinzugefügt

Erweiterung: 2.5.0 ST_AsWKB hinzugefügt

Beispiele

SELECT ST_AsBinary(rast) As rastbin FROM dummy_rast WHERE rid=1;

                                         rastbin
---------------------------------------------------------------------------------
\001\000\000\000\000\000\000\000\000\000\000\000@\000\000\000\000\000\000\010@\000\000\000\000\000\000\340?\000\000\000\000\000\000\340?\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\012\000\000\000\012\000\024\000
                                

Name

ST_AsHexWKB — Gibt die Well-known-Binary (WKB) Hex-Darstellung eines Rasters zurück.

Synopsis

bytea ST_AsHexWKB(raster rast, boolean outasin=FALSE);

Beschreibung

Gibt den Raster in binärer Hex-Darstellung zurück. Wenn outasin TRUE ist, werden Bänder die außerhalb der Datenbank liegen (out-db) gleich behandelt wie Bänder, die direkt in der Datenbank gespeichert (in-db) sind. Siehe "raster/doc/RFC2-WellKnownBinaryFormat" im Quellverzeichnis von PostGIS für Details zu dieser Darstellung.

[Note]

Standardmäßig ist in der Hex-WKB-Ausgabe der Pfad der out-db Bänder enthalten. Wenn ein Client keinen Zugriff auf die Rasterdatei eines "out-db" Bandes hat, können Sie outasin auf TRUE setzen.

Verfügbarkeit: 2.5.0

Beispiele

SELECT ST_AsHexWKB(rast) As rastbin FROM dummy_rast WHERE rid=1;

                                                        st_ashexwkb
----------------------------------------------------------------------------------------------------------------------------
 010000000000000000000000400000000000000840000000000000E03F000000000000E03F000000000000000000000000000000000A0000000A001400
                                

Name

ST_AsGDALRaster — Gibt die Rasterkachel in dem ausgewiesenen Rasterformat von GDAL aus. Sie können jedes Rasterformat angeben, das von Ihrer Bibliothek unterstützt wird. Um eine Liste mit den unterstützten Formaten auszugeben, verwenden Sie bitte ST_GDALDrivers().

Synopsis

bytea ST_AsGDALRaster(raster rast, text format, text[] options=NULL, integer srid=sameassource);

Beschreibung

Gibt die Rasterkachel im dem ausgewiesenen Format zurück. Die Übergabewerte sind:

  • format das Format das abgerufen wird. Dies ist abhängig von den Treibern die mit Ihrer Bibliothek "libgdal" kompiliert wurden. Üblicherweise stehen 'JPEG', 'GTIff' und 'PNG' zur Verfügung. Verwenden Sie bitte ST_GDALDrivers, um eine Liste der von Ihrer Bibliothek unterstützten Formate zu erhalten.

  • options ein Textfeld mit Optionen für GDAL. Gültige Optionen sind formatabhängig. Siehe GDAL Raster format options für weitere Details.

  • srs Der Text von "proj4text" oder "srtext" (aus der Tabelle "spatial_ref_sys"), der in das Rasterbild eingebettet werden soll

Verfügbarkeit: 2.0.0 - GDAL >= 1.6.0.

Beispiel für eine JPEG Ausgabe; mehrere Kacheln als einzelner Raster

SELECT ST_AsGDALRaster(ST_Union(rast), 'JPEG', ARRAY['QUALITY=50']) As rastjpg
FROM dummy_rast
WHERE rast && ST_MakeEnvelope(10, 10, 11, 11);

Raster mit dem "Large Object Support" von PostgreSQL exportieren

Eine Möglichkeit um Raster in einem anderen Format zu exportieren ist die Verwendung der PostgreSQL Large Object Export Functions. Wir erweitern das vorherige Beispiel mit einem Export. Dafür benötigen Sie Administratorrechte für die Datenbank, da serverseitige Funktionen "Large Objects" verwendet werden. Es kann auch auf einen Server im Netzwerk exportiert werden. Wenn Sie einen lokalen Export benötigen, verwenden Sie bitte die äquivalenten "lo_"-Funktionen von psql, welche auf das lokale Dateisystem anstatt auf das des Servers exportieren.

DROP TABLE IF EXISTS tmp_out ;

CREATE TABLE tmp_out AS
SELECT lo_from_bytea(0,
       ST_AsGDALRaster(ST_Union(rast), 'JPEG', ARRAY['QUALITY=50'])
        ) AS loid
  FROM dummy_rast
WHERE rast && ST_MakeEnvelope(10, 10, 11, 11);

SELECT lo_export(loid, '/tmp/dummy.jpg')
   FROM tmp_out;

SELECT lo_unlink(loid)
  FROM tmp_out;

Beispiel für die Ausgabe von GTIFF

SELECT ST_AsGDALRaster(rast, 'GTiff') As rastjpg
FROM dummy_rast WHERE rid=2;

-- Out GeoTiff with jpeg compression, 90% quality
SELECT ST_AsGDALRaster(rast, 'GTiff',
  ARRAY['COMPRESS=JPEG', 'JPEG_QUALITY=90'],
  4269) As rasttiff
FROM dummy_rast WHERE rid=2;
                                

Name

ST_AsJPEG — Gibt die ausgewählten Bänder der Rasterkachel als einzelnes Bild (Byte-Array) im Format "Joint Photographic Exports Group" (JPEG) aus. Wenn kein Band angegeben ist und 1 oder mehr als 3 Bänder ausgewählt wurden, dann wird nur das erste Band verwendet. Wenn 3 Bänder ausgewählt wurden, werden alle 3 Bänder verwendet und auf RGB abgebildet.

Synopsis

bytea ST_AsJPEG(raster rast, text[] options=NULL);

bytea ST_AsJPEG(raster rast, integer nband, integer quality);

bytea ST_AsJPEG(raster rast, integer nband, text[] options=NULL);

bytea ST_AsJPEG(raster rast, integer[] nbands, text[] options=NULL);

bytea ST_AsJPEG(raster rast, integer[] nbands, integer quality);

Beschreibung

Gibt die ausgewählten Bänder der Rasterkachel als einzelnes Bild im Format "Joint Photographic Exports Group" (JPEG) aus. Sie können ST_AsGDALRaster verwenden, wenn Sie in weniger gebräuchliche Rasterformate exportieren wollen. Wenn kein Band angegeben ist und 1 oder mehr als 3 Bänder ausgewählt wurden, dann wird nur das erste Band verwendet. Wenn 3 Bänder ausgewählt wurden, werden alle 3 Bänder verwendet. Die Funktion hat viele Varianten mit vielen Optionen. Diese sind unterhalb angeführt:

  • nband für den Export einzelner Bänder.

  • nbands Ein Feld mit den Bändern die exportiert werden sollen (bei JPEG maximal 3). Die Reihenfolge der Bänder ist RBG; z.B. ARRAY[3,2,1] bedutet, dass Band 3 auf Rot, Band 2 auf Grün und Band 1 auf Blau abgebildet wird.

  • quality Eine Zahl zwischen 0 und 100. Umso höher die Zahl ist, umso schärfer ist das Bild.

  • options Ein Textfeld mit GDAL Optionen für JPEG (siehe "create_options" für JPEG unter ST_GDALDrivers). Gültige Optionen für JPEG sind PROGRESSIVE ON oder OFF und QUALITY zwischen 0 und 100 mit dem Standardwert 75. Siehe GDAL Raster format options für weitere Details.

Verfügbarkeit: 2.0.0 - GDAL >= 1.6.0.

Beispiele: Ausgabe

-- Ausgabe der ersten 3 Bänder mit einer Qualität von 75%
SELECT ST_AsJPEG(rast) As rastjpg
    FROM dummy_rast WHERE rid=2;

-- Ausgabe nur des ersten Bandes mit einer Qualität von 90%
SELECT ST_AsJPEG(rast,1,90) As rastjpg
    FROM dummy_rast WHERE rid=2;

-- Ausgabe der ersten 3 Bänder mit einer Qualität von 90% (aber Band 2 Rot, Band1 Grün, Band 3 blau und progressiv)
SELECT ST_AsJPEG(rast,ARRAY[2,1,3],ARRAY['QUALITY=90','PROGRESSIVE=ON']) As rastjpg
    FROM dummy_rast WHERE rid=2;

Name

ST_AsPNG — Gibt die ausgewählten Bänder der Rasterkachel als einzelnes, übertragbares Netzwerkgraphik (PNG) Bild (Byte-Feld) aus. Wenn der Raster 1,3 oder 4 Bänder hat und keine Bänder angegeben sind, dann werden alle Bänder verwendet. Wenn der Raster 2 oder mehr als 4 Bänder hat und keine Bänder angegeben sind, dann wird nur Band 1 verwendet. Die Bänder werden in den RGB- oder den RGBA-Raum abgebildet.

Synopsis

bytea ST_AsPNG(raster rast, text[] options=NULL);

bytea ST_AsPNG(raster rast, integer nband, integer compression);

bytea ST_AsPNG(raster rast, integer nband, text[] options=NULL);

bytea ST_AsPNG(raster rast, integer[] nbands, integer compression);

bytea ST_AsPNG(raster rast, integer[] nbands, text[] options=NULL);

Beschreibung

Gibt die ausgewählten Bänder des Raster als einzelnes Bild im Format "Portable Network Graphics Image" (PNG) aus. Sie können ST_AsGDALRaster verwenden, wenn Sie in weniger gebräuchliche Rasterformate exportieren wollen. Wenn kein Band angegeben ist, werden die ersten 3 Bänder exportiert. Wenn SRID nicht angegeben ist, wird die SRID des Ausgangsraster verwendet. Die Funktion hat viele Varianten mit vielen Optionen. Diese sind unterhalb angeführt:

  • nband für den Export einzelner Bänder.

  • nbands Ein Feld mit den Bändern die exportiert werden sollen (bei PNG maximal 4). Die Reihenfolge der Bänder ist RBGA; z.B. ARRAY[3,2,1] bedutet, dass Band 3 auf Rot, Band 2 auf Grün und Band 1 auf Blau abgebildet wird.

  • compression Eine Zahl zwischen 1 und 9. Umso höher die Zahl umso größer die Komprimierung.

  • options Ein Textfeld mit GDAL Optionen für PNG (siehe "create_options" für PNG unter ST_GDALDrivers). Für PNG gibt es nur eine gültige Option "ZLEVEL" (wieviel Zeit für die Komprimierung aufgewendet werden soll - die Standardeinstellung ist 6); z.B.: ARRAY['ZLEVEL=9']. Ein WORLDFILE ist nicht erlaubt, da die Funktion sonst zwei Ausgaben machen müsste. Siehe GDAL Raster format options für weitere Details.

Verfügbarkeit: 2.0.0 - GDAL >= 1.6.0.

Beispiele

SELECT ST_AsPNG(rast) As rastpng
FROM dummy_rast WHERE rid=2;

-- die ersten 3 Bänder exportieren und Band 3 auf Rot, Band 1 auf Grün und Band 2 auf Blau abbilden
SELECT ST_AsPNG(rast, ARRAY[3,1,2]) As rastpng
FROM dummy_rast WHERE rid=2;
                                

Name

ST_AsTIFF — Gibt die ausgewählten Bänder des Raster als einzelnes TIFF Bild (Byte-Feld) zurück. Wenn kein Band angegeben ist oder keines der angegebenen Bänder im Raster existiert, werden alle Bänder verwendet.

Synopsis

bytea ST_AsTIFF(raster rast, text[] options='', integer srid=sameassource);

bytea ST_AsTIFF(raster rast, text compression='', integer srid=sameassource);

bytea ST_AsTIFF(raster rast, integer[] nbands, text compression='', integer srid=sameassource);

bytea ST_AsTIFF(raster rast, integer[] nbands, text[] options, integer srid=sameassource);

Beschreibung

Gibt die ausgewählten Bänder des Raster als einzelnes Bild im Format " Tagged Image File Format" (TIFF) aus. Wenn kein Band angegeben ist, wird versucht alle Bänder zu verwenden. Diese Funktion ist ein Adapter für ST_AsGDALRaster. Verwenden Sie bitte ST_AsGDALRaster, wenn Sie in weniger gebräuchliche Rasterformate exportieren wollen. Wenn kein SRS-Text für die Georeferenz vorhanden ist, wird das Koordinatenreferenzsystem des Ausgangsraster verwendet. Die Funktion hat viele Varianten mit vielen Optionen. Diese sind unterhalb angeführt:

  • nbands Ein Feld mit den Bändern die exportiert werden sollen (bei PNG maximal 3). Die Reihenfolge der Bänder ist RBG; z.B. ARRAY[3,2,1] bedutet, dass Band 3 auf Rot, Band 2 auf Grün und Band 1 auf Blau abgebildet wird.

  • compression Ein Ausdruck für die Art der Datenkompression -- JPEG90 (oder eine andere Prozentangabe), LZW, JPEG, DEFLATE9.

  • options Ein Textfeld mit GDAL Optionen für die Erstellung eines GTiff (siehe "create_options" für GTiff unter ST_GDALDrivers oder GDAL Raster format options für weitere Details.

  • srid Die SRID des Koordinatenreferenzsystems des Raster. Wird als Information zur Georeferenzierung verwendet.

Verfügbarkeit: 2.0.0 - GDAL >= 1.6.0.

Beispiele: 90%ige JPEG Komprimierung

SELECT ST_AsTIFF(rast, 'JPEG90') As rasttiff
FROM dummy_rast WHERE rid=2;
                                

9.12. Rasterdatenverarbeitung

9.12.1. Map Algebra

ST_Clip — Schneidet den Raster nach der Eingabegeometrie. Wenn die Bandnummer nicht angegeben ist, werden alle Bänder bearbeitet. Wenn crop nicht angegeben oder TRUE ist, wird der Ausgaberaster abgeschnitten.
ST_ColorMap — Erzeugt aus einem bestimmten Band des Ausgangsrasters einen neuen Raster mit bis zu vier 8BUI-Bändern (Grauwert, RGB, RGBA). Wenn kein Band angegeben ist, wird Band 1 angenommen.
ST_Grayscale — Erzeugt einen neuen Raster mit einem 8BUI-Band aus dem Ausgangsrasters und den angegebenen Bändern für Rot, Grün und Blau
ST_Intersection — Gibt Geometry-PixelValue Paare, oder einen Raster aus, der durch die Schnittmenge der beiden Raster bestimmt wird, oder durch die geometrische Verschneidung einer Vektorisierung des Rasters mit einem geometrischen Datentyp.
ST_MapAlgebra (Rückruffunktion) — Die Version mit der Rückruffunktion - Gibt für einen oder mehrere Eingaberaster einen Raster mit einem Band, den Bandindizes und einer vom Anwender vorgegebenen Rückruffunktion zurück.
ST_MapAlgebra (Ausdrucksanweisung) — Version mit Ausdrücken - Gibt für einen oder zwei Ausgangsraster, Bandindizes und einer oder mehreren vom Anwender vorgegebenen SQL-Ausdrücken, einen Raster mit einem Band zurück.
ST_MapAlgebraExpr — Version mit 1 Rasterband: Erzeugt ein neues Rasterband, dass über eine gültige, algebraische PostgreSQL Operation für ein Rasterband mit gegebenen Pixeltyp erstellt wird. Wenn kein Band bestimmt ist, wird Band 1 angenommen.
ST_MapAlgebraExpr — Version mit 2 Rasterbändern: Erstellt einen neuen Einzelbandraster, indem eine gültige algebraische PostgreSQL Funktion auf die zwei Ausgangsrasterbänder und den entsprechenden Pixeltyp angewendet wird. Wenn keine Bandnummern angegeben sind, wird von jedem Raste Band 1 angenommen. Der Ergebnisraster wird nach dem Gitter des ersten Raster ausgerichtet (Skalierung, Versatz und Eckpunkte der Pixel) und hat die Ausdehnung, welche durch den Parameter "extenttype" definiert ist. Der Parameter "extenttype" kann die Werte INTERSECTION, UNION, FIRST, SECOND annehmen.
ST_MapAlgebraFct — Version mit 1 Rasterband: Erzeugt ein neues Rasterband, dass über eine gültige PostgreSQL Funktion für ein gegebenes Rasterband und Pixeltyp erstellt wird. Wenn kein Band bestimmt ist, wird Band 1 angenommen.
ST_MapAlgebraFct — Version mit 2 Rasterbändern: Erstellt einen neuen Einzelbandraster, indem eine gültige PostgreSQL Funktion auf die 2 gegebenen Rasterbänder und den entsprechenden Pixeltyp angewendet wird. Wenn kein Band bestimmt ist, wird Band 1 angenommen. Wenn der "Extent"-Typ nicht angegeben ist, wird standardmäßig INTERSECTION angenommen.
ST_MapAlgebraFctNgb — Version mit 1em Band: Map Algebra Nearest Neighbor mit einer benutzerdefinierten PostgreSQL Funktion. Gibt einen Raster zurück, dessen Werte sich aus einer benutzerdefinierte PL/pgsql Funktion ergeben, welche die Nachbarschaftswerte des Ausgangsrasterbandes einbezieht.
ST_Reclass — Erstellt einen neuen Raster, der aus neu klassifizierten Bändern des Originalraster besteht. Das Band "nband" ist jenes das verändert werden soll. Wenn "nband" nicht angegeben ist, wird "Band 1" angenommen. Alle anderen Bänder bleiben unverändert. Anwendungsfall: zwecks einfacherer Visualisierung ein 16BUI-Band in ein 8BUI-Band konvertieren und so weiter.
ST_Union — Gibt die Vereinigung mehrerer Rasterkacheln in einem einzelnen Raster mit mehreren Bändern zurück.

Name

ST_Clip — Schneidet den Raster nach der Eingabegeometrie. Wenn die Bandnummer nicht angegeben ist, werden alle Bänder bearbeitet. Wenn crop nicht angegeben oder TRUE ist, wird der Ausgaberaster abgeschnitten.

Synopsis

raster ST_Clip(raster rast, integer[] nband, geometry geom, double precision[] nodataval=NULL, boolean crop=TRUE);

raster ST_Clip(raster rast, integer nband, geometry geom, double precision nodataval, boolean crop=TRUE);

raster ST_Clip(raster rast, integer nband, geometry geom, boolean crop);

raster ST_Clip(raster rast, geometry geom, double precision[] nodataval=NULL, boolean crop=TRUE);

raster ST_Clip(raster rast, geometry geom, double precision nodataval, boolean crop=TRUE);

raster ST_Clip(raster rast, geometry geom, boolean crop);

Beschreibung

Gibt einen Raster aus, der nach der Eingabegeometrie geom ausgeschnitten wird. Wird kein Band angegeben, so werden alle Bänder bearbeitet.

Raster die aus einer Operation mit ST_Clip resultieren, müssen in den Bereichen wo sie ausgeschnitten werden, einen NODATA-Wert für jedes Band aufweisen. Wenn keine Werte übergeben werden und für den Ausgangsraster kein NODATA-Wert festgelegt wurde, dann werden die NODATA-Werte des Zielrasters auf ST_MinPossibleValue(ST_BandPixelType(rast, band)) gesetzt. Wenn die Anzahl der NODATA-Werte in dem übergebenen Feld kleiner als die Anzahl der Bänder ist, wird für die restlichen Bänder der letzte Wert des Feldes verwendet. Wenn die Anzahl der NODATA-Werte größer als die Anzahl der Bänder ist, so werden die zusätzlichen NODATA-Werte übergangen. Alle Varianten, die ein Feld mit NODATA-Werten akzeptieren, nehmen auch einen einzelnen Wert für alle Bänder entgegen.

Wenn crop nicht angegeben ist, wird TRUE angenommen. Dies bedeutet, dass der Ergebnisraster auf die Ausdehnung der Verschneidung von geom und rast zugeschnitten wird. Wenn crop auf FALSE gesetzt ist, hat der neue Raster dieselbe Ausdehnung wie rast.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 neu geschrieben in C

Diese Beispiele nutzen Luftbilddaten aus Massachusetts, die von MassGIS Aerial Orthos heruntergeladen werden können. Die Koordinaten liegen in "Massachusetts State Plane Meters" vor.

Beispiele: 1 Band ausschneiden

-- Das erste Band einer Luftbildkachel mit einem 20 Meter Puffer ausschneiden.
SELECT ST_Clip(rast, 1,
                ST_Buffer(ST_Centroid(ST_Envelope(rast)),20)
        ) from aerials.boston
WHERE rid = 4;
                                        
-- Demonstriert den Effekt von "crop" auf die endgültige Größe des Rasters
-- Wenn "crop = true",
-- dann ergibt sich der endgültige Ausschnitt durch schneiden der Geometrie
SELECT ST_XMax(ST_Envelope(ST_Clip(rast, 1, clipper, true))) As xmax_w_trim,
        ST_XMax(clipper) As xmax_clipper,
        ST_XMax(ST_Envelope(ST_Clip(rast, 1, clipper, false))) As xmax_wo_trim,
        ST_XMax(ST_Envelope(rast)) As xmax_rast_orig
FROM (SELECT rast, ST_Buffer(ST_Centroid(ST_Envelope(rast)),6) As clipper
        FROM aerials.boston
WHERE rid = 6) As foo;

   xmax_w_trim    |   xmax_clipper   |   xmax_wo_trim   |  xmax_rast_orig
------------------+------------------+------------------+------------------
 230657.436173996 | 230657.436173996 | 230666.436173996 | 230666.436173996
                                        

Die gesamte Rasterkachel vor dem Ausschneiden

Nach dem Ausschneiden

Beispiele: 1 Band ohne "crop" ausschneiden und die anderen Bänder ungeändert erneut hinzufügen

-- Selbes Beispiel wie vorher, aber mit "crop" auf FALSE gesetzt, damit ST_AddBand verwendet werden kann
-- ST_AddBand setzt voraus, dass all Bänder dieselbe Breite und Höhe haben
SELECT ST_AddBand(ST_Clip(rast, 1,
                ST_Buffer(ST_Centroid(ST_Envelope(rast)),20),false
        ), ARRAY[ST_Band(rast,2),ST_Band(rast,3)] ) from aerials.boston
WHERE rid = 6;
                                        

Die gesamte Rasterkachel vor dem Ausschneiden

Nach dem Abschneiden - unwirklich

Beispiele: Alle Bänder ausschneiden

-- Alle Bänder einer Luftbildkachel mit einem 20 Meter Puffer ausschneiden.
-- Da wir kein bestimmtes Band angeben, werden alle Bänder ausgeschnitten
SELECT ST_Clip(rast,
          ST_Buffer(ST_Centroid(ST_Envelope(rast)), 20),
          false
        ) from aerials.boston
WHERE rid = 4;
                                        

Die gesamte Rasterkachel vor dem Ausschneiden

Nach dem Ausschneiden


Name

ST_ColorMap — Erzeugt aus einem bestimmten Band des Ausgangsrasters einen neuen Raster mit bis zu vier 8BUI-Bändern (Grauwert, RGB, RGBA). Wenn kein Band angegeben ist, wird Band 1 angenommen.

Synopsis

raster ST_ColorMap(raster rast, integer nband=1, text colormap=grayscale, text method=INTERPOLATE);

raster ST_ColorMap(raster rast, text colormap, text method=INTERPOLATE);

Beschreibung

Wendet eine colormap auf das Band nband von rast an, wodurch ein neuer Raster aus bis zu vier 8BUI-Bändern erstellt wird. Die Anzahl der 8BUI-Bänder des neuen Raster wird durch die Anzahl der Farbkomponenten bestimmt, die in der colormap definiert sind.

Wenn nband nicht angegeben ist, wird Band 1 angenommen.

colormap kann ein Schlüsselwort, ein vordefiniertes Farbschema, oder Zeilen in denen der Zellwert und die Farbkomponenten festgelegt sind.

Gültige, vordefinierte Schlüsselwörter von colormap:

  • grayscale oder greyscale für Grauabstufungen in einem 8BUI-Rasterband.

  • pseudocolor für vier 8BUI-Rasterbänder (RGBA) mit Farbverläufen von Blau zu Grün zu Rot.

  • fire für vier 8BUI-Rasterbänder (RGBA) mit Farbverläufen von Blau zu Rot zu blassem Gelb.

  • bluered für vier 8BUI-Rasterbänder (RGBA) mit Farbverläufen von Blau zu blassem Weiß zu Rot.

Anwender können mehrere Einträge (einen pro Zeile) an colormap übergeben, um bestimmte Farbschemata zu spezifizieren. Üblicherweise besteht jeder Eintrag aus fünf Werten: der Pixelwert und die zugehörigen Rot-, Grün-, Blau- und Alpha-Komponenten (Farbkomponenten zwischen 0 und 255). Anstelle der Pixelwerte können auch Prozentwerte verwendet werden, wobei 0% und 100% die minimalen und maximalen Werte des Rasterbandes sind. Die Werte können durch Beistriche (','), Tabulatoren, Doppelpunkte (':') und/oder durch Leerzeichen getrennt werden. Für die NODATA-Werte kann der Pixelwert mit nv, NULL oder auf NODATA angegeben werden. Ein Beispiel finden Sie unterhalb.

5 0 0 0 255
4 100:50 55 255
1 150,100 150 255
0% 255 255 255 255
nv 0 0 0 0
                                        

Die Syntax von colormap ist ähnlich wie bei dem Modus "color-relief" bei gdaldem von GDAL.

Gültige Schlüsselwörter für method:

  • INTERPOLATE verwendet eine lineare Interpolation um einen kontinuierlichen Übergang der Farben zwischen den Pixelwerten zu erhalten

  • EXACT genaue Entsprechung der Pixelwerte mit der "colormap". Pixel, deren Werte keinen Eintrag in "colormap" haben, werden mit "0 0 0 0" (RGBA) eingefärbt

  • NEAREST verwendet die Einträge der "colormap", deren Wert dem Pixelwert am nächsten kommt

[Note]

Eine großartige Hilfestellung für "colormaps" bietet ColorBrewer

[Warning]

Bei den resultierenden Bänder des neuen Rasters sind keine NODATA-Werte gesetzt. Verwenden Sie bitte ST_SetBandNoDataValue um einen NODATA-Wert zu setzen, falls dieser benötigt wird.

Verfügbarkeit: 2.1.0

Beispiele

Eine "Junk"-Tabelle zum Herumspielen

-- Erstellung einer Raster-Testtabelle --
DROP TABLE IF EXISTS funky_shapes;
CREATE TABLE funky_shapes(rast raster);

INSERT INTO funky_shapes(rast)
WITH ref AS (
        SELECT ST_MakeEmptyRaster( 200, 200, 0, 200, 1, -1, 0, 0) AS rast
)
SELECT
        ST_Union(rast)
FROM (
        SELECT
                ST_AsRaster(
                        ST_Rotate(
                                ST_Buffer(
                                        ST_GeomFromText('LINESTRING(0 2,50 50,150 150,125 50)'),
                                        i*2
                                ),
                                pi() * i * 0.125, ST_Point(50,50)
                        ),
                        ref.rast, '8BUI'::text, i * 5
                ) AS rast
        FROM ref
        CROSS JOIN generate_series(1, 10, 3) AS i
) AS shapes;
                                        
SELECT
        ST_NumBands(rast) As n_orig,
        ST_NumBands(ST_ColorMap(rast,1, 'greyscale')) As ngrey,
        ST_NumBands(ST_ColorMap(rast,1, 'pseudocolor')) As npseudo,
        ST_NumBands(ST_ColorMap(rast,1, 'fire')) As nfire,
        ST_NumBands(ST_ColorMap(rast,1, 'bluered')) As nbluered,
        ST_NumBands(ST_ColorMap(rast,1, '
100% 255   0   0
 80% 160   0   0
 50% 130   0   0
 30%  30   0   0
 20%  60   0   0
  0%   0   0   0
  nv 255 255 255
        ')) As nred
FROM funky_shapes;
                                        
n_orig | ngrey | npseudo | nfire | nbluered | nred
--------+-------+---------+-------+----------+------
      1 |     1 |       4 |     4 |        4 |    3
                                        

Beispiele: Vergleich verschiedener Farbtafeln mit ST_AsPNG

SELECT
        ST_AsPNG(rast) As orig_png,
        ST_AsPNG(ST_ColorMap(rast,1,'greyscale')) As grey_png,
        ST_AsPNG(ST_ColorMap(rast,1, 'pseudocolor')) As pseudo_png,
        ST_AsPNG(ST_ColorMap(rast,1, 'nfire')) As fire_png,
        ST_AsPNG(ST_ColorMap(rast,1, 'bluered')) As bluered_png,
        ST_AsPNG(ST_ColorMap(rast,1, '
100% 255   0   0
 80% 160   0   0
 50% 130   0   0
 30%  30   0   0
 20%  60   0   0
  0%   0   0   0
  nv 255 255 255
        ')) As red_png
FROM funky_shapes;
                                        

orig_png

grey_png

pseudo_png

fire_png

bluered_png

red_png


Name

ST_Grayscale — Erzeugt einen neuen Raster mit einem 8BUI-Band aus dem Ausgangsrasters und den angegebenen Bändern für Rot, Grün und Blau

Synopsis

(1) raster ST_Grayscale(raster rast, integer redband=1, integer greenband=2, integer blueband=3, text extenttype=INTERSECTION);

(2) raster ST_Grayscale(rastbandarg[] rastbandargset, text extenttype=INTERSECTION);

Beschreibung

Erzeugt einen Raster mit einem 8BUI-Band aus drei Eingabebändern (von einem oder mehreren Raster). Bänder die nicht den Pixeltyp 8BUI haben werden mit ST_Reclass neu klassifiziert.

[Note]

Diese Funktion unterscheidet sich insofern von ST_ColorMap mit dem Schlüsselwort grayscale, da ST_ColorMap lediglich ein Band bearbeitet, während diese Funktion drei Bänder für RGB erwartet. Diese Funktion verwendet folgende Gleichung zur Konvertierung von RGB auf Graustufen: 0.2989 * RED + 0.5870 * GREEN + 0.1140 * BLUE

Verfügbarkeit: 2.5.0

Beispiele: Variante 1

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SET postgis.enable_outdb_rasters = True;

WITH apple AS (
        SELECT ST_AddBand(
                ST_MakeEmptyRaster(350, 246, 0, 0, 1, -1, 0, 0, 0),
                '/tmp/apple.png'::text,
                NULL::int[]
        ) AS rast
)
SELECT
        ST_AsPNG(rast) AS original_png,
        ST_AsPNG(ST_Grayscale(rast)) AS grayscale_png
FROM apple;
                                        

original_png

grayscale_png

Beispiele: Variante 2

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SET postgis.enable_outdb_rasters = True;

WITH apple AS (
        SELECT ST_AddBand(
                ST_MakeEmptyRaster(350, 246, 0, 0, 1, -1, 0, 0, 0),
                '/tmp/apple.png'::text,
                NULL::int[]
        ) AS rast
)
SELECT
        ST_AsPNG(rast) AS original_png,
        ST_AsPNG(ST_Grayscale(
                ARRAY[
                        ROW(rast, 1)::rastbandarg, -- red
                        ROW(rast, 2)::rastbandarg, -- green
                        ROW(rast, 3)::rastbandarg, -- blue
                ]::rastbandarg[]
        )) AS grayscale_png
FROM apple;
                                        

Name

ST_Intersection — Gibt Geometry-PixelValue Paare, oder einen Raster aus, der durch die Schnittmenge der beiden Raster bestimmt wird, oder durch die geometrische Verschneidung einer Vektorisierung des Rasters mit einem geometrischen Datentyp.

Synopsis

setof geomval ST_Intersection(geometry geom, raster rast, integer band_num=1);

setof geomval ST_Intersection(raster rast, geometry geom);

setof geomval ST_Intersection(raster rast, integer band, geometry geomin);

raster ST_Intersection(raster rast1, raster rast2, double precision[] nodataval);

raster ST_Intersection(raster rast1, raster rast2, text returnband, double precision[] nodataval);

raster ST_Intersection(raster rast1, integer band1, raster rast2, integer band2, double precision[] nodataval);

raster ST_Intersection(raster rast1, integer band1, raster rast2, integer band2, text returnband, double precision[] nodataval);

Beschreibung

Gibt Geometry-PixelValue Paare, oder einen Raster aus, der durch die Schnittmenge der beiden Raster bestimmt wird, oder durch die geometrische Verschneidung einer Vektorisierung des Rasters mit einem geometrischen Datentyp.

Die ersten drei Varianten, die ein "setof geomval" zurückgeben, führen die Berechnungen im Vektorraum aus. Der Raster wird zuerst in eine Menge von "geomval"-Zeilen vektorisiert (mit ST_DumpAsPolygon) und anschließend mit der Geometrie über die PostGIS Funktion St_Intersection(geometry, geometry) verschnitten. Wenn die verschnittene Geometrie nur aus NODATA Werten besteht, wird eine leere Geometrie zurückgegeben. Diese wird üblicherweise durch die richtige Verwendung von ST_Intersect in der WHERE-Klausel ausgeschlossen.

Sie können auf die Geometriebestandteile und die Werte der erzeugten "geomvals" zugreifen, indem Sie diese mit Klammern versehen und '.geom' oder '.val' am Ende des Ausdrucks hinzufügen; z.B. (ST_Intersection(rast, geom)).geom

Die anderen Varianten, welche einen Raster zurückgeben, führen die Berechnungen im Rasterraum aus. Sie verwenden die Version mit den zwei Rastern von ST_MapAlgebraExpr um die Verschneidung durchzuführen.

Die Ausdehnung des resultierenden Raster entspricht der Ausdehnung des geometrischen Durchschnitts der beiden Raster. Der resultierende Raster enthält die Bänder 'BAND1', 'BAND2' und 'BOTH', gefolgt von dem Parameter returnband. Wenn irgendein Band Bereiche mit NODATA-Werten enthält, so werden diese Bereiche in allen Bändern des resultierenden Raster zu NODATA. Anders ausgedückt, jedes Pixel, das ein Pixel mit NODATA-Wert schneidet wird im Ergebnis selbst zu einem Pixel mit NODATA-Wert.

Raster die aus einer Operation mit ST_Intersection resultieren, müssen in den Bereichen wo sie sich nicht schneiden, einen NODATA-Wert aufweisen. Sie können den NODATA Wert eines jeden resultierenden Bandes festlegen oder ersetzen, indem Sie ein Feld nodataval[] übergeben, das einen oder zwei NODATA Werte - 'BAND1', 'BAND2' oder 'BOTH' - enthält. Der erste Wert in dem Feld ersetzt den NODATA Wert im ersten Band, der zweite Wert ersetzt den NODATA Wert im zweiten Band. Wenn für ein übergebenes Band kein NODATA Wert festgelegt wurde und auch keiner als Feld übergeben wurde, dann wird der Wert mit der Funktion ST_MinPossibleValue ausgewählt. Alle Varianten, die ein Feld mit NODATA-Werten akzeptieren, nehmen auch einen einzelnen Wert entgegen, welcher dann auf alle verlangten Bänder übertragen wird.

Bei sämtlichen Varianten wird Band 1 angenommen, wenn keine Bandnummer angegeben ist. Wenn Sie die Verschneidung zwischen einem Raster und einer Geometrie als Raster ausgegeben haben wollen, sehen Sie bitte ST_Clip.

[Note]

Um über die resultierende Ausdehnung, oder über das was für einen NODATA-Wert zurückgeben werden soll, eine bessere Kontrolle zu haben, können Sie die Variante von ST_MapAlgebraExpr mit den zwei Raster verwenden.

[Note]

Um eine Verschneidung von einem Rasterband mit einer Geometrie durchzuführen, verwenden Sie bitte ST_Clip. ST_Clip arbeitet mit Raster mit mehreren Bändern und gibt kein Band mit der gerasterten Geometrie zurück.

[Note]

ST_Intersection sollte in Verbindung mit ST_Intersects und einem Index auf die Rasterspalte und/oder auf die Geometriespalte angewendet werden.

Enhanced: 2.0.0 - Verschneidungsoperation im Rasterraum eingeführt. In Vorgängerversionen von 2.0.0 wurde lediglich die Verschneidung im Vektorraum unterstützt.

Beispiele: Geometrie, Raster -- das Ergebnis sind "geomvals"

SELECT
        foo.rid,
        foo.gid,
        ST_AsText((foo.geomval).geom) As geomwkt,
        (foo.geomval).val
FROM (
        SELECT
                A.rid,
                g.gid,
                ST_Intersection(A.rast, g.geom) As geomval
        FROM dummy_rast AS A
        CROSS JOIN (
                VALUES
                        (1, ST_Point(3427928, 5793243.85) ),
                        (2, ST_GeomFromText('LINESTRING(3427927.85 5793243.75,3427927.8 5793243.75,3427927.8 5793243.8)')),
                        (3, ST_GeomFromText('LINESTRING(1 2, 3 4)'))
        ) As g(gid,geom)
        WHERE A.rid = 2
) As foo;

 rid | gid |      geomwkt                                                                                                | val
-----+-----+---------------------------------------------------------------------------------------------
   2 |   1 | POINT(3427928 5793243.85)                                                                        | 249
   2 |   1 | POINT(3427928 5793243.85)                                                                        | 253
   2 |   2 | POINT(3427927.85 5793243.75)                                                                | 254
   2 |   2 | POINT(3427927.8 5793243.8)                                                                        | 251
   2 |   2 | POINT(3427927.8 5793243.8)                                                                        | 253
   2 |   2 | LINESTRING(3427927.8 5793243.75,3427927.8 5793243.8)        | 252
   2 |   2 | MULTILINESTRING((3427927.8 5793243.8,3427927.8 5793243.75),...) | 250
   2 |   3 | GEOMETRYCOLLECTION EMPTY
                                        

Name

ST_MapAlgebra (Rückruffunktion) — Die Version mit der Rückruffunktion - Gibt für einen oder mehrere Eingaberaster einen Raster mit einem Band, den Bandindizes und einer vom Anwender vorgegebenen Rückruffunktion zurück.

Synopsis

raster ST_MapAlgebra(rastbandarg[] rastbandargset, regprocedure callbackfunc, text pixeltype=NULL, text extenttype=INTERSECTION, raster customextent=NULL, integer distancex=0, integer distancey=0, text[] VARIADIC userargs=NULL);

raster ST_MapAlgebra(raster rast, integer[] nband, regprocedure callbackfunc, text pixeltype=NULL, text extenttype=FIRST, raster customextent=NULL, integer distancex=0, integer distancey=0, text[] VARIADIC userargs=NULL);

raster ST_MapAlgebra(raster rast, integer nband, regprocedure callbackfunc, text pixeltype=NULL, text extenttype=FIRST, raster customextent=NULL, integer distancex=0, integer distancey=0, text[] VARIADIC userargs=NULL);

raster ST_MapAlgebra(raster rast1, integer nband1, raster rast2, integer nband2, regprocedure callbackfunc, text pixeltype=NULL, text extenttype=INTERSECTION, raster customextent=NULL, integer distancex=0, integer distancey=0, text[] VARIADIC userargs=NULL);

raster ST_MapAlgebra(nband integer, regprocedure callbackfunc, float8[] mask, boolean weighted, text pixeltype=NULL, text extenttype=INTERSECTION, raster customextent=NULL, text[] VARIADIC userargs=NULL);

Beschreibung

Gibt für einen oder mehrere Eingaberaster einen Raster mit einem Band, den Bandindizes und einer vom Anwender vorgegebenen Rückruffunktion zurück.

rast,rast1,rast2, rastbandargset

Raster die mit der Map Algebra Operation ausgewertet werden.

rastbandargset ermöglicht die Anwendung einer Map Algebra Operation auf viele Raster und/oder viele Bänder. Siehe das Beispiel zu Variante 1.

nband, nband1, nband2

Die Nummern der Rasterbänder, die ausgewertet werden sollen. Die Bänder können über "nband" als Integer oder Integer[] angegeben werden. Bei der Variante mit 2 Raster steht "nband1" für die Bänder von "rast1" und nband2 für die Bänder von rast2.

callbackfunc

Der Parameter callbackfunc muss den Namen und die Signatur einer SQL- oder einer PL/pgSQL-Funktion haben und eine Typumwandlung nach "regprocedure" aufweisen. Nachfolgend ein Beispiel für eine PL/pgSQL Funktion:

CREATE OR REPLACE FUNCTION sample_callbackfunc(value double precision[][][], position integer[][], VARIADIC userargs text[])
        RETURNS double precision
        AS $$
        BEGIN
                RETURN 0;
        END;
        $$ LANGUAGE 'plpgsql' IMMUTABLE;
                                                                        

Die callbackfunc benötigt drei Übergabewerte: ein 3-dimensionales Feld mit dem Datentyp "Double Precision", ein 2-dimensionales Feld vom Datentyp "Integer" und ein 1-dimensionales variadisches Textfeld. Der erste Übergabewert value enthät die Werte (in Double Precision) aller Ausgangsraster. Die drei Dimensionen (mit 1-basierten Indizes) sind: raster #, row y, column x. Der zweite Übergabewert position entspricht den Positionen der Pixel der Ausgangs- und Zielraster. Die äußereT Dimension (dort wo die Indizes 0-basiert sind) ist der raster #. Die Position des Index "0" an der äußeren Diomension ist die Position der Pixel im Zielraster. Zu jeder äußeren Dimension gibt es zwei entsprechende Elemente der inneren Dimension; für X und für Y. Der dritte Übergabewert userargs ist für benutzerdefinierte Übergabewerte vorgesehen.

Wenn regprocedure an eine SQL Funktion übergeben werden soll, dann muss die gesamte Signatur der Funktion übergeben werden und anschließend in den Typ regprocedure umgewandelt werden. Für die Übergabe der PL/pgSQL-Funktion des oberen Beispiels lautet das SQL:

'sample_callbackfunc(double precision[], integer[], text[])'::regprocedure

Beachten Sie bitte, dass der Übergabewert den Funktionsnamen, den Datentyp der Übergabewerte und Anführungszeichen bei den Namen und den Funktionsargumenten und eine Typumwandlung nach regprocedure enthält.

mask

Ein n-dimensionales Feld (Matrix) von Zahlen, das verwendet wird um Zellen für die "Map Algebra"-Rückruffunktion zu filtern. 0 bedeutet, dass ein Nachbarzellwert wie NODATA behandelt werden soll. 1 bedeutet, dass dieser Wert als Datum behandelt werden soll. Wenn der Parameter "weighted" (gewichtet) TRUE ist, dann werden diese Werte als Multiplikatoren für die Pixelwerte in der Nachbarschaft verwendet.

weighted

Boolesche Variable (TRUE/FALSE), die angibt ob ein Wert der Maske gewichtet (mit dem ursprünglichen Wert multipliziert) werden soll oder nicht (gilt nur für den ersten, der die Maske übernimmt).

pixeltype

Wenn pixeltype angegeben ist, dann hat das Band des neuen Rasters diesen Pixeltyp. Wenn für den Pixeltyp NULL oder kein Wert übergeben wird, dann hat das neue Rasterband denselben Pixeltyp wie das angegebene Band des ersten Raster (für die Lagevergleiche: INTERSECTION, UNION, FIRST, CUSTOM), oder wie das spezifizierte Band des entsprechenden Rasters (für die Lagevergleiche:SECOND, LAST). Im Zweifelsfall sollten Sie den pixeltype immer angeben.

Der resultierende Pixeltyp des Zielraster muss entweder aus ST_BandPixelType sein, weggelassen oder auf NULL gesetzt werden.

extenttype

Mögliche Werte sind INTERSECTION (standardmäßig), UNION, FIRST (standardmäßig für Einzelraster-Varianten), SECOND, LAST, CUSTOM.

customextent

Wenn extentype CUSTOM ist, dann muss ein Raster für customextent übergeben werden. Siehe Beispiel 4 von Variante 1.

distancex

Der Abstand in Pixel von der Referenzzelle in X-Richtung. Die Breite der resultierenden Matrix ergibt sich aus 2*distancex + 1. Wenn nicht angegeben, dann wird nur die Referenzzelle berücksichtigt (keine Nachbarschaft/"neighborhood of 0").

distancey

Die Entfernung der Pixel zur Referenzzelle in Y-Richtung. Die Höhe der resultierenden Matrix ergibt sich aus 2*distancey + 1. Wenn nicht angegeben, dann wird nur die Referenzzelle berücksichtigt (keine Nachbarschaft/"neighborhood of 0").

userargs

Der dritte Übergabewert an die Rückruffunktion callbackfunc ist ein Feld mit dem Datentyp variadic text. Die an diesen Datentyp angehängten Parameter werden an die callbackfunc durchgereicht und sind in dem Übergabewert userargs enthalten.

[Note]

Für nähere Information zu dem Schlüsselwort VARIADIC, sehen Sie bitte die PostgreSQL Dokumentation und den Abschnitt "SQL Functions with Variable Numbers of Arguments" unter Query Language (SQL) Functions.

[Note]

Der Übergabewert text[] an die Rückruffunktion callbackfunc ist auch dann erforderlich, wenn Sie sonst keine Argumente für die Auswertung übergeben.

Variante 1 nimmt ein Feld an rastbandarg entgegen, wodurch die Anwendung einer Map Algebra Operation auf mehrere Raster und/oder mehrere Bänder ermöglicht wird. Siehe das Beispiel zu Variante 1.

Die Varianten 2 und 3 führen die Operation auf einem oder mehreren Bändern eines Raster aus. Siehe die Beispiele mit Variante 2 und 3.

Die Variante 4 führt die Operationen an zwei Raster mit einem Band pro Raster aus. Siehe das Beispiel mit Variante 4.

Verfügbarkeit: 2.2.0: Möglichkeit eine Maske hinzuzufügen

Verfügbarkeit: 2.1.0

Beispiele: Variante 1

Ein Raster, ein Band

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast
)
SELECT
        ST_MapAlgebra(
                ARRAY[ROW(rast, 1)]::rastbandarg[],
                'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
        ) AS rast
FROM foo
                                        

Ein Raster, mehrere Bänder

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
        ST_MapAlgebra(
                ARRAY[ROW(rast, 3), ROW(rast, 1), ROW(rast, 3), ROW(rast, 2)]::rastbandarg[],
                'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
        ) AS rast
FROM foo
                                        

Mehrere Raster, mehrere Bänder

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast UNION ALL
        SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI', 300, 0) AS rast
)
SELECT
        ST_MapAlgebra(
                ARRAY[ROW(t1.rast, 3), ROW(t2.rast, 1), ROW(t2.rast, 3), ROW(t1.rast, 2)]::rastbandarg[],
                'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
        ) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
        AND t2.rid = 2
                                        

Ein vollständiges Beispiel mit Coveragekacheln und Nachbarschaft. Diese Abfrage funktioniert nur mit PostgreSQL 9.1 oder höher.

WITH foo AS (
        SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast UNION ALL
        SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, 0, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0) AS rast UNION ALL
        SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, 0, 1, -1, 0, 0, 0), 1, '16BUI', 3, 0) AS rast UNION ALL

        SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -2, 1, -1, 0, 0, 0), 1, '16BUI', 10, 0) AS rast UNION ALL
        SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -2, 1, -1, 0, 0, 0), 1, '16BUI', 20, 0) AS rast UNION ALL
        SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -2, 1, -1, 0, 0, 0), 1, '16BUI', 30, 0) AS rast UNION ALL

        SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -4, 1, -1, 0, 0, 0), 1, '16BUI', 100, 0) AS rast UNION ALL
        SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -4, 1, -1, 0, 0, 0), 1, '16BUI', 200, 0) AS rast UNION ALL
        SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -4, 1, -1, 0, 0, 0), 1, '16BUI', 300, 0) AS rast
)
SELECT
        t1.rid,
        ST_MapAlgebra(
                ARRAY[ROW(ST_Union(t2.rast), 1)]::rastbandarg[],
                'sample_callbackfunc(double precision[], int[], text[])'::regprocedure,
                '32BUI',
                'CUSTOM', t1.rast,
                1, 1
        ) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 4
        AND t2.rid BETWEEN 0 AND 8
        AND ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rid, t1.rast
                                        

Das selbe Beispiel wie vorher, mit Coveragekacheln und Nachbarschaft, das aber auch mit PostgreSQL 9.0 funktioniert.

WITH src AS (
        SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast UNION ALL
        SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, 0, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0) AS rast UNION ALL
        SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, 0, 1, -1, 0, 0, 0), 1, '16BUI', 3, 0) AS rast UNION ALL

        SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -2, 1, -1, 0, 0, 0), 1, '16BUI', 10, 0) AS rast UNION ALL
        SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -2, 1, -1, 0, 0, 0), 1, '16BUI', 20, 0) AS rast UNION ALL
        SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -2, 1, -1, 0, 0, 0), 1, '16BUI', 30, 0) AS rast UNION ALL

        SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -4, 1, -1, 0, 0, 0), 1, '16BUI', 100, 0) AS rast UNION ALL
        SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -4, 1, -1, 0, 0, 0), 1, '16BUI', 200, 0) AS rast UNION ALL
        SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -4, 1, -1, 0, 0, 0), 1, '16BUI', 300, 0) AS rast
)
WITH foo AS (
        SELECT
                t1.rid,
                ST_Union(t2.rast) AS rast
        FROM src t1
        JOIN src t2
                ON ST_Intersects(t1.rast, t2.rast)
                AND t2.rid BETWEEN 0 AND 8
        WHERE t1.rid = 4
        GROUP BY t1.rid
), bar AS (
        SELECT
                t1.rid,
                ST_MapAlgebra(
                        ARRAY[ROW(t2.rast, 1)]::rastbandarg[],
                        'raster_nmapalgebra_test(double precision[], int[], text[])'::regprocedure,
                        '32BUI',
                        'CUSTOM', t1.rast,
                        1, 1
                ) AS rast
        FROM src t1
        JOIN foo t2
                ON t1.rid = t2.rid
)
SELECT
        rid,
        (ST_Metadata(rast)),
        (ST_BandMetadata(rast, 1)),
        ST_Value(rast, 1, 1, 1)
FROM bar;
                                        

Beispiele: Varianten 2 und 3

Ein Raster, mehrere Bänder

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
        ST_MapAlgebra(
                rast, ARRAY[3, 1, 3, 2]::integer[],
                'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
        ) AS rast
FROM foo
                                        

Ein Raster, ein Band

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
        ST_MapAlgebra(
                rast, 2,
                'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
        ) AS rast
FROM foo
                                        

Beispiele: Variante 4

Zwei Raster, zwei Bänder

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast UNION ALL
        SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI', 300, 0) AS rast
)
SELECT
        ST_MapAlgebra(
                t1.rast, 2,
                t2.rast, 1,
                'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
        ) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
        AND t2.rid = 2
                                        

Beispele: Verwendung von Masken

WITH foo AS (SELECT
   ST_SetBandNoDataValue(
ST_SetValue(ST_SetValue(ST_AsRaster(
                ST_Buffer(
                        ST_GeomFromText('LINESTRING(50 50,100 90,100 50)'), 5,'join=bevel'),
                        200,200,ARRAY['8BUI'], ARRAY[100], ARRAY[0]), ST_Buffer('POINT(70 70)'::geometry,10,'quad_segs=1') ,50),
  'LINESTRING(20 20, 100 100, 150 98)'::geometry,1),0)  AS rast )
SELECT 'original' AS title, rast
FROM foo
UNION ALL
SELECT 'no mask mean value' AS title, ST_MapAlgebra(rast,1,'ST_mean4ma(double precision[], int[], text[])'::regprocedure) AS rast
FROM foo
UNION ALL
SELECT 'mask only consider neighbors, exclude center' AS title, ST_MapAlgebra(rast,1,'ST_mean4ma(double precision[], int[], text[])'::regprocedure,
    '{{1,1,1}, {1,0,1}, {1,1,1}}'::double precision[], false) As rast
FROM foo

UNION ALL
SELECT 'mask weighted only consider neighbors, exclude center multi otehr pixel values by 2' AS title, ST_MapAlgebra(rast,1,'ST_mean4ma(double precision[], int[], text[])'::regprocedure,
    '{{2,2,2}, {2,0,2}, {2,2,2}}'::double precision[], true) As rast
FROM foo;
                                        

Original

Maske hat keinen Mittelwert (dasselbe wie lauter 1en in der Maskenmatrix)

Maske berücksichtigt nur die Nachbarn und schließt den Zentroid aus

Die Maske berücksichtigt nur die Nachbarn, schließt den Zentroid aus und multipliziert die anderen Pixel mit 2


Name

ST_MapAlgebra (Ausdrucksanweisung) — Version mit Ausdrücken - Gibt für einen oder zwei Ausgangsraster, Bandindizes und einer oder mehreren vom Anwender vorgegebenen SQL-Ausdrücken, einen Raster mit einem Band zurück.

Synopsis

raster ST_MapAlgebra(raster rast, integer nband, text pixeltype, text expression, double precision nodataval=NULL);

raster ST_MapAlgebra(raster rast, text pixeltype, text expression, double precision nodataval=NULL);

raster ST_MapAlgebra(raster rast1, integer nband1, raster rast2, integer nband2, text expression, text pixeltype=NULL, text extenttype=INTERSECTION, text nodata1expr=NULL, text nodata2expr=NULL, double precision nodatanodataval=NULL);

raster ST_MapAlgebra(raster rast1, raster rast2, text expression, text pixeltype=NULL, text extenttype=INTERSECTION, text nodata1expr=NULL, text nodata2expr=NULL, double precision nodatanodataval=NULL);

Beschreibung

Version mit Ausdrücken - Gibt für einen oder zwei Ausgangsraster, Bandindizes und einer oder mehreren vom Anwender vorgegebenen SQL-Ausdrücken, einen Raster mit einem Band zurück.

Verfügbarkeit: 2.1.0

Beschreibung: Variante 1 und 2 (ein Raster)

Erstellt ein neues Rasterband indem eine gültige algebraische PostgreSQL Operation (expression) auf den Ausgangsraster (rast) angewendet wird. Wenn nband nicht angegeben ist, wird Band 1 angenommen. Der Zielraster hat die selbe Georeferenzierung, Breite und Höhe wie der ursprüngliche Raster, hat aber nur ein Band.

Wenn pixeltype angegeben ist, dann hat das Band des neuen Rasters diesen Pixeltyp. Wenn für den Pixeltyp NULL übergeben wird, dann hat das neue Rasterband denselben Pixeltyp wie das gegebene Band von rast

  • Erlaubte Schlüsselwörter für expression

    1. [rast] - Zellwert der Pixel von Interesse

    2. [rast.val] - Zellwert der Pixel von Interesse

    3. [rast.x] - Rasterspalte (von 1 wegzählend) der Pixel von Interesse

    4. [rast.y] - Rasterszeile (von 1 wegzählend) der Pixel von Interesse

Beschreibung: Variante 3 und 4 (zwei Raster)

Erstellt einen neuen Raster mit einem Band, indem eine gültige algebraische PostgreSQL Operation auf die beiden, durch den Ausdruck expression bestimmten Ausgangsrasterbänder rast1 und rast2) angewendet wird. Wenn band1 oder band2 nicht angegeben ist, wird Band 1 angenommen. Der Zielraster wird an dem Gitter des ersten Raster ausgerichtet (Größe, Versatz und Eckpunkte der Pixel). Die Ausdehnung des Zielrasters wird durch den Parameter extenttype bestimmt.

expression

Ein algebraischer PostgreSQL Ausdruck, der zwei Raster und in PostgreSQL definierte Funktionen/Operatoren einbezieht, die den Pixelwert für sich schneidende Pixel festlegt. z.B. (([rast1] + [rast2])/2.0)::integer

pixeltype

Der resultierende Pixeltyp des Zielraster muss entweder aus ST_BandPixelType sein, weggelassen oder auf NULL gesetzt werden. Wenn er nicht übergeben wird oder auf NULL gesetzt ist, wird er standardmäßig auf den Pixeltyp des ersten Raster gesetzt.

extenttype

Bestimmt die Ausdehnung des resultierenden Raster

  1. INTERSECTION - Die Ausdehnung des neuen Raster entspricht der Schnittmenge der beiden Raster. Die Standardeinstellung.

  2. UNION - Die Ausdehnung des neuen Raster entspricht der Vereinigungsmenge der beiden Raster.

  3. FIRST - Die Ausdehnung des neuen Raster entspricht jener des ersten Raster.

  4. SECOND - Die Ausdehnung des neuen Raster entspricht jender des zweiten Raster.

nodata1expr

Ein algebraischer Ausdruck der nur rast2 oder eine Konstante einbezieht. Dieser bestimmt was zurückgegeben wird, wenn die Pixel von rast1 NODATA Werte sind und die räumlich übereinstimmenden Pixel von rast2 Werte aufweisen.

nodata2expr

Ein algebraischer Ausdruck der nur rast1 oder eine Konstante einbezieht. Dieser bestimmt was zurückgegeben wird, wenn die Pixel von rast2 NODATA Werte haben und die räumlich übereinstimmenden Pixel von rast1 Werte aufweisen.

nodatanodataval

Eine numerische Konstante die ausgegeben wird, wenn die übereinstimmenden Pixel der beiden Raster "rast1" und "rast2" nur NODATA Werte enthalten.

  • Zugelassene Schlüsselwörter in expression, nodata1expr und nodata2expr

    1. [rast1] - Zellwert der Pixel von Interesse von rast1

    2. [rast1.val] - Zellwert der Pixel von Interesse von rast1

    3. [rast1.x] - Rasterspalte (von 1 wegzählend) der Pixel von Interesse von rast1

    4. [rast1.y] - Rasterzeile (von 1 wegzählend) der Pixel von Interesse von rast1

    5. [rast2] - Zellwert der Pixel von Interesse von rast2

    6. [rast2.val] - Zellwert der Pixel von Interesse von rast2

    7. [rast2.x] - Rasterspalte (von 1 wegzählend) der Pixel von Interesse von rast2

    8. [rast2.y] - Rasterzeile (von 1 wegzählend) der Pixel von Interesse von rast2

Beispiele: Varianten 1 und 2

WITH foo AS (
        SELECT ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 1, 1, 0, 0, 0), '32BF'::text, 1, -1) AS rast
)
SELECT
        ST_MapAlgebra(rast, 1, NULL, 'ceil([rast]*[rast.x]/[rast.y]+[rast.val])')
FROM foo;
                                        

Beispiele: Varianten 3 und 4

WITH foo AS (
        SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI'::text, 100, 0) AS rast UNION ALL
        SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI'::text, 300, 0) AS rast
)
SELECT
        ST_MapAlgebra(
                t1.rast, 2,
                t2.rast, 1,
                '([rast2] + [rast1.val]) / 2'
        ) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
        AND t2.rid = 2;
                                        

Name

ST_MapAlgebraExpr — Version mit 1 Rasterband: Erzeugt ein neues Rasterband, dass über eine gültige, algebraische PostgreSQL Operation für ein Rasterband mit gegebenen Pixeltyp erstellt wird. Wenn kein Band bestimmt ist, wird Band 1 angenommen.

Synopsis

raster ST_MapAlgebraExpr(raster rast, integer band, text pixeltype, text expression, double precision nodataval=NULL);

raster ST_MapAlgebraExpr(raster rast, text pixeltype, text expression, double precision nodataval=NULL);

Beschreibung

[Warning]

ST_MapAlgebraExpr Seit der Version 2.1.0 überholt. Benutzen Sie stattdessen bitte ST_MapAlgebra (Ausdrucksanweisung) .

Erstellt ein neues Rasterband indem eine gültige algebraische PostgreSQL Operation (expression) auf den Ausgangsraster (rast) angewendet wird. Wenn kein band festgelegt ist, wird Band 1 angenommen. Der Zielraster hat die selbe Georeferenzierung, Breite und Höhe wie der ursprüngliche Raster, hat aber nur ein Band.

Wenn pixeltype angegeben ist, dann hat das Band des neuen Rasters diesen Pixeltyp. Wenn für den Pixeltyp NULL übergeben wird, dann hat das neue Rasterband denselben Pixeltyp wie das gegebene Band von rast

Im Ausdruck können Sie folgende Terme verwenden: [rast] für den Zellwert des ursprünglichen Bandes, [rast.x] für den von 1 wegzählenden Index der Rasterspalten, [rast.y] für den von 1 wegzählenden Index der Rasterzeilen.

Verfügbarkeit: 2.0.0

Beispiele

Erzeugt einen Einzelbandraster, der sich durch die Anwendung der Funktion "modulo 2" auf das ursprüngliche Rasterband ergibt.

ALTER TABLE dummy_rast ADD COLUMN map_rast raster;
UPDATE dummy_rast SET map_rast = ST_MapAlgebraExpr(rast,NULL,'mod([rast]::numeric,2)') WHERE rid = 2;

SELECT
        ST_Value(rast,1,i,j) As origval,
        ST_Value(map_rast, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 3) AS i
CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
     253 |      1
     254 |      0
     253 |      1
     253 |      1
     254 |      0
     254 |      0
     250 |      0
     254 |      0
     254 |      0
                                        

Erzeugt einen neuen Einzelbandraster mit dem Pixeltyp 2BUI. Der ursprüngliche Raster wird dabei neu klassifiziert und mit einem NODATA Wert von 0 versehen.

ALTER TABLE dummy_rast ADD COLUMN map_rast2 raster;
UPDATE dummy_rast SET
        map_rast2 = ST_MapAlgebraExpr(rast,'2BUI'::text,'CASE WHEN [rast] BETWEEN 100 and 250 THEN 1 WHEN [rast] = 252 THEN 2 WHEN [rast] BETWEEN 253 and 254 THEN 3 ELSE 0 END'::text, '0')
WHERE rid = 2;

SELECT DISTINCT
        ST_Value(rast,1,i,j) As origval,
        ST_Value(map_rast2, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 5) AS i
CROSS JOIN generate_series(1,5) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
     249 |      1
     250 |      1
     251 |
     252 |      2
     253 |      3
     254 |      3

SELECT
        ST_BandPixelType(map_rast2) As b1pixtyp
FROM dummy_rast
WHERE rid = 2;

 b1pixtyp
----------
 2BUI
                                        

Original (Spalte "rast_view")

rast_view_ma

Erzeugt einen neuen Raster mit 3 Bändern und demselben Pixeltyp als unser ursprünglicher Raster mit 3 Bändern. Das erste Band wird über einen Map Algebra Ausdruck geändert, die verbleibenden 2 Bänder sind unverändert.

SELECT
        ST_AddBand(
                ST_AddBand(
                        ST_AddBand(
                                ST_MakeEmptyRaster(rast_view),
                                ST_MapAlgebraExpr(rast_view,1,NULL,'tan([rast])*[rast]')
                        ),
                        ST_Band(rast_view,2)
                ),
                ST_Band(rast_view, 3)
        )  As rast_view_ma
FROM wind
WHERE rid=167;
                                        

Name

ST_MapAlgebraExpr — Version mit 2 Rasterbändern: Erstellt einen neuen Einzelbandraster, indem eine gültige algebraische PostgreSQL Funktion auf die zwei Ausgangsrasterbänder und den entsprechenden Pixeltyp angewendet wird. Wenn keine Bandnummern angegeben sind, wird von jedem Raste Band 1 angenommen. Der Ergebnisraster wird nach dem Gitter des ersten Raster ausgerichtet (Skalierung, Versatz und Eckpunkte der Pixel) und hat die Ausdehnung, welche durch den Parameter "extenttype" definiert ist. Der Parameter "extenttype" kann die Werte INTERSECTION, UNION, FIRST, SECOND annehmen.

Synopsis

raster ST_MapAlgebraExpr(raster rast1, raster rast2, text expression, text pixeltype=same_as_rast1_band, text extenttype=INTERSECTION, text nodata1expr=NULL, text nodata2expr=NULL, double precision nodatanodataval=NULL);

raster ST_MapAlgebraExpr(raster rast1, integer band1, raster rast2, integer band2, text expression, text pixeltype=same_as_rast1_band, text extenttype=INTERSECTION, text nodata1expr=NULL, text nodata2expr=NULL, double precision nodatanodataval=NULL);

Beschreibung

[Warning]

ST_MapAlgebraExpr Seit der Version 2.1.0 überholt. Benutzen Sie stattdessen bitte ST_MapAlgebra (Ausdrucksanweisung) .

Erstellt einen neuen Raster mit einem Band, indem eine gültige algebraische PostgreSQL Operation auf die beiden, durch den Ausdruck expression bestimmten Ausgangsrasterbänder rast1 und rast2) angewendet wird. Wenn band1 oder band2 nicht angegeben ist, wird Band 1 angenommen. Der Zielraster wird an dem Gitter des ersten Raster ausgerichtet (Größe, Versatz und Eckpunkte der Pixel). Die Ausdehnung des Zielrasters wird durch den Parameter extenttype bestimmt.

expression

Ein algebraischer PostgreSQL Ausdruck, der zwei Raster und in PostgreSQL definierte Funktionen/Operatoren einbezieht, die den Pixelwert für sich schneidende Pixel festlegt. z.B. (([rast1] + [rast2])/2.0)::integer

pixeltype

Der resultierende Pixeltyp des Zielraster muss entweder aus ST_BandPixelType sein, weggelassen oder auf NULL gesetzt werden. Wenn er nicht übergeben wird oder auf NULL gesetzt ist, wird er standardmäßig auf den Pixeltyp des ersten Raster gesetzt.

extenttype

Bestimmt die Ausdehnung des resultierenden Raster

  1. INTERSECTION - Die Ausdehnung des neuen Raster entspricht der Schnittmenge der beiden Raster. Die Standardeinstellung.

  2. UNION - Die Ausdehnung des neuen Raster entspricht der Vereinigungsmenge der beiden Raster.

  3. FIRST - Die Ausdehnung des neuen Raster entspricht jener des ersten Raster.

  4. SECOND - Die Ausdehnung des neuen Raster entspricht jender des zweiten Raster.

nodata1expr

Ein algebraischer Ausdruck der nur rast2 oder eine Konstante einbezieht. Dieser bestimmt was zurückgegeben wird, wenn die Pixel von rast1 NODATA Werte sind und die räumlich übereinstimmenden Pixel von rast2 Werte aufweisen.

nodata2expr

Ein algebraischer Ausdruck der nur rast1 oder eine Konstante einbezieht. Dieser bestimmt was zurückgegeben wird, wenn die Pixel von rast2 NODATA Werte haben und die räumlich übereinstimmenden Pixel von rast1 Werte aufweisen.

nodatanodataval

Eine numerische Konstante die ausgegeben wird, wenn die übereinstimmenden Pixel der beiden Raster "rast1" und "rast2" nur NODATA Werte enthalten.

Wenn pixeltype angegeben ist, dann hat das Band des neuen Rasters diesen Pixeltyp. Wenn für den Pixeltyp NULL übergeben wird oder der Pixeltyp nicht festgelegt ist, dann hat das neue Rasterband denselben Pixeltyp wie das angegebene Band von rast1

Sie können den Ausdruck [rast1.val] [rast2.val] verwenden, um auf die Pixelwerte der ursprünglichen Rasterbänder zu verweisen, und [rast1.x], [rast1.y] etc. um auf die Positionen der Pixel über die Rasterspalten / Rasterzeilen zu verweisen.

Verfügbarkeit: 2.0.0

Beispiel: Verschneidung und Union von 2 Bändern

Erzeugt einen Einzelbandraster, der sich durch die Anwendung der Funktion "modulo 2" auf das ursprüngliche Rasterband ergibt.

-- Coole Raster erzeugen --
DROP TABLE IF EXISTS fun_shapes;
CREATE TABLE fun_shapes(rid serial PRIMARY KEY, fun_name text, rast raster);

-- Fügt eine Geometrie rund um Boston, in "Massachusetts State Plane Meter" hinzu --
INSERT INTO fun_shapes(fun_name, rast)
VALUES ('ref', ST_AsRaster(ST_MakeEnvelope(235229, 899970, 237229, 901930,26986),200,200,'8BUI',0,0));

INSERT INTO fun_shapes(fun_name,rast)
WITH ref(rast) AS (SELECT rast FROM fun_shapes WHERE fun_name = 'ref' )
SELECT 'area' AS fun_name, ST_AsRaster(ST_Buffer(ST_SetSRID(ST_Point(236229, 900930),26986), 1000),
                        ref.rast,'8BUI', 10, 0) As rast
FROM ref
UNION ALL
SELECT 'rand bubbles',
                        ST_AsRaster(
                        (SELECT ST_Collect(geom)
        FROM (SELECT ST_Buffer(ST_SetSRID(ST_Point(236229 + i*random()*100, 900930 + j*random()*100),26986), random()*20) As geom
                        FROM generate_series(1,10) As i, generate_series(1,10) As j
                        ) As foo ), ref.rast,'8BUI', 200, 0)
FROM ref;

--die Raster abbilden -
SELECT  ST_MapAlgebraExpr(
                area.rast, bub.rast, '[rast2.val]', '8BUI', 'INTERSECTION', '[rast2.val]', '[rast1.val]') As interrast,
                ST_MapAlgebraExpr(
                        area.rast, bub.rast, '[rast2.val]', '8BUI', 'UNION', '[rast2.val]', '[rast1.val]') As unionrast
FROM
  (SELECT rast FROM fun_shapes WHERE
 fun_name = 'area') As area
CROSS JOIN  (SELECT rast
FROM fun_shapes WHERE
 fun_name = 'rand bubbles') As bub
                                        

Map Algebra Verschneidung

Map Algebra Vereinigung

Beispiel: Überlagerung von Rastern als Einzelbänder am Canvas

-- wir verwenden ST_AsPNG um das Bild zu rendern, weswegen die einzelnen Bänder in Grauwerten erscheinen --
WITH mygeoms
    AS ( SELECT 2 As bnum, ST_Buffer(ST_Point(1,5),10) As geom
            UNION ALL
            SELECT 3 AS bnum,
                ST_Buffer(ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 10,'join=bevel') As geom
            UNION ALL
            SELECT 1 As bnum,
                ST_Buffer(ST_GeomFromText('LINESTRING(60 50,150 150,150 50)'), 5,'join=bevel') As geom
            ),
   -- das Verhältnis von Pixel zu Geometrie wird für den Canvas mit 1 zu 1 festgelegt
   canvas
    AS (SELECT ST_AddBand(ST_MakeEmptyRaster(200,
        200,
        ST_XMin(e)::integer, ST_YMax(e)::integer, 1, -1, 0, 0) , '8BUI'::text,0) As rast
        FROM (SELECT ST_Extent(geom) As e,
                    Max(ST_SRID(geom)) As srid
                    from mygeoms
                    ) As foo
            ),
   rbands AS (SELECT ARRAY(SELECT ST_MapAlgebraExpr(canvas.rast, ST_AsRaster(m.geom, canvas.rast, '8BUI', 100),
                 '[rast2.val]', '8BUI', 'FIRST', '[rast2.val]', '[rast1.val]') As rast
                FROM mygeoms AS m CROSS JOIN canvas
                ORDER BY m.bnum) As rasts
                )
          SELECT rasts[1] As rast1 , rasts[2] As rast2, rasts[3] As rast3, ST_AddBand(
                    ST_AddBand(rasts[1],rasts[2]), rasts[3]) As final_rast
            FROM rbands;
                                        

rast1

rast2

rast3

final_rast

Beispiel: Ein Orthophoto mit einer 2 Meter breiten Begrenzung der ausgewählten Grundstücke überlagern

-- Erstellt einen neuen Raster mit 3 Bändern, der aus den ersten 2 ausgeschnittenen Bändern und einem überlagerten 3ten Band mit der Geometrie besteht
-- Diese Abfrage benötigte 3.6 Sekunden auf einer PostGIS Installation unter Windows 64-Bit
WITH pr AS
-- Beachten Sie die Reihenfolge der Operation: wir schneiden alle Raster entsprechend der Dimension unserer Region aus
(SELECT ST_Clip(rast,ST_Expand(geom,50) ) As rast, g.geom
        FROM aerials.o_2_boston AS r INNER JOIN
-- Vereinigungsoperation der Grundstücke von Interesse, so dass diese eine einzelne Geometrie darstellen, welche wir später mit
                (SELECT ST_Union(ST_Transform(the_geom,26986)) AS geom
                  FROM landparcels WHERE pid IN('0303890000', '0303900000')) As g
                ON ST_Intersects(rast::geometry, ST_Expand(g.geom,50))
)
-- verschneiden können.
-- anschließend vereinigen wir die Rasterteile
-- ST_Union ist eine langsame Rasteroperation, aber umso schneller, je kleiner die Raster sind
-- deshalb schneiden wir zuerst aus und vereinigen anschließend
prunion AS
(SELECT ST_AddBand(NULL, ARRAY[ST_Union(rast,1),ST_Union(rast,2),ST_Union(rast,3)] ) As clipped,geom
FROM pr
GROUP BY geom)
-- gibt unseren endgültigen Raster zurück, welcher aus den vereinigten Teilen
-- mit der Überlagerung der Grundstücksgrenzen besteht
-- fügt die ersten 2 Bänder hinzu, anschließend Map Algebra auf 3tes Band + Geometrie
SELECT ST_AddBand(ST_Band(clipped,ARRAY[1,2])
        , ST_MapAlgebraExpr(ST_Band(clipped,3), ST_AsRaster(ST_Buffer(ST_Boundary(geom),2),clipped, '8BUI',250),
         '[rast2.val]', '8BUI', 'FIRST', '[rast2.val]', '[rast1.val]') ) As rast
FROM prunion;
                                        

Die blauen Linien sind die Ränder der ausgewählten Grundstücke.


Name

ST_MapAlgebraFct — Version mit 1 Rasterband: Erzeugt ein neues Rasterband, dass über eine gültige PostgreSQL Funktion für ein gegebenes Rasterband und Pixeltyp erstellt wird. Wenn kein Band bestimmt ist, wird Band 1 angenommen.

Synopsis

raster ST_MapAlgebraFct(raster rast, regprocedure onerasteruserfunc);

raster ST_MapAlgebraFct(raster rast, regprocedure onerasteruserfunc, text[] VARIADIC args);

raster ST_MapAlgebraFct(raster rast, text pixeltype, regprocedure onerasteruserfunc);

raster ST_MapAlgebraFct(raster rast, text pixeltype, regprocedure onerasteruserfunc, text[] VARIADIC args);

raster ST_MapAlgebraFct(raster rast, integer band, regprocedure onerasteruserfunc);

raster ST_MapAlgebraFct(raster rast, integer band, regprocedure onerasteruserfunc, text[] VARIADIC args);

raster ST_MapAlgebraFct(raster rast, integer band, text pixeltype, regprocedure onerasteruserfunc);

raster ST_MapAlgebraFct(raster rast, integer band, text pixeltype, regprocedure onerasteruserfunc, text[] VARIADIC args);

Beschreibung

[Warning]

ST_MapAlgebraFct Seit der Version 2.1.0 überholt. Benutzen Sie stattdessen bitte ST_MapAlgebra (Rückruffunktion)

Erstellt einen neuen Raster mit einem Band, indem eine gültige PostgreSQL Funktion durch tworastuserfunc spezifiziert und auf den gegebenen Raster (rast) angewendet wird. Wenn kein Band angegeben ist, wird Band 1 angenommen. Der Zielraster hat die selbe Georeferenzierung, Breite und Höhe wie der ursprüngliche Raster, hat aber nur ein Band.

Wenn pixeltype angegeben ist, dann hat das Band des neuen Rasters diesen Pixeltyp. Wenn für den Pixeltyp NULL übergeben wird, dann hat das neue Rasterband denselben Pixeltyp wie das gegebene Band von rast

Der Parameter onerasteruserfunc muss den Namen und die Signatur einer SQL- oder einer PL/pgSQL-Funktion haben und eine Typumwandlung nach "regprocedure" aufweisen. Nachfolgend ein sehr einfaches und ziemlich nutzloses Beispiel für eine PL/pgSQL Funktion:

CREATE OR REPLACE FUNCTION simple_function(pixel FLOAT, pos INTEGER[], VARIADIC args TEXT[])
RETURNS FLOAT
AS $$ BEGIN
RETURN 0.0;
END; $$
LANGUAGE 'plpgsql' IMMUTABLE;

Die userfunction akzeptiert zwei oder drei Übergabewerte: einen Gleitpunktzahlenwert, ein optionales Integerfeld und ein variadisches Textfeld. Der erste Übergabewert entspricht dem Wert einer einzelnen Rasterzelle (unabhängig vom Rastertyp). Der zweite Übergabewert ist die Position der Rasterzelle in der Form '{x,y}. Der dritte Übergabewert gibt an, ob alle übrigen Parameter von ST_MapAlgebraFct an userfunction weitergereicht werden sollen.

Wenn das Argument regprocedure an eine SQL Funktion übergeben werden soll, dann muss die gesamte Signatur der Funktion übergeben werden und anschließend in den Typ regprocedure umgewandelt werden. Um die PL/pgSQL-Funktion des oberen Beispiels als Argument zu übergeben lautet das SQL für dieses Argument:

'simple_function(float,integer[],text[])'::regprocedure

Beachten Sie bitte, dass der Übergabewert unter Anführungszeichen gesetzt ist und den Funktionsnamen und die Datentypen der Funktionsargumente enthält; und dass der Datentyp nach regprocedure umgewandelt wird.

Der dritte Übergabewert an die Funktion userfunction ist ein Feld vom Datentyp variadic text. Alle an einen Funktionsaufruf von ST_MapAlgebraFct angehängten Parameter werden an die spezifizierte userfunction durchgereicht und sind in dem Übergabewert args enthalten.

[Note]

Für nähere Information zu dem Schlüsselwort VARIADIC, sehen Sie bitte die PostgreSQL Dokumentation und den Abschnitt "SQL Functions with Variable Numbers of Arguments" unter Query Language (SQL) Functions.

[Note]

Der Übergabewert text[] an die userfunction ist auch dann erforderlich, wenn Sie sonst keine Argumente für die Auswertung an an "userfunction" übergeben.

Verfügbarkeit: 2.0.0

Beispiele

Erzeugt einen Einzelbandraster, der sich durch die Anwendung der Funktion "modulo 2" auf das ursprüngliche Rasterband ergibt.

ALTER TABLE dummy_rast ADD COLUMN map_rast raster;
CREATE FUNCTION mod_fct(pixel float, pos integer[], variadic args text[])
RETURNS float
AS $$
BEGIN
    RETURN pixel::integer % 2;
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE;

UPDATE dummy_rast SET map_rast = ST_MapAlgebraFct(rast,NULL,'mod_fct(float,integer[],text[])'::regprocedure) WHERE rid = 2;

SELECT ST_Value(rast,1,i,j) As origval, ST_Value(map_rast, 1, i, j) As mapval
FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
     253 |      1
     254 |      0
     253 |      1
     253 |      1
     254 |      0
     254 |      0
     250 |      0
     254 |      0
     254 |      0
                                        

Erzeugt einen neuen Raster mit einem Band und mit dem Pixeltyp 2BUI. Der ursprüngliche Raster wird dabei neu klassifiziert und der NODATA Wert wird an die "user function" (0) übergeben.

ALTER TABLE dummy_rast ADD COLUMN map_rast2 raster;
CREATE FUNCTION classify_fct(pixel float, pos integer[], variadic args text[])
RETURNS float
AS
$$
DECLARE
    nodata float := 0;
BEGIN
    IF NOT args[1] IS NULL THEN
        nodata := args[1];
    END IF;
    IF pixel < 251 THEN
        RETURN 1;
    ELSIF pixel = 252 THEN
        RETURN 2;
    ELSIF pixel > 252 THEN
        RETURN 3;
    ELSE
        RETURN nodata;
    END IF;
END;
$$
LANGUAGE 'plpgsql';
UPDATE dummy_rast SET map_rast2 = ST_MapAlgebraFct(rast,'2BUI','classify_fct(float,integer[],text[])'::regprocedure, '0') WHERE rid = 2;

SELECT DISTINCT ST_Value(rast,1,i,j) As origval, ST_Value(map_rast2, 1, i, j) As mapval
FROM dummy_rast CROSS JOIN generate_series(1, 5) AS i CROSS JOIN generate_series(1,5) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
     249 |      1
     250 |      1
     251 |
     252 |      2
     253 |      3
     254 |      3

SELECT ST_BandPixelType(map_rast2) As b1pixtyp
FROM dummy_rast WHERE rid = 2;

 b1pixtyp
----------
 2BUI
                                        

Original (Spalte "rast_view")

rast_view_ma

Erzeugt einen neuen Raster mit 3 Bändern und demselben Pixeltyp als unser ursprünglicher Raster mit 3 Bändern. Das erste Band wird über einen Map Algebra Ausdruck geändert, die verbleibenden 2 Bänder sind unverändert.

CREATE FUNCTION rast_plus_tan(pixel float, pos integer[], variadic args text[])
RETURNS float
AS
$$
BEGIN
        RETURN tan(pixel) * pixel;
END;
$$
LANGUAGE 'plpgsql';

SELECT ST_AddBand(
        ST_AddBand(
                ST_AddBand(
                        ST_MakeEmptyRaster(rast_view),
                        ST_MapAlgebraFct(rast_view,1,NULL,'rast_plus_tan(float,integer[],text[])'::regprocedure)
                ),
                ST_Band(rast_view,2)
        ),
        ST_Band(rast_view, 3) As rast_view_ma
)
FROM wind
WHERE rid=167;
                                        

Name

ST_MapAlgebraFct — Version mit 2 Rasterbändern: Erstellt einen neuen Einzelbandraster, indem eine gültige PostgreSQL Funktion auf die 2 gegebenen Rasterbänder und den entsprechenden Pixeltyp angewendet wird. Wenn kein Band bestimmt ist, wird Band 1 angenommen. Wenn der "Extent"-Typ nicht angegeben ist, wird standardmäßig INTERSECTION angenommen.

Synopsis

raster ST_MapAlgebraFct(raster rast1, raster rast2, regprocedure tworastuserfunc, text pixeltype=same_as_rast1, text extenttype=INTERSECTION, text[] VARIADIC userargs);

raster ST_MapAlgebraFct(raster rast1, integer band1, raster rast2, integer band2, regprocedure tworastuserfunc, text pixeltype=same_as_rast1, text extenttype=INTERSECTION, text[] VARIADIC userargs);

Beschreibung

[Warning]

ST_MapAlgebraFct Seit der Version 2.1.0 überholt. Benutzen Sie stattdessen bitte ST_MapAlgebra (Rückruffunktion)

Erstellt einen neuen Raster mit einem Band, indem eine gültige PostgreSQL Funktion (tworastuserfunc) auf die Ausgangsraster (rast1, rast2) angewendet wird. Wenn band1 oder band2 nicht angegeben ist, wird Band 1 angenommen. Der Zielraster hat die selbe Georeferenzierung, Breite und Höhe wie der ursprüngliche Raster, hat aber nur ein Band.

Wenn pixeltype angegeben ist, dann hat das Band des neuen Rasters diesen Pixeltyp. Wenn für den Pixeltyp NULL oder kein Wert übergeben wird, dann hat das neue Rasterband denselben Pixeltyp wie das angegebene Band von rast1

Der Parameter tworastuserfunc muss den Namen und die Signatur einer SQL- oder einer PL/pgSQL-Funktion haben und eine Typumwandlung nach "regprocedure" aufweisen. Nachfolgend ein Beispiel für eine PL/pgSQL Funktion:

CREATE OR REPLACE FUNCTION simple_function_for_two_rasters(pixel1 FLOAT, pixel2 FLOAT, pos INTEGER[], VARIADIC args TEXT[])
RETURNS FLOAT
AS $$ BEGIN
RETURN 0.0;
END; $$
LANGUAGE 'plpgsql' IMMUTABLE;

Die tworastuserfunc akzeptiert drei oder vier Übergabewerte: einen Wert in "Double Precision", einen weiteren Wert in "Double Precision", ein optionales Integerfeld und ein variadisches Textfeld. Der erste Übergabewert entspricht dem Wert einer einzelnen Rasterzelle in rast1 (unabhängig vom Rastertyp). Der zweite Übergabewert entspricht einer einzelnen Rasterzelle in rast2. Der dritte Übergabewert gibt die Position der Rasterzelle in der Form '{x,y} an. Der vierte Übergabewert gibt an, ob alle übrigen Parameter von ST_MapAlgebraFct an tworastuserfunc weitergereicht werden sollen.

Wenn das Argument regprocedure an eine SQL Funktion übergeben werden soll, dann muss die gesamte Signatur der Funktion übergeben werden und anschließend in den Typ regprocedure umgewandelt werden. Um die PL/pgSQL-Funktion des oberen Beispiels als Argument zu übergeben lautet das SQL für dieses Argument:

'simple_function(double precision, double precision, integer[], text[])'::regprocedure

Beachten Sie bitte, dass der Übergabewert unter Anführungszeichen gesetzt ist und den Funktionsnamen und die Datentypen der Funktionsargumente enthält; und dass der Datentyp nach regprocedure umgewandelt wird.

Der vierte Übergabewert an die Funktion tworastuserfunc ist ein Feld mit dem Datentyp variadic text. Alle an eine Funktion ST_MapAlgebraFct angehängten Parameter werden an die tworastuserfunc durchgereicht und sind in dem Übergabewert userargs enthalten.

[Note]

Für nähere Information zu dem Schlüsselwort VARIADIC, sehen Sie bitte die PostgreSQL Dokumentation und den Abschnitt "SQL Functions with Variable Numbers of Arguments" unter Query Language (SQL) Functions.

[Note]

Der Übergabewert text[] an die tworastuserfunc ist auch dann erforderlich, wenn Sie sonst keine Argumente für die Auswertung an an "userfunction" übergeben.

Verfügbarkeit: 2.0.0

Beispiel: Überlagerung von Rastern als Einzelbänder am Canvas

-- die benutzerdefinierte Funktion festlegen --
CREATE OR REPLACE FUNCTION raster_mapalgebra_union(
        rast1 double precision,
        rast2 double precision,
    pos integer[],
        VARIADIC userargs text[]
)
        RETURNS double precision
        AS $$
        DECLARE
        BEGIN
                CASE
                        WHEN rast1 IS NOT NULL AND rast2 IS NOT NULL THEN
                                RETURN ((rast1 + rast2)/2.);
                        WHEN rast1 IS NULL AND rast2 IS NULL THEN
                                RETURN NULL;
                        WHEN rast1 IS NULL THEN
                                RETURN rast2;
                        ELSE
                                RETURN rast1;
                END CASE;

                RETURN NULL;
        END;
        $$ LANGUAGE 'plpgsql' IMMUTABLE COST 1000;

-- die Testtabelle mit den Rastern aufbereiten
DROP TABLE IF EXISTS map_shapes;
CREATE TABLE map_shapes(rid serial PRIMARY KEY, rast raster, bnum integer, descrip text);
INSERT INTO map_shapes(rast,bnum, descrip)
WITH mygeoms
    AS ( SELECT 2 As bnum, ST_Buffer(ST_Point(90,90),30) As geom, 'circle' As descrip
            UNION ALL
            SELECT 3 AS bnum,
                ST_Buffer(ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 15) As geom, 'big road' As descrip
            UNION ALL
            SELECT 1 As bnum,
                ST_Translate(ST_Buffer(ST_GeomFromText('LINESTRING(60 50,150 150,150 50)'), 8,'join=bevel'), 10,-6) As geom, 'small road' As descrip
            ),
   -- den Canvas definieren - 1 Einheit im Canvas entspricht 1 Pixel
    AS ( SELECT ST_AddBand(ST_MakeEmptyRaster(250,
        250,
        ST_XMin(e)::integer, ST_YMax(e)::integer, 1, -1, 0, 0 ) , '8BUI'::text,0) As rast
        FROM (SELECT ST_Extent(geom) As e,
                    Max(ST_SRID(geom)) As srid
                    from mygeoms
                    ) As foo
            )
-- die am Canvas ausgerichteten Raster ausgeben
SELECT ST_AsRaster(m.geom, canvas.rast, '8BUI', 240) As rast, bnum, descrip
                FROM mygeoms AS m CROSS JOIN canvas
UNION ALL
SELECT canvas.rast, 4, 'canvas'
FROM canvas;

-- Map algebra auf ein einzelnes Rasterband und mit ST_AddBand zusammenführen
INSERT INTO map_shapes(rast,bnum,descrip)
SELECT ST_AddBand(ST_AddBand(rasts[1], rasts[2]),rasts[3]), 4, 'map bands overlay fct union (canvas)'
        FROM (SELECT ARRAY(SELECT ST_MapAlgebraFct(m1.rast, m2.rast,
                        'raster_mapalgebra_union(double precision, double precision, integer[], text[])'::regprocedure, '8BUI', 'FIRST')
                FROM map_shapes As m1 CROSS JOIN map_shapes As m2
        WHERE m1.descrip = 'canvas' AND m2.descrip <> 'canvas' ORDER BY m2.bnum) As rasts) As foo;
                                        

map bands overlay (Canvas) (R: schmale Straße, G: Kreis, B: breite Straße)

Eine benutzerdefinierte Funktion, die zusätzliche Übergabewerte entgegennimmt

CREATE OR REPLACE FUNCTION raster_mapalgebra_userargs(
        rast1 double precision,
        rast2 double precision,
    pos integer[],
        VARIADIC userargs text[]
)
        RETURNS double precision
        AS $$
        DECLARE
        BEGIN
                CASE
                        WHEN rast1 IS NOT NULL AND rast2 IS NOT NULL THEN
                                RETURN least(userargs[1]::integer,(rast1 + rast2)/2.);
                        WHEN rast1 IS NULL AND rast2 IS NULL THEN
                                RETURN userargs[2]::integer;
                        WHEN rast1 IS NULL THEN
                                RETURN greatest(rast2,random()*userargs[3]::integer)::integer;
                        ELSE
                                RETURN greatest(rast1, random()*userargs[4]::integer)::integer;
                END CASE;

                RETURN NULL;
        END;
        $$ LANGUAGE 'plpgsql' VOLATILE COST 1000;

SELECT ST_MapAlgebraFct(m1.rast, 1, m1.rast, 3,
                        'raster_mapalgebra_userargs(double precision, double precision, integer[], text[])'::regprocedure,
                                '8BUI', 'INTERSECT', '100','200','200','0')
                FROM map_shapes As m1
        WHERE m1.descrip = 'map bands overlay fct union (canvas)';
                                        

Eine benutzerdefinierte Funktion mit zusätzlichen Übergabewerten und unterschiedlichen Bändern des gleichen Raster


Name

ST_MapAlgebraFctNgb — Version mit 1em Band: Map Algebra Nearest Neighbor mit einer benutzerdefinierten PostgreSQL Funktion. Gibt einen Raster zurück, dessen Werte sich aus einer benutzerdefinierte PL/pgsql Funktion ergeben, welche die Nachbarschaftswerte des Ausgangsrasterbandes einbezieht.

Synopsis

raster ST_MapAlgebraFctNgb(raster rast, integer band, text pixeltype, integer ngbwidth, integer ngbheight, regprocedure onerastngbuserfunc, text nodatamode, text[] VARIADIC args);

Beschreibung

[Warning]

ST_MapAlgebraFctNgb Seit der Version 2.1.0 überholt. Benutzen Sie stattdessen bitte ST_MapAlgebra (Rückruffunktion)

(Version mit einem Raster) Gibt einen Raster zurück, dessen Werte sich aus einer benutzerdefinierte PL/pgSQL Funktion errechnen, welche die Nachbarschaftswerte des Ausgangsrasterbandes mit einbezieht. Die benutzerdefinierte Funktion nimmt die Werte der Nachbarschaftspixel als Zahlenfeld entgegen und gibt für jedes Pixel das Ergebnis der Funktion zurück, indem die aktuellen Werte der betrachteten Pixel mit dem Ergebnis der benutzerdefinierten Funktion ersetzt werden.

rast

Raster der durch die benutzerdefinierte Funktion ausgewertet werden soll.

band

Die Bandnummer des Raster, die ausgewertet werden soll. Die Standardeinstellung ist 1.

pixeltype

Der resultierende Pixeltyp des Zielraster muss entweder aus ST_BandPixelType sein, weggelassen oder auf NULL gesetzt werden. Wenn er nicht übergeben wird oder auf NULL gesetzt ist, wird er standardmäßig auf den Pixeltyp von rast gesetzt. Die Ergebnisse werden abgeschnitten, wenn sie größer als für den Pixeltyp erlaubt sind.

ngbwidth

Die Breite der Nachbarschaft in Zellen.

ngbheight

Die Höhe der Nachbarschaft in Zellen.

onerastngbuserfunc

Eine benutzerdefinierte Funktion in PLPGSQL/psql, die auf die Nachbarschaftspixel in einem einzelnen Rasterband angewandt wird. Das erste Element ist ein 2-dimensionales Feld mit Zahlen, welche das Rechteck mit den Nachbarschaftspixel beschreiben

nodatamode

Bestimmt welcher Wert an die Funktion übergeben werden soll, wenn ein Nachbarschaftspixel NODATA oder NULL ist

'ignore': NODATA Werte in der Nachbarschaft werden bei der Berechnung ignoriert -- diese Flag muss an die Rückruffunktion gesendet werden und die benutzerdefinierte Funktion entscheidet dann, wie diese Werte ignoriert werden sollen.

'NULL': NODATA Werte in der Nachbarschaft bedingen, dass die resultierenden Pixel ebenfalls NULL annehmen - die benutzerdefinierte Rückruffunktion wird bei diesem Fall übersprungen.

'value': NODATA Werte in der Nachbarschaft werden durch den Wert des Referenzpixel (das Pixel im Zentrum der Nachbarschaft) ersetzt. Anmerkung: Wenn dieser Wert NODATA ist, dann ist die Verhaltensweise gleich wie bei 'NULL' (für die betroffene Nachbarschaft)

args

Übergabewerte für die benutzerdefinierte Funktion.

Verfügbarkeit: 2.0.0

Beispiele

Die Beispiele nutzen den Raster "Katrina", der als einzelne Kachel geladen wird, wie unter http://trac.osgeo.org/gdal/wiki/frmts_wtkraster.html beschrieben; und in den Beispielen von ST_Rescale aufbereitet wurde.

--
-- Eine einfache Rückruffunktion, welche die Durchschnittswerte in einer Nachbarschaft berechnet. --
CREATE OR REPLACE FUNCTION rast_avg(matrix float[][], nodatamode text, variadic args text[])
    RETURNS float AS
    $$
    DECLARE
                _matrix float[][];
        x1 integer;
        x2 integer;
        y1 integer;
        y2 integer;
        sum float;
    BEGIN
                _matrix := matrix;
        sum := 0;
        FOR x in array_lower(matrix, 1)..array_upper(matrix, 1) LOOP
            FOR y in array_lower(matrix, 2)..array_upper(matrix, 2) LOOP
                sum := sum + _matrix[x][y];
            END LOOP;
        END LOOP;
        RETURN (sum*1.0/(array_upper(matrix,1)*array_upper(matrix,2) ))::integer ;
    END;
    $$
LANGUAGE 'plpgsql' IMMUTABLE COST 1000;

-- auf den Raster anwenden; den Durchschnittswert von Pixel, die innerhalb von 2 Pixel in X- und Y-Richtung liegen errechnen --
SELECT ST_MapAlgebraFctNgb(rast, 1,  '8BUI', 4,4,
                'rast_avg(float[][], text, text[])'::regprocedure, 'NULL', NULL) As nn_with_border
        FROM katrinas_rescaled
        limit 1;
                                        

Das erste Band Unseres Rasters

neuer Raster mit dem Durchschnittswert der Pixel innerhalb von 4x4 Pixel


Name

ST_Reclass — Erstellt einen neuen Raster, der aus neu klassifizierten Bändern des Originalraster besteht. Das Band "nband" ist jenes das verändert werden soll. Wenn "nband" nicht angegeben ist, wird "Band 1" angenommen. Alle anderen Bänder bleiben unverändert. Anwendungsfall: zwecks einfacherer Visualisierung ein 16BUI-Band in ein 8BUI-Band konvertieren und so weiter.

Synopsis

raster ST_Reclass(raster rast, integer nband, text reclassexpr, text pixeltype, double precision nodataval=NULL);

raster ST_Reclass(raster rast, reclassarg[] VARIADIC reclassargset);

raster ST_Reclass(raster rast, text reclassexpr, text pixeltype);

Beschreibung

Erstellt einen neuen Raster, indem eine gültige algebraische PostgreSQL Operation die durch den Ausdruck reclassexpr festgelegt ird auf den Ausgangsraster (rast) angewendet wird. Wenn nband nicht angegeben ist, wird Band 1 angenommen. Der Zielraster hat die selbe Georeferenzierung, Breite und Höhe wie der ursprüngliche Raster. Nicht ausgewiesene Bänder werden unverändert zurückgegeben. Siehe reclassarg für eine Beschreibung der gültigen Ausdrücke zur Neuklassifizierung.

Die Bänder des Zielraster haben den Pixeltyp pixeltype. Wenn reclassargset übergeben wird, dann bestimmt ein "regclassarg" wie das jeweilige Band erstellt werden soll.

Verfügbarkeit: 2.0.0

Grundlegende Beispiele

Erzeugt einen neuen Raster aus dem Original, indem Band 2 von 8BUI auf 4BUI und alle Werte von 101-254 auf NODATA gesetzt werden.

ALTER TABLE dummy_rast ADD COLUMN reclass_rast raster;
UPDATE dummy_rast SET reclass_rast = ST_Reclass(rast,2,'0-87:1-10, 88-100:11-15, 101-254:0-0', '4BUI',0) WHERE rid = 2;

SELECT i as col, j as row, ST_Value(rast,2,i,j) As origval,
    ST_Value(reclass_rast, 2, i, j) As reclassval,
    ST_Value(reclass_rast, 2, i, j, false) As reclassval_include_nodata
FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

 col | row | origval | reclassval | reclassval_include_nodata
-----+-----+---------+------------+---------------------------
   1 |   1 |      78 |          9 |                         9
   2 |   1 |      98 |         14 |                        14
   3 |   1 |     122 |            |                         0
   1 |   2 |      96 |         14 |                        14
   2 |   2 |     118 |            |                         0
   3 |   2 |     180 |            |                         0
   1 |   3 |      99 |         15 |                        15
   2 |   3 |     112 |            |                         0
   3 |   3 |     169 |            |                         0
                                        

Beispiel: Erweiterte Verwendung mit mehreren "reclassargs"

Erstellt einen neuen Raster aus dem Ursprungsraster, wobei die Bänder 1, 2 und 3 in 1BB, 4BUI und 4BUI konvertiert und neu klassifiziert werden. Verwendet das variadische Argument reclassarg, welches eine unbegrenzte Anzahl von "reclassargs" entgegennehmen kann (theoretisch so viele wie Bänder vorhanden sind)

UPDATE dummy_rast SET reclass_rast =
    ST_Reclass(rast,
        ROW(2,'0-87]:1-10, (87-100]:11-15, (101-254]:0-0', '4BUI',NULL)::reclassarg,
        ROW(1,'0-253]:1, 254:0', '1BB', NULL)::reclassarg,
        ROW(3,'0-70]:1, (70-86:2, [86-150):3, [150-255:4', '4BUI', NULL)::reclassarg
        ) WHERE rid = 2;

SELECT i as col, j as row,ST_Value(rast,1,i,j) As ov1,  ST_Value(reclass_rast, 1, i, j) As rv1,
    ST_Value(rast,2,i,j) As ov2, ST_Value(reclass_rast, 2, i, j) As rv2,
    ST_Value(rast,3,i,j) As ov3, ST_Value(reclass_rast, 3, i, j) As rv3
FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

col | row | ov1 | rv1 | ov2 | rv2 | ov3 | rv3
----+-----+-----+-----+-----+-----+-----+-----
  1 |   1 | 253 |   1 |  78 |   9 |  70 |   1
  2 |   1 | 254 |   0 |  98 |  14 |  86 |   3
  3 |   1 | 253 |   1 | 122 |   0 | 100 |   3
  1 |   2 | 253 |   1 |  96 |  14 |  80 |   2
  2 |   2 | 254 |   0 | 118 |   0 | 108 |   3
  3 |   2 | 254 |   0 | 180 |   0 | 162 |   4
  1 |   3 | 250 |   1 |  99 |  15 |  90 |   3
  2 |   3 | 254 |   0 | 112 |   0 | 108 |   3
  3 |   3 | 254 |   0 | 169 |   0 | 175 |   4
                                        

Beispiel: Abbildung eines Einzelbandrasters (32BF) auf mehrere darstellbare Bänder

Erstellung eines neuen Raster mit 3 Bändern (8BUI,8BUI,8BUI darstellbarer Raster) aus einem Raster mit nur einem 32bf-Band

ALTER TABLE wind ADD COLUMN rast_view raster;
UPDATE wind
        set rast_view = ST_AddBand( NULL,
        ARRAY[
        ST_Reclass(rast, 1,'0.1-10]:1-10,9-10]:11,(11-33:0'::text, '8BUI'::text,0),
        ST_Reclass(rast,1, '11-33):0-255,[0-32:0,(34-1000:0'::text, '8BUI'::text,0),
        ST_Reclass(rast,1,'0-32]:0,(32-100:100-255'::text, '8BUI'::text,0)
        ]
        );
                                        

Name

ST_Union — Gibt die Vereinigung mehrerer Rasterkacheln in einem einzelnen Raster mit mehreren Bändern zurück.

Synopsis

raster ST_Union(setof raster rast);

raster ST_Union(setof raster rast, unionarg[] unionargset);

raster ST_Union(setof raster rast, integer nband);

raster ST_Union(setof raster rast, text uniontype);

raster ST_Union(setof raster rast, integer nband, text uniontype);

Beschreibung

Gibt die Vereinigung von Rasterkacheln in einem einzelnen Raster zurück, der mindestens aus einem Band besteht. Die räumliche Ausdehnung des Zielraster entspricht der Gesamtausdehnung. Im Fall von Überschneidungen wird der resultierende Wert durch uniontype festgelegt, welcher folgende Werte annehmen kann: LAST (Standardwert), FIRST, MIN, MAX, COUNT, SUM, MEAN, RANGE.

[Note]

Damit Raster vereinigt werden können, müssen sie alle gleich ausgerichtet sein. Siehe ST_SameAlignment und ST_NotSameAlignmentReason für weitere Details und Hilfe. Eine Möglichkeit, um Probleme mit der Ausrichtung zu beheben ist ST_Resample und die Verwendung eines gemeinsamen Referenzraster zur Anpassung.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Geschwindigkeit verbessert (zur Gänze C-basiert)

Verfügbarkeit: 2.1.0 ST_Union(rast, unionarg) Variante wurde eingeführt.

Erweiterung: 2.1.0 ST_Union(rast) (Variante 1) vereinigt alle Bänder aller Ausgangsraster. Vorherige Versionen von PostGIS setzten das erste Band voraus.

Erweiterung: 2.1.0 ST_Union(rast, uniontype) (Variante 4) vereinigt alle Bänder aller Ausgangsraster.

Beispiele: Wiederherstellung eines einzelnen Bandes einer Rasterkachel

-- erzeugt ein einzelnes Band aus den ersten Bänder der Rasterkacheln,
-- welche die ursprüngliche Kachel im Dateisystem aufbauen
SELECT filename, ST_Union(rast,1) As file_rast
FROM sometable WHERE filename IN('dem01', 'dem02') GROUP BY filename;
                                        

Beispiele: Vereinigt Kacheln, die eine Geometrie schneiden, zu einem Raster mit mehreren Bändern

-- erzeugt einen Raster mit mehreren Bändern, indem alle Kacheln die eine Linie schneiden gesammelt werden
-- Anmerkung: bei 2.0 würde nur ein einzelnes Rasterband zurückgegeben
-- , das neue UNION bearbeitet standardmäßig alle Bänder
-- dies ist gleichbedeutend mit unionarg: ARRAY[ROW(1, 'LAST'), ROW(2, 'LAST'), ROW(3, 'LAST')]::unionarg[]
SELECT ST_Union(rast)
FROM aerials.boston
WHERE ST_Intersects(rast,  ST_GeomFromText('LINESTRING(230486 887771, 230500 88772)',26986) );
                                        

Beispiele: Vereinigt Kacheln, die eine Geometrie schneiden, zu einem Raster mit mehreren Bändern

Um nur eine Teilmenge der Bänder zu erhalten, oder die Reihenfolge der Bänder zu ändern, können wir die längere Syntax verwenden

-- erzeugt einen Raster mit mehreren Bändern, indem alle Kacheln die eine Linie schneiden gesammelt werden
SELECT ST_Union(rast,ARRAY[ROW(2, 'LAST'), ROW(1, 'LAST'), ROW(3, 'LAST')]::unionarg[])
FROM aerials.boston
WHERE ST_Intersects(rast,  ST_GeomFromText('LINESTRING(230486 887771, 230500 88772)',26986) );
                                        

9.12.2. Integrierte Map Algebra Callback Funktionen

ST_Distinct4ma — Funktion zur Rasterdatenverarbeitung, welche die Anzahl der einzelnen Pixelwerte in der Nachbarschaft errechnet.
ST_InvDistWeight4ma — Funktion zur Rasterdatenverarbeitung, die den Wert eines Pixel aus den Pixel der Nachbarschaft interpoliert.
ST_Max4ma — Funktion zur Rasterdatenverarbeitung, die den maximalen Zellwert in der Nachbarschaft eines Pixel errechnet.
ST_Mean4ma — Funktion zur Rasterdatenverarbeitung, die den mittleren Zellwert in der Nachbarschaft von Pixel errechnet.
ST_Min4ma — Funktion zur Rasterdatenverarbeitung, die den minimalen Zellwert in der Nachbarschaft von Pixel errechnet.
ST_MinDist4ma — Funktion zur Rasterdatenverarbeitung, welche die kürzeste Entfernung (in Pixel) zwischen dem Pixel von Interesse und einem benachbarten Pixel mit Zellwert zurückgibt.
ST_Range4ma — Funktion zur Rasterdatenverarbeitung, die den Wertebereich der Pixel in einer Nachbarschaft errechnet.
ST_StdDev4ma — Funktion zur Rasterdatenverarbeitung, welche die Standardabweichung der Zellwerte in der Nachbarschaft von Pixel errechnet.
ST_Sum4ma — Funktion zur Rasterdatenverarbeitung, die die Summe aller Zellwerte in der Nachbarschaft von Pixel errechnet.

Name

ST_Distinct4ma — Funktion zur Rasterdatenverarbeitung, welche die Anzahl der einzelnen Pixelwerte in der Nachbarschaft errechnet.

Synopsis

float8 ST_Distinct4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);

double precision ST_Distinct4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Beschreibung

Berechnet die Anzahl der einzelnen Pixelwerte in der Nachbarschaft von Pixel.

[Note]

Variante 1 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebraFctNgb verwendet werden kann.

[Note]

Variante 2 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebra (Rückruffunktion) verwendet werden kann.

[Warning]

Von der Verwendung der Variante 1 wird abgeraten, da ST_MapAlgebraFctNgb seit 2.1.0 überholt ist.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Variante 2 wurde hinzugefügt

Beispiele

SELECT
    rid,
    st_value(
        st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_distinct4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
    )
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
   2 |        3
(1 row)
                                

Name

ST_InvDistWeight4ma — Funktion zur Rasterdatenverarbeitung, die den Wert eines Pixel aus den Pixel der Nachbarschaft interpoliert.

Synopsis

double precision ST_InvDistWeight4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Beschreibung

Interpoliert den Wert eines Pixel über die Methode der inversen Distanzwichtung.

Es gibt zwei optionale Parameter, die über userargs übergeben werden können. Der erste Parameter ist der Exponent (die Variable "k" in unterer Gleichung); dieser liegt zwischen 0 und 1 und wird in der Gleichung für die Inverse Distanzwichtung verwendet. Wenn er nicht angegeben ist, wird standardmäßig 1 angenommen. Der zweite Parameter entspricht der Gewichtung in Prozent und wird nur verwendet, wenn der Wert der betrachteten Pixel einem aus der Nachbarschaft interpolierten Wert entspricht. Wenn er nicht angegeben ist und das betrachtete Pixel einen Wert hat, so wird dieser Wert zurückgegeben.

Die grundlegende Gleichung der inversen Distanzwichtung ist:

k = Exponent, eine reelle Zahl zwischen 0 und 1

[Note]

Diese Funktion ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebra (Rückruffunktion) verwendet werden kann.

Verfügbarkeit: 2.1.0

Beispiele

-- BEISPIEL GEFRAGT
                                

Name

ST_Max4ma — Funktion zur Rasterdatenverarbeitung, die den maximalen Zellwert in der Nachbarschaft eines Pixel errechnet.

Synopsis

float8 ST_Max4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);

double precision ST_Max4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Beschreibung

Berechnet den maximalen Zellwert in der Nachbarschaft von Pixel.

Bei Variante 2 kann ein Substitutionswert für NODATA an "userargs" übergeben werden.

[Note]

Variante 1 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebraFctNgb verwendet werden kann.

[Note]

Variante 2 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebra (Rückruffunktion) verwendet werden kann.

[Warning]

Von der Verwendung der Variante 1 wird abgeraten, da ST_MapAlgebraFctNgb seit 2.1.0 überholt ist.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Variante 2 wurde hinzugefügt

Beispiele

SELECT
    rid,
    st_value(
        st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_max4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
    )
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
   2 |      254
(1 row)
                                

Name

ST_Mean4ma — Funktion zur Rasterdatenverarbeitung, die den mittleren Zellwert in der Nachbarschaft von Pixel errechnet.

Synopsis

float8 ST_Mean4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);

double precision ST_Mean4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Beschreibung

Berechnet den mittleren Zellwert in der Nachbarschaft von Pixel.

Bei Variante 2 kann ein Substitutionswert für NODATA an "userargs" übergeben werden.

[Note]

Variante 1 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebraFctNgb verwendet werden kann.

[Note]

Variante 2 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebra (Rückruffunktion) verwendet werden kann.

[Warning]

Von der Verwendung der Variante 1 wird abgeraten, da ST_MapAlgebraFctNgb seit 2.1.0 überholt ist.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Variante 2 wurde hinzugefügt

Beispiele: Variante 1

SELECT
    rid,
    st_value(
        st_mapalgebrafctngb(rast, 1, '32BF', 1, 1, 'st_mean4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
    )
FROM dummy_rast
WHERE rid = 2;
 rid |     st_value
-----+------------------
   2 | 253.222229003906
(1 row)
                                

Beispiele: Variante 2

SELECT
    rid,
    st_value(
              ST_MapAlgebra(rast, 1, 'st_mean4ma(double precision[][][], integer[][], text[])'::regprocedure,'32BF', 'FIRST', NULL, 1, 1)
       ,  2, 2)
  FROM dummy_rast
   WHERE rid = 2;
 rid |     st_value
-----+------------------
   2 | 253.222229003906
(1 row)

Name

ST_Min4ma — Funktion zur Rasterdatenverarbeitung, die den minimalen Zellwert in der Nachbarschaft von Pixel errechnet.

Synopsis

float8 ST_Min4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);

double precision ST_Min4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Beschreibung

Berechnet den minimalen Zellwert in der Nachbarschaft von Pixel.

Bei Variante 2 kann ein Substitutionswert für NODATA an "userargs" übergeben werden.

[Note]

Variante 1 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebraFctNgb verwendet werden kann.

[Note]

Variante 2 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebra (Rückruffunktion) verwendet werden kann.

[Warning]

Von der Verwendung der Variante 1 wird abgeraten, da ST_MapAlgebraFctNgb seit 2.1.0 überholt ist.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Variante 2 wurde hinzugefügt

Beispiele

SELECT
    rid,
    st_value(
        st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_min4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
    )
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
   2 |      250
(1 row)
                                

Name

ST_MinDist4ma — Funktion zur Rasterdatenverarbeitung, welche die kürzeste Entfernung (in Pixel) zwischen dem Pixel von Interesse und einem benachbarten Pixel mit Zellwert zurückgibt.

Synopsis

double precision ST_MinDist4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Beschreibung

Gibt die kürzeste Entfernung (Pixelanzahl) zwischen dem Pixel von Interesse und dem nächstgelegenen Pixel mit Zellwert in der Nachbarschaft zurück.

[Note]

Diese Funktion soll einen Anhaltspunkt liefern, um die Sinnhaftigkeit des mittels ST_InvDistWeight4ma interpolierten Wertes für das betrachtete Pixel abzuleiten. Diese Funktion ist besonders nützlich wenn die Nachbarschaft des Pixel nur spärlich besetzt ist.

[Note]

Diese Funktion ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebra (Rückruffunktion) verwendet werden kann.

Verfügbarkeit: 2.1.0

Beispiele

-- BEISPIEL GEFRAGT
                                

Name

ST_Range4ma — Funktion zur Rasterdatenverarbeitung, die den Wertebereich der Pixel in einer Nachbarschaft errechnet.

Synopsis

float8 ST_Range4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);

double precision ST_Range4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Beschreibung

Berechnet den Wertebereich der Pixel in einer Nachbarschaft von Pixel.

Bei Variante 2 kann ein Substitutionswert für NODATA an "userargs" übergeben werden.

[Note]

Variante 1 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebraFctNgb verwendet werden kann.

[Note]

Variante 2 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebra (Rückruffunktion) verwendet werden kann.

[Warning]

Von der Verwendung der Variante 1 wird abgeraten, da ST_MapAlgebraFctNgb seit 2.1.0 überholt ist.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Variante 2 wurde hinzugefügt

Beispiele

SELECT
    rid,
    st_value(
        st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_range4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
    )
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
   2 |        4
(1 row)
                                

Name

ST_StdDev4ma — Funktion zur Rasterdatenverarbeitung, welche die Standardabweichung der Zellwerte in der Nachbarschaft von Pixel errechnet.

Synopsis

float8 ST_StdDev4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);

double precision ST_StdDev4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Beschreibung

Berechnet die Standardabweichung der Zellwerte in der Nachbarschaft von Pixel.

[Note]

Variante 1 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebraFctNgb verwendet werden kann.

[Note]

Variante 2 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebra (Rückruffunktion) verwendet werden kann.

[Warning]

Von der Verwendung der Variante 1 wird abgeraten, da ST_MapAlgebraFctNgb seit 2.1.0 überholt ist.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Variante 2 wurde hinzugefügt

Beispiele

SELECT
    rid,
    st_value(
        st_mapalgebrafctngb(rast, 1, '32BF', 1, 1, 'st_stddev4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
    )
FROM dummy_rast
WHERE rid = 2;
 rid |     st_value
-----+------------------
   2 | 1.30170822143555
(1 row)
                                

Name

ST_Sum4ma — Funktion zur Rasterdatenverarbeitung, die die Summe aller Zellwerte in der Nachbarschaft von Pixel errechnet.

Synopsis

float8 ST_Sum4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);

double precision ST_Sum4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Beschreibung

Berechnet die Summe aller Zellwerte in der Nachbarschaft von Pixel.

Bei Variante 2 kann ein Substitutionswert für NODATA an "userargs" übergeben werden.

[Note]

Variante 1 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebraFctNgb verwendet werden kann.

[Note]

Variante 2 ist eine spezialisierte Rückruffunktion, die als Rückrufparameter für ST_MapAlgebra (Rückruffunktion) verwendet werden kann.

[Warning]

Von der Verwendung der Variante 1 wird abgeraten, da ST_MapAlgebraFctNgb seit 2.1.0 überholt ist.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Variante 2 wurde hinzugefügt

Beispiele

SELECT
    rid,
    st_value(
        st_mapalgebrafctngb(rast, 1, '32BF', 1, 1, 'st_sum4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
    )
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
   2 |     2279
(1 row)
                                

9.12.3. DHM (Digitales Höhenmodell)

ST_Aspect — Gibt die Exposition (standardmäßig in Grad) eines Rasterbandes mit Höhen aus. Nütlich für Terrain-Analysen.
ST_HillShade — Gibt für gegebenen Horizontalwinkel, Höhenwinkel, Helligkeit und Maßstabsverhältnis die hypothetische Beleuchtung eines Höhenrasterbandes zurück.
ST_Roughness — Gibt einen Raster mit der berechneten "Rauhigkeit" des DHM zurück.
ST_Slope — Gibt die Neigung (standardmäßig in Grad) eines Höhenrasterbandes zurück. Nützlich für Terrain-Analysen.
ST_TPI — Berechnet den "Topographic Position Index" eines Raster.
ST_TRI — Gibt einen Raster mit errechneten Geländerauheitsindex aus.

Name

ST_Aspect — Gibt die Exposition (standardmäßig in Grad) eines Rasterbandes mit Höhen aus. Nütlich für Terrain-Analysen.

Synopsis

raster ST_Aspect(raster rast, integer band=1, text pixeltype=32BF, text units=DEGREES, boolean interpolate_nodata=FALSE);

raster ST_Aspect(raster rast, integer band, raster customextent, text pixeltype=32BF, text units=DEGREES, boolean interpolate_nodata=FALSE);

Beschreibung

Gibt die Exposition (standardmäßig in Grad) eines Höhenrasterbandes zurück. Verwendet Map Algebra und wendet die Expositionsgleichung auf benachbarte Pixel an.

units die Einheiten für die Exposition. Mögliche Werte sind: RADIANS, DEGREES (Standardeinstellung).

Wenn units = RADIANS, dann liegen die Werte zwischen 0 und 2 * pi Radiant und werden im Uhrzeigersinn von Norden her angegeben.

Wenn units = DEGREES, dann liegen die Werte zwischen 0 und 360 Grad und sind im Uhrzeigersinn von Norden her angegeben.

Wenn die Neigung einer Zelle null ist, dann ist die Exposition des Pixel -1.

[Note]

Für weitere Information über Neigung, Exposition und Schummerung siehe ESRI - How hillshade works und ERDAS Field Guide - Aspect Images.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Verwendet ST_MapAlgebra() und der optionale Funktionsparameter interpolate_nodata wurde hinzugefügt

Änderung: 2.1.0 In Vorgängerversionen wurden die Werte in Radiant ausgegeben. Nun werden die Werte standardmäßig in Grad ausgegeben.

Beispiele: Variante 1

WITH foo AS (
        SELECT ST_SetValues(
                ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
                1, 1, 1, ARRAY[
                        [1, 1, 1, 1, 1],
                        [1, 2, 2, 2, 1],
                        [1, 2, 3, 2, 1],
                        [1, 2, 2, 2, 1],
                        [1, 1, 1, 1, 1]
                ]::double precision[][]
        ) AS rast
)
SELECT
        ST_DumpValues(ST_Aspect(rast, 1, '32BF'))
FROM foo

                                                                                                    st_dumpvalues

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------
 (1,"{{315,341.565063476562,0,18.4349479675293,45},{288.434936523438,315,0,45,71.5650482177734},{270,270,-1,90,90},{251.565048217773,225,180,135,108.434951782227},{225,198.43495178
2227,180,161.565048217773,135}}")
(1 row)
                                        

Beispiele: Variante 2

Ein vollständiges Beispiel mit Coveragekacheln. Diese Abfrage funktioniert nur mit PostgreSQL 9.1 oder höher.

WITH foo AS (
        SELECT ST_Tile(
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
                                1, '32BF', 0, -9999
                        ),
                        1, 1, 1, ARRAY[
                                [1, 1, 1, 1, 1, 1],
                                [1, 1, 1, 1, 2, 1],
                                [1, 2, 2, 3, 3, 1],
                                [1, 1, 3, 2, 1, 1],
                                [1, 2, 2, 1, 2, 1],
                                [1, 1, 1, 1, 1, 1]
                        ]::double precision[]
                ),
                2, 2
        ) AS rast
)
SELECT
        t1.rast,
        ST_Aspect(ST_Union(t2.rast), 1, t1.rast)
FROM foo t1
CROSS JOIN foo t2
WHERE ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rast;
                                        

Name

ST_HillShade — Gibt für gegebenen Horizontalwinkel, Höhenwinkel, Helligkeit und Maßstabsverhältnis die hypothetische Beleuchtung eines Höhenrasterbandes zurück.

Synopsis

raster ST_HillShade(raster rast, integer band=1, text pixeltype=32BF, double precision azimuth=315, double precision altitude=45, double precision max_bright=255, double precision scale=1.0, boolean interpolate_nodata=FALSE);

raster ST_HillShade(raster rast, integer band, raster customextent, text pixeltype=32BF, double precision azimuth=315, double precision altitude=45, double precision max_bright=255, double precision scale=1.0, boolean interpolate_nodata=FALSE);

Beschreibung

Gibt für gegebenen Horizontalwinkel, Höhenwinkel, Helligkeit und Maßstabsverhältnis die hypothetische Beleuchtung eines Höhenrasterbandes zurück. Verwendet Map Algebra und wendet die Schummerungsgleichung auf die Nachbarpixel an. Die zurückgegebenen Pixelwerte liegen zwischen 0 und 255.

azimuth der Richtungswinkel zwischen 0 und 360 Grad, im Uhrzeigersinn von Norden gemessen.

altitude der Höhenwinkel zwischen 0 und 90 Grad, wobei 0 Grad am Horizont und 90 Grad direkt über Kopf liegt.

max_bright ein Wert zwischen 0 und 255, wobei 0 keine Helligkeit und 255 maximale Helligkeit bedeutet.

scale ist das Verhältnis zwischen vertikalen und horizontalen Einheiten. Für Feet:LatLon verwenden Sie bitte scale=370400, für Meter:LatLon scale=111120.

Wenn interpolate_nodata TRUE ist, dann werden die NODATA Pixel des Ausgangsraster mit ST_InvDistWeight4ma interpoliert, bevor die Schummerung berechnet wird.

[Note]

Für weitere Information zur Schummerung siehe How hillshade works.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Verwendet ST_MapAlgebra() und der optionale Funktionsparameter interpolate_nodata wurde hinzugefügt

Änderung: 2.1.0 In Vorgängerversionen wurden Richtungswinkel und Höhenwinkel in Radiant angegeben. Nun werden die Werte in Grad ausgedrückt.

Beispiele: Variante 1

WITH foo AS (
        SELECT ST_SetValues(
                ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
                1, 1, 1, ARRAY[
                        [1, 1, 1, 1, 1],
                        [1, 2, 2, 2, 1],
                        [1, 2, 3, 2, 1],
                        [1, 2, 2, 2, 1],
                        [1, 1, 1, 1, 1]
                ]::double precision[][]
        ) AS rast
)
SELECT
        ST_DumpValues(ST_Hillshade(rast, 1, '32BF'))
FROM foo

                                                                                                                       st_dumpvalues

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------
 (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,251.32763671875,220.749786376953,147.224319458008,NULL},{NULL,220.749786376953,180.312225341797,67.7497863769531,NULL},{NULL,147.224319458008
,67.7497863769531,43.1210060119629,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)
                                        

Beispiele: Variante 2

Ein vollständiges Beispiel mit Coveragekacheln. Diese Abfrage funktioniert nur mit PostgreSQL 9.1 oder höher.

WITH foo AS (
        SELECT ST_Tile(
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
                                1, '32BF', 0, -9999
                        ),
                        1, 1, 1, ARRAY[
                                [1, 1, 1, 1, 1, 1],
                                [1, 1, 1, 1, 2, 1],
                                [1, 2, 2, 3, 3, 1],
                                [1, 1, 3, 2, 1, 1],
                                [1, 2, 2, 1, 2, 1],
                                [1, 1, 1, 1, 1, 1]
                        ]::double precision[]
                ),
                2, 2
        ) AS rast
)
SELECT
        t1.rast,
        ST_Hillshade(ST_Union(t2.rast), 1, t1.rast)
FROM foo t1
CROSS JOIN foo t2
WHERE ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rast;
                                        

Name

ST_Roughness — Gibt einen Raster mit der berechneten "Rauhigkeit" des DHM zurück.

Synopsis

raster ST_Roughness(raster rast, integer nband, raster customextent, text pixeltype="32BF" , boolean interpolate_nodata=FALSE );

Beschreibung

Berechnet die "Rauigkeit" eines DHM, indem für ein bestimmtes Gebiet das Maximum vom Minimum abgezogen wird..

Verfügbarkeit: 2.1.0

Beispiele

-- Beispiel benötigt
                                        

Name

ST_Slope — Gibt die Neigung (standardmäßig in Grad) eines Höhenrasterbandes zurück. Nützlich für Terrain-Analysen.

Synopsis

raster ST_Slope(raster rast, integer nband=1, text pixeltype=32BF, text units=DEGREES, double precision scale=1.0, boolean interpolate_nodata=FALSE);

raster ST_Slope(raster rast, integer nband, raster customextent, text pixeltype=32BF, text units=DEGREES, double precision scale=1.0, boolean interpolate_nodata=FALSE);

Beschreibung

Gibt die Neigung (standardmäßig in Grad) eines Höhenrasterbandes zurück. Verwendet Map Algebra und wendet die Neigungsgleichung auf benachbarte Pixel an.

units die Einheiten für die Neigung. Mögliche Werte sind: RADIANS, DEGREES (Standardeinstellung) und Prozent.

scale ist das Verhältnis zwischen vertikalen und horizontalen Einheiten. Für Feet:LatLon verwenden Sie bitte scale=370400, für Meter:LatLon scale=111120.

Wenn interpolate_nodata TRUE ist, dann werden die NODATA Pixel des Ausgangsraster mit ST_InvDistWeight4ma interpoliert, bevor die Neigung der Oberfläche berechnet wird.

[Note]

Für weitere Information über Neigung, Exposition und Schummerung siehe ESRI - How hillshade works und ERDAS Field Guide - Slope Images.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 Verwendet ST_MapAlgebra() und es wurden die optionalen Funktionsparameter units, scale und interpolate_nodata hinzugefügt

Änderung: 2.1.0 In Vorgängerversionen wurden die Werte in Radiant ausgegeben. Nun werden die Werte standardmäßig in Grad ausgegeben.

Beispiele: Variante 1

WITH foo AS (
        SELECT ST_SetValues(
                ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
                1, 1, 1, ARRAY[
                        [1, 1, 1, 1, 1],
                        [1, 2, 2, 2, 1],
                        [1, 2, 3, 2, 1],
                        [1, 2, 2, 2, 1],
                        [1, 1, 1, 1, 1]
                ]::double precision[][]
        ) AS rast
)
SELECT
        ST_DumpValues(ST_Slope(rast, 1, '32BF'))
FROM foo

                            st_dumpvalues

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------
 (1,"{{10.0249881744385,21.5681285858154,26.5650520324707,21.5681285858154,10.0249881744385},{21.5681285858154,35.2643890380859,36.8698959350586,35.2643890380859,21.5681285858154},
{26.5650520324707,36.8698959350586,0,36.8698959350586,26.5650520324707},{21.5681285858154,35.2643890380859,36.8698959350586,35.2643890380859,21.5681285858154},{10.0249881744385,21.
5681285858154,26.5650520324707,21.5681285858154,10.0249881744385}}")
(1 row)
                                        

Beispiele: Variante 2

Ein vollständiges Beispiel mit Coveragekacheln. Diese Abfrage funktioniert nur mit PostgreSQL 9.1 oder höher.

WITH foo AS (
        SELECT ST_Tile(
                ST_SetValues(
                        ST_AddBand(
                                ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
                                1, '32BF', 0, -9999
                        ),
                        1, 1, 1, ARRAY[
                                [1, 1, 1, 1, 1, 1],
                                [1, 1, 1, 1, 2, 1],
                                [1, 2, 2, 3, 3, 1],
                                [1, 1, 3, 2, 1, 1],
                                [1, 2, 2, 1, 2, 1],
                                [1, 1, 1, 1, 1, 1]
                        ]::double precision[]
                ),
                2, 2
        ) AS rast
)
SELECT
        t1.rast,
        ST_Slope(ST_Union(t2.rast), 1, t1.rast)
FROM foo t1
CROSS JOIN foo t2
WHERE ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rast;
                                        

Name

ST_TPI — Berechnet den "Topographic Position Index" eines Raster.

Synopsis

raster ST_TPI(raster rast, integer nband, raster customextent, text pixeltype="32BF" , boolean interpolate_nodata=FALSE );

Beschreibung

Berechnet den Topographischen Lageindex, welcher als fokaler Mittelwert mit dem Radius eins, abzüglich der mittigen Zelle, definiert ist.

[Note]

Diese Funktion unterstützt lediglich einen "focalmean"-Radius von Eins.

Verfügbarkeit: 2.1.0

Beispiele

-- Beispiel benötigt
                                        

Name

ST_TRI — Gibt einen Raster mit errechneten Geländerauheitsindex aus.

Synopsis

raster ST_TRI(raster rast, integer nband, raster customextent, text pixeltype="32BF" , boolean interpolate_nodata=FALSE );

Beschreibung

Der Geländerauheitsindex wird durch den Vergleich eines zentralen Pixel mit seinen Nachbarn berechnet. Dabei werden die Differenzen der absoluten Werte (Beträge) genommen und für das Ergebnis gemittelt.

[Note]

Diese Funktion unterstützt lediglich einen "focalmean"-Radius von Eins.

Verfügbarkeit: 2.1.0

Beispiele

-- Beispiel benötigt
                                        

9.12.4. Raster nach Geometrie

Box3D — Stellt das umschreibende Rechteck eines Raster als Box3D dar.
ST_ConvexHull — Gibt die Geometrie der konvexen Hülle des Raster, inklusive der Pixel deren Werte gleich BandNoDataValue sind. Bei regelmäßig geformten und nicht rotierten Raster ist das Ergebnis ident mit ST_Envelope. Diese Funktion ist deshalb nur bei unregelmäßig geformten oder rotierten Raster nützlich.
ST_DumpAsPolygons — Gibt geomval (geom,val) Zeilen eines Rasterbandes zurück. Wenn kein Band angegeben ist, wird die Bandnummer standardmäßig auf 1 gesetzt.
ST_Envelope — Stellt die Ausdehnung des Raster als Polygon dar.
ST_MinConvexHull — Gibt die Geometrie der konvexen Hülle des Raster aus, wobei Pixel mit NODATA ausgenommen werden.
ST_Polygon — Gibt eine Geometrie mit Mehrfachpolygonen zurück, die aus der Vereinigung von Pixel mit demselben Zellwert gebildet werden. Pixel mit NODATA Werten werden nicht berücksichtigt. Wenn keine Band angegeben ist, wird die Bandnummer standardmäßig auf 1 gesetzt. 

Name

Box3D — Stellt das umschreibende Rechteck eines Raster als Box3D dar.

Synopsis

box3d Box3D(raster rast);

Beschreibung

Gibt ein Rechteck mit der Ausdehnung des Raster zurück.

Das Polygon ist durch die Eckpunkte des umschreibenden Rechtecks ((MINX, MINY), (MAXX, MAXY)) bestimmt

Änderung: 2.0.0 In Versionen vor 2.0 war dies üblicherweise Box2D anstelle von Box3D. Da Box2D überholt ist, wurde dies zu Box3D geändert.

Beispiele

SELECT
        rid,
        Box3D(rast) AS rastbox
FROM dummy_rast;

rid |        rastbox
----+-------------------------------------------------
1   | BOX3D(0.5 0.5 0,20.5 60.5 0)
2   | BOX3D(3427927.75 5793243.5 0,3427928 5793244 0)
                                        

Siehe auch

ST_Envelope


Name

ST_ConvexHull — Gibt die Geometrie der konvexen Hülle des Raster, inklusive der Pixel deren Werte gleich BandNoDataValue sind. Bei regelmäßig geformten und nicht rotierten Raster ist das Ergebnis ident mit ST_Envelope. Diese Funktion ist deshalb nur bei unregelmäßig geformten oder rotierten Raster nützlich.

Synopsis

geometry ST_ConvexHull(raster rast);

Beschreibung

Gibt die Geometrie der konvexen Hülle des Raster, inklusive der Pixel NoDataBandValue des Bandes. Bei regelmäßig geformten und nicht rotierten Raster ist das Ergebnis mehr oder weniger das von ST_Envelope. Diese Funktion ist deshalb nur bei unregelmäßig geformten oder rotierten Raster nützlich.

[Note]

ST_Envelope rundet die Koordinaten und fügt so einen kleinen Puffer um den Raster hinzu. Dadurch unterscheidet sich das Ergebnis gering von ST_ConvexHull, das nicht rundet.

Beispiele

Siehe PostGIS Raster Specification für eine entsprechende Darstellung.

-- Beachte, dass Einhüllende und konvexe Hülle mehr oder weniger dasselbe sind
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
        ST_AsText(ST_Envelope(rast)) As env
FROM dummy_rast WHERE rid=1;

                        convhull                        |                env
--------------------------------------------------------+------------------------------------
 POLYGON((0.5 0.5,20.5 0.5,20.5 60.5,0.5 60.5,0.5 0.5)) | POLYGON((0 0,20 0,20 60,0 60,0 0))
                                
-- nun rotieren wir den Raster
-- beachte, wie Einhüllende und konvexe Hülle sich jetzt unterscheiden
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
        ST_AsText(ST_Envelope(rast)) As env
FROM (SELECT ST_SetRotation(rast, 0.1, 0.1) As rast
        FROM dummy_rast WHERE rid=1) As foo;

                        convhull                        |                env
--------------------------------------------------------+------------------------------------
 POLYGON((0.5 0.5,20.5 1.5,22.5 61.5,2.5 60.5,0.5 0.5)) | POLYGON((0 0,22 0,22 61,0 61,0 0))
                                        

Name

ST_DumpAsPolygons — Gibt geomval (geom,val) Zeilen eines Rasterbandes zurück. Wenn kein Band angegeben ist, wird die Bandnummer standardmäßig auf 1 gesetzt.

Synopsis

setof geomval ST_DumpAsPolygons(raster rast, integer band_num=1, boolean exclude_nodata_value=TRUE);

Beschreibung

Dies ist eine Funktion mit Ergebnismenge (SRF von set-returning function). Sie gibt eine Menge an geomval Zeilen für das Band zurück, die aus einer Geometrie (geom) und einem Pixelwert (val) gebildet werden. Ein Polygon entspricht der Vereinigung der Pixel in dem Band, die denselben Pixelwert "val" aufweisen.

ST_DumpAsPolygon ist nützlich um Raster in Polygone zu vektorisieren. Im Gegensatz zu GROUP BY werden hier neue Zeilen erzeugt. Die Funktion kann zum Beispiel verwendet werden, um einen einzelnen Raster in mehrere Polygone/Mehrfach-Polygone zu expandieren.

Verfügbarkeit: Benötigt GDAL 1.7+

[Note]

Wenn das Band einen NODATA-Wert aufweist, dann werden die Pixel mit diesem Wert nicht zurückgegeben, außer wenn exclude_nodata_value=false.

[Note]

Wenn Sie nur die Anzahl der Pixel des Raster benötigen, die einen bestimmten Zellwert haben, dann ist ST_ValueCount schneller.

[Note]

Dies unterscheidet sich von ST_PixelAsPolygons, wo eine Geometrie für jedes Pixel zurückgegeben wird, unabhängig vom Pixelwert.

Beispiele

-- folgender Syntax benötigt PostgreSQL 9.3+
SELECT val, ST_AsText(geom) As geomwkt
FROM (
SELECT dp.*
FROM dummy_rast, LATERAL ST_DumpAsPolygons(rast) AS dp
WHERE rid = 2
) As foo
WHERE val BETWEEN 249 and 251
ORDER BY val;

 val |                                                       geomwkt
-----+--------------------------------------------------------------------------
 249 | POLYGON((3427927.95 5793243.95,3427927.95 5793243.85,3427928 5793243.85,
                3427928 5793243.95,3427927.95 5793243.95))
 250 | POLYGON((3427927.75 5793243.9,3427927.75 5793243.85,3427927.8 5793243.85,
                3427927.8 5793243.9,3427927.75 5793243.9))
 250 | POLYGON((3427927.8 5793243.8,3427927.8 5793243.75,3427927.85 5793243.75,
                3427927.85 5793243.8, 3427927.8 5793243.8))
 251 | POLYGON((3427927.75 5793243.85,3427927.75 5793243.8,3427927.8 5793243.8,
                3427927.8 5793243.85,3427927.75 5793243.85))
                                        

Name

ST_Envelope — Stellt die Ausdehnung des Raster als Polygon dar.

Synopsis

geometry ST_Envelope(raster rast);

Beschreibung

Gibt eine Polygondarstellung der Rasterausdehnung zurück. Dies ist das minimale umschreibendes Rechteck in Float8, das in dem durch die SRID festgelegten Koordinatenreferenzsystem als Polygon dargestellt wird.

Das Polygon wird durch die Eckpunkte des umschreibenden Rechtecks ((MINX, MINY), (MINX, MAXY), (MAXX, MAXY), (MAXX, MINY), (MINX, MINY)) festgelegt.

Beispiele

SELECT rid, ST_AsText(ST_Envelope(rast)) As envgeomwkt
FROM dummy_rast;

 rid |                                         envgeomwkt
-----+--------------------------------------------------------------------
   1 | POLYGON((0 0,20 0,20 60,0 60,0 0))
   2 | POLYGON((3427927 5793243,3427928 5793243,
                3427928 5793244,3427927 5793244, 3427927 5793243))
                                        

Name

ST_MinConvexHull — Gibt die Geometrie der konvexen Hülle des Raster aus, wobei Pixel mit NODATA ausgenommen werden.

Synopsis

geometry ST_MinConvexHull(raster rast, integer nband=NULL);

Beschreibung

Gibt die Geometrie der konvexen Hülle des Raster aus, wobei Pixel mit NODATA ausgenommen werden. Wenn nband NULL ist, dann werden alle Bänder des Raster berücksichtigt.

Verfügbarkeit: 2.1.0

Beispiele

WITH foo AS (
        SELECT
                ST_SetValues(
                        ST_SetValues(
                                ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(9, 9, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0), 2, '8BUI', 1, 0),
                                1, 1, 1,
                                ARRAY[
                                        [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                        [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                        [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                        [0, 0, 0, 1, 0, 0, 0, 0, 1],
                                        [0, 0, 0, 1, 1, 0, 0, 0, 0],
                                        [0, 0, 0, 1, 0, 0, 0, 0, 0],
                                        [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                        [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                        [0, 0, 0, 0, 0, 0, 0, 0, 0]
                                ]::double precision[][]
                        ),
                        2, 1, 1,
                        ARRAY[
                                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                [1, 0, 0, 0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 0, 1, 1, 0, 0, 0],
                                [0, 0, 0, 0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 1, 0, 0, 0, 0, 0, 0]
                        ]::double precision[][]
                ) AS rast
)
SELECT
        ST_AsText(ST_ConvexHull(rast)) AS hull,
        ST_AsText(ST_MinConvexHull(rast)) AS mhull,
        ST_AsText(ST_MinConvexHull(rast, 1)) AS mhull_1,
        ST_AsText(ST_MinConvexHull(rast, 2)) AS mhull_2
FROM foo

               hull               |                mhull                |               mhull_1               |               mhull_2
----------------------------------+-------------------------------------+-------------------------------------+-------------------------------------
 POLYGON((0 0,9 0,9 -9,0 -9,0 0)) | POLYGON((0 -3,9 -3,9 -9,0 -9,0 -3)) | POLYGON((3 -3,9 -3,9 -6,3 -6,3 -3)) | POLYGON((0 -3,6 -3,6 -9,0 -9,0 -3))
                                        

Name

ST_Polygon — Gibt eine Geometrie mit Mehrfachpolygonen zurück, die aus der Vereinigung von Pixel mit demselben Zellwert gebildet werden. Pixel mit NODATA Werten werden nicht berücksichtigt. Wenn keine Band angegeben ist, wird die Bandnummer standardmäßig auf 1 gesetzt. 

Synopsis

geometry ST_Polygon(raster rast, integer band_num=1);

Beschreibung

Verfügbarkeit: 0.1.6 - benötigt GDAL 1.7+

Erweiterung: 2.1.0 Geschwindigkeit verbessert (zur Gänze C-basiert) und es wird sichergestellt, dass das zurückgegebenen Mehrfachpolygon valide ist.

Änderung: 2.1.0 In Vorgängerversionen wurde manchmal ein Polygon zurückgegeben; dies wurde geändert so dass jetzt immer ein Mehrfachpolygon zurückgegeben wird.

Beispiele

-- Die Standardeinstellung für den NODATA-Wert eines Bandes ist 0 oder "nicht gesetzt", wodurch ein rechteckiges Polygon zurückgegeben wird
SELECT ST_AsText(ST_Polygon(rast)) As geomwkt
FROM dummy_rast
WHERE rid = 2;

geomwkt
--------------------------------------------
MULTIPOLYGON(((3427927.75 5793244,3427928 5793244,3427928 5793243.75,3427927.75 5793243.75,3427927.75 5793244)))


-- Nun ändern wir den Wert für NODATA für das erste Band
UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,1,254)
WHERE rid = 2;
SELECt rid, ST_BandNoDataValue(rast)
from dummy_rast where rid = 2;

-- ST_Polygon schließt die Pixel mit dem Wert 254 aus und gibt ein Mehrfachpolygon zurück
SELECT ST_AsText(ST_Polygon(rast)) As geomwkt
FROM dummy_rast
WHERE rid = 2;

geomwkt
---------------------------------------------------------
MULTIPOLYGON(((3427927.9 5793243.95,3427927.85 5793243.95,3427927.85 5793244,3427927.9 5793244,3427927.9 5793243.95)),((3427928 5793243.85,3427928 5793243.8,3427927.95 5793243.8,3427927.95 5793243.85,3427927.9 5793243.85,3427927.9 5793243.9,3427927.9 5793243.95,3427927.95 5793243.95,3427928 5793243.95,3427928 5793243.85)),((3427927.8 5793243.75,3427927.75 5793243.75,3427927.75 5793243.8,3427927.75 5793243.85,3427927.75 5793243.9,3427927.75 5793244,3427927.8 5793244,3427927.8 5793243.9,3427927.8 5793243.85,3427927.85 5793243.85,3427927.85 5793243.8,3427927.85 5793243.75,3427927.8 5793243.75)))

-- Oder wenn wir den Wert für NODATA nur für einmal ändern wollen

SELECT ST_AsText(
        ST_Polygon(
                ST_SetBandNoDataValue(rast,1,252)
                )
        ) As geomwkt
FROM dummy_rast
WHERE rid =2;

geomwkt
---------------------------------
MULTIPOLYGON(((3427928 5793243.85,3427928 5793243.8,3427928 5793243.75,3427927.85 5793243.75,3427927.8 5793243.75,3427927.8 5793243.8,3427927.75 5793243.8,3427927.75 5793243.85,3427927.75 5793243.9,3427927.75 5793244,3427927.8 5793244,3427927.85 5793244,3427927.9 5793244,3427928 5793244,3427928 5793243.95,3427928 5793243.85),(3427927.9 5793243.9,3427927.9 5793243.85,3427927.95 5793243.85,3427927.95 5793243.9,3427927.9 5793243.9)))
                                        

9.13. Rasteroperatoren

&& — Gibt TRUE zurück, wenn das umschreibende Rechteck von A das umschreibende Rechteck von B schneidet.
&< — Gibt TRUE zurück, wenn das umschreibende Rechteck von A links von dem von B liegt.
&> — Gibt TRUE zurück, wenn das umschreibende Rechteck von A rechts von dem von B liegt.
= — Gibt TRUE zurück, wenn die umschreibenden Rechtecke von A und B ident sind. Das umschreibende Rechteck ist in Double Precision.
@ — Gibt TRUE zurück, wenn das umschreibende Rechteck von A in jenem von B enthalten ist. Das umschreibende Rechteck ist in Double Precision.
~= — Gibt TRUE zurück wenn die Umgebungsrechtecke von "A" und "B" ident sind.
~ — Gibt TRUE zurück, wenn das umschreibende Rechteck von A jenes von B enthält. Das umschreibende Rechteck ist in Double Precision.

Name

&& — Gibt TRUE zurück, wenn das umschreibende Rechteck von A das umschreibende Rechteck von B schneidet.

Synopsis

boolean &&( raster A , raster B );

boolean &&( raster A , geometry B );

boolean &&( geometry B , raster A );

Beschreibung

Der Operator && gibt TRUE zurück, wenn das umschreibende Rechteck von Raster/Geometrie A das umschreibende Rechteck von Raster/Geometrie B schneidet.

[Note]

Dieser Operand benützt jeden Index, der für den Raster zur Verfügung stellt.

Verfügbarkeit: 2.0.0

Beispiele

SELECT A.rid As a_rid, B.rid As b_rid, A.rast && B.rast As intersect
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B LIMIT 3;

 a_rid | b_rid | intersect
-------+-------+---------
     2 |     2 | t
     2 |     3 | f
     2 |     1 | f

Name

&< — Gibt TRUE zurück, wenn das umschreibende Rechteck von A links von dem von B liegt.

Synopsis

boolean &<( raster A , raster B );

Beschreibung

Der &< Operator gibt TRUE zurück, wenn das umschreibende Rechteck von Raster A das umschreibende Rechteck von Raster B überlagert oder links davon liegt, oder präziser, überlagert und NICHT rechts des umschreibenden Rechtecks von Raster B liegt.

[Note]

Dieser Operand benützt jeden Index, der für den Raster zur Verfügung stellt.

Beispiele

SELECT A.rid As a_rid, B.rid As b_rid, A.rast &< B.rast As overleft
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;

a_rid | b_rid | overleft
------+-------+----------
    2 |     2 | t
    2 |     3 | f
    2 |     1 | f
    3 |     2 | t
    3 |     3 | t
    3 |     1 | f
    1 |     2 | t
    1 |     3 | t
    1 |     1 | t

Name

&> — Gibt TRUE zurück, wenn das umschreibende Rechteck von A rechts von dem von B liegt.

Synopsis

boolean &>( raster A , raster B );

Beschreibung

Der &> Operator gibt TRUE zurück, wenn das umschreibende Rechteck von Raster A das umschreibende Rechteck von Raster B überlagert oder rechts davon liegt, oder präziser, überlagert und NICHT links des umschreibenden Rechtecks von Raster B liegt.

[Note]

Dieser Operand benützt jeden Index, der für die Geometrie zur Verfügung stellt.

Beispiele

SELECT A.rid As a_rid, B.rid As b_rid, A.rast &> B.rast As overright
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;

 a_rid | b_rid | overright
-------+-------+----------
     2 |     2 | t
     2 |     3 | t
     2 |     1 | t
     3 |     2 | f
     3 |     3 | t
     3 |     1 | f
     1 |     2 | f
     1 |     3 | t
     1 |     1 | t

Name

= — Gibt TRUE zurück, wenn die umschreibenden Rechtecke von A und B ident sind. Das umschreibende Rechteck ist in Double Precision.

Synopsis

boolean =( raster A , raster B );

Beschreibung

Der = Operator gibt TRUE zurück, wenn das umschreibende Rechteck von Raster A ident mit dem umschreibenden Rechteck von Raster B ist. PostgreSQL verwendet die =, <, und > Operatoren um die interne Sortierung und den Vergleich von Raster durchzuführen (z.B.: in einer GROUP BY oder ORDER BY Klausel).

[Caution]

Dieser Operator verwendet NICHT die für Raster verfügbaren Indizes. Verwenden Sie bitte ~= stattdessen. Dieser Operator existiert meistens, so dass man nach der Rasterspalte gruppieren kann.

Verfügbarkeit: 2.1.0

Siehe auch

~=


Name

@ — Gibt TRUE zurück, wenn das umschreibende Rechteck von A in jenem von B enthalten ist. Das umschreibende Rechteck ist in Double Precision.

Synopsis

boolean @( raster A , raster B );

boolean @( geometry A , raster B );

boolean @( raster B , geometry A );

Beschreibung

Der @ Operator gibt TRUE zurück, wenn das umschreibende Rechteck von Raster/Geometrie A in dem umschreibenden Rechteck von Raster/Geometrie B enthalten ist.

[Note]

Dieser Operand verwendet die räumichen Indizes der Raster.

Verfügbarkeit: 2.0.0 raster @ raster, und raster @ geometry eingeführt

Verfügbarkeit: 2.0.5 "geometry @ raster" eingeführt

Siehe auch

~


Name

~= — Gibt TRUE zurück wenn die Umgebungsrechtecke von "A" und "B" ident sind.

Synopsis

boolean ~=( raster A , raster B );

Beschreibung

Der Operator ~= gibt TRUE zurück, wenn die Umgebungsrechtecke der Raster "A" und "B" ident sind.

[Note]

Dieser Operand benützt jeden Index, der für den Raster zur Verfügung stellt.

Verfügbarkeit: 2.0.0

Beispiele

Ein sinnvoller Anwendungsfall wäre, aus zwei Einzelbandraster mit den gleichen Eigenschaften aber unterschiedlicher Thematik, einen Multi-Bandraster zu erstellen.

SELECT ST_AddBand(prec.rast, alt.rast) As new_rast
    FROM prec INNER JOIN alt ON (prec.rast ~= alt.rast);
        

Siehe auch

ST_AddBand, =


Name

~ — Gibt TRUE zurück, wenn das umschreibende Rechteck von A jenes von B enthält. Das umschreibende Rechteck ist in Double Precision.

Synopsis

boolean ~( raster A , raster B );

boolean ~( geometry A , raster B );

boolean ~( raster B , geometry A );

Beschreibung

Der Operator ~ gibt TRUE zurück, wenn das umschreibende Rechteck von Raster/Geometrie A das umschreibende Rechteck von Raster/Geometrie B enthält.

[Note]

Dieser Operand verwendet die räumichen Indizes der Raster.

Verfügbarkeit: 2.0.0

Siehe auch

@

9.14. Räumliche Beziehungen von Rastern und Rasterbändern

ST_Contains — Gibt TRUE zurück, wenn kein Punkt des Rasters "rastB" im Äußeren des Rasters "rastA" liegt und zumindest ein Punkt im Inneren von "rastB" auch im Inneren von "rastA" liegt.
ST_ContainsProperly — Gibt TRUE zurück, wenn "rastB" das Innere von "rastA" schneidet, aber nicht die Begrenzung oder das Äußere von "rastA".
ST_Covers — Gibt TRUE zurück, wenn kein Punkt des Rasters "rastB" außerhalb des Rasters "rastA" liegt.
ST_CoveredBy — Gibt TRUE zurück, wenn kein Punkt des Rasters "rastA" außerhalb des Rasters "rastB" liegt.
ST_Disjoint — Gibt TRUE zurück, wenn sich die Raster "rastA" und "rastB" räumlich nicht überschneiden.
ST_Intersects — Gibt TRUE zurück, wenn sich die Raster "rastA" und "rastB" nicht räumlich überschneiden.
ST_Overlaps — Gibt TRUE zurück, wenn sich die Raster "rastA" und "rastB" schneiden, aber ein Raster den anderen nicht zur Gänze enthält.
ST_Touches — Gibt TRUE zurück, wenn rastA und rastB zumindest einen Punkt gemeinsam haben sich aber nicht überschneiden.
ST_SameAlignment — Gibt TRUE zurück, wenn die Raster die selbe Rotation, Skalierung, Koordinatenreferenzsystem und Versatz (Pixel können auf dasselbe Gitter gelegt werden, ohne dass die Gitterlinien durch die Pixel schneiden) aufweisen. Wenn nicht, wird FALSE und eine Bechreibung des Problems ausgegeben.
ST_NotSameAlignmentReason — Gibt eine Meldung aus, die angibt ob die Raster untereinander ausgerichtet sind oder nicht und warum wenn nicht.
ST_Within — Gibt TRUE zurück, wenn kein Punkt des Rasters "rastA" außerhalb des Rasters "rastB" liegt und zumindest ein Punkt im Inneren von "rastA" auch im Inneren von "rastB" liegt.
ST_DWithin — Gibt TRUE zurück, wenn die Raster "rastA" und "rastB" innerhalb der angegebenen Entfernung voneinander liegen.
ST_DFullyWithin — Gibt TRUE zurück, wenn die Raster "rastA" und "rastB" zur Gänze innerhalb der angegebenen Distanz zueinander liegen.

Name

ST_Contains — Gibt TRUE zurück, wenn kein Punkt des Rasters "rastB" im Äußeren des Rasters "rastA" liegt und zumindest ein Punkt im Inneren von "rastB" auch im Inneren von "rastA" liegt.

Synopsis

boolean ST_Contains( raster rastA , integer nbandA , raster rastB , integer nbandB );

boolean ST_Contains( raster rastA , raster rastB );

Beschreibung

Raster "rastA" enthält dann und nur dann "rastB", wenn sich kein Punkt von "rastB" im Äußeren des Rasters "rastA" befindet und zumindest ein Punkt im Inneren von "rastB" auch im Inneren von "rastA" liegt. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen.

[Note]

Diese Funktion verwendet die für Raster verfügbaren Indizes.

[Note]

Um die räumliche Beziehung zwischen einem Raster und einem geometrischen Datentyp zu überprüfen, verwenden Sie bitte ST_Polygon für den Raster, z.B. ST_Contains(ST_Polygon(raster), geometry) or ST_Contains(geometry, ST_Polygon(raster)).

[Note]

ST_Contains() ist das Gegenstück zuf ST_Within(). Daher impliziert ST_Contains(rastA, rastB) ST_Within(rastB, rastA).

Verfügbarkeit: 2.1.0

Beispiele

-- mit Nummern für die Bänder
SELECT r1.rid, r2.rid, ST_Contains(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 1;

-- ANMERKUNG:  Der erste Raster der geliefert wird hat keine Bänder
 rid | rid | st_contains
-----+-----+-------------
   1 |   1 |
   1 |   2 | f
                        
-- ohne Angabe von Nummern für die Bänder
SELECT r1.rid, r2.rid, ST_Contains(r1.rast, r2.rast) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 1;
 rid | rid | st_contains
-----+-----+-------------
   1 |   1 | t
   1 |   2 | f
                        

Name

ST_ContainsProperly — Gibt TRUE zurück, wenn "rastB" das Innere von "rastA" schneidet, aber nicht die Begrenzung oder das Äußere von "rastA".

Synopsis

boolean ST_ContainsProperly( raster rastA , integer nbandA , raster rastB , integer nbandB );

boolean ST_ContainsProperly( raster rastA , raster rastB );

Beschreibung

Raster "rastA" enthält "rastB" vollständig, wenn "rastB" nur das Innere von "rastA" schneidet, die Begrenzung und das Äußere von "rastA" jedoch nicht. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen.

Raster "rastA" enthält sich selbst, aber enthält sich nicht zur Gänze selbst.

[Note]

Diese Funktion verwendet die für Raster verfügbaren Indizes.

[Note]

Um die räumliche Beziehung zwischen einem Raster und einem geometrischen Datentyp zu überprüfen, verwenden Sie bitte ST_Polygon für den Raster, z.B. ST_ContainsProperly(ST_Polygon(raster), geometry) or ST_ContainsProperly(geometry, ST_Polygon(raster)).

Verfügbarkeit: 2.1.0

Beispiele

SELECT r1.rid, r2.rid, ST_ContainsProperly(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_containsproperly
-----+-----+---------------------
   2 |   1 | f
   2 |   2 | f
                        

Name

ST_Covers — Gibt TRUE zurück, wenn kein Punkt des Rasters "rastB" außerhalb des Rasters "rastA" liegt.

Synopsis

boolean ST_Covers( raster rastA , integer nbandA , raster rastB , integer nbandB );

boolean ST_Covers( raster rastA , raster rastB );

Beschreibung

Raster "rastA" deckt "rastB" dann und nur dann ab, wenn kein Punkt von "rastB" im Äußeren von "rastA" liegt. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen.

[Note]

Diese Funktion verwendet die für Raster verfügbaren Indizes.

[Note]

Um die räumliche Beziehung zwischen einem Raster und einem geometrischen Datentyp zu überprüfen, verwenden Sie bitte ST_Polygon für den Raster, z.B. ST_Covers(ST_Polygon(raster), geometry) or ST_Covers(geometry, ST_Polygon(raster)).

Verfügbarkeit: 2.1.0

Beispiele

SELECT r1.rid, r2.rid, ST_Covers(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_covers
-----+-----+-----------
   2 |   1 | f
   2 |   2 | t
                        

Name

ST_CoveredBy — Gibt TRUE zurück, wenn kein Punkt des Rasters "rastA" außerhalb des Rasters "rastB" liegt.

Synopsis

boolean ST_CoveredBy( raster rastA , integer nbandA , raster rastB , integer nbandB );

boolean ST_CoveredBy( raster rastA , raster rastB );

Beschreibung

Raster "rastA" wird von "rastB" dann und nur dann abgedeckt, wenn kein Punkt von "rastA" im Äußeren von "rastB" liegt. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen.

[Note]

Diese Funktion verwendet die für Raster verfügbaren Indizes.

[Note]

Um die räumliche Beziehung zwischen einem Raster und einem geometrischen Datentyp zu überprüfen, verwenden Sie bitte ST_Polygon für den Raster, z.B. ST_CoveredBy(ST_Polygon(raster), geometry) or ST_CoveredBy(geometry, ST_Polygon(raster)).

Verfügbarkeit: 2.1.0

Beispiele

SELECT r1.rid, r2.rid, ST_CoveredBy(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_coveredby
-----+-----+--------------
   2 |   1 | f
   2 |   2 | t
                        

Name

ST_Disjoint — Gibt TRUE zurück, wenn sich die Raster "rastA" und "rastB" räumlich nicht überschneiden.

Synopsis

boolean ST_Disjoint( raster rastA , integer nbandA , raster rastB , integer nbandB );

boolean ST_Disjoint( raster rastA , raster rastB );

Beschreibung

Raster "rastA" und "rastB" sind getrennt voneinander (disjoint) wenn sie sich keinen gemeinsamen Raum teilen. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen. 

[Note]

Diese Funktion verwendet keine Indizes.

[Note]

Um die räumliche Beziehung zwischen einem Raster und einem geometrischen Datentyp zu überprüfen, verwenden Sie bitte ST_Polygon für den Raster, z.B. ST_Disjoint(ST_Polygon(raster), geometry).

Verfügbarkeit: 2.1.0

Beispiele

-- rid = 1 hat keine Bänder, daher die ANMERKUNG und die NULL Werte für "st_disjoint"
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

-- ANMERKUNG: Der zweite Raster hat keine Bänder
 rid | rid | st_disjoint
-----+-----+-------------
   2 |   1 |
   2 |   2 | f
                        
-- diesmal ohne Nummern für die Bänder
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, r2.rast) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_disjoint
-----+-----+-------------
   2 |   1 | t
   2 |   2 | f
                        

Siehe auch

ST_Intersects


Name

ST_Intersects — Gibt TRUE zurück, wenn sich die Raster "rastA" und "rastB" nicht räumlich überschneiden.

Synopsis

boolean ST_Intersects( raster rastA , integer nbandA , raster rastB , integer nbandB );

boolean ST_Intersects( raster rastA , raster rastB );

boolean ST_Intersects( raster rast , integer nband , geometry geommin );

boolean ST_Intersects( raster rast , geometry geommin , integer nband=NULL );

boolean ST_Intersects( geometry geommin , raster rast , integer nband=NULL );

Beschreibung

Gibt TRUE zurück, wenn der Raster "rastA" den Raster "rastB" räumlich schneidet. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen. 

[Note]

Diese Funktion verwendet die für Raster verfügbaren Indizes.

Erweiterung: 2.0.0 Unterstützung für Raster/Raster Verschneidungen eingeführt.

[Warning]

Änderung: 2.1.0 Die Verhaltensweise der Varianten von ST_Intersects(raster, geometry) wurde geändert um mit dem von ST_Intersects(geometry, raster) übereinzustimmen.

Beispiele

-- unterschiedliche Bänder desselben Rasters
SELECT ST_Intersects(rast, 2, rast, 3) FROM dummy_rast WHERE rid = 2;

 st_intersects
---------------
 t
                        

Name

ST_Overlaps — Gibt TRUE zurück, wenn sich die Raster "rastA" und "rastB" schneiden, aber ein Raster den anderen nicht zur Gänze enthält.

Synopsis

boolean ST_Overlaps( raster rastA , integer nbandA , raster rastB , integer nbandB );

boolean ST_Overlaps( raster rastA , raster rastB );

Beschreibung

Gibt TRUE zurück, wenn der Raster "rastA" den Raster "rastB" überlagert. Dies bedeutet, das rastA und rastB sich schneiden aber einer den anderen nicht zur Gänze enthält. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen. 

[Note]

Diese Funktion verwendet die für Raster verfügbaren Indizes.

[Note]

Um die räumliche Beziehung zwischen einem Raster und einem geometrischen Datentyp zu überprüfen, verwenden Sie bitte ST_Polygon für den Raster, z.B. ST_Overlaps(ST_Polygon(raster), geometry).

Verfügbarkeit: 2.1.0

Beispiele

-- verschiedene Bänder des gleichen Rasters vergleichen
SELECT ST_Overlaps(rast, 1, rast, 2) FROM dummy_rast WHERE rid = 2;

 st_overlaps
-------------
 f
                        

Siehe auch

ST_Intersects


Name

ST_Touches — Gibt TRUE zurück, wenn rastA und rastB zumindest einen Punkt gemeinsam haben sich aber nicht überschneiden.

Synopsis

boolean ST_Touches( raster rastA , integer nbandA , raster rastB , integer nbandB );

boolean ST_Touches( raster rastA , raster rastB );

Beschreibung

Gibt TRUE zurück, wenn der Raster "rastA" den Raster "rastB" räumlich berührt. Dies bedeutet, das rastA und rastB zumindest einen Punkt gemeinsam haben, ihr Inneres sich aber nicht überschneidet. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen. 

[Note]

Diese Funktion verwendet die für Raster verfügbaren Indizes.

[Note]

Um die räumliche Beziehung zwischen einem Raster und einem geometrischen Datentyp zu überprüfen, verwenden Sie bitte ST_Polygon für den Raster, z.B. ST_Touches(ST_Polygon(raster), geometry).

Verfügbarkeit: 2.1.0

Beispiele

SELECT r1.rid, r2.rid, ST_Touches(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_touches
-----+-----+------------
   2 |   1 | f
   2 |   2 | f
                        

Siehe auch

ST_Intersects


Name

ST_SameAlignment — Gibt TRUE zurück, wenn die Raster die selbe Rotation, Skalierung, Koordinatenreferenzsystem und Versatz (Pixel können auf dasselbe Gitter gelegt werden, ohne dass die Gitterlinien durch die Pixel schneiden) aufweisen. Wenn nicht, wird FALSE und eine Bechreibung des Problems ausgegeben.

Synopsis

boolean ST_SameAlignment( raster rastA , raster rastB );

boolean ST_SameAlignment( double precision ulx1 , double precision uly1 , double precision scalex1 , double precision scaley1 , double precision skewx1 , double precision skewy1 , double precision ulx2 , double precision uly2 , double precision scalex2 , double precision scaley2 , double precision skewx2 , double precision skewy2 );

boolean ST_SameAlignment( raster set rastfield );

Beschreibung

Nicht-Aggregat Version (Versionen 1 und 2): Gibt TRUE zurück, wenn die zwei Raster (die entweder direkt übergeben oder mit Werten für UpperLeft, Scale, Skew und SRID erstellt werden) dieselbe Skalierung, Rotation und SRID haben und zumindest eine der vier Ecken eines Pixel des einen Raster auf eine Ecke des anderen Rastergitters fällt. Wenn nicht, wird FALSE und eine Problembeschreibung ausgegeben.

Aggregat Version (Variante 3): Gibt TRUE zurück, wenn alle übergebenen Raster gleich ausgerichtet sind. Die Funktion ST_SameAlignment() ist in der Terminologie von PostgreSQL eine Aggregatfunktion. Dies bedeutet, dass sie so wie die Funktionen SUM() und AVG() mit Datenzeilen arbeitet.

Verfügbarkeit: 2.0.0

Erweiterung: 2.1.0 die Variante mit der Aggregatfunktion hinzugefügt

Beispiele: Raster

SELECT ST_SameAlignment(
        ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0),
        ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0)
) as sm;

sm
----
t
SELECT ST_SameAlignment(A.rast,b.rast)
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;

 NOTICE:  The two rasters provided have different SRIDs
NOTICE:  The two rasters provided have different SRIDs
 st_samealignment
------------------
 t
 f
 f
 f

Name

ST_NotSameAlignmentReason — Gibt eine Meldung aus, die angibt ob die Raster untereinander ausgerichtet sind oder nicht und warum wenn nicht.

Synopsis

text ST_NotSameAlignmentReason(raster rastA, raster rastB);

Beschreibung

Gibt eine Meldung aus, die angibt ob die Raster untereinander ausgerichtet sind oder nicht und warum wenn nicht.

[Note]

Falls es mehrere Gründe gibt, warum die Raster nicht untereinander ausgerichtet sind, so wird nur der erste Grund (die erste fehlgeschlagene Überprüfung) ausgegeben.

Verfügbarkeit: 2.1.0

Beispiele

SELECT
        ST_SameAlignment(
                ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0),
                ST_MakeEmptyRaster(1, 1, 0, 0, 1.1, 1.1, 0, 0)
        ),
        ST_NotSameAlignmentReason(
                ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0),
                ST_MakeEmptyRaster(1, 1, 0, 0, 1.1, 1.1, 0, 0)
        )
;

 st_samealignment |            st_notsamealignmentreason
------------------+-------------------------------------------------
 f                | The rasters have different scales on the X axis
(1 row)
                                

Name

ST_Within — Gibt TRUE zurück, wenn kein Punkt des Rasters "rastA" außerhalb des Rasters "rastB" liegt und zumindest ein Punkt im Inneren von "rastA" auch im Inneren von "rastB" liegt.

Synopsis

boolean ST_Within( raster rastA , integer nbandA , raster rastB , integer nbandB );

boolean ST_Within( raster rastA , raster rastB );

Beschreibung

Raster "rastA" liegt dann und nur dann "within"/innerhalb von "rastB", wenn sich kein Punkt von "rastA" im Äußeren des Rasters "rastB" befindet und zumindest ein Punkt im Inneren von "rastA" auch im Inneren von "rastB" liegt. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen.

[Note]

Dieser Operand benützt jeden Index, der für den Raster zur Verfügung stellt.

[Note]

Um die räumliche Beziehung zwischen einem Raster und einer Geometrie zu überprüfen, verwenden Sie bitte ST_Polygon für den Raster, z.B. ST_Within(ST_Polygon(raster), geometry) or ST_Within(geometry, ST_Polygon(raster)).

[Note]

ST_Within() ist die Umkehrfunktion von ST_Contains(). Es gilt daher: ST_Within(rastA, rastB) impliziert ST_Contains(rastB, rastA).

Verfügbarkeit: 2.1.0

Beispiele

SELECT r1.rid, r2.rid, ST_Within(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_within
-----+-----+-----------
   2 |   1 | f
   2 |   2 | t
                        

Name

ST_DWithin — Gibt TRUE zurück, wenn die Raster "rastA" und "rastB" innerhalb der angegebenen Entfernung voneinander liegen.

Synopsis

boolean ST_DWithin( raster rastA , integer nbandA , raster rastB , integer nbandB , double precision distance_of_srid );

boolean ST_DWithin( raster rastA , raster rastB , double precision distance_of_srid );

Beschreibung

Gibt TRUE zurück, wenn die Raster "rastA" und "rastB" innerhalb der angegebenen Distanz zueinander liegen. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen. 

Die Distanz wird in den Einheiten des Koordinatenreferenzsystems des Rasters angegeben. Damit diese Funktion Sinn hat, müssen die Quellraster dieselbe Projektion und die gleiche SRID haben.

[Note]

Dieser Operand benützt jeden Index, der für den Raster zur Verfügung stellt.

[Note]

Um die räumliche Beziehung zwischen einem Raster und einer Geometrie zu untersuchen, wenden Sie bitte ST_Polygon auf den Raster an, z.B.: ST_DWithin(ST_Polygon(raster), geometry).

Verfügbarkeit: 2.1.0

Beispiele

SELECT r1.rid, r2.rid, ST_DWithin(r1.rast, 1, r2.rast, 1, 3.14) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_dwithin
-----+-----+------------
   2 |   1 | f
   2 |   2 | t
                        

Name

ST_DFullyWithin — Gibt TRUE zurück, wenn die Raster "rastA" und "rastB" zur Gänze innerhalb der angegebenen Distanz zueinander liegen.

Synopsis

boolean ST_DFullyWithin( raster rastA , integer nbandA , raster rastB , integer nbandB , double precision distance_of_srid );

boolean ST_DFullyWithin( raster rastA , raster rastB , double precision distance_of_srid );

Beschreibung

Gibt TRUE zurück, wenn die Raster "rastA" und "rastB" zur Gänze innerhalb der angegebenen Distanz zueinander liegen. Wenn die Bandnummer nicht angegeben ist (oder auf NULL gesetzt), dann wird nur die konvexe Hülle des Rasters zur Überprüfung herangezogen. Wenn die Bandnummer angegeben ist, werden nur die Pixel mit einem Wert (nicht NODATA) bei der Überprüfung herangezogen. 

Die Distanz wird in den Einheiten des Koordinatenreferenzsystems des Rasters angegeben. Damit diese Funktion Sinn hat, müssen die Quellraster dieselbe Projektion und die gleiche SRID haben.

[Note]

Dieser Operand benützt jeden Index, der für den Raster zur Verfügung stellt.

[Note]

Um die räumliche Relation zwischen einem Raster und einer Geometrie zu untersuchen, wenden Sie bitte ST_Polygon auf den Raster an, z.B.: ST_DFullyWithin(ST_Polygon(raster), geometry).

Verfügbarkeit: 2.1.0

Beispiele

SELECT r1.rid, r2.rid, ST_DFullyWithin(r1.rast, 1, r2.rast, 1, 3.14) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_dfullywithin
-----+-----+-----------------
   2 |   1 | f
   2 |   2 | t
                        

Siehe auch

ST_Within, ST_DWithin

9.15. Raster Tipps

Abstract

Dieser Abschnitt beinhaltet verschiedene Gotchas/Fallstricke und Tipps in Bezug auf PostGIS Raster.

9.15.1. Out-DB Raster

9.15.1.1. Das Verzeichnis enthält eine Vielzahl an Dateien

Wenn GDAL eine Datei öffnet, dann liest es eifrig das gesamte Verzeichnis in dem sich die Datei befindet um einen Katalog mit den weieren Dateien zu erstellen. Wenn dieses Verzeichnis viele Dateien (z.B.: Tausende, Millionen) enthält, kann das Öffnen dieser Datei extrem lange dauern (insbesondere wenn sich die Datei auf einem Netzlaufwerk, wie einem NFS befindet).

Dieses Verhalten kann durch folgende Umgebungsvariable von GDAL beeinflusst werden: GDAL_DISABLE_READDIR_ON_OPEN. Setzen Sie GDAL_DISABLE_READDIR_ON_OPEN auf TRUE um das Scannen von Verzeichnissen zu verhindern.

Auf Ubuntu (angenommen Sie verwenden ein PostgreSQL Paket für Ubuntu), kann GDAL_DISABLE_READDIR_ON_OPEN in /etc/postgresql/POSTGRESQL_VERSION/CLUSTER_NAME/environment gesetzt werden (wobei POSTGRESQL_VERSION der Version von PostgreSQL entspricht, z.B. 9.6 und CLUSTER_NAME der Bezeichnung des Datenbankclusters, z.B. maindb). Sie können hier ebenso die Umgebungsvariablen von PostGIS setzen.

# environment variables for postmaster process
# This file has the same syntax as postgresql.conf:
#  VARIABLE = simple_value
#  VARIABLE2 = 'any value!'
# I. e. you need to enclose any value which does not only consist of letters,
# numbers, and '-', '_', '.' in single quotes. Shell commands are not
# evaluated.
POSTGIS_GDAL_ENABLED_DRIVERS = 'ENABLE_ALL'

POSTGIS_ENABLE_OUTDB_RASTERS = 1

GDAL_DISABLE_READDIR_ON_OPEN = 'TRUE'
                                        

9.15.1.2. Die maximale Anzahl geöffneter Dateien

Die Einstellungen von Linux und PostgreSQL bezüglich der maximal erlaubten Anzahl von offenen Dateien sind üblicherweise sehr konservativ (normalerweise 1024 offene Dateien pro Prozess), da sie unter der Annahme getroffen wurden, dass das System von Menschen genutzt wird. Bei Out-DB Rastern kann eine einzelne Abfrage spielend dieses Limit überschreiten (z.B. ein Datensatz mit Rasterwerten über 10 Jahre, wobei ein Raster die Tageswerte der niedrigsten und höchsten Temperaturwerte enthält und wir den absoluten Mindest- und Höchstwert des Datensatzes abfragen wollen).

Am einfachsten kann dies über die PostgreSQL Einstellung max_files_per_process geändert werden. Der Standardwert von 1000 ist für Out-DB Raster viel zu niedrig. Ein zuverlässiger Anfangswert könnte 65536 sein, wobei dies jedoch sehr stark von den verwendeten Datensätzen abhängt und den Abfragen die Sie auf diese ausführen wollen. Diese Einstellung muss vor dem Starten des Servers gesetzt werden und kann vermutlich nur in der Konfigurationsdatei von PostgreSQL (z.B. /etc/postgresql/POSTGRESQL_VERSION/CLUSTER_NAME/postgresql.conf auf Ubuntu) vorgenommen werden.

...
# - Kernel Resource Usage -

max_files_per_process = 65536           # min 25
                                        # (change requires restart)
...
                                        

Die wesentliche Änderung muss an den Limits des Linux Kernels für offene Dateien vorgenommen werden. Dies umfasst zwei Teile:

  • Die maximale Anzahl geöffneter Dateien für das ganze System

  • Die maximale Anzahl geöffneter Dateien pro Prozess

9.15.1.2.1. Die maximale Anzahl geöffneter Dateien für das ganze System

Das folgende Beispiel zeigt, wie Sie die aktuelle Einstellung zu der maximalen Anzahl geöffneter Dateien für das ganze System anzeigen können:

$ sysctl -a | grep fs.file-max
fs.file-max = 131072
                                        

Wenn der ausgegebene Wert zu niedrig ist, können Sie wie im folgenden Beispiel gezeigt wird, eine Datei zu /etc/sysctl.d/ hinzufügen:

$ echo "fs.file-max = 6145324" 
>
> /etc/sysctl.d/fs.conf

$ cat /etc/sysctl.d/fs.conf
fs.file-max = 6145324

$ sysctl -p --system
* Applying /etc/sysctl.d/fs.conf ...
fs.file-max = 2097152
* Applying /etc/sysctl.conf ...

$ sysctl -a | grep fs.file-max
fs.file-max = 6145324
                                        
9.15.1.2.2. Die maximale Anzahl geöffneter Dateien pro Prozess

Die maximale Anzahl geöffneter Dateien pro Process für die Serverprozesse von PostgreSQL sollten geändert werden.

Um die maximale Anzahl geöffneter Dateien herauszufinden, welche von den Prozessen des PostgreSQL Dienstes genutzt werden, können Sie folgendes ausführen (stellen Sie sicher, dass PostgreSQL läuft):

$ ps aux | grep postgres
postgres 31713  0.0  0.4 179012 17564 pts/0    S    Dec26   0:03 /home/dustymugs/devel/postgresql/sandbox/10/usr/local/bin/postgres -D /home/dustymugs/devel/postgresql/sandbox/10/pgdata
postgres 31716  0.0  0.8 179776 33632 ?        Ss   Dec26   0:01 postgres: checkpointer process
postgres 31717  0.0  0.2 179144  9416 ?        Ss   Dec26   0:05 postgres: writer process
postgres 31718  0.0  0.2 179012  8708 ?        Ss   Dec26   0:06 postgres: wal writer process
postgres 31719  0.0  0.1 179568  7252 ?        Ss   Dec26   0:03 postgres: autovacuum launcher process
postgres 31720  0.0  0.1  34228  4124 ?        Ss   Dec26   0:09 postgres: stats collector process
postgres 31721  0.0  0.1 179308  6052 ?        Ss   Dec26   0:00 postgres: bgworker: logical replication launcher

$ cat /proc/31718/limits
Limit                     Soft Limit           Hard Limit           Units
Max cpu time              unlimited            unlimited            seconds
Max file size             unlimited            unlimited            bytes
Max data size             unlimited            unlimited            bytes
Max stack size            8388608              unlimited            bytes
Max core file size        0                    unlimited            bytes
Max resident set          unlimited            unlimited            bytes
Max processes             15738                15738                processes
Max open files            1024                 4096                 files
Max locked memory         65536                65536                bytes
Max address space         unlimited            unlimited            bytes
Max file locks            unlimited            unlimited            locks
Max pending signals       15738                15738                signals
Max msgqueue size         819200               819200               bytes
Max nice priority         0                    0
Max realtime priority     0                    0
Max realtime timeout      unlimited            unlimited            us
                                        

Im oberen Beispiel haben wir die Limits für geöffnete Dateien für den Prozess 31718 ausgelesen. Es spielt dabei keine Rolle welcher Prozess von PostgreSQL, es genügt jeder. Von Interesse ist dabei die Rückmeldung von Max open files.

Wir wollen das Soft Limit und das Hard Limit für die Max open files so erhöhen, dass sie über dem Wert liegen den wir in der Einstellung von PostgreSQL für max_files_per_process angegeben haben. In unserem Beispiel haben wir max_files_per_process mit 65536 angegeben.

Auf Ubuntu (angenommen Sie verwenden ein PostgreSQL Paket für Ubuntu), kann das Soft Limit und das Hard Limit am einfachsten durch editieren von /etc/init.d/postgresql (SysV) oder /lib/systemd/system/postgresql*.service (systemd) geändert werden.

Befassen wir uns zuerst mit dem Fall SysV auf Ubuntu, bei dem wir ulimit -H -n 262144 und ulimit -n 131072 zu /etc/init.d/postgresql hinzufügen.

...
case "$1" in
    start|stop|restart|reload)
        if [ "$1" = "start" ]; then
            create_socket_directory
        fi
        if [ -z "`pg_lsclusters -h`" ]; then
            log_warning_msg 'No PostgreSQL clusters exist; see "man pg_createcluster"'
            exit 0
        fi

        ulimit -H -n 262144
        ulimit -n 131072

        for v in $versions; do
            $1 $v || EXIT=$?
        done
        exit ${EXIT:-0}
        ;;
    status)
...

Nun der Fall mit systemd unter Ubuntu. Wir fügen LimitNOFILE=131072 in jeder Datei /lib/systemd/system/postgresql*.service in dem Abschnitt [Service] ein.

...
[Service]

LimitNOFILE=131072

...

[Install]
WantedBy=multi-user.target
...

Nach den erforderlichen systemd Änderungen müssen Sie den Dämon neu laden

systemctl daemon-reload

Chapter 10. Häufige Fragen zu PostGIS Raster

10.1. Wo kann ich detailierte Information über das Raster-Projekt von PostGIS finden?
10.2. Gibt es irgendwelche Bücher oder Übungen, die mir erklären wie Ich mit dieser wunderbare Erfindung loslegen kann?
10.3. Wie installiere Ich die Rasterunterstützung in meiner PostGIS Datenbank?
10.4. Ich bekomme die Fehlermeldung: 'could not load library "C:/Program Files/PostgreSQL/8.4/lib/rtpostgis.dll": The specified module could not be found'. Oder 'could not load library on Linux when trying to run rtpostgis.sql'
10.5. Wie kann ich Rasterdaten in PostGIS laden?
10.6. Welche Rasterformate kann Ich in meine Datenbank laden?
10.7. Kann Ich meine PostGIS Rasterdaten in ein anderes Format exportieren?
10.8. Gibt es Binärdateien von GDAL, die für die PostGIS Rasterunterstützung bereits kompiliert sind?
10.9. Welche Werkzeuge kann Ich benutzen, um Rasterdaten, die sich in PostGIS befinden, anzusehen?
10.10. Wie kann Ich einen PostGIS-Raster zu meiner MapServer-Karte hinzufügen?
10.11. Welche Funktionen kann Ich zurzeit mit meinen Rasterdaten nutzen?
10.12. Ich erhalte die Fehlermeldung "ERROR: function st_intersects(raster, unknown) is not unique or st_union(geometry,text) is not unique." Wie kann ich das beheben?
10.13. Wie unterscheidet sich PostGIS Raster von Oracle GeoRaster (SDO_GEORASTER) und SDO_RASTER-Typen?
10.14. raster2pgsql versagt beim Laden großer Dateien mit einer Fehlermeldung von "N bytes is too long for encoding conversion"?
10.15. Ich erhalte die Fehlermeldung ERROR: RASTER_fromGDALRaster: Could not open bytea with GDAL. Check that the bytea is of a GDAL supported format. wenn ich ST_FromGDALRaster verwende, oder ERROR: rt_raster_to_gdal: Could not load the output GDAL driver wenn Ich ST_AsPNG oder andere Rastereingabefunktionen verwende.

10.1.

Wo kann ich detailierte Information über das Raster-Projekt von PostGIS finden?

Siehe PostGIS Raster Homepage.

10.2.

Gibt es irgendwelche Bücher oder Übungen, die mir erklären wie Ich mit dieser wunderbare Erfindung loslegen kann?

Ein sehr ausführliches Tutorial für Einsteiger ist Intersecting vector buffers with large raster coverage using PostGIS Raster. Jorge hat eine Reihe von Blogartikel über PostGIS Raster erstellt, die zeigen wie Rasterdaten geladen werden können. Hier befindet sich auch ein Vergleich mit Oracle GeoRaster. Siehe Jorge's PostGIS Raster / Oracle GeoRaster Series. Es gibt ein ganzes Kapitel (mehr als 35 Seiten) das PostGIS Raster gewidmet ist - mit freiem Code und Daten zum Herunterladen unter PostGIS in Action - Raster chapter. Sie können PostGIS in Action bei Manning jetzt auch als Buch (wesentliche Vergünstigungen bei gemeinsamen Kauf von mehreren Büchern) oder im E-Book Format kaufen. Sie können das Buch auch bei Amazon und verschiedenen anderen Buchhändlern kaufen. Alle Bücher beinhalten einen kostenlosen Gutschein zum Herunterladen der E-Book Version.

Einen Überblick über eine Anwendung von PostGIS Raster finden Sie unter PostGIS raster applied to land classification urban forestry

10.3.

Wie installiere Ich die Rasterunterstützung in meiner PostGIS Datenbank?

Ab PostGIS 2.0 ist PostGIS Raster vollkommen integriert und wird daher zusammen mit PostGIS kompiliert.

Für eine Anleitung zur Installation und zum Betrieb unter Windows siehe How to Install and Configure PostGIS raster on windows

Wenn Sie unter Windows arbeiten, dann können Sie entweder selbst kompilieren oder Sie verwenden pre-compiled PostGIS Raster windows binaries.

Auf anderen Plattformen können Sie vom Software Repository installieren. Für weitere Details zum Kompilieren vom Quellcode, siehe Installing PostGIS Raster from source

10.4.

Ich bekomme die Fehlermeldung: 'could not load library "C:/Program Files/PostgreSQL/8.4/lib/rtpostgis.dll": The specified module could not be found'. Oder 'could not load library on Linux when trying to run rtpostgis.sql'

rtpostgis.so/dll wird in Abhängigkeit von libgdal.so/dll kompiliert. Stellen Sie auf Windows sicher, dass sich libgdal-1.dll in dem Ordner "bin" Ihrer PostgreSQL Installation befindet. Auf Linux muss sich die Bibliothek "libgdal" in Ihrem Pfad oder im Ordner "bin" befinden.

Wenn Sie PostGIS nicht in Ihrer Datenbank installiert haben, können andersartige Fehler auftreten. Stellen Sie sicher, dass PostGIS in Ihrer Datenbank installiert ist, bevor Sie versuchen die Rasterunterstützung zu installieren.

10.5.

Wie kann ich Rasterdaten in PostGIS laden?

Die neueste Version von PostGIS hat den Rasterlader raster2pgsql mit im Paket. Dieser kann, ohne zusätzliche Software, verschiedenste Rasterformate laden und auch Overviews mit geringerer Auflösung erstellen. Siehe Section 5.1.1, “Verwendung von raster2pgsql zum Laden von Rastern” für weitere Details.

10.6.

Welche Rasterformate kann Ich in meine Datenbank laden?

Jedes Format das von Ihrer Bibliothek "GDAL" unterstützt wird. Die von GDAL unterstützten Formate sind unter GDAL File Formats beschrieben.

Es kann sein, dass Ihre jeweilige Installation von GDAL nicht alle Formate unterstützt. Um zu überprüfen, welche Formate von Ihrer GDAL Installation unterstützt werden, können Sie folgendes ausführen

raster2pgsql -G

10.7.

Kann Ich meine PostGIS Rasterdaten in ein anderes Format exportieren?

Yes

GDAL enthält einen PostGIS Raster-Treiber; dieser ist allerdings nur dann vorhanden, wenn GDAL mit PostgreSQL-Unterstützung kompiliert wurde.

Zurzeit werden von dem Treiber keine unregelmäßigen Raster unterstützt, obwohl Sie unregelmäßige Raster unter PostGIS als Datentyp Raster speichern können.

Wenn Sie den Quellcode kompilieren, dann müssen Sie

--with-pg=path/to/pg_config

bei der Konfiguration angeben um die Treiber zu aktivieren. Siehe GDAL Build Hints für Tipps zum Kompilieren von GDAL auf verschiedenen Betriebssystemen.

Falls Ihre Version von GDAL mit dem PostGIS Rastertreiber kompiliert wurde, sollten PostGIS Raster aufgelistet werden, wenn Sie folgendes ausführen

gdalinfo --formats

Um eine Zusammenfassung Ihrer Raster über GDAL zu erhalten, benutzen Sie bitte gdalinfo:

gdalinfo  "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable"

Um die Daten in andere Rasterformate zu exportieren, können Sie gdal_translate verwenden. Im folgenden exportieren wir sämtliche Daten einer Tabelle in eine PNG-Datei mit einer Dateigröße von 10%.

Abhängig von dem Pixeltyp Ihrer Bänder, können einige Übersetzungen nicht funktionieren, wenn das Exportformat diesen Pixeltyp nicht unterstützt. Zum Beispiel können Bänder vom Pixeltyp Gleitpunkt, oder vorzeichenlose 32bit-Ganzzahlen, nicht ohne weiters in ein JPG- oder in ein anderes Format konvertiert werden.

Ein Beispiel für eine einfache Übersetzung:

gdal_translate -of PNG -outsize 10% 10% "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable" C:\somefile.png

Sie können auch SQL WHERE Klauseln bei Ihrem Export anwenden, indem Sie where=... in der Verbindungszeichenfolge angeben. Unterhalb sind einige Beispiele, welche die WHERE-Klausel verwenden

gdal_translate -of PNG -outsize 10% 10% "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable where='filename=\'abcd.sid\''" " C:\somefile.png
gdal_translate -of PNG -outsize 10% 10% "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable where='ST_Intersects(rast, ST_SetSRID(ST_Point(-71.032,42.3793),4326) )' " C:\intersectregion.png

Für weitere Beispiele und Syntax siehe Reading Raster Data of PostGIS Raster section

10.8.

Gibt es Binärdateien von GDAL, die für die PostGIS Rasterunterstützung bereits kompiliert sind?

Ja. Siehe GDAL Binaries. Jene, die mit PostgreSQL-Unterstützung kompiliert sind, sollten PostGIS Raster implementiert haben.

PostGIS Raster ist vielen Änderungen unterworfen. Wenn Sie das letzte "nightly build" für Windows möchten, dann können Sie das "nigthly build" von Tamas Szekeres austesten, welches mit Visual Studio erstellt wurde und mit GDAL gebündelt ist. Weiters enthält es eine Python Anbindung, ausführbare MapServer Dateien und einen eingebauten Treiber für PostGIS Raster. Sie können einfach auf die SDK BAT-Datei klicken und die gewünschten Befehle von da aus ausführen. http://www.gisinternals.com. Auch als VS Projektdateien erhältlich.

Die neueste, stabile Version von FWTools für Windows ist mit Rasterunterstützung kompiliert.

10.9.

Welche Werkzeuge kann Ich benutzen, um Rasterdaten, die sich in PostGIS befinden, anzusehen?

Wenn Sie MapServer mit GDAL 1.7+ und den Rastertreibern für PostGIS kompiliert haben, können Sie diesen zur Visualisierung von Rasterdaten verwenden. QGIS unterstützt die Anzeige von PostGIS Rastern, falls Sie die PostGIS Rastertreiber installiert haben.

Theoretisch kann jedes Tool, das GDAL verwendet um Daten zu visualisieren, mit relativ wenig oder keinem Aufwand mit PostGIS Rasterdaten arbeiten. Wiederum sind für Windows die Binärdateien von Tamas http://www.gisinternals.com eine gute Wahl, wenn Sie nicht selbst die Mühe für das Setup und die Kompilierung aufbringen wollen.

10.10.

Wie kann Ich einen PostGIS-Raster zu meiner MapServer-Karte hinzufügen?

Zuerst benötigen Sie eine Installation von GDAL 1.7 oder höher mit PostGIS Rasterunterstützung. GDAL 1.8 oder höher ist bevorzugt, da eine Reihe von Problemen in 1.8 behoben wurden. Weitere Probleme mit PostGIS Raster wurden in der Version "trunk" behoben.

Sie können so wie mit jedem anderen Raster verfahren. Siehe MapServer Raster processing options für eine Auflistung der mannigfaltigen Bearbeitungsmöglichkeiten, die Sie mit Rasterlayer von MapServer haben.

PostGIS Rasterdaten sind insofern besonders interessant, da jede Kachel mehrere Standard-Datenbankattribute aufweisen kann und die Daten daher aufgeteilt werden können.

Unterhalb ein Beispiel, wie Sie einen PostGIS-Rasterlayer in MapServer anlegen können.

[Note]

Der Parameter, mode=2, wird für geteilte Raster benötigt und wurde in PostGIS 2.0.0

-- Einen Raster mit den Standardeinstellungen darstellen
LAYER
        NAME coolwktraster
        TYPE raster
        STATUS ON
        DATA "PG:host=localhost port=5432 dbname='somedb' user='someuser' password='whatever'
                schema='someschema' table='cooltable' mode='2'"
        PROCESSING "NODATA=0"
        PROCESSING "SCALE=AUTO"
        #... other standard raster processing functions here
        #... classes are optional but useful for 1 band data
        CLASS
                NAME "boring"
                EXPRESSION ([pixel] < 20)
                COLOR 250 250 250
        END
        CLASS
                NAME "mildly interesting"
                EXPRESSION ([pixel] > 20 AND [pixel] < 1000)
                COLOR 255 0 0
        END
        CLASS
                NAME "very interesting"
                EXPRESSION ([pixel] >= 1000)
                COLOR 0 255 0
        END
END
        
-- Einen Raster mit den Standardeinstellungen und einer WHERE-Klausel  darstellen
LAYER
        NAME soil_survey2009
        TYPE raster
        STATUS ON
        DATA "PG:host=localhost port=5432 dbname='somedb' user='someuser' password='whatever'
                schema='someschema' table='cooltable' where='survey_year=2009' mode='2'"
        PROCESSING "NODATA=0"
        #... other standard raster processing functions here
        #... classes are optional but useful for 1 band data
END
        

10.11.

Welche Funktionen kann Ich zurzeit mit meinen Rasterdaten nutzen?

Siehe Chapter 9, Referenz Raster. Es gibt noch mehr Funktionen, doch diese befinden sich noch in der Aufbauphase.

Siehe PostGIS Raster roadmap page für Details was in Zukunft geplant ist.

10.12.

Ich erhalte die Fehlermeldung "ERROR: function st_intersects(raster, unknown) is not unique or st_union(geometry,text) is not unique." Wie kann ich das beheben?

Der Fehler "function is not unique" tritt auf, wenn in einem Ihrer Argumente die Geometrie als Text und nicht als geometrischer Datentyp dargestellt wird. In diesem Fall wird die Textdarstellung von PostgreSQL als "unknown type" gekennzeichnet. Dadurch kann es als ST_Intersects(raster, geometry) oder als ST_Intersects(raster, raster) interpretiert werden, was zu einem uneindeutigen Fall führt, da beide Funktionen die Anfrage unterstützen könnten. Um dies zu vermeiden, müssen Sie die Textdarstellung der Geometrie in den geometrischen Datentyp umwandeln.

Wenn Ihr Code zum Beispiel folgendermaßen aussieht:

SELECT rast
 FROM my_raster
   WHERE ST_Intersects(rast, 'SRID=4326;POINT(-10 10)');

Wandeln Sie die Textdarstellung der Geometrie in einen geometrischen Datentyp um, indem Sie Ihren Code folgendermaßen ändern:

SELECT rast
 FROM my_raster
   WHERE ST_Intersects(rast, 'SRID=4326;POINT(-10 10)'::geometry);

10.13.

Wie unterscheidet sich PostGIS Raster von Oracle GeoRaster (SDO_GEORASTER) und SDO_RASTER-Typen?

Für eine ausführlichere Erörterung dieses Themas siehe Jorge Arévalo Oracle GeoRaster and PostGIS Raster: First impressions

Der wesentliche Vorteil von "one-georeference-by-raster" gegenüber "one-georeference-by-layer" ist:

* Coverages müssen nicht unbedingt rechteckig sein (was bei Rastercoverages, die sich über eingroßes Gebiet erstrecken, häufig der Fall ist. Schauen Sie sich dazu die Gestaltungsmöglichkeiten für Raster in der Dokumentation an)

* Raster können überlappen (dies ermöglicht die verlustfreie Konvertierung von Vektor nach Raster)

Diese Gestaltungsmöglichkeiten gibt es auch in Oracle, aber dort wird dadurch die Speicherung von mehreren SDO_GEORASTER Objekten impliziert, welche auf genausoviele SDO_RASTER Tabellen verweisen. Ein kompliziertes Coverage kann somit hunderte Tabellen in einer Oracle Datenbank bedingen. Mit PostGIS Raster können Sie den gleichen Raster in einer einzelnen Tabelle abspeichern.

Es scheint ein bisschen so, als ob PostGIS dazu zwingt nur vollständige rechteckige Vektorcoverages, ohne Aussparungen und Überlappungen (einen perfekten rechteckigen topologischen Layer), abzuspeichern. Dies mag bei manchen Anwendungen sehr praktikabel sein, die Praxis hat jedoch gezeigt, dass dies für die meisten Coverages weder realistisch noch erstrebenswert ist. Vektorstrukturen benötigen eine gewisse Flexibilität um auch unterbrochene und nicht rechteckige Coverages zu speichern. Wir glauben, dass auch Rasterstrukturen von diesem Vorteil profitieren sollten.

10.14.

raster2pgsql versagt beim Laden großer Dateien mit einer Fehlermeldung von "N bytes is too long for encoding conversion"?

"raster2pgsql" erzeugt die Importdatei ohne eine Verbindung zur Datenbank herzustellen. Wenn in Ihrer Datenbank für den Client eine andere Zeichenkodierung als für die Datenbank gesetzt ist, dann kann beim Laden großer Rasterdateien (von ungefähr 30 MB Dateigröße) die Fehlermeldung bytes is too long for encoding conversion auftreten.

Dies passiert üblicherweise, wenn die Datenbank z.B. in UTF8 vorliegt, aber die Zeichenkodierung für die Clients auf WIN1252 gesetzt ist, um Windows Applikationen zu unterstützen.

Um dieses Problem zu umgehen, können Sie während des Ladens sicherstellen, dass die Zeichenkodierung für den Client und für die Datenbank die gleiche ist. Sie können dies durch ein explizites Setzen der Zeichenkodierung in Ihrem Ladeskript erreichen. Zum Beispiel unter Windows:

set PGCLIENTENCODING=UTF8

Falls Sie sich auf Unix/Linux befinden

export PGCLIENTENCODING=UTF8

Mörderische Einzelheiten zu diesem Themadetails finden sich unter http://trac.osgeo.org/postgis/ticket/2209

10.15.

Ich erhalte die Fehlermeldung ERROR: RASTER_fromGDALRaster: Could not open bytea with GDAL. Check that the bytea is of a GDAL supported format. wenn ich ST_FromGDALRaster verwende, oder ERROR: rt_raster_to_gdal: Could not load the output GDAL driver wenn Ich ST_AsPNG oder andere Rastereingabefunktionen verwende.

Seit PostGIS 2.1.3 und 2.0.5 sind alle GDAL Treiber und out-db Raster aus Sicherheitsgründen standardmäßig deaktiviert. Die Release Notes sind unter PostGIS 2.0.6, 2.1.3 security release. Um bestimmte oder alle Treiber und out-db Unterstützung zu aktivieren, siehe Section 2.1, “Kurzfassung”.

Chapter 11. Topologie

Die topologischen Datentypen und Funktionen von PostGIS werden für die Verwaltung von topologischen Objekten wie Maschen, Kanten und Knoten verwendet.

Sandro Santilli's Vortrag auf der Tagung "PostGIS Day Paris 2011" liefert eine gute Übersicht über die PostGIS Topologie und deren Perspektiven Topology with PostGIS 2.0 slide deck.

Vincent Picavet gibt in PostGIS Topology PGConf EU 2012 einen guten Überblick über das was Topologie ist, wie sie verwendet wird, und stellt auch verschiedene FOSS4G Werkzeuge zur Unterstützung vor.

Ein Beispiel für eine topologische Geodatenbank ist die US Census Topologically Integrated Geographic Encoding and Referencing System (TIGER) Datenbank. Zum Experimentieren mit der PostGIS Topologie stehen unter Topology_Load_Tiger Daten zur Verfügung.

Das PostGIS Modul "Topologie" gab es auch schon in früheren Versionen von PostGIS, es war aber nie Teil der offiziellen PostGIS Dokumentation. In PostGIS 2.0.0 fand eine umfangreiche Überarbeitung statt, um überholte Funktionen zu entfernen, bekannte Probleme mit der Bedienbarkeit zu bereinigen, bessere Dokumentation der Funktionalität, Einführung neuer Funktionen, und eine bessere Übereinstimmung mit den SQL-MM Normen zu erreichen.

Genauere Angaben zu diesem Projekt finden sich unter PostGIS Topology Wiki

Alle Funktionen und Tabellen, die zu diesem Modul gehören, sind im Schema mit der Bezeichnung topology installiert.

Funktionen die im SQL/MM Standard definiert sind erhalten das Präfix ST_, PostGIS eigene Funktionen erhalten kein Präfix.

Ab PostGIS 2.0 wird die Topologie Unterstützung standardmäßig mitkompiliert und kann bei der Konfiguration mittels der Konfigurationsoption "--without-topology", wie in Chapter 2, PostGIS Installation beschrieben, deaktiviert werden.

11.1. Topologische Datentypen

Abstract

Dieser Abschnitt beschreibt die PostgreSQL Datentypen die mit der PostGIS Topologie installiert werden. Besonders wichtig ist deren Verhaltensweise bei der Typumwandlung, insbesonderen wenn Sie Ihre eigenen Funktionen schreiben.

getfaceedges_returntype — Ein zusammengesetzter Typ, der aus einer Sequenzzahl und einer Kantenzahl besteht. Dies ist der von ST_GetFaceEdges zurückgegebene Typ.
TopoGeometry — Ein zusammengesetzter Typ, der eine topologisch festgelegte Geometrie darstellt.
validatetopology_returntype — Ein zusammengesetzter Datentyp, der aus einer Fehlermeldung und id1 und id2 besteht. id1 und id2 deuten auf die Stelle hin, an der der Fehler auftrat. Dies ist der von ValidateTopology zurückgegebene Datentyp.

Name

getfaceedges_returntype — Ein zusammengesetzter Typ, der aus einer Sequenzzahl und einer Kantenzahl besteht. Dies ist der von ST_GetFaceEdges zurückgegebene Typ.

Beschreibung

Ein zusammengesetzter Datentyp, der aus einer Sequenznummer und einer Kantennummer besteht. Dies ist der von der Funktion ST_GetFaceEdges zurückgegebene Datentyp.

  1. sequence ist eine Ganzzahl: Sie verweist auf eine Topologie, die in der Tabelle topology.topology definiert ist. In dieser Tabelle sind das Schema, das die Topologie enthält, und die SRID verzeichnet.

  2. edge ist eine Ganzzahl: Der Identifikator einer Kante.


Name

TopoGeometry — Ein zusammengesetzter Typ, der eine topologisch festgelegte Geometrie darstellt.

Beschreibung

Ein zusammengesetzter Datentyp, der auf eine topologische Geometrie in einem bestimmten topologischen Layer verweist und einen spezifischen Datentyp und eine eindeutige ID hat. Folgende Bestandteile bilden die Elemente einer TopoGeometry: topology_id, layer_id, id Ganzzahl, type Ganzzahl.

  1. topology_id ist eine Ganzzahl: Sie verweist auf eine Topologie, die in der Tabelle topology.topology definiert ist. In dieser Tabelle sind das Schema, das die Topologie enthält, und die SRID verzeichnet.

  2. layer_id ist eine Ganzzahl: Die layer_id in der Tabelle topology.layer zu der die TopoGeometry gehört. Die Kombination aus topology_id und layer_id liefert eine eindeutige Referenz in der Tabelle topology.layer.

  3. id ist eine Ganzzahl: Die id ist eine automatisch erzeugte Sequenznummer, welche die TopoGeometry in dem jeweiligen topologischen Layer eindeutig ausweist.

  4. type ist eine Ganzzahl zwischen 1 und 4, welche den geometrischen Datentyp festlegt: 1:[Multi]Point, 2:[Multi]Line, 3:[Multi]Polygon, 4:GeometryCollection

Verhaltensweise bei der Typumwandlung

In diesem Abschnitt sind die für diesen Datentyp erlaubten impliziten und expliziten Typumwandlungen beschrieben.

Typumwandlung nachVerhaltensweise
Geometrieimplizit

Siehe auch

CreateTopoGeom


Name

validatetopology_returntype — Ein zusammengesetzter Datentyp, der aus einer Fehlermeldung und id1 und id2 besteht. id1 und id2 deuten auf die Stelle hin, an der der Fehler auftrat. Dies ist der von ValidateTopology zurückgegebene Datentyp.

Beschreibung

Ein zusammengesetzter Datentyp, der aus einer Fehlermeldung und zwei Ganzzahlen besteht. Die Funktion ValidateTopology gibt eine Menge dieser Datentypen zurück, um bei der Validierung gefundene Fehler zu beschreiben. Unter id1 und id2 sind die ids der topologischen Objekte verzeichnet, die an dem Fehler beteiligt sind.

  1. error ist varchar: Gibt die Art des Fehlers an.

    Aktuell existieren folgende Fehlerbeschreibungen: zusammenfallende Knoten/coincident nodes, Kante ist nicht simple/edge not simple, Kanten- und Endknotengeometrie stimmen nicht überein/edge end node geometry mis-match, Kanten- und Anfangsknotengeometrie stimmen nicht überein/edge start node geometry mismatch, Masche überlappt Masche/face overlaps face, Masche innerhalb einer Masche/face within face.

  2. id1 ist eine ganze Zahl: Gibt den Identifikator einer Kante / Masche / Knoten in der Fehlermeldung an.

  3. id2 ist eine ganze Zahl: Wenn 2 Objekte in den Fehler involviert sind verweist diese Zahl auf die zweite Kante / oder Knoten.

11.2. Topologische Domänen

Abstract

Dieser Abschnitt beschreibt die PostgreSQL Domänen/domains die von PostGIS Topology installiert werden. Domänen können, ähnlich wie Objekttypen, als Rückgabeobjekte von Funktionen oder als Tabellenspalten verwendet werden. Der Unterschied zwischen einer Domäne und einem Datentyp ist, dass eine Domäne ein bestehender Datentyp mit einer an diesen gebundenen Check-Constraint ist.

TopoElement — Ein Feld mit 2 Ganzzahlen, welches in der Regel für die Auffindung einer Komponente einer TopoGeometry dient.
TopoElementArray — Ein Feld mit TopoElement Objekten

Name

TopoElement — Ein Feld mit 2 Ganzzahlen, welches in der Regel für die Auffindung einer Komponente einer TopoGeometry dient.

Beschreibung

Ein Feld mit 2 Ganzzahlen, welches einen Bestandteil einer einfachen oder hierarchischen TopoGeometry abbildet.

Im Falle einer einfachen TopoGeometry ist das erste Element des Feldes der Identifikator einer topologischen Elementarstruktur und das zweite Element der Typ (1:Knoten, 2:Kante, 3:Masche). Im Falle einer hierarchischen TopoGeometry ist das erste Element des Feldes der Identifikator der Kind-TopoGeometry und das zweite Element der Identifikator des Layers.

[Note]

Bei jeder gegebenen hierarchischen TopoGeometry werden alle Kindklassen der TopoGeometrie vom selben Kindlayer abgeleitet, so wie dies in dem Datensatz von "topology.layer" für den Layer der TopoGeometry definiert ist.

Beispiele

SELECT te[1] AS id, te[2] AS type FROM
( SELECT ARRAY[1,2]::topology.topoelement AS te ) f;
 id | type
----+------
  1 |    2
                 
SELECT ARRAY[1,2]::topology.topoelement;
  te
-------
 {1,2}
                 
--Beispiel was passiert, wenn versucht wird ein aus 3 Elementen bestehendes Feld in ein TopoElement umzuwandeln
-- Anmerkung: TopoElement muss ein Feld mit 2 Elementen sein und somit scheitert die Dimensionsprüfung
SELECT ARRAY[1,2,3]::topology.topoelement;
ERROR:  value for domain topology.topoelement violates check constraint "dimensions"
                 

Name

TopoElementArray — Ein Feld mit TopoElement Objekten

Beschreibung

Ein Feld mit 1 oder mehreren TopoElement Objekten; wird hauptsächlich verwendet, um Bestandteile einer TopoGeometry herumzureichen.

Beispiele

SELECT '{{1,2},{4,3}}'::topology.topoelementarray As tea;
  tea
-------
{{1,2},{4,3}}

-- langatmige Version --
SELECT ARRAY[ARRAY[1,2], ARRAY[4,3]]::topology.topoelementarray As tea;

  tea
-------
{{1,2},{4,3}}

--Verwendung der Feld-Aggregatsfunktion von Topology --
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
  FROM generate_series(1,4) As e CROSS JOIN generate_series(1,3) As t;
  tea
--------------------------------------------------------------------------
{{1,1},{1,2},{1,3},{2,1},{2,2},{2,3},{3,1},{3,2},{3,3},{4,1},{4,2},{4,3}}
                 
SELECT '{{1,2,4},{3,4,5}}'::topology.topoelementarray As tea;
ERROR:  value for domain topology.topoelementarray violates check constraint "dimensions"
                 

11.3. Verwaltung von Topologie und TopoGeometry

Abstract

Dieser Abschnitt beschreibt die topologischen Funktionen zum Erstellen von neuen topologischen Schemata, zum Validieren von Topologien und zur Verwaltung von TopoGeometry Attributen

AddTopoGeometryColumn — Fügt ein TopoGeometry Attribut an eine bestehende Tabelle an, registriert dieses neue Attribut als einen Layer in topology.layer und gibt die neue layer_id zurück.
DropTopology — Bitte mit Vorsicht verwenden: Löscht ein topologisches Schema und dessen Referenz in der Tabelle topology.topology, sowie die Referenzen zu den Tabellen in diesem Schema aus der Tabelle geometry_columns.
DropTopoGeometryColumn — Entfernt ein TopoGeometry-Attribut aus der Tabelle mit der Bezeichnung table_name im Schema schema_name und entfernt die Registrierung der Attribute aus der Tabelle "topology.layer".
Populate_Topology_Layer — Fügt fehlende Einträge zu der Tabelle topology.layer hinzu, indem Metadaten aus den topologischen Tabellen ausgelesen werden.
TopologySummary — Nimmt den Namen einer Topologie und liefert eine Zusammenfassung der Gesamtsummen der Typen und Objekte in der Topologie.
ValidateTopology — Liefert eine Menge validatetopology_returntype Objekte, die Probleme mit der Topologie beschreiben

Name

AddTopoGeometryColumn — Fügt ein TopoGeometry Attribut an eine bestehende Tabelle an, registriert dieses neue Attribut als einen Layer in topology.layer und gibt die neue layer_id zurück.

Synopsis

integer AddTopoGeometryColumn(varchar topology_name, varchar schema_name, varchar table_name, varchar column_name, varchar feature_type);

integer AddTopoGeometryColumn(varchar topology_name, varchar schema_name, varchar table_name, varchar column_name, varchar feature_type, integer child_layer);

Beschreibung

Jedes TopoGeometry Objekt gehört zu einem bestimmten Layer einer bestimmten Topologie. Bevor Sie ein TopoGeometry Objekt erzeugen, müssen Sie dessen topologischen Layer erzeugen. Ein topologischer Layer ist eine Assoziation einer Featuretabelle mit der Topologie. Er enthält auch Angaben zum Typ und zur Hierarchie. Man erzeugt einen Layer mittels der Funktion AddTopoGeometryColumn():

Diese Funktion fügt sowohl das angeforderte Attribut an die Tabelle als auch einen Datensatz mit der angegebenen Information in die Tabelle topology.layer.

Wenn Sie den [child_layer] nicht angeben (oder auf NULL setzen), dann enthält dieser Layer elementare TopoGeometries (aus topologischen Elementarstrukturen zusammengesetzt). Andernfalls enthält dieser Layer hierarchische TopoGeometries (aus den TopoGeometries des child_layer zusammengesetzt).

Sobald der Layer erstellt wurde (seine id von der Funktion AddTopoGeometryColumn zurückgegeben wurde), können Sie TopoGeometry Objekte in ihm erzeugen

Gültige feature_types sind: POINT, LINE, POLYGON, COLLECTION

Verfügbarkeit: 1.?

Beispiele

-- Beachten Sie bitte, dass wir für dieses Beispiel eine neue Tabelle im ma_topo Schema erzeugt haben
-- Wir hätten sie auch in einem anderen Schema erstellen können -- in diesem Fall würden sich topology_name und schema_name unterscheiden
CREATE SCHEMA ma;
CREATE TABLE ma.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('ma_topo', 'ma', 'parcels', 'topo', 'POLYGON');
CREATE SCHEMA ri;
CREATE TABLE ri.roads(gid serial PRIMARY KEY, road_name text);
SELECT topology.AddTopoGeometryColumn('ri_topo', 'ri', 'roads', 'topo', 'LINE');

Name

DropTopology — Bitte mit Vorsicht verwenden: Löscht ein topologisches Schema und dessen Referenz in der Tabelle topology.topology, sowie die Referenzen zu den Tabellen in diesem Schema aus der Tabelle geometry_columns.

Synopsis

integer DropTopology(varchar topology_schema_name);

Beschreibung

Löscht ein topologisches Schema und dessen Referenz in der Tabelle topology.topology, sowie die Referenzen zu den Tabellen in diesem Schema aus der Tabelle geometry_columns. Diese Funktion sollte MIT VORSICHT BENUTZT werden, da damit unabsichtlich Daten zerstört werden können. Falls das Schema nicht existiert, werden nur die Referenzeinträge des bezeichneten Schemas gelöscht.

Verfügbarkeit: 1.?

Beispiele

Löscht das Schema "ma_topo" kaskadierend und entfernt alle Referenzen in topology.topology und in geometry_columns.

SELECT topology.DropTopology('ma_topo');

Name

DropTopoGeometryColumn — Entfernt ein TopoGeometry-Attribut aus der Tabelle mit der Bezeichnung table_name im Schema schema_name und entfernt die Registrierung der Attribute aus der Tabelle "topology.layer".

Synopsis

text DropTopoGeometryColumn(varchar schema_name, varchar table_name, varchar column_name);

Beschreibung

Entfernt ein TopoGeometry-Attribut aus der Tabelle mit der Bezeichnung table_name im Schema schema_name und entfernt die Registrierung der Attribute aus der Tabelle "topology.layer". Gibt eine Zusammenfassung des Löschstatus aus. ANMERKUNG: vor dem Löschen werden alle Werte auf NULL gesetzt, um die Überprüfung der referenziellen Integrität zu umgehen.

Verfügbarkeit: 1.?

Beispiele

SELECT topology.DropTopoGeometryColumn('ma_topo', 'parcel_topo', 'topo');

Name

Populate_Topology_Layer — Fügt fehlende Einträge zu der Tabelle topology.layer hinzu, indem Metadaten aus den topologischen Tabellen ausgelesen werden.

Synopsis

setof record Populate_Topology_Layer();

Beschreibung

Trägt fehlende Einträge in der Tabelle topology.layer ein, indem die topologischen Constraints und Tabellen inspiziert werden. Diese Funktion ist nach der Wiederherstellung von Schemata mit topologischen Daten sinnvoll, um Einträge im Topologie-Katalog zu reparieren.

Wirft eine Liste der erzeugten Einträge aus. Die zurückgegebenen Attribute sind schema_name, table_name und feature_column.

Verfügbarkeit: 2.3.0

Beispiele

SELECT CreateTopology('strk_topo');
CREATE SCHEMA strk;
CREATE TABLE strk.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('strk_topo', 'strk', 'parcels', 'topo', 'POLYGON');
-- diese Abfrage gibt keine Datensätze zurück, da bereits registriert wurde
SELECT *
  FROM topology.Populate_Topology_Layer();

-- Erneut aufbauen
TRUNCATE TABLE topology.layer;

SELECT *
  FROM topology.Populate_Topology_Layer();

SELECT topology_id,layer_id, schema_name As sn, table_name As tn, feature_column As fc
FROM topology.layer;

                                
schema_name | table_name | feature_column
-------------+------------+----------------
 strk        | parcels    | topo
(1 row)

 topology_id | layer_id |  sn  |   tn    |  fc
-------------+----------+------+---------+------
           2 |        2 | strk | parcels | topo
(1 row)

Name

TopologySummary — Nimmt den Namen einer Topologie und liefert eine Zusammenfassung der Gesamtsummen der Typen und Objekte in der Topologie.

Synopsis

text TopologySummary(varchar topology_schema_name);

Beschreibung

Nimmt den Namen einer Topologie und liefert eine Zusammenfassung der Gesamtsummen der Typen und Objekte in der Topologie.

Verfügbarkeit: 2.0.0

Beispiele

SELECT topology.topologysummary('city_data');
                    topologysummary
--------------------------------------------------------
 Topology city_data (329), SRID 4326, precision: 0
 22 nodes, 24 edges, 10 faces, 29 topogeoms in 5 layers
 Layer 1, type Polygonal (3), 9 topogeoms
  Deploy: features.land_parcels.feature
 Layer 2, type Puntal (1), 8 topogeoms
  Deploy: features.traffic_signs.feature
 Layer 3, type Lineal (2), 8 topogeoms
  Deploy: features.city_streets.feature
 Layer 4, type Polygonal (3), 3 topogeoms
  Hierarchy level 1, child layer 1
  Deploy: features.big_parcels.feature
 Layer 5, type Puntal (1), 1 topogeoms
  Hierarchy level 1, child layer 2
  Deploy: features.big_signs.feature

Name

ValidateTopology — Liefert eine Menge validatetopology_returntype Objekte, die Probleme mit der Topologie beschreiben

Synopsis

setof validatetopology_returntype ValidateTopology(varchar topology_schema_name);

Beschreibung

Liefert eine Menge validatetopology_returntype Objekte, die Probleme mit der Topologie beschreiben. Mögliche Fehler und wofür die zurückgegebenen ids stehen ist in der folgenden Liste dargestellt:

Errorid1id2
edge crosses nodeedge_idnode_id
invalid edgeedge_idnull
edge not simpleedge_idnull
edge crosses edgeedge_idedge_id
edge start node geometry mis-matchedge_idnode_id
edge end node geometry mis-matchedge_idnode_id
face without edgesface_idnull
face has no ringsface_idnull
face overlaps faceface_idface_id
face within faceinner face_idouter face_id

Verfügbarkeit: 1.0.0

Erweiterung: 2.0.0 effizientere Ermittlung sich überkreuzender Kanten. Falsch positive Fehlmeldungen von früheren Versionen fixiert.

Änderung: 2.2.0 Bei 'edge crosses node' wurden die Werte für id1 und id2 vertauscht, um mit der Fehlerbeschreibung konsistent zu sein.

Beispiele

SELECT * FROM  topology.ValidateTopology('ma_topo');
      error        | id1 | id2
-------------------+-----+-----
face without edges |   0 |
                                

11.4. Topologie Konstruktoren

Abstract

Dieser Abschnitt behandelt Funktionen zum Erzeugen neuer Topologien.

CreateTopology — Erstellt ein neues topologisches Schema und registriert das neue Schema in der Tabelle topology.topology.
CopyTopology — Erzeugt eine Kopie einer topologischen Struktur (Knoten, Kanten, Maschen, Layer und TopoGeometries).
ST_InitTopoGeo — Erstellt ein neues topologisches Schema und registriert das neue Schema in der Tabelle topology.topology. Git eine Zusammenfassung des Prozessablaufs aus.
ST_CreateTopoGeo — Fügt eine Sammlung von Geometrien an eine leere Topologie an und gibt eine Bestätigungsmeldung aus.
TopoGeo_AddPoint — Fügt einen Punkt, unter Berücksichtigung einer Toleranz, an eine bestehende Topologie an. Existierende Kanten werden eventuell aufgetrennt.
TopoGeo_AddLineString — Fügt einen Linienzug, unter Berücksichtigung einer Toleranz, an eine bestehende Topologie an. Existierende Kanten/Maschen werden eventuell aufgetrennt. Gibt den Identifikator der Kante aus
TopoGeo_AddPolygon — Fügt einen Linienzug, unter Berücksichtigung einer Toleranz, an eine bestehende Topologie an. Existierende Kanten/Maschen werden eventuell aufgetrennt. Gibt den Identifikator der Kante aus

Name

CreateTopology — Erstellt ein neues topologisches Schema und registriert das neue Schema in der Tabelle topology.topology.

Synopsis

integer CreateTopology(varchar topology_schema_name);

integer CreateTopology(varchar topology_schema_name, integer srid);

integer CreateTopology(varchar topology_schema_name, integer srid, double precision prec);

integer CreateTopology(varchar topology_schema_name, integer srid, double precision prec, boolean hasz);

Beschreibung

Erzeugt ein neues Schema mit der Bezeichnung topology_name, das aus den Tabellen (edge_data,face,node, relation besteht, und registriert diese neue Toplogie in der Tabelle topology.topology. Gibt die id der Topologie in der Topologietabelle aus. Die SRID entspricht dem Identifikator des Koordinatenreferenzsystems in der Tabelle spatial_ref_sys für diese Topologie. Die Bezeichnung der Topologien muss eindeutig sein. Die Toleranz wird in den Einheiten des Koordinatenreferenzsystems gemessen. Wenn die Toleranz (prec) nicht angegeben ist, wird sie auf 0 gesetzt.

Dies ist ähnlich zu SQL/MM ST_InitTopoGeo, aber ein bißchen funktioneller. Wenn hasz nicht angegeben wird, wird es standardmäßig auf FALSE gesetzt.

Verfügbarkeit: 1.?

Beispiele

Dieses Beispiel erzeugt ein neues Schema mit der Bezeichnung "ma_topo" und speichert Kanten, Maschen und Relationen in Massachusetts State Plane Meter (NAD83 / Massachusetts Mainland). Die Toleranz liegt bei 1/2 Meter, da das Koordinatenreferenzsystem auf Meter basiert.

SELECT topology.CreateTopology('ma_topo',26986, 0.5);

Erzeugt die Rhode Island Toplogie in State Plane ft (NAD83 / Rhode Island (ftUS))

SELECT topology.CreateTopology('ri_topo',3438) As topoid;
topoid
------
2

Name

CopyTopology — Erzeugt eine Kopie einer topologischen Struktur (Knoten, Kanten, Maschen, Layer und TopoGeometries).

Synopsis

integer CopyTopology(varchar existing_topology_name, varchar new_name);

Beschreibung

Erzeugt eine neue Topologie mit der Bezeichnung new_topology_name. Die SRID und die Genauigkeit werden von existing_topology_name übernommen. Sämtliche Knoten, Kanten und Maschen, die Layer und die TopoGeometrien werden von der existierenden Topologie kopiert.

[Note]

Die neuen Zeilen in topology.layer enthalten künstlich erzeugte Werte für schema_name, table_name und feature_column. Der Grund dafür ist, dass die TopoGeometry nur als Definition existiert, aber zur Zeit auf Benutzerebene in keiner Tabelle verfügbar ist.

Verfügbarkeit: 2.0.0

Beispiele

Dieses Beispiel erstellt eine Kopie der Topologie "ma_topo"

SELECT topology.CopyTopology('ma_topo', 'ma_topo_bakup');

Name

ST_InitTopoGeo — Erstellt ein neues topologisches Schema und registriert das neue Schema in der Tabelle topology.topology. Git eine Zusammenfassung des Prozessablaufs aus.

Synopsis

text ST_InitTopoGeo(varchar topology_schema_name);

Beschreibung

Dies ist das SQL-MM Pendant zu CreateTopology, allerdings ohne die Koordinatenreferenz und die Toleranzoptionen von CreateTopology; gibt einen textliche Erstellungsbericht anstelle der id der Topologie aus.

Verfügbarkeit: 1.?

This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.17

Beispiele

SELECT topology.ST_InitTopoGeo('topo_schema_to_create') AS topocreation;
                      astopocreation
------------------------------------------------------------
 Topology-Geometry 'topo_schema_to_create' (id:7) created.
                                

Siehe auch

CreateTopology


Name

ST_CreateTopoGeo — Fügt eine Sammlung von Geometrien an eine leere Topologie an und gibt eine Bestätigungsmeldung aus.

Synopsis

text ST_CreateTopoGeo(varchar atopology, geometry acollection);

Beschreibung

Fügt eine Sammelgeometrie einer leeren Topologie hinzu und gibt eine Bestätigungsmeldung aus.

Nützlich um eine leere Topologie zu befüllen.

Verfügbarkeit: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details -- X.3.18

Beispiele

-- Die Topologie bestücken --
SELECT topology.ST_CreateTopoGeo('ri_topo',
 ST_GeomFromText('MULTILINESTRING((384744 236928,384750 236923,384769 236911,384799 236895,384811 236890,384833 236884,
  384844 236882,384866 236881,384879 236883,384954 236898,385087 236932,385117 236938,
  385167 236938,385203 236941,385224 236946,385233 236950,385241 236956,385254 236971,
  385260 236979,385268 236999,385273 237018,385273 237037,385271 237047,385267 237057,
  385225 237125,385210 237144,385192 237161,385167 237192,385162 237202,385159 237214,
  385159 237227,385162 237241,385166 237256,385196 237324,385209 237345,385234 237375,
  385237 237383,385238 237399,385236 237407,385227 237419,385213 237430,385193 237439,
  385174 237451,385170 237455,385169 237460,385171 237475,385181 237503,385190 237521,
  385200 237533,385206 237538,385213 237541,385221 237542,385235 237540,385242 237541,
  385249 237544,385260 237555,385270 237570,385289 237584,385292 237589,385291 237596,385284 237630))',3438)
  );

      st_createtopogeo
----------------------------
 Topology ri_topo populated


-- Eine Tabelle und TopoGeometry erzeugen --
CREATE TABLE ri.roads(gid serial PRIMARY KEY, road_name text);

SELECT topology.AddTopoGeometryColumn('ri_topo', 'ri', 'roads', 'topo', 'LINE');
                                

Name

TopoGeo_AddPoint — Fügt einen Punkt, unter Berücksichtigung einer Toleranz, an eine bestehende Topologie an. Existierende Kanten werden eventuell aufgetrennt.

Synopsis

integer TopoGeo_AddPoint(varchar toponame, geometry apoint, float8 tolerance);

Beschreibung

Fügt einen Punkt an eine bestehende Topologie an und gibt dessen Identifikator zurück. Der vorgegebene Punkt wird von bestehenden Knoten oder Kanten, innerhalb einer gegebenen Toleranz, gefangen. Eine existierende Kante kann durch den gefangenen Punkt aufgetrennt werden.

Verfügbarkeit: 2.0.0


Name

TopoGeo_AddLineString — Fügt einen Linienzug, unter Berücksichtigung einer Toleranz, an eine bestehende Topologie an. Existierende Kanten/Maschen werden eventuell aufgetrennt. Gibt den Identifikator der Kante aus

Synopsis

SETOF integer TopoGeo_AddLineString(varchar toponame, geometry aline, float8 tolerance);

Beschreibung

Fügt einen Linienzug an eine bestehende Topologie an und gibt die Identifikatoren der Kanten zurück, die diedessen Identifikator zurück. Der vorgegebene Punkt wird von bestehenden Knoten oder Kanten, innerhalb einer gegebenen Toleranz, gefangen. Eine existierende Kante kann durch den gefangenen Punkt aufgetrennt werden.

Verfügbarkeit: 2.0.0


Name

TopoGeo_AddPolygon — Fügt einen Linienzug, unter Berücksichtigung einer Toleranz, an eine bestehende Topologie an. Existierende Kanten/Maschen werden eventuell aufgetrennt. Gibt den Identifikator der Kante aus

Synopsis

integer TopoGeo_AddPolygon(varchar atopology, geometry apoly, float8 atolerance);

Beschreibung

Fügt ein Polygon zu einer existierenden Topologie hinzu und gibt die Identifikatoren der Maschen aus, aus denen es gebildet ist. Die Begrenzung des gegebenen Polygons wird innerhalb der angegebenen Toleranz an bestehenden Knoten und Kanten gefangen. Gegebenenfalls werden existierende Kanten und Maschen an der Begrenzung des neuen Polygons geteilt.

Verfügbarkeit: 2.0.0

11.5. Topologie Editoren

Abstract

Dieser Abschnitt behandelt topologische Funktionen zum Hinzufügen, Verschieben, Löschen und Teilen von Kanten, Maschen und Knoten. Sämtliche dieser Funktionen sind über die ISO SQL/MM definiert.

ST_AddIsoNode — Fügt einen isolierten Knoten zu einer Masche in einer Topologie hinzu und gibt die "nodeid" des neuen Knotens aus. Falls die Masche NULL ist, wird der Knoten dennoch erstellt.
ST_AddIsoEdge — Fügt eine isolierte Kante, die durch die Geometrie alinestring festgelegt wird zu einer Topologie hinzu, indem zwei bestehende isolierte Knoten anode und anothernode verbunden werden. Gibt die "edgeid" der neuen Kante aus.
ST_AddEdgeNewFaces — Fügt eine Kante hinzu. Falls dabei eine Masche aufgetrennt wird, so wird die ursprüngliche Masche gelöscht und durch zwei neue Maschen ersetzt.
ST_AddEdgeModFace — Fügt eine Kante hinzu. Falls dabei eine Masche aufgetrennt wird, so wird die ursprüngliche Masche angepasst und eine weitere Masche hinzugefügt.
ST_RemEdgeNewFace — Entfernt eine Kante. Falls die gelöschte Kante zwei Maschen voneinander getrennt hat, werden die ursprünglichen Maschen gelöscht und durch einer neuen Masche ersetzt.
ST_RemEdgeModFace

Entfernt eine Kante. Falls die gelöschte Kante zwei Maschen voneinander getrennt hat, wird eine der Maschen gelöscht und die andere so geändert, dass sie den Platz der beiden ursprünglichen Maschen einnimmt.

ST_ChangeEdgeGeom — Ändert die geometrische Form einer Kante, ohne sich auf die topologische Struktur auszuwirken.
ST_ModEdgeSplit — Trennt eine Kante auf, indem ein neuer Knoten entlang einer bestehenden Kante erstellt wird. Ändert die ursprüngliche Kante und fügt eine neue Kante hinzu.
ST_ModEdgeHeal — "Heilt" zwei Kanten, indem der verbindende Knoten gelöscht wird, die erste Kante modifiziert und die zweite Kante gelöscht wird. Gibt die ID des gelöschten Knoten zurück.
ST_NewEdgeHeal — "Heilt" zwei Kanten, indem der verbindende Knoten und beide Kanten gelöscht werden. Die beiden Kanten werden durch eine Kante ersetzt, welche dieselbe Ausichtung wie die erste Kante hat.
ST_MoveIsoNode — Verschiebt einen isolierten Knoten in einer Topologie von einer Stelle an eine andere. Falls die neue Geometrie apoint bereits als Knoten existiert, wird eine Fehlermeldung ausgegeben. Gibt eine Beschreibung der Verschiebung aus.
ST_NewEdgesSplit — Trennt eine Kante auf, indem ein neuer Knoten entlang einer bestehenden Kante erstellt, die ursprüngliche Kante gelöscht und durch zwei neue Kanten ersetzt wird. Gibt die ID des neu erstellten Knotens aus, der die neuen Kanten verbindet.
ST_RemoveIsoNode — Löscht einen isolierten Knoten und gibt eine Beschreibung der getroffenen Maßnahmen aus. Falls der Knoten nicht isoliert ist (ist der Anfangs- oder der Endpunkt einer Kante), wird eine Fehlermeldung ausgegeben.
ST_RemoveIsoEdge — Löscht einen isolierten Knoten und gibt eine Beschreibung der getroffenen Maßnahmen aus. Falls der Knoten nicht isoliert ist, wird eine Fehlermeldung ausgegeben.

Name

ST_AddIsoNode — Fügt einen isolierten Knoten zu einer Masche in einer Topologie hinzu und gibt die "nodeid" des neuen Knotens aus. Falls die Masche NULL ist, wird der Knoten dennoch erstellt.

Synopsis

integer ST_AddIsoNode(varchar atopology, integer aface, geometry apoint);

Beschreibung

Fügt einen isolierten Knoten mit der Punktlage apoint zu einer bestehenden Masche mit der "faceid" aface zu einer Topologie atopology und gibt die "nodeid" des neuen Knoten aus.

Wenn das Koordinatenreferenzsystem (SRID) der Punktgeometrie nicht mit dem der Topologie übereinstimmt, apoint keine Punktgeometrie ist, der Punkt NULL ist, oder der Punkt eine bestehende Kante (auch an den Begrenzungen) schneidet, wird eine Fehlermeldung ausgegeben. Falls der Punkt bereits als Knoten existiert, wird ebenfalls eine Fehlermeldung ausgegeben.

Wenn aface nicht NULL ist und apoint nicht innerhalb der Masche liegt, wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X+1.3.1

Beispiele


Name

ST_AddIsoEdge — Fügt eine isolierte Kante, die durch die Geometrie alinestring festgelegt wird zu einer Topologie hinzu, indem zwei bestehende isolierte Knoten anode und anothernode verbunden werden. Gibt die "edgeid" der neuen Kante aus.

Synopsis

integer ST_AddIsoEdge(varchar atopology, integer anode, integer anothernode, geometry alinestring);

Beschreibung

Fügt eine isolierte Kante, die durch die Geometrie alinestring festgelegt wird zu einer Topologie hinzu, indem zwei bestehende isolierte Knoten anode und anothernode verbunden werden. Gibt die "edgeid" der neuen Kante aus.

Wenn das Koordinatenreferenzsystem (SRID) der Geometrie alinestring nicht mit dem der Topologie übereinstimmt, irgendein Eingabewert NULL ist, die Knoten in mehreren Maschen enthalten sind, oder die Knoten Anfangs- oder Endknoten einer bestehenden Kante darstellen, wird eine Fehlermeldung ausgegeben.

Wenn alinestring nicht innerhalb der Masche liegt zu der anode und anothernode gehören, dann wird eine Fehlermeldung ausgegeben.

Wenn anode und anothernode nicht Anfangs- und Endpunkt von alinestring sind, wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.4

Beispiele


Name

ST_AddEdgeNewFaces — Fügt eine Kante hinzu. Falls dabei eine Masche aufgetrennt wird, so wird die ursprüngliche Masche gelöscht und durch zwei neue Maschen ersetzt.

Synopsis

integer ST_AddEdgeNewFaces(varchar atopology, integer anode, integer anothernode, geometry acurve);

Beschreibung

Fügt eine Kante hinzu. Falls dabei eine Masche aufgetrennt wird, so wird die ursprüngliche Masche gelöscht und durch zwei neue Maschen ersetzt. Gibt die ID der hinzugefügten Kante aus.

Führt ein entsprechendes Update auf alle verbundenen Kanten und Beziehungen durch.

Wenn irgendwelche Übergabewerte NULL sind, die angegebenen Knoten unbekannt sind (müssen bereits in der node Tabelle des Schemas "topology" existieren), acurve kein LINESTRING ist, oder anode und anothernode nicht die Anfangs- und Endpunkte von acurve sind, dann wird eine Fehlermeldung ausgegeben.

Wenn das Koordinatenreferenzsystem (SRID) der Geometrie acurve nicht mit jener der Topologie übereinstimmt, wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.12

Beispiele


Name

ST_AddEdgeModFace — Fügt eine Kante hinzu. Falls dabei eine Masche aufgetrennt wird, so wird die ursprüngliche Masche angepasst und eine weitere Masche hinzugefügt.

Synopsis

integer ST_AddEdgeModFace(varchar atopology, integer anode, integer anothernode, geometry acurve);

Beschreibung

Fügt eine Kante hinzu. Falls dabei eine Masche aufgetrennt wird, so wird die ursprüngliche Masche angepasst und eine weitere Masche hinzugefügt.

[Note]

Wenn möglich, wird die neue Masche auf der linken Seite der neuen Kante erstellt. Dies ist jedoch nicht möglich, wenn die Masche auf der linken Seite die (unbegrenzte) Grundmenge der Maschen darstellt.

Gibt die id der hinzugefügten Kante zurück.

Führt ein entsprechendes Update auf alle verbundenen Kanten und Beziehungen durch.

Wenn irgendwelche Übergabewerte NULL sind, die angegebenen Knoten unbekannt sind (müssen bereits in der node Tabelle des Schemas "topology" existieren), acurve kein LINESTRING ist, oder anode und anothernode nicht die Anfangs- und Endpunkte von acurve sind, dann wird eine Fehlermeldung ausgegeben.

Wenn das Koordinatenreferenzsystem (SRID) der Geometrie acurve nicht mit jener der Topologie übereinstimmt, wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.13

Beispiele


Name

ST_RemEdgeNewFace — Entfernt eine Kante. Falls die gelöschte Kante zwei Maschen voneinander getrennt hat, werden die ursprünglichen Maschen gelöscht und durch einer neuen Masche ersetzt.

Synopsis

integer ST_RemEdgeNewFace(varchar atopology, integer anedge);

Beschreibung

Entfernt eine Kante. Falls die gelöschte Kante zwei Maschen voneinander getrennt hat, werden die ursprünglichen Maschen gelöscht und durch einer neuen Masche ersetzt.

Gibt die ID der neu erzeugten Masche aus; oder NULL wenn keine Masche erstellt wurde. Es wird keine neue Masche erstellt, wenn die gelöschte Kante defekt oder isoliert ist, oder wenn sie die Begrenzung der Maschengrundmenge darstellt (wodurch die Grundmenge womöglich von der anderen Seite in die Masche fliessen könnte).

Führt ein entsprechendes Update auf alle verbundenen Kanten und Beziehungen durch.

Wenn eine Kante an der Definition einer bestehenden TopoGeometry beteiligt ist, kann sie nicht gelöscht werden. Wenn irgendeine TopoGeometry nur durch eine der beiden Maschen definiert ist (und nicht auch durch die andere), können die beiden Maschen nicht "geheilt" werden.

Wenn irgendwelche Übergabewerte NULL sind, die angegebene Kante unbekannt ist (muss bereits in der edge Tabelle des Schemas "topology" existieren), oder die Bezeichnung der Topologie ungültig ist, dann wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.14

Beispiele


Name

ST_RemEdgeModFace —

Entfernt eine Kante. Falls die gelöschte Kante zwei Maschen voneinander getrennt hat, wird eine der Maschen gelöscht und die andere so geändert, dass sie den Platz der beiden ursprünglichen Maschen einnimmt.

Synopsis

integer ST_RemEdgeModFace(varchar atopology, integer anedge);

Beschreibung

Entfernt eine Kante. Falls die gelöschte Kante zwei Maschen voneinander getrennt hat, wird eine der Maschen gelöscht und die andere so geändert, dass sie den Platz der beiden ursprünglichen Maschen einnimmt. Vorzugsweise wird die Masche auf der rechten Seite beibehalten, so wie bei ST_AddEdgeModFace. Gibt die ID der verbliebenen Masche aus.

Führt ein entsprechendes Update auf alle verbundenen Kanten und Beziehungen durch.

Wenn eine Kante an der Definition einer bestehenden TopoGeometry beteiligt ist, kann sie nicht gelöscht werden. Wenn irgendeine TopoGeometry nur durch eine der beiden Maschen definiert ist (und nicht auch durch die andere), können die beiden Maschen nicht "geheilt" werden.

Wenn irgendwelche Übergabewerte NULL sind, die angegebene Kante unbekannt ist (muss bereits in der edge Tabelle des Schemas "topology" existieren), oder die Bezeichnung der Topologie ungültig ist, dann wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.15

Beispiele


Name

ST_ChangeEdgeGeom — Ändert die geometrische Form einer Kante, ohne sich auf die topologische Struktur auszuwirken.

Synopsis

integer ST_ChangeEdgeGeom(varchar atopology, integer anedge, geometry acurve);

Beschreibung

Ändert die geometrische Form der Kante, ohne sich auf topologische Struktur auszuwirken.

Wenn irgendwelche Übergabewerte NULL sind, die angegebene Kante nicht in der edge Tabelle des Schemas "topology" existiert, acurve kein LINESTRING ist, anode und anothernode nicht die Anfangs- und Endpunkte von acurve sind, oder die Modifikation die zugrundeliegende Topologie ändern würde, dann wird eine Fehlermeldung ausgegeben.

Wenn das Koordinatenreferenzsystem (SRID) der Geometrie acurve nicht mit jener der Topologie übereinstimmt, wird eine Fehlermeldung ausgegeben.

Wenn die neue acurve nicht "simple" ist, wird eine Fehlermeldung ausgegeben.

Wenn beim Verschieben der Kante von der alten auf die neue Position ein Hindernis auftritt, wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 1.1.0

Erweiterung: 2.0.0 Erzwingung topologischer Konsistenz hinzugefügt

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details X.3.6

Beispiele

SELECT topology.ST_ChangeEdgeGeom('ma_topo', 1,
                ST_GeomFromText('LINESTRING(227591.9 893900.4,227622.6 893844.3,227641.6 893816.6, 227704.5 893778.5)', 26986) );
 ----
 Edge 1 changed

Name

ST_ModEdgeSplit — Trennt eine Kante auf, indem ein neuer Knoten entlang einer bestehenden Kante erstellt wird. Ändert die ursprüngliche Kante und fügt eine neue Kante hinzu.

Synopsis

integer ST_ModEdgeSplit(varchar atopology, integer anedge, geometry apoint);

Beschreibung

Trennt eine Kante auf, indem ein neuer Knoten entlang einer bestehenden Kante erstellt wird. Ändert die ursprüngliche Kante und fügt eine neue Kante hinzu. Alle bestehenden Kanten und Beziehungen werden entsprechend aktualisiert. Gibt den Identifikator des neu hinzugefügten Knotens aus.

Verfügbarkeit: 1.?

Änderung: 2.0 - In Vorgängerversionen fälschlicherweise als ST_ModEdgesSplit bezeichnet

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

Beispiele

-- Eine Kante hinzufügen --
 SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227592 893910, 227600 893910)', 26986) ) As edgeid;

-- edgeid-
3


-- Eine Kante spalten/teilen  --
SELECT topology.ST_ModEdgeSplit('ma_topo',  3, ST_SetSRID(ST_Point(227594,893910),26986)  ) As node_id;
        node_id
-------------------------
7

Name

ST_ModEdgeHeal — "Heilt" zwei Kanten, indem der verbindende Knoten gelöscht wird, die erste Kante modifiziert und die zweite Kante gelöscht wird. Gibt die ID des gelöschten Knoten zurück.

Synopsis

int ST_ModEdgeHeal(varchar atopology, integer anedge, integer anotheredge);

Beschreibung

"Heilt" zwei Kanten, indem der verbindende Knoten gelöscht wird, die erste Kante modifiziert und die zweite Kante gelöscht wird. Gibt die ID des gelöschten Knoten zurück. Aktualisiert alle verbundenen Kanten und Beziehungen dementsprechend. 

Verfügbarkeit: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9


Name

ST_NewEdgeHeal — "Heilt" zwei Kanten, indem der verbindende Knoten und beide Kanten gelöscht werden. Die beiden Kanten werden durch eine Kante ersetzt, welche dieselbe Ausichtung wie die erste Kante hat.

Synopsis

int ST_NewEdgeHeal(varchar atopology, integer anedge, integer anotheredge);

Beschreibung

"Heilt" zwei Kanten, indem der verbindende Knoten und beide Kanten gelöscht werden. Die beiden Kanten werden durch eine Kante ersetzt, welche dieselbe Ausichtung wie die erste Kante hat. Gibt die ID der neuen Kante aus. Aktualisiert alle verbundenen Kanten und Beziehungen dementsprechend.

Verfügbarkeit: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9


Name

ST_MoveIsoNode — Verschiebt einen isolierten Knoten in einer Topologie von einer Stelle an eine andere. Falls die neue Geometrie apoint bereits als Knoten existiert, wird eine Fehlermeldung ausgegeben. Gibt eine Beschreibung der Verschiebung aus.

Synopsis

text ST_MoveIsoNode(varchar atopology, integer anedge, geometry apoint);

Beschreibung

Verschiebt einen isolierten Knoten in einer Topologie von einer Stelle an eine andere. Falls die neue Geometrie apoint bereits als Knoten existiert, wird eine Fehlermeldung ausgegeben.

Wenn irgendein Übergabewert NULL ist, apoint keine Punktgeometrie ist, der bestehende Knoten nicht isoliert ist (Anfangs- oder Endpunkt einer bestehenden Kante ist), oder die Lage des neuen Knoten eine bestehende Kante schneidet (auch an den Endpunkten), dann wird eine Fehlermeldung ausgegeben.

Wenn das Koordinatenreferenzsystem (SRID) der Punktgeometrie nicht mit jener der Topologie übereinstimmt, wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.2

Beispiele

-- Einen freistehenden/isolierten Knoten ohne Masche hinzufügen  --
SELECT topology.ST_AddIsoNode('ma_topo',  NULL, ST_GeomFromText('POINT(227579 893916)', 26986) ) As nodeid;
 nodeid
--------
      7
-- Den neuen Knoten bewegen --
SELECT topology.ST_MoveIsoNode('ma_topo', 7,  ST_GeomFromText('POINT(227579.5 893916.5)', 26986) ) As descrip;
                      descrip
----------------------------------------------------
Isolated Node 7 moved to location 227579.5,893916.5

Siehe auch

ST_AddIsoNode


Name

ST_NewEdgesSplit — Trennt eine Kante auf, indem ein neuer Knoten entlang einer bestehenden Kante erstellt, die ursprüngliche Kante gelöscht und durch zwei neue Kanten ersetzt wird. Gibt die ID des neu erstellten Knotens aus, der die neuen Kanten verbindet.

Synopsis

integer ST_NewEdgesSplit(varchar atopology, integer anedge, geometry apoint);

Beschreibung

Trennt eine Kante mit der Kanten-ID anedgeauf, indem ein neuer Knoten mit der Punktlage apoint entlang der aktuellen Kante erstellt, die ursprüngliche Kante gelöscht und durch zwei neue Kanten ersetzt wird. Gibt die ID des neu erstellten Knotens aus, der die neuen Kanten verbindet. Aktualisiert alle verbundenen Kanten und Beziehungen dementsprechend.

Wenn das Koordinatenreferenzsystem (SRID) der Punktgeometrie nicht mit dem der Topologie übereinstimmt, apoint keine Punktgeometrie ist, der Punkt NULL ist, der Punkt bereits als Knoten existiert, die Kante mit einer bestehenden Kante nicht zusammenpasst, oder der Punkt nicht innerhalb der Kante liegt, dann wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.8

Beispiele

-- Einen Knoten hinzufügen  --
SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227575 893917,227592 893900)', 26986) ) As edgeid;
-- result-
edgeid
------
        2
-- Split the new edge --
SELECT topology.ST_NewEdgesSplit('ma_topo', 2,  ST_GeomFromText('POINT(227578.5 893913.5)', 26986) ) As newnodeid;
 newnodeid
---------
       6

Name

ST_RemoveIsoNode — Löscht einen isolierten Knoten und gibt eine Beschreibung der getroffenen Maßnahmen aus. Falls der Knoten nicht isoliert ist (ist der Anfangs- oder der Endpunkt einer Kante), wird eine Fehlermeldung ausgegeben.

Synopsis

text ST_RemoveIsoNode(varchar atopology, integer anode);

Beschreibung

Löscht einen isolierten Knoten und gibt eine Beschreibung der getroffenen Maßnahmen aus. Falls der Knoten nicht isoliert ist (ist der Anfangs- oder der Endpunkt einer Kante), wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3

Beispiele

-- Einen alleinstehenden Knoten, ohne Masche, entfernen  --
SELECT topology.ST_RemoveIsoNode('ma_topo',  7 ) As result;
         result
-------------------------
 Isolated node 7 removed

Siehe auch

ST_AddIsoNode


Name

ST_RemoveIsoEdge — Löscht einen isolierten Knoten und gibt eine Beschreibung der getroffenen Maßnahmen aus. Falls der Knoten nicht isoliert ist, wird eine Fehlermeldung ausgegeben.

Synopsis

text ST_RemoveIsoEdge(varchar atopology, integer anedge);

Beschreibung

Löscht einen isolierten Knoten und gibt eine Beschreibung der getroffenen Maßnahmen aus. Falls der Knoten nicht isoliert ist, wird eine Fehlermeldung ausgegeben.

Verfügbarkeit: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3

Beispiele

-- Einen alleinstehenden Knoten, ohne Masche, entfernen  --
SELECT topology.ST_RemoveIsoNode('ma_topo',  7 ) As result;
         result
-------------------------
 Isolated node 7 removed

Siehe auch

ST_AddIsoNode

11.6. Zugriffsfunktionen zur Topologie

GetEdgeByPoint — Findet die edge-id einer Kante die einen gegebenen Punkt schneidet.
GetFaceByPoint — Findet die face-id einer Masche, die einen gegebenen Punkt schneidet
GetNodeByPoint — Findet zu der Lage eines Punktes die ID eines Knotens
GetTopologyID — Gibt für den Namen einer Topologie die ID der Topologie in der Tabelle "topology.topology" aus.
GetTopologySRID — Gibt für den Namen einer Topologie, die SRID der Topologie in der Tabelle "topology.topology" aus.
GetTopologyName — Gibt für die ID der Topologie, den Namen der Topologie (Schema) zurück.
ST_GetFaceEdges — Gibt die Kanten, die aface begrenzen, sortiert aus.
ST_GetFaceGeometry — Gibt für eine Topologie und eine bestimmte Maschen-ID das Polygon zurück.
GetRingEdges — Gibt eine sortierte Liste von mit Vorzeichen versehenen Identifikatoren der Kanten zurück, die angetroffen werden, wenn man an der Seite der gegebenen Kante entlangwandert.
GetNodeEdges — Gibt für einen Knoten die sortierte Menge der einfallenden Kanten aus.

Name

GetEdgeByPoint — Findet die edge-id einer Kante die einen gegebenen Punkt schneidet.

Synopsis

integer GetEdgeByPoint(varchar atopology, geometry apoint, float8 tol);

Beschreibung

Erfasst die ID einer Kante, die einen Punkt schneidet

Die Funktion gibt eine Ganzzahl (id-edge) für eine Topologie, einen POINT und eine Toleranz aus. Wenn tolerance = 0, dann muss der Punkt die Kante schneiden.

Wenn der Punkt keine Kante schneidet, wird 0 (Null) zurückgegeben.

Wenn eine tolerance > 0 angegeben ist und mehr als eine Kante in diesem Bereich existiert, wird eine Fehlermeldung ausgegeben.

[Note]

Wenn tolerance = 0, wird von der Funktion ST_Intersects angewendet, ansonsten ST_DWithin.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

Beispiele

Die folgenden Beispiele benutzen die Kanten, die wir in AddEdge erzeugt haben

SELECT topology.GetEdgeByPoint('ma_topo',geom, 1) As with1mtol, topology.GetEdgeByPoint('ma_topo',geom,0) As withnotol
FROM ST_GeomFromEWKT('SRID=26986;POINT(227622.6 893843)') As geom;
 with1mtol | withnotol
-----------+-----------
         2 |         0
SELECT topology.GetEdgeByPoint('ma_topo',geom, 1) As nearnode
FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;

-- gibt eine Fehlermeldung zurück --
ERROR:  Two or more edges found

Name

GetFaceByPoint — Findet die face-id einer Masche, die einen gegebenen Punkt schneidet

Synopsis

integer GetFaceByPoint(varchar atopology, geometry apoint, float8 tol);

Beschreibung

Die ID einer Masche abfragen, die einen Punkt schneidet.

Die Funktion gibt eine Ganzzahl (id-face) für eine Topologie, einen POINT und eine Toleranz aus. Wenn tolerance = 0, dann muss der Punkt die Masche schneiden.

Wenn der Punkt keine Masche schneidet, wird 0 (Null) ausgegeben.

Wenn eine tolerance > 0 angegeben ist und mehr als eine Masche in diesem Bereich existiert, wird eine Fehlermeldung ausgegeben.

[Note]

Wenn tolerance = 0, wird von der Funktion ST_Intersects angewendet, ansonsten ST_DWithin.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

Beispiele

Die folgenden Beispiele benutzen die Kanten und Maschen, die wir in AddFace erzeugt haben

SELECT topology.GetFaceByPoint('ma_topo',geom, 10) As with1mtol, topology.GetFaceByPoint('ma_topo',geom,0) As withnotol
        FROM ST_GeomFromEWKT('POINT(234604.6 899382.0)') As geom;

         with1mtol | withnotol
        -----------+-----------
                         1 |         0
SELECT topology.GetFaceByPoint('ma_topo',geom, 1) As nearnode
        FROM ST_GeomFromEWKT('POINT(227591.9 893900.4)') As geom;

-- Fehlermeldung --
ERROR:  Two or more faces found

Name

GetNodeByPoint — Findet zu der Lage eines Punktes die ID eines Knotens

Synopsis

integer GetNodeByPoint(varchar atopology, geometry point, float8 tol);

Beschreibung

Ruft zu der Lage eines Punktes die ID eines Knotens ab

Diese Funktion gibt für eine Topologie, einen POINT und eine Toleranz eine Ganzzahl (id-node) aus. Tolerance = 0 bedeutet exakte Überschneidung, ansonsten wird der Knoten in einem bestimmten Abstand gesucht.

Wenn der Punkt keine Kante schneidet, wird 0 (Null) zurückgegeben.

Wenn eine tolerance > 0 angegeben ist und mehr als eine Kante in diesem Bereich existiert, wird eine Fehlermeldung ausgegeben.

[Note]

Wenn tolerance = 0, wird von der Funktion ST_Intersects angewendet, ansonsten ST_DWithin.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

Beispiele

Die folgenden Beispiele benutzen die Kanten, die wir in AddEdge erzeugt haben

SELECT topology.GetNodeByPoint('ma_topo',geom, 1) As nearnode
 FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;
  nearnode
----------
        2
 
SELECT topology.GetNodeByPoint('ma_topo',geom, 1000) As too_much_tolerance
 FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;

 ----Fehlermeldung--
 ERROR:  Two or more nodes found
 

Name

GetTopologyID — Gibt für den Namen einer Topologie die ID der Topologie in der Tabelle "topology.topology" aus.

Synopsis

integer GetTopologyID(varchar toponame);

Beschreibung

Gibt für den Namen einer Topologie, die ID der Topologie in der Tabelle "topology.topology" aus.

Verfügbarkeit: 1.?

Beispiele

SELECT topology.GetTopologyID('ma_topo') As topo_id;
 topo_id
---------
       1

Name

GetTopologySRID — Gibt für den Namen einer Topologie, die SRID der Topologie in der Tabelle "topology.topology" aus.

Synopsis

integer GetTopologyID(varchar toponame);

Beschreibung

Gibt für den Namen einer Topologie, die ID des Koordinatenreferenzsystems in der Tabelle "topology.topology" aus.

Verfügbarkeit: 2.0.0

Beispiele

SELECT topology.GetTopologySRID('ma_topo') As SRID;
 SRID
-------
  4326

Name

GetTopologyName — Gibt für die ID der Topologie, den Namen der Topologie (Schema) zurück.

Synopsis

varchar GetTopologyName(integer topology_id);

Beschreibung

Gibt für die ID einer Topologie, den Namen (Schema) der Topologie in der Tabelle "topology.topology" aus.

Verfügbarkeit: 1.?

Beispiele

SELECT topology.GetTopologyName(1) As topo_name;
 topo_name
-----------
 ma_topo

Name

ST_GetFaceEdges — Gibt die Kanten, die aface begrenzen, sortiert aus.

Synopsis

getfaceedges_returntype ST_GetFaceEdges(varchar atopology, integer aface);

Beschreibung

Gibt die Kanten, die aface begrenzen, sortiert aus. Jede Ausgabe besteht aus einer Sequenz und einer "edgeid". Die Sequenzzahlen beginnen mit dem Wert 1.

Die Aufzählung der Kanten des Rings beginnt mit der Kante mit dem niedrigsten Identifikator. Die Reihenfolge der Kanten folgt der Drei-Finger-Regel (die begrenzte Masche liegt links von den gerichteten Kanten).

Verfügbarkeit: 2.0

This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.5

Beispiele

-- Gibt die Kanten zurück, welche die Masche 1 begrenzen
SELECT (topology.ST_GetFaceEdges('tt', 1)).*;
-- result --
 sequence | edge
----------+------
        1 |   -4
        2 |    5
        3 |    7
        4 |   -6
        5 |    1
        6 |    2
        7 |    3
(7 rows)
-- Gibt die Sequenz, die ID und die Geometrie der Kanten zurück,
-- welche die Masche 1 begrenzen
-- Wenn Sie nur die Geometrie und die Sequenzen benötigen, können Sie
-- ST_GetFaceGeometry verwenden
SELECT t.seq, t.edge, geom
FROM topology.ST_GetFaceEdges('tt',1) As t(seq,edge)
        INNER JOIN tt.edge AS e ON abs(t.edge) = e.edge_id;

Name

ST_GetFaceGeometry — Gibt für eine Topologie und eine bestimmte Maschen-ID das Polygon zurück.

Synopsis

geometry ST_GetFaceGeometry(varchar atopology, integer aface);

Beschreibung

Gibt für eine Topologie und eine bestimmte Maschen-ID das Polygon zurück. Erstellt das Polygon aus den Kanten, die die Masche aufbauen.

Verfügbarkeit: 1.?

This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.16

Beispiele

-- Gibt den WKT des mit AddFace hinzugefügten Polygons zurück
SELECT ST_AsText(topology.ST_GetFaceGeometry('ma_topo', 1)) As facegeomwkt;
-- result --
               facegeomwkt

--------------------------------------------------------------------------------
 POLYGON((234776.9 899563.7,234896.5 899456.7,234914 899436.4,234946.6 899356.9,
234872.5 899328.7,234891 899285.4,234992.5 899145,234890.6 899069,
234755.2 899255.4,234612.7 899379.4,234776.9 899563.7))

Siehe auch

AddFace


Name

GetRingEdges — Gibt eine sortierte Liste von mit Vorzeichen versehenen Identifikatoren der Kanten zurück, die angetroffen werden, wenn man an der Seite der gegebenen Kante entlangwandert.

Synopsis

getfaceedges_returntype GetRingEdges(varchar atopology, integer aring, integer max_edges=null);

Beschreibung

Gibt eine sortierte Liste von mit Vorzeichen versehenen Identifikatoren der Kanten zurück, die angetroffen werden, wenn man an der Seite der gegebenen Kante entlangwandert. Jede Ausgabe besteht aus einer Sequenz und einer mit einem Vorzeichen versehenen ID der Kante. Die Sequenz beginnt mit dem Wert 1.

Wenn Sie eine positive ID für die Kante übergeben, beginnt der Weg auf der linken Seite der entsprechenden Kante und folgt der Ausrichtung der Kante. Wenn Sie eine negative ID für die Kante übergeben, beginnt der Weg auf der rechten Seite der Kante und verläuft rückwärts.

Wenn max_edges nicht NULL ist, so beschränkt dieser Parameter die Anzahl der von dieser Funktion ausgegebenen Datensätze. Ist als Sicherheitsparameter für den Umgang mit möglicherweise invaliden Topologien gedacht.

[Note]

Diese Funktion verwendet Metadaten um die Kanten eines Ringes zu verbinden.

Verfügbarkeit: 2.0.0


Name

GetNodeEdges — Gibt für einen Knoten die sortierte Menge der einfallenden Kanten aus.

Synopsis

getfaceedges_returntype GetNodeEdges(varchar atopology, integer anode);

Beschreibung

Gibt für einen Knoten die sortierte Menge der einfallenden Kanten aus. Jede Ausgabe besteht aus einer Sequenz und einer mit Vorzeichen versehenen ID für die Kante. Die Sequenz beginnt mit dem Wert 1. Eine Kante mit positiver ID beginnt an dem gegebenen Knoten. Eine negative Kante endet in dem gegebenen Knoten. Geschlossene Kanten kommen zweimal vor (mit beiden Vorzeichen). Die Sortierung geschieht von Norden ausgehend im Uhrzeigersinn.

[Note]

Diese Funktion errechnet die Reihenfolge, anstatt sie aus den Metadaten abzuleiten und kann daher verwendet werden, um die Kanten eines Ringes zu verbinden.

Verfügbarkeit: 2.0

11.7. Topologie Verarbeitung

Abstract

Dieser Abschnitt behandelt Funktionen zur Verarbeitung von Topologien mit nicht standardmäßigen Methoden.

Polygonize — Findet und registriert alle Maschen, die durch die Kanten der Topologie festgelegt sind
AddNode — Fügt einen Knotenpunkt zu der Tabelle "node" in dem vorgegebenen topologischen Schema hinzu und gibt die "nodeid" des neuen Knotens aus. Falls der Punkt bereits als Knoten existiert, wird die vorhandene nodeid zurückgegben.
AddEdge — Fügt die Kante eines Linienzugs in der Tabelle "edge", und die zugehörigen Anfangs- und Endpunkte in die Knotenpunkttabelle, des jeweiligen topologischen Schemas ein. Dabei wird die übergebene Linienzuggeometrie verwendet und die edgeid der neuen (oder bestehenden) Kante ausgegeben.
AddFace — Registriert die Elementarstruktur einer Masche in einer Topologie und gibt den Identifikator der Masche aus.
ST_Simplify — Gibt für eine TopoGeometry eine "vereinfachte" geometrische Version zurück. Verwendet den Douglas-Peucker Algorithmus.

Name

Polygonize — Findet und registriert alle Maschen, die durch die Kanten der Topologie festgelegt sind

Synopsis

text Polygonize(varchar toponame);

Beschreibung

Registriert alle Maschen, die aus den Kanten der topologischen Elementarstrukturen erstellt werden können

Von der Zieltopologie wird angenommen, dass sie keine sich selbst überschneidenden Kanten enthält.

[Note]

Da bereits bekannte Maschen erkannt werden, kann Polygonize gefahrlos mehrere Male auf die selbe Topologie angewendet werden.

[Note]

Von dieser Funktion werden die Attribute "next_left_edge" und "next_right_edge" der Tabelle "edge" weder verwendet noch gesetzt.

Verfügbarkeit: 2.0.0


Name

AddNode — Fügt einen Knotenpunkt zu der Tabelle "node" in dem vorgegebenen topologischen Schema hinzu und gibt die "nodeid" des neuen Knotens aus. Falls der Punkt bereits als Knoten existiert, wird die vorhandene nodeid zurückgegben.

Synopsis

integer AddNode(varchar toponame, geometry apoint, boolean allowEdgeSplitting=false, boolean computeContainingFace=false);

Beschreibung

Fügt einen Knotenpunkt zu der Tabelle "node" in dem vorgegebenen topologischen Schema hinzu. Die Funktion AddEdge fügt die Anfangs- und Endpunkte einer Kante automatisch hinzu, wenn sie aufgerufen wird. Deshalb ist es nicht notwendig die Knoten einer Kante explizit anzufügen.

Falls eine Kante aufgefunden wird, die den Knoten kreuzt, dann wird entweder eine Fehlermeldung ausgegeben, oder die Kante aufgetrennt. Dieses Verhalten hängt vom Wert des Parameters allowEdgeSplitting ab.

Wenn computeContainingFace TRUE ist, dann wird für einen neu hinzugefügten Knoten die berichtigte Begrenzung der Masche berechnet.

[Note]

Wenn die Geometrie apoint bereits als Knoten existiert, dann wird der Knoten nicht hinzugefügt und der bestehende Knoten ausgegeben.

Verfügbarkeit: 2.0.0

Beispiele

SELECT topology.AddNode('ma_topo', ST_GeomFromText('POINT(227641.6 893816.5)', 26986) ) As nodeid;
-- result --
nodeid
--------
 4


Name

AddEdge — Fügt die Kante eines Linienzugs in der Tabelle "edge", und die zugehörigen Anfangs- und Endpunkte in die Knotenpunkttabelle, des jeweiligen topologischen Schemas ein. Dabei wird die übergebene Linienzuggeometrie verwendet und die edgeid der neuen (oder bestehenden) Kante ausgegeben.

Synopsis

integer AddEdge(varchar toponame, geometry aline);

Beschreibung

Fügt eine Kante in der Tabelle "edge", und die zugehörigen Knoten in die Tabelle "node", des jeweiligen Schemas toponame ein. Dabei wird die übergebene Linienzuggeometrie verwendet und die edgeid des neuen oder des bestehenden Datensatzes ausgegeben. Die neu hinzugefügte Kante hat auf beiden Seiten die Masche für die Grundmenge/"Universum" und verweist auf sich selbst.

[Note]

Wenn die Geometrie aline eine bestehende Kante kreuzt, überlagert, beinhaltet oder in ihr enthalten ist, dann wird eine Fehlermeldung ausgegeben und die Kante wird nicht hinzugefügt.

[Note]

Die Geometrie von aline muss dieselbe SRID aufweisen wie die Topologie, ansonsten wird die Fehlermeldung "invalid spatial reference sys error" ausgegeben.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.0.0

Beispiele

SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227575.8 893917.2,227591.9 893900.4)', 26986) ) As edgeid;
-- Ergebnis-
edgeid
--------
 1

SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.9 893900.4,227622.6 893844.2,227641.6 893816.5,
 227704.5 893778.5)', 26986) ) As edgeid;
-- Ergebnis --
edgeid
--------
 2

 SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.2 893900, 227591.9 893900.4,
  227704.5 893778.5)', 26986) ) As edgeid;
 -- Fehlermeldung --
 ERROR:  Edge intersects (not on endpoints) with existing edge 1

Name

AddFace — Registriert die Elementarstruktur einer Masche in einer Topologie und gibt den Identifikator der Masche aus.

Synopsis

integer AddFace(varchar toponame, geometry apolygon, boolean force_new=false);

Beschreibung

Registriert die Elementarstruktur einer Masche in einer Topologie und gibt den Identifikator der Masche aus.

Bei einer neu hinzugefügten Masche werden die Kanten die ihre Begrenzung bilden und jene die innerhalb der Masche liegen aktualisiert, damit diese die richtigen Werte in den Attribunten "left_face" und "right_face" aufweisen. Isolierte Knoten innerhalb der Masche werden ebenfalls aktualisiert, damit das Attribut "containing_face" die richtigen Werte aufweist.

[Note]

Von dieser Funktion werden die Attribute "next_left_edge" und "next_right_edge" der Tabelle "edge" weder verwendet noch gesetzt.

Es wird angenommen, dass die Zieltopologie valide ist (keine sich selbst überschneidenden Kanten enthält). Eine Fehlermeldung wird ausgegeben, wenn: Die Begrenzung des Polygons nicht vollständig durch bestehende Kanten festgelegt ist oder das Polygon eine bereits bestehende Masche überlappt.

Falls die Geometrie apolygon bereits als Masche existiert, dann: wenn force_new FALSE (der Standardwert) ist, dann wird die bestehende Masche zurückgegeben; wenn force_new TRUE ist, dann wird der neu registrierten Masche eine neue ID zugewiesen.

[Note]

Wenn eine bestehende Masche neu registriert wird (force_new=true), werden keine Maßnahmen durchgeführt um hängende Verweise auf eine bestehende Masche in den Tabellen "edge", "node" und "relation" zu bereinigen, noch wird der das Attribut MBR der bestehenden Masche aktualisert. Es ist die Aufgabe des Aufrufers sich um dies zu kümmern.

[Note]

Die Geometrie von apolygon muss dieselbe SRID aufweisen wie für die Topologie festgelegt, ansonsten wird die Fehlermeldung "invalid spatial reference sys error" ausgegeben.

Verfügbarkeit: 2.0.0

Beispiele

-- zuert werden die Kanten hinzugefügt - mittels "generate_series" als Iterator
-- (nur bei Polygonen mit < 10000 Punkten, wegen des Maximums in "generate_series")
SELECT topology.AddEdge('ma_topo', ST_MakeLine(ST_PointN(geom,i), ST_PointN(geom, i + 1) )) As edgeid
    FROM (SELECT  ST_NPoints(geom) AS npt, geom
            FROM
                (SELECT ST_Boundary(ST_GeomFromText('POLYGON((234896.5 899456.7,234914 899436.4,234946.6 899356.9,234872.5 899328.7,
                234891 899285.4,234992.5 899145, 234890.6 899069,234755.2 899255.4,
                234612.7 899379.4,234776.9 899563.7,234896.5 899456.7))', 26986) )  As geom
            )  As geoms) As facen CROSS JOIN generate_series(1,10000) As i
         WHERE i < npt;
-- result --
 edgeid
--------
      3
      4
      5
      6
      7
      8
      9
     10
     11
     12
(10 rows)

-- dann wird die Masche hinzugefügt -
SELECT topology.AddFace('ma_topo',
    ST_GeomFromText('POLYGON((234896.5 899456.7,234914 899436.4,234946.6 899356.9,234872.5 899328.7,
    234891 899285.4,234992.5 899145, 234890.6 899069,234755.2 899255.4,
    234612.7 899379.4,234776.9 899563.7,234896.5 899456.7))', 26986) ) As faceid;
-- result --
faceid
--------
 1


Name

ST_Simplify — Gibt für eine TopoGeometry eine "vereinfachte" geometrische Version zurück. Verwendet den Douglas-Peucker Algorithmus.

Synopsis

geometry ST_Simplify(TopoGeometry geomA, float tolerance);

Beschreibung

Gibt für eine TopoGeometry eine "vereinfachte" geometrische Version zurück. Wendet den Douglas-Peucker Algorithmus auf jede Kante an.

[Note]

Es kann vorkommen, dass die zurückgegebene Geometrie weder "simple" noch valide ist.

Das Auftrennen der Kanten kann helfen, die Simplizität/Validität zu erhalten.

Wird vom GEOS Modul ausgeführt

Verfügbarkeit: 2.1.0

11.8. TopoGeometry Konstruktoren

Abstract

Dieser Abschnitt behandelt topologische Funktionen zur Erstellung einer neuen TopoGeometry.

CreateTopoGeom — Erzeugt ein neues topologisch geometrisches Objekt aus einem Feld mit topologischen Elementen - tg_type: 1:[multi]point, 2:[multi]line, 3:[multi]poly, 4:collection
toTopoGeom — Wandelt eine einfache Geometrie in eine TopoGeometry um
TopoElementArray_Agg — Gibt für eine Menge an element_id, type Feldern (topoelements) ein topoelementarray zurück

Name

CreateTopoGeom — Erzeugt ein neues topologisch geometrisches Objekt aus einem Feld mit topologischen Elementen - tg_type: 1:[multi]point, 2:[multi]line, 3:[multi]poly, 4:collection

Synopsis

topogeometry CreateTopoGeom(varchar toponame, integer tg_type, integer layer_id, topoelementarray tg_objs);

topogeometry CreateTopoGeom(varchar toponame, integer tg_type, integer layer_id);

Beschreibung

Erstellt ein TopoGeometry Objekt für den Layer, der über die layer_id angegeben wird, und registriert es in der Tabelle "relation" in dem Schema toponame.

tg_type ist eine Ganzzahl: 1:[multi]point (punktförmig), 2:[multi]line (geradlinig), 3:[multi]poly (flächenhaft), 4:collection. layer_id ist der Identifikator des Layers in der Tabelle "topology.layer".

Punktförmige Layer werden aus Knoten gebildet, linienförmige Layer aus Kanten, flächige Layer aus Maschen und Kollektionen können aus einer Mischung von Knoten, Kanten und Maschen gebildet werden.

Wird das Feld mit den Komponenten weggelassen, wird ein leeres TopoGeometrie Objekt erstellt.

Verfügbarkeit: 1.?

Beispiele: Aus bestehenden Kanten bilden

Erstellt eine TopoGeometry im Schema "ri_topo" für den Layer 2 (ri_roads), vom Datentyp (2) LINE, für die erste Kante (die wir unter ST_CreateTopoGeo geladen haben).

INSERT INTO ri.ri_roads(road_name, topo) VALUES('Unknown', topology.CreateTopoGeom('ri_topo',2,2,'{{1,2}}'::topology.topoelementarray);

Beispiele: Eine flächige Geometrie in die vermutete TopoGeometry konvertieren

Angenommen wir wollen eine Geometrie aus einer Kollektion von Maschen bilden. Wir haben zum Beispiel die Tabelle "blockgroups" und wollen die TopoGeometry von jeder "blockgroup" wissen. Falls unsere Daten perfekt ausgerichtet sind, können wir folgendes ausführen:

-- erstellt die TopoGeometry Spalte --
SELECT topology.AddTopoGeometryColumn(
        'topo_boston',
        'boston', 'blockgroups', 'topo', 'POLYGON');

-- addtopgeometrycolumn --
1

-- Aktualisierung der Spalte unter der Annahme,
-- dass Alles perfekt an den Kanten ausgerichtet ist
UPDATE boston.blockgroups AS bg
        SET topo = topology.CreateTopoGeom('topo_boston'
        ,3,1
        , foo.bfaces)
FROM (SELECT b.gid,  topology.TopoElementArray_Agg(ARRAY[f.face_id,3]) As bfaces
        FROM boston.blockgroups As b
            INNER JOIN topo_boston.face As f ON b.geom && f.mbr
        WHERE ST_Covers(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))
            GROUP BY b.gid) As foo
WHERE foo.gid = bg.gid;
--die Welt ist selten perfekt und gestattet ein paar Fehler
--berechnet, ob 50% der Masche dorthinein fallen,
--wo wir die Begrenzung unserer "Blockgroup" annehmen
UPDATE boston.blockgroups AS bg
        SET topo = topology.CreateTopoGeom('topo_boston'
        ,3,1
        , foo.bfaces)
FROM (SELECT b.gid,  topology.TopoElementArray_Agg(ARRAY[f.face_id,3]) As bfaces
        FROM boston.blockgroups As b
            INNER JOIN topo_boston.face As f ON b.geom && f.mbr
        WHERE ST_Covers(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))
        OR
 (  ST_Intersects(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))
            AND ST_Area(ST_Intersection(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id) ) ) >
                ST_Area(topology.ST_GetFaceGeometry('topo_boston', f.face_id))*0.5
                )
            GROUP BY b.gid) As foo
WHERE foo.gid = bg.gid;

-- und falls wir die TopoGeometry zurück konvertieren wollen,
-- in eine denormalisierte Geometrie die an unseren Maschen und Kanten ausgerichtet ist,
-- wandeln wir den topologischen Datentyp in eine Geometrie um
-- Das richtig Fetzige daran ist, dass die neue Geometrie
-- nun an den Mittelachsen der "Tiger"-Strassen ausgerichtet ist
UPDATE boston.blockgroups SET new_geom = topo::geometry;

Name

toTopoGeom — Wandelt eine einfache Geometrie in eine TopoGeometry um

Synopsis

topogeometry toTopoGeom(geometry geom, varchar toponame, integer layer_id, float8 tolerance);

topogeometry toTopoGeom(geometry geom, topogeometry topogeom, float8 tolerance);

Beschreibung

Wandelt eine einfache Geometrie in eine TopoGeometry um.

Die topologischen Elementarstrukturen, die benötigt werden um die Übergabegeometrie darzustellen, werden der zugrunde liegenden Topologie hinzugefügt. Dabei können bestehende Strukturen aufgetrennt werden, die dann mit der ausgegebenen TopoGeometry in der Tabelle relation zusammengeführt werden.

Bestehende Objekte einer TopoGeometry (mit der möglichen Ausnahme von topogeom, falls angegeben) behalten ihre geometrische Gestalt.

Wenn tolerance angegeben ist, wird diese zum Fangen der Eingabegeometrie an bestehenden Elementarstrukturen verwendet.

Bei der ersten Form wird eine neue TopoGeometry für den Layer (layer_id) einer Topologie (toponame) erstellt.

Bei der zweiten Form werden die aus der Konvertierung enstehenden Elementarstrukturen zu der bestehenden TopoGeometry (topogeom) hinzugefügt. Dabei wird möglicherweise zusätzlicher Raum aufgefüllt, um die endgültige geometrische Gestalt zu erreichen. Um die alte geometrische Gestalt zur Gänze durch eine neue zu ersetzen, siehe clearTopoGeom.

Verfügbarkeit: 2.0

Erweiterung: 2.1.0 die Version, welche eine bestehende TopoGeometry entgegennimmt, wurde hinzugefügt.

Beispiele

Dies ist ein in sich selbst vollkommen abgeschlossener Arbeitsablauf

-- führen Sie dies bitte aus, wenn Wie noch keine Topologie aufgesetzt haben
-- erstellt eine Topologie, ohne eine Toleranz zu erlauben
SELECT topology.CreateTopology('topo_boston_test', 2249);
-- erstellt eine neue Tabelle
CREATE TABLE nei_topo(gid serial primary key, nei varchar(30));
--fügt eine TopoGeometry-Spalte hinzu
SELECT topology.AddTopoGeometryColumn('topo_boston_test', 'public', 'nei_topo', 'topo', 'MULTIPOLYGON') As new_layer_id;
new_layer_id
-----------
1

--verwendet die neue "layer-id" um die neue TopoGeometry-Spalte zu befüllen
-- wir fügen die TopoGeometry mit der Toleranz 0 zu dem neuen Layer hinzu
INSERT INTO nei_topo(nei, topo)
SELECT nei,  topology.toTopoGeom(geom, 'topo_boston_test', 1)
FROM neighborhoods
WHERE gid BETWEEN 1 and 15;

--schauen was passiert ist --
SELECT * FROM
    topology.TopologySummary('topo_boston_test');

-- summary--
Topology topo_boston_test (5), SRID 2249, precision 0
61 nodes, 87 edges, 35 faces, 15 topogeoms in 1 layers
Layer 1, type Polygonal (3), 15 topogeoms
 Deploy: public.nei_topo.topo
-- Schrumpft alle Polygone der TopoGeometry um 10 Mmeter
UPDATE nei_topo SET topo = ST_Buffer(clearTopoGeom(topo), -10);

-- das Niemandsland erhalten, das durch den oberen Vorgang übriggelassen wurde
-- Ich glaube bei GRASS wird dieses mit "polygon0 layer" bezeichnet
SELECT ST_GetFaceGeometry('topo_boston_test', f.face_id)
  FROM topo_boston_test.face f
  WHERE f.face_id 
> 0 -- don't consider the universe face
  AND NOT EXISTS ( -- check that no TopoGeometry references the face
    SELECT * FROM topo_boston_test.relation
    WHERE layer_id = 1 AND element_id = f.face_id
  );
        

Name

TopoElementArray_Agg — Gibt für eine Menge an element_id, type Feldern (topoelements) ein topoelementarray zurück

Synopsis

topoelementarray TopoElementArray_Agg(topoelement set tefield);

Beschreibung

Verwendet um ein TopoElementArray aus einer Menge an TopoElement zu erstellen.

Verfügbarkeit: 2.0.0

Beispiele

SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
  FROM generate_series(1,3) As e CROSS JOIN generate_series(1,4) As t;
  tea
--------------------------------------------------------------------------
{{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2},{3,3},{3,4}}

11.9. TopoGeometry Editoren

Abstract

Dieser Abschnitt behandelt topologische Funktionen zur Bearbeitung einer bestehenden TopoGeometry.

clearTopoGeom — Löscht den Inhalt einer TopoGeometry
TopoGeom_addElement — Fügt ein Element zu der Definition einer TopoGeometry hinzu
TopoGeom_remElement — Entfernt ein Element aus der Definition einer TopoGeometry
toTopoGeom — Fügt eine Geometrie zu einer bestehenden TopoGeometry hinzu

Name

clearTopoGeom — Löscht den Inhalt einer TopoGeometry

Synopsis

topogeometry clearTopoGeom(topogeometry topogeom);

Beschreibung

Löscht den Inhalt einer TopoGeometry und wandelt sie in eine leere um. Am nützlichsten in Verbindung mit toTopoGeom, um die geometrische Gestalt bestehende Objekte und alle abhängigen Objekte in höheren hierarchischen Ebenen zu ersetzen.

Verfügbarkeit: 2.1

Beispiele

-- Alle Polygone einer TopoGeometry um 10 Meter schrumpfen
UPDATE nei_topo SET topo = ST_Buffer(clearTopoGeom(topo), -10);
                                

Siehe auch

toTopoGeom


Name

TopoGeom_addElement — Fügt ein Element zu der Definition einer TopoGeometry hinzu

Synopsis

topogeometry TopoGeom_addElement(topogeometry tg, topoelement el);

Beschreibung

Fügt ein TopoElement zur Definition eines TopoGeometry-Objekts hinzu. Wenn das Element bereits Teil der Definition ist, führt dies zu keinem Fehler.

Verfügbarkeit: 2.3

Beispiele

-- Die Kante 5 zu der TopoGeometry "tg" hinzufügen
UPDATE mylayer SET tg = TopoGeom_addElement(tg, '{5,2}');
                                

Name

TopoGeom_remElement — Entfernt ein Element aus der Definition einer TopoGeometry

Synopsis

topogeometry TopoGeom_remElement(topogeometry tg, topoelement el);

Beschreibung

Entfernt ein TopoElement aus der Ausgestaltung des TopoGeometry Objekts.

Verfügbarkeit: 2.3

Beispiele

-- Entfert Masche 43 aus der TopoGeometry tg
UPDATE mylayer SET tg = TopoGeom_remElement(tg, '{43,3}');
                                

Name

toTopoGeom — Fügt eine Geometrie zu einer bestehenden TopoGeometry hinzu

Beschreibung

Siehe toTopoGeom

11.10. TopoGeometry Accessors

GetTopoGeomElementArray — Gibt ein topoelementarray (ein Feld von topoelements) zurück, das die topologischen Elemente und den Datentyp der gegebenen TopoGeometry (die Elementarstrukturen) enthält.
GetTopoGeomElements — Gibt für eine TopoGeometry (Elementarstrukturen) einen Satz an topoelement Objekten zurück, welche die topologische element_id und den element_type beinhalten

Name

GetTopoGeomElementArray — Gibt ein topoelementarray (ein Feld von topoelements) zurück, das die topologischen Elemente und den Datentyp der gegebenen TopoGeometry (die Elementarstrukturen) enthält.

Synopsis

topoelementarray GetTopoGeomElementArray(varchar toponame, integer layer_id, integer tg_id);

topoelementarray topoelement GetTopoGeomElementArray(topogeometry tg);

Beschreibung

Gibt ein TopoElementArray zurück, das die topologischen Elemente und den Datentyp der gegebenen TopoGeometry (die Elementarstrukturen) enthält. Dies ist ähnlich dem GetTopoGeomElements, ausser dass die Elemente als Feld statt als Datensatz ausgegeben werden.

tg_id steht für die ID des TopoGeometry Objekts der Topologie eines Layers, der durch die layer_id der Tabelle "topology.layer" angegeben wird.

Verfügbarkeit: 1.?

Beispiele


Name

GetTopoGeomElements — Gibt für eine TopoGeometry (Elementarstrukturen) einen Satz an topoelement Objekten zurück, welche die topologische element_id und den element_type beinhalten

Synopsis

setof topoelement GetTopoGeomElements(varchar toponame, integer layer_id, integer tg_id);

setof topoelement GetTopoGeomElements(topogeometry tg);

Beschreibung

Gibt für ein TopoGeometry Objekt im Schema toponame, eine Menge an element_id,element_type (topoelements) aus.

tg_id steht für die ID des TopoGeometry Objekts der Topologie eines Layers, der durch die layer_id der Tabelle "topology.layer" angegeben wird.

Verfügbarkeit: 2.0.0

Beispiele

11.11. TopoGeometry Ausgabe

AsGML — Gibt die GML-Darstellung einer TopoGeometry zurück.
AsTopoJSON — Gibt die TopoJSON-Darstellung einer TopoGeometry zurück.

Name

AsGML — Gibt die GML-Darstellung einer TopoGeometry zurück.

Synopsis

text AsGML(topogeometry tg);

text AsGML(topogeometry tg, text nsprefix_in);

text AsGML(topogeometry tg, regclass visitedTable);

text AsGML(topogeometry tg, regclass visitedTable, text nsprefix);

text AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options);

text AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options, regclass visitedTable);

text AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options, regclass visitedTable, text idprefix);

text AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options, regclass visitedTable, text idprefix, int gmlversion);

Beschreibung

Gibt die GML-Darstellung einer TopoGeometry im GML3-Format aus. Wenn kein nsprefix_in angegeben ist, dann wird gml verwendet. Übergeben sie eine leere Zeichenfolge für "nsprefix" um keinen bestimmten Namensraum festzulegen. Wenn die Parameter "precision" (Standardwert: 15) und "options" (Standardwert: 1) angegeben sind, werden diese unangetastet an den zugrunde liegenden Aufruf von ST_AsGML übergeben.

Wenn der Parameter visitedTable angegeben ist, dann wird dieser verwendet um die bereits besuchten Knoten und Kanten über Querverweise (xlink:xref) zu verfolgen, anstatt Definitionen zu vervielfältigen. Die Tabelle muss (zumindest) zwei Integerfelder enthalten: 'element_type' und 'element_id'. Für den Aufruf muss der Anwender sowohl Lese- als auch Schreibrechte auf die Tabelle besitzen. Um die maximale Rechenleistung zu erreichen, sollte ein Index für die Attribute element_type und element_id - in dieser Reihenfolge - festgelegt werden. Dieser Index wird automatisch erstellt, wenn auf die Attribute ein Unique Constraint gelegt wird. Beispiel:

CREATE TABLE visited (
  element_type integer, element_id integer,
  unique(element_type, element_id)
);

Wird der Parameter idprefix angegeben, so wird dieser den Identifikatoren der Tags von Kanten und Knoten vorangestellt.

Wird der Parameter gmlver angegeben, so wird dieser and das zugrunde liegende ST_AsGML übergeben. Standardmäßig wird 3 angenommen.

Verfügbarkeit: 2.0.0

Beispiele

Hier wird die TopoGeometry verwendet, die wir unter CreateTopoGeom erstellt haben

SELECT topology.AsGML(topo) As rdgml
  FROM ri.roads
  WHERE road_name = 'Unknown';

-- rdgml--
<gml:TopoCurve>
    <gml:directedEdge>
        <gml:Edge gml:id="E1">
            <gml:directedNode orientation="-">
                <gml:Node gml:id="N1"/>
            </gml:directedNode>
            <gml:directedNode
></gml:directedNode>
            <gml:curveProperty>
                <gml:Curve srsName="urn:ogc:def:crs:EPSG::3438">
                    <gml:segments>
                        <gml:LineStringSegment>
                            <gml:posList srsDimension="2"
>384744 236928 384750 236923 384769 236911 384799 236895 384811 236890
                            384833 236884 384844 236882 384866 236881 384879 236883 384954 236898 385087 236932 385117 236938
                            385167 236938 385203 236941 385224 236946 385233 236950 385241 236956 385254 236971
                            385260 236979 385268 236999 385273 237018 385273 237037 385271 237047 385267 237057 385225 237125
                            385210 237144 385192 237161 385167 237192 385162 237202 385159 237214 385159 237227 385162 237241
                            385166 237256 385196 237324 385209 237345 385234 237375 385237 237383 385238 237399 385236 237407
                            385227 237419 385213 237430 385193 237439 385174 237451 385170 237455 385169 237460 385171 237475
                            385181 237503 385190 237521 385200 237533 385206 237538 385213 237541 385221 237542 385235 237540 385242 237541
                            385249 237544 385260 237555 385270 237570 385289 237584 385292 237589 385291 237596 385284 237630</gml:posList>
                        </gml:LineStringSegment>
                    </gml:segments>
                </gml:Curve>
            </gml:curveProperty>
        </gml:Edge>
    </gml:directedEdge>
</gml:TopoCurve
>

Selbes Beispiel wie das Vorige, aber ohne Namensraum

SELECT topology.AsGML(topo,'') As rdgml
  FROM ri.roads
  WHERE road_name = 'Unknown';

-- rdgml--
<TopoCurve>
    <directedEdge>
        <Edge id="E1">
            <directedNode orientation="-">
                <Node id="N1"/>
            </directedNode>
            <directedNode
></directedNode>
            <curveProperty>
                <Curve srsName="urn:ogc:def:crs:EPSG::3438">
                    <segments>
                        <LineStringSegment>
                            <posList srsDimension="2"
>384744 236928 384750 236923 384769 236911 384799 236895 384811 236890
                            384833 236884 384844 236882 384866 236881 384879 236883 384954 236898 385087 236932 385117 236938
                            385167 236938 385203 236941 385224 236946 385233 236950 385241 236956 385254 236971
                            385260 236979 385268 236999 385273 237018 385273 237037 385271 237047 385267 237057 385225 237125
                            385210 237144 385192 237161 385167 237192 385162 237202 385159 237214 385159 237227 385162 237241
                            385166 237256 385196 237324 385209 237345 385234 237375 385237 237383 385238 237399 385236 237407
                            385227 237419 385213 237430 385193 237439 385174 237451 385170 237455 385169 237460 385171 237475
                            385181 237503 385190 237521 385200 237533 385206 237538 385213 237541 385221 237542 385235 237540 385242 237541
                            385249 237544 385260 237555 385270 237570 385289 237584 385292 237589 385291 237596 385284 237630</posList>
                         </LineStringSegment>
                    </segments>
                </Curve>
            </curveProperty>
        </Edge>
    </directedEdge>
</TopoCurve
>

Name

AsTopoJSON — Gibt die TopoJSON-Darstellung einer TopoGeometry zurück.

Synopsis

text AsTopoJSON(topogeometry tg, regclass edgeMapTable);

Beschreibung

Gibt eine TopoGeometry in der TopoJSON-Darstellung zurück. Wenn edgeMapTable nicht NULL ist, wird diese als Lookup/Speicher für die Abbildung der Identifikatoren der Kanten auf die Indizes der Kreisbögen verwendet. Dadurch wird ein kompaktes Feld "arcs" im endgültigen Dokument ermöglicht.

Wenn die Tabelle angegeben ist, wird die Existenz der Attribute "arc_id" vom Datentyp "serial" und "edge_id" vom Typ "integer" vorausgesetzt; da der Code die Tabelle nach der "edge_id" abfragt, sollte ein Index für dieses Attribut erstellt werden.

[Note]

Die Kreisbögen in der TopoJSON Ausgabe sind von 0 weg indiziert, während sie in der Tabelle "edgeMapTable" 1-basiert sind.

Ein vollständiges TopoJson Dokument benötigt zusätzlich zu den von dieser Funktion ausgegebenen Schnipseln, die tatsächlichen Bögen und einige Header. SieheTopoJSON specification.

Verfügbarkeit: 2.1.0

Erweiterung: 2.2.1 Unterstützung für punktförmige Eingabewerte hinzugefügt

Siehe auch

ST_AsGeoJSON

Beispiele

CREATE TEMP TABLE edgemap(arc_id serial, edge_id int unique);

-- Header
SELECT '{ "type": "Topology", "transform": { "scale": [1,1], "translate": [0,0] }, "objects": {'

-- Objekte
UNION ALL SELECT '"' || feature_name || '": ' || AsTopoJSON(feature, 'edgemap')
FROM features.big_parcels WHERE feature_name = 'P3P4';

-- Bögen
WITH edges AS (
  SELECT m.arc_id, e.geom FROM edgemap m, city_data.edge e
  WHERE e.edge_id = m.edge_id
), points AS (
  SELECT arc_id, (st_dumppoints(geom)).* FROM edges
), compare AS (
  SELECT p2.arc_id,
         CASE WHEN p1.path IS NULL THEN p2.geom
              ELSE ST_Translate(p2.geom, -ST_X(p1.geom), -ST_Y(p1.geom))
         END AS geom
  FROM points p2 LEFT OUTER JOIN points p1
  ON ( p1.arc_id = p2.arc_id AND p2.path[1] = p1.path[1]+1 )
  ORDER BY arc_id, p2.path
), arcsdump AS (
  SELECT arc_id, (regexp_matches( ST_AsGeoJSON(geom), '\[.*\]'))[1] as t
  FROM compare
), arcs AS (
  SELECT arc_id, '[' || array_to_string(array_agg(t), ',') || ']' as a FROM arcsdump
  GROUP BY arc_id
  ORDER BY arc_id
)
SELECT '}, "arcs": [' UNION ALL
SELECT array_to_string(array_agg(a), E',\n') from arcs

-- Footer
UNION ALL SELECT ']}'::text as t;

-- Result:
{ "type": "Topology", "transform": { "scale": [1,1], "translate": [0,0] }, "objects": {
"P3P4": { "type": "MultiPolygon", "arcs": [[[-1]],[[6,5,-5,-4,-3,1]]]}
}, "arcs": [
 [[25,30],[6,0],[0,10],[-14,0],[0,-10],[8,0]],
 [[35,6],[0,8]],
 [[35,6],[12,0]],
 [[47,6],[0,8]],
 [[47,14],[0,8]],
 [[35,22],[12,0]],
 [[35,14],[0,8]]
 ]}

11.12. Räumliche Beziehungen einer Topologie

Abstract

Dieser Abschnitt behandelt topologische Funktionen zur Überprüfung der Beziehungen von TopoGeometry Objekten und topologischen Elementarstrukturen

Equals — Gibt TRUE zurück, wenn zwei TopoGeometry Objekte aus denselben topologischen Elementarstrukturen bestehen.
Intersects — Gibt TRUE zurück, wenn sich kein beliebiges Paar von Elemtarstrukturen zweier TopoGeometry Objekte überschneidet.

Name

Equals — Gibt TRUE zurück, wenn zwei TopoGeometry Objekte aus denselben topologischen Elementarstrukturen bestehen.

Synopsis

boolean Equals(topogeometry tg1, topogeometry tg2);

Beschreibung

Gibt TRUE zurück, wenn zwei TopoGeometry Objekte aus denselben topologischen Elementarstrukturen: Maschen, Kanten, Knoten, bestehen.

[Note]

Diese Funktion unterstützt keine TopoGeometry aus einer Sammelgeometrie. Es kann auch keine TopoGeometry Objekte unterschiedlicher Topologien vergleichen

Verfügbarkeit: 1.1.0

This function supports 3d and will not drop the z-index.

Beispiele


Name

Intersects — Gibt TRUE zurück, wenn sich kein beliebiges Paar von Elemtarstrukturen zweier TopoGeometry Objekte überschneidet.

Synopsis

boolean Intersects(topogeometry tg1, topogeometry tg2);

Beschreibung

Gibt TRUE zurück, wenn sich kein beliebiges Paar von Elemtarstrukturen zweier TopoGeometry Objekte überschneidet.

[Note]

Diese Funktion unterstützt keine TopoGeometry aus einer Sammelgeometrie. Es kann auch keine TopoGeometry Objekte unterschiedlicher Topologien vergleichen. Eine hierarchische TopoGeometry (eine TopoGeometry die sich aus anderen TopoGeometry Objekten zusammensetzt) wird zur Zeit ebenfalls nicht unterstützt.

Verfügbarkeit: 1.1.0

This function supports 3d and will not drop the z-index.

Beispiele

Siehe auch

???

Chapter 12. Adressennormierer

Dies ist ein Entwicklungszweig des PAGC Adressennormierers (der Code für diesen Teilbereich beruht auf dem PAGC Adressennormierer für PostgreSQL).

Der Adressennormierer ist ein Parser für einzeilige Adressen. Eine gegebene Adresse wird anhand von in einer Tabelle abgelegten Regeln und den Hilfstabellen "lex" und "gaz" normiert.

Der Code befindet sich in einer einzelnen PostgreSQL Erweiterungsbibliothek mit der Bezeichnung address_standardizer und kann mittels CREATE EXTENSION address_standardizer; installiert werden. Zusätzlich zu der Erweiterung "address_standardizer" gibt es auch die Erweiterung address_standardizer_data_us, welche die Tabellen "gaz", "lex" und "rules" für Daten der USA enthält. Diese Erweiterung kann mittels CREATE EXTENSION address_standardizer_data_us; installiert werden.

Der Code für diese Erweiterung befindet sich unter PostGIS in extensions/address_standardizer und ist zurzeit self-contained ("unabhängig").

Für eine Installationsanleitung siehe: Section 2.8, “Installation und Verwendung des Adressennormierers”.

12.1. Funktionsweise des Parsers

Der Parser arbeitet von rechts nach links und betrachtet zunächst die Makroelemente Postleitzahl, Staat/Provinz, Stadt. Anschließend werden die Mikroelemente untersucht, um festzustellen ob es sich um eine Husnummer, eine Kreuzung oder eine Wegmarkierung handelt. Zur Zeit schaut der Parser nicht auf die Landeskennzahl oder -namen, dies kann aber möglicherweise noch implementiert werden.

Country code

Wird als US oder CA basiert angenommen: Postleitzahl als US oder Kanada, state/province als US oder Kanada, sonst US

Postcode/zipcode

Diese werden über Perl-kompatible reguläre Ausdrücke erkannt. Die Regexs befinden sich in "parseaddress-api.c" und können bei Bedarf relativ leicht angepasst werden.

State/province

Diese werden über Perl-kompatible reguläre Ausdrücke erkannt. Die Regexs befinden sich zurzeit in "parseaddress-api.c", könnten zukünftig aber zwecks leichterer Wartbarkeit in die "includes" verschoben werden.

12.2. Adressennormierer Datentypen

Abstract

Dieser Abschnitt listet die von der Erweiterung "Address Standardizer" installierten PostgreSQL-Datentypen auf. Beachten Sie bitte die hier beschriebene Verhaltensweise bei der Typumwandlung. Diese ist insbesondere dann sehr wesentlich, wenn Sie Ihre eigenen Funktionen entwerfen.

stdaddr — Ein zusammengesetzter Datentyp, der aus den Elementen einer Adresse besteht. Dies ist der zurückgegebene Datentyp der standardize_address Funktion.

Name

stdaddr — Ein zusammengesetzter Datentyp, der aus den Elementen einer Adresse besteht. Dies ist der zurückgegebene Datentyp der standardize_address Funktion.

Beschreibung

Ein zusammengesetzter Datentyp, der aus den Elementen einer Adresse besteht. Dies ist der Datentyp, der von standardize_address zurückgegeben wird. Einige Elementbeschreibungen wurden von PAGC Postal Attributes übernommen.

Die Token-Nummern geben die Referenznummer der Ausgabe in der rules Tabelle an.

This method needs address_standardizer extension.

building

ist ein Text (Token-Nummer 0): Verweist auf die Hausnummer oder Namen. Gebäude Identifikatoren und Typen nicht geparst. Bei den meisten Adressen üblicherweise leer.

house_num

ist ein Text (Token-Nummer 1): Die Hausnummer einer Straße. Beispiel 75 in 75 State Street.

predir

ist ein Text (Token-Nummer 2): STREET NAME PRE-DIRECTIONAL, wie Nord, Süd, Ost, West etc.

qual

ist ein Text (Token-Nummer 3): STREET NAME PRE-MODIFIER Beispiel OLD in 3715 OLD HIGHWAY 99.

pretype

ist ein Text (Token-Nummer 4): STREET PREFIX TYPE

name

ist ein Text (Token-Nummer 5): STREET NAME

suftype

ist ein Text (Token-Nummer 6): STREET POST TYPE z.B. St, Ave, Cir. Ein dem Straßennamen angehänter Straßentyp. Beispiel STREET in 75 State Street.

sufdir

ist ein Text (Token-Nummer 7): STREET POST-DIRECTIONAL Eine Richtungsangabe, die dem Straßennamen folg. Beispiel WEST in 3715 TENTH AVENUE WEST.

ruralroute

ist ein Text (Token-Nummer 8): RURAL ROUTE . Beispiel: 7 in RR 7.

extra

ist ein Text: Zusätzliche Information, wie die Geschossnummer/Stockwerk.

city

ist ein Text (Token-Nummer 10): Beispiel Boston.

state

ist ein Text (Token-Nummer 11): Beispiel MASSACHUSETTS

country

ist ein Text (Token-Nummer 12): Beispiel USA

postcode

ist ein Text POSTAL CODE (ZIP CODE) (Token-Nummer 13): Beispiel 02109

box

ist ein Text POSTAL BOX NUMBER (Token-Nummer 14 und 15): Beispiel 02109

unit

ist ein Text Wohnungs- oder Suite-Nummer (Token-Nummer 17): Beispiel 3B in APT 3B.

12.3. Adressennormierer Tabellen

Abstract

Dieser Abschnitt beschreibt den Aufbau der PostgreSQL Tabellen, die von dem "address_standardizer" bei der Normalisierung von Adressen verwendet werden. Diese Tabellen können auch anders als hier bezeichnet werden. Sie können eigene "lex", "gaz" und "rules" Tabellen für jedes Land oder für einen benutzerdefinierten Geokodierer verwenden. Diese Tabellennamen werden an die Funktionen des Adressennormierers übergeben.

Das Erweiterungspaket address_standardizer_data_us enthält Daten zum Normieren von US Adressen.

rules Tabelle — Die Tabelle "rules" enthält die Regeln, nach denen die Token der Eingabesequenz der Adresse in eine standardisierte Ausgabesequenz abgebildet werden. Eine Regel besteht aus einem Satz Eingabetoken, gefolgt von -1 (Terminator), gefolgt von einem Satz Ausgabetoken, gefolgt von -1, gefolgt von einer Zahl zur Kennzeichnung des Regeltyps, gefolgt von der Rangordnung der Regel.
lex Tabelle — Eine "lex" Tabelle wird verwendet, um eine alphanumerische Eingabe einzustufen und mit (a) Eingabe-Tokens (siehe the section called “Eingabe-Token”) und (b) normierten Darstellungen zu verbinden.
gaz Tabelle — Eine "gaz" Tabelle wird verwendet, um Ortsnamen zu normieren und um diese mit (a) Eingabe-Token (siehe the section called “Eingabe-Token”) und (b) normierten Darstellungen zu verbinden. 

Name

rules Tabelle — Die Tabelle "rules" enthält die Regeln, nach denen die Token der Eingabesequenz der Adresse in eine standardisierte Ausgabesequenz abgebildet werden. Eine Regel besteht aus einem Satz Eingabetoken, gefolgt von -1 (Terminator), gefolgt von einem Satz Ausgabetoken, gefolgt von -1, gefolgt von einer Zahl zur Kennzeichnung des Regeltyps, gefolgt von der Rangordnung der Regel.

Beschreibung

Eine "rules" Tabelle muss mindestens die folgenden Spalten aufweisen, es können aber zusätzliche Spalten für den Eigenbedarf hinzugefügt werden.

id

Der Primärschlüssel der Tabelle

rule

Ein Textfeld, das die Regel festlegt. Details unter PAGC Address Standardizer Rule records.

Eine Regel besteht aus positiven ganzen Zahlen, den Eingabetoken, die durch ein -1 abgeschlossen werden, gefolgt von der gleichen Anzahl an positiven ganzen Zahlen, den Postattributen, die ebenfalls mit -1 abgeschlossen werden, gefolgt von einer ganzen Zahl, die den Regeltyp kennzeichnet, gefolgt von einer ganzen Zahl, welche die Rangordnung der Regel festlegt. Die Regeln werden von 0 (niedrigster Rang) bis 17 (höchster) gereiht.

So wird zum Beispiel durch die Regel 2 0 2 22 3 -1 5 5 6 7 3 -1 2 6 die Abfolge von Ausgabetoken TYPE NUMBER TYPE DIRECT QUALIF auf die Ausgabesequenz STREET STREET SUFTYP SUFDIR QUALIF abgebildet. Dies ist eine ARC_C Regel vom Rang 6.

Die Nummern der entsprechenden Ausgabe-Token sind unter stdaddr aufgeführt.

Eingabe-Token

Jede Regel beginnt mit einer Menge an Eingabetoken, gefolgt bei der Abschlussanweisung -1. Im Folgenden ein Auszug von gültigen Eingabetoken aus PAGC Input Tokens:

Formbasierte Eingabezeichen

AMPERS

(13). Das kaufmännische Und (&) wid häufig zur Abkürzung des Wortes "und" verwendet.

DASH

(9). Ein Satzzeichen.

DOUBLE

(21). Eine Sequenz mit zwei Buchstaben. Wird oft als Identifikator verwendet.

FRACT

(25). Brüche kommen manchmal bei Hausnummern oder Blocknummern vor.

MIXED

(23). Eine alphanumerische Zeichenkette, die aus Buchstaben und Ziffern besteht. Wird als Identifikator verwendet.

NUMBER

(0). Eine Folge von Ziffern.

ORD

(15). Bezeichnungen wie "First" oder 1st. Wird häufig bei Straßennamen benutzt.

ORD

(18). Ein einzelner Buchstabe.

WORD

(1). Ein Wort ist eine Zeichenfolge beliebiger Länge. Ein einzelnes Zeichen kann sowohl ein SINGLE als auch ein WORD sein.

Funktionsbasierte Eingabezeichen

BOXH

(14). Ein Text zur Kennzeichnung von Postfächern. Zum Beispiel Box oder PO Box.

BUILDH

(19). Wörter zur Bezeichnung von Gebäuden und Gebäudekomplexen - üblicherweise als Präfix. Zum Beispiel: Tower in Tower 7A.

BUILDT

(24). Wörter und Abkürzungen zur Bezeichnung von Gebäuden und Gebäudekomplexen - üblicherweise als Suffix. Zum Beispiel: Shopping Centre.

DIRECT

(22). Text zur Richtungsangabe, zum BeispielNorth.

MILE

(20). Wörter zur Bezeichnung von Milepost Adressen.

ROAD

(6). Wörter und Abkürzungen für die Bezeichnung von Autobahnen und Straßen. Zum Beispiel Interstate in Interstate 5.

RR

(8). Wörter und Abkürzungen für Postwege im ländlichen Gebiet - "Rural Routes". RR.

TYPE

(2). Begriffe und Abkürzungen für Straßentypen. Zum Beispiel: ST oder AVE.

UNITH

(16). Begriffe und Abkürzungen für zusätzliche Adressangaben. Zum Beispiel APT oder UNIT.

Eingabezeichen für den Postleitzahltyp

QUINT

(28). Eine 5-stellige Nummer. Gibt den Zip Code an

QUAD

(29). Eine 4-stellige Nummer. Gibt den ZIP4 Code an.

PCH

(27). Eine 3 Zeichen lange Abfolge von Buchstabe - Zahl - Buchstabe. Kennzeichnet eine FSA, die ersten 3 Zeichen des kanadischen Postleitzahl.

PCT

(26). Eine 3 Zeichen lange Abfolge von Zahl -Buchstabe - Zahl. Kennzeichnet eine LDU, die letzten 3 Zeichen des kanadischen Postleitzahl.

Stoppwörter

Stoppwörter werden mit Wörtern kombiniert. In den Regeln wird eine Zeichenkette aus mehreren Wörtern und Stoppwörtern durch einen einzelnen WORD-Token dargestellt.

STOPWORD

(7). Ein Wort mit geringer semantischer Bedeutung, das bei der Analyse weggelassen werden kann. Zum Beispiel: THE.

Ausgabe-Token

Nach dem ersten -1 (Abschlussanweisung) folgen die Ausgabetoken und deren Reihenfolge, gefolgt bei einer Abschlussanweisung -1. Die Nummern der entsprechenden Ausgabetoken sind unter stdaddr aufgeführt. Welche Token zulässig sind hängt von der Art der Regel ab. Die gültigen Ausgabetoken für die jeweiligen Regeln sind unter the section called “Regel Typen und Rang” aufgelistet.

Regel Typen und Rang

Den Schlussteil der Regel bildet der Regeltyp. Dieser wird, gefolgt von einem Rang für die Regel, durch eines der folgenden Wörter angegeben. Die Regeln sind von 0 (niedrigster Rang) bis 17 (höchster Rang) gereiht.

MACRO_C

(Token-Nummer = "0"). Die Klassenregeln um MACRO Klauseln, wie PLACE STATE ZIP, zu parsen.

MACRO_C Ausgabe-Token (ein Auszug von http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.

CITY

(Token-Nummer "10"). Beispiel "Albanien"

STATE

(Token-Nummer "11"). Beispiel "NY"

NATION

(Token Nummer "12"). Dieses Attribut wird in den meisten Referenzdateien nicht verwendet. Beispiel "USA"

POSTAL

(Token Nummer "13"). (SADS Elemente "ZIP CODE" , "PLUS 4" ). Dieses Attribut wird für die Postleitzahlen-Codes der USA (ZIP-Code) und Kanada (Postal Code) verwendet.

MICRO_C

(Token Nummer = "1"). Die Regelklasse zum Parsen ganzer MICRO Klauseln (wie House, street, sufdir, predir, pretyp, suftype, qualif) (insbesondere ARC_C plus CIVIC_C). Diese Regeln werden bei der Aufbauphase nicht benutzt.

MICRO_C Ausgabe-Token (ein Auszug von http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.

HOUSE

ist ein Text (Token-Nummer 1): Die Hausnummer einer Straße. Beispiel 75 in 75 State Street.

predir

ist ein Text (Token-Nummer 2): STREET NAME PRE-DIRECTIONAL, wie Nord, Süd, Ost, West etc.

qual

ist ein Text (Token-Nummer 3): STREET NAME PRE-MODIFIER Beispiel OLD in 3715 OLD HIGHWAY 99.

pretype

ist ein Text (Token-Nummer 4): STREET PREFIX TYPE

street

ist ein Text (Token-Nummer 5): STREET NAME

suftype

ist ein Text (Token-Nummer 6): STREET POST TYPE z.B. St, Ave, Cir. Ein dem Straßennamen angehänter Straßentyp. Beispiel STREET in 75 State Street.

sufdir

ist ein Text (Token-Nummer 7): STREET POST-DIRECTIONAL Eine Richtungsangabe, die dem Straßennamen folg. Beispiel WEST in 3715 TENTH AVENUE WEST.

ARC_C

(Token Nummer = "2"). Die Regelklasse zum Parsen von MICRO Klauseln ausgenommen dem Attribut "HOUSE". Verwendet dieselben Ausgabetoken wie MICRO_C, abzüglich dem HOUSE Token.

CIVIC_C

(Token-Nummer = "3"). Die Klassenregeln zum parsen des HOUSE Attributs.

EXTRA_C

(token number = "4"). Die Regelklasse zum Parsen von zusätzlichen Attributen - Attribute die von der Geokodierung ausgeschlossen sind. Diese Regeln werden bei der Aufbauphase nicht benutzt.

EXTRA_C Ausgabe-Token (ein Auszug von http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.

BLDNG

(Token Nummer 0): Ungeparste Gebäudeidentifikatoren und Gebäudetypen.

BOXH

(Token-Nummer 14): Die BOX in BOX 3B

BOXT

(Token-Nummer 15): 3B in BOX 3B

RR

(Token-Nummer 8): RR in RR 7

UNITH

(Token-Nummer 16): APT in APT 3B

UNITT

(Token-Nummer 17): 3B in APT 3B

UNKNWN

(Token-Nummer 9): Eine nicht näher klassifizierte Ausgabe.


Name

lex Tabelle — Eine "lex" Tabelle wird verwendet, um eine alphanumerische Eingabe einzustufen und mit (a) Eingabe-Tokens (siehe the section called “Eingabe-Token”) und (b) normierten Darstellungen zu verbinden.

Beschreibung

Eine lex (abgekürzt für Lexikon) Tabelle wird verwendet um alphanumerische Eingaben zu gliedern, und die Eingabe mit the section called “Eingabe-Token” und (b) genormten Darstellungen zu verbinden. In diesen Tabellen finden Sie Dinge wie ONE abgebildet auf stdword: 1.

Eine "lex" Tabelle muss zumindest die folgenden Spalten aufweisen.

id

Der Primärschlüssel der Tabelle

seq

Integer: Definitionsnummer?

word

text: das Eingabewort

stdword

text: das normierte Ersatzwort

token

Integer: die Art des Wortes. Wird nur in diesem Zusammenhang ersetzt. Siehe PAGC Tokens.


Name

gaz Tabelle — Eine "gaz" Tabelle wird verwendet, um Ortsnamen zu normieren und um diese mit (a) Eingabe-Token (siehe the section called “Eingabe-Token”) und (b) normierten Darstellungen zu verbinden. 

Beschreibung

Eine "gaz" (Abkürzung für Gazeteer) Tabelle wird verwendet, um Ortsnamen zu normieren und um diese mit the section called “Eingabe-Token” und (b) normierten Darstellungen zu verbinden. Wenn Sie zum Beispiel in der USA sind, können Sie die Namen der Bundesstaaten und die zugehörigen Abkürzungen in diese Tabelle laden.

Eine "gaz" Tabelle muss zumindest die folgenden Spalten aufweisen, es können aber zusätzliche Spalten für den Eigenbedarf hinzugefügt werden.

id

Der Primärschlüssel der Tabelle

seq

Integer: Kennzahl? - Kennung die für diese Instanz des Wortes verwendet wird.

word

text: das Eingabewort

stdword

text: das normierte Ersatzwort

token

Integer: die Art des Wortes. Wird nur in diesem Zusammenhang ersetzt. Siehe PAGC Tokens.

12.4. Adressennormierer Funktionen

parse_address — Nimmt eine 1-zeilige Adresse entgegen und zerlegt sie in die Einzelteile
standardize_address — Gibt eine gegebene Adresse in der Form "stdaddr" zurück. Verwendet die Tabellen "lex", "gaz" und "rule".

Name

parse_address — Nimmt eine 1-zeilige Adresse entgegen und zerlegt sie in die Einzelteile

Synopsis

record parse_address(text address);

Beschreibung

Nimmt eine Adresse entgegen und gibt einen Datensatz mit den folgenden Attributen zurück: num, street, street2, address1, city, state, zip, zipplus und country.

Verfügbarkeit: 2.2.0

This method needs address_standardizer extension.

Beispiele

Einzelne Adresse

SELECT num, street, city, zip, zipplus
        FROM parse_address('1 Devonshire Place, Boston, MA 02109-1234') AS a;
num |      street      |  city  |  zip  | zipplus
-----+------------------+--------+-------+---------
 1   | Devonshire Place | Boston | 02109 | 1234                

Tabelle mit Adressen

-- Basistabelle
CREATE TABLE places(addid serial PRIMARY KEY, address text);

INSERT INTO places(address)
VALUES ('529 Main Street, Boston MA, 02129'),
 ('77 Massachusetts Avenue, Cambridge, MA 02139'),
 ('25 Wizard of Oz, Walaford, KS 99912323'),
 ('26 Capen Street, Medford, MA'),
 ('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
 ('950 Main Street, Worcester, MA 01610');

 -- Adressen parsen
 -- um alle Attribute zu erhalten kann (a).* verwendet werden
SELECT addid, (a).num, (a).street, (a).city, (a).state, (a).zip, (a).zipplus
FROM (SELECT addid, parse_address(address) As a
 FROM places) AS p;
addid | num |        street        |   city    | state |  zip  | zipplus
-------+-----+----------------------+-----------+-------+-------+---------
     1 | 529 | Main Street          | Boston    | MA    | 02129 |
     2 | 77  | Massachusetts Avenue | Cambridge | MA    | 02139 |
     3 | 25  | Wizard of Oz         | Walaford  | KS    | 99912 | 323
     4 | 26  | Capen Street         | Medford   | MA    |       |
     5 | 124 | Mount Auburn St      | Cambridge | MA    | 02138 |
     6 | 950 | Main Street          | Worcester | MA    | 01610 |
(6 rows)

Siehe auch


Name

standardize_address — Gibt eine gegebene Adresse in der Form "stdaddr" zurück. Verwendet die Tabellen "lex", "gaz" und "rule".

Synopsis

stdaddr standardize_address(text lextab, text gaztab, text rultab, text address);

stdaddr standardize_address(text lextab, text gaztab, text rultab, text micro, text macro);

Beschreibung

Gibt eine gegebene Adresse in der Form stdaddr zurück. Verwendet die Tabellennamen lex Tabelle, gaz Tabelle und rules Tabelle und eine Adresse.

Variante 1: Nimmt eine einzeilige Adresse entgegen.

Variante 2: Nimmt eine Adresse in 2 Teilen entgegen. Ein micro Teil, der aus der normierten ersten Zeile einer Postadresse besteht; z.B. house_num street. Ein "macro"-Teil, der aus der normierten zweiten Zeile einer Adresse besteht; z.B. city, state postal_code country.

Verfügbarkeit: 2.2.0

This method needs address_standardizer extension.

Beispiele

Verwendung der address_standardizer_data_us Erweiterung

CREATE EXTENSION address_standardizer_data_us; -- muss nur einmal vollzogen werden

Variante 1: Einzeilige Adresse. Dies funktioniert nicht gut mit Adressen außerhalb der US

SELECT house_num, name, suftype, city, country, state, unit  FROM standardize_address('us_lex',
                           'us_gaz', 'us_rules', 'One Devonshire Place, PH 301, Boston, MA 02109');
house_num |    name    | suftype |  city  | country |     state     |      unit
----------+------------+---------+--------+---------+---------------+-----------------
1         | DEVONSHIRE | PLACE   | BOSTON | USA     | MASSACHUSETTS | # PENTHOUSE 301

Verwendung der Tabellen, die mit dem Tiger Geokodierer paketiert sind. Dieses Beispiel funktioniert nur, wenn Sie postgis_tiger_geocoder installiert haben.

SELECT *  FROM standardize_address('tiger.pagc_lex',
         'tiger.pagc_gaz', 'tiger.pagc_rules', 'One Devonshire Place, PH 301, Boston, MA 02109-1234');

Die Ausgabe über einen Dump mit der Erweiterung "hstore" ist leichter lesbar. Die Erweiterung hstore muss mittels "CREATE EXTENSION hstore;" installiert sein.

SELECT (each(hstore(p))).*
 FROM standardize_address('tiger.pagc_lex', 'tiger.pagc_gaz',
   'tiger.pagc_rules', 'One Devonshire Place, PH 301, Boston, MA 02109') As p;
key     |      value
------------+-----------------
 box        |
 city       | BOSTON
 name       | DEVONSHIRE
 qual       |
 unit       | # PENTHOUSE 301
 extra      |
 state      | MA
 predir     |
 sufdir     |
 country    | USA
 pretype    |
 suftype    | PL
 building   |
 postcode   | 02109
 house_num  | 1
 ruralroute |
(16 rows)
                        

Variante 2: Adresse aus zwei Teilen.

SELECT (each(hstore(p))).*
 FROM standardize_address('tiger.pagc_lex', 'tiger.pagc_gaz',
   'tiger.pagc_rules', 'One Devonshire Place, PH 301', 'Boston, MA 02109, US') As p;
key     |      value
------------+-----------------
 box        |
 city       | BOSTON
 name       | DEVONSHIRE
 qual       |
 unit       | # PENTHOUSE 301
 extra      |
 state      | MA
 predir     |
 sufdir     |
 country    | USA
 pretype    |
 suftype    | PL
 building   |
 postcode   | 02109
 house_num  | 1
 ruralroute |
(16 rows)

Chapter 13. PostGIS Extras

Table of Contents
13.1. Tiger Geokoder

Dieses Kapitel beschreibt Funktionen, die sich in dem Verzeichnis "extras" des PostGIS Quellcodes (Tarball oder Repository) befinden. Diese sind nicht immer mit der binären PostGIS Release paketiert, es handelt sich dabei aber üblicherweise um Pl/Pgsql- oder Shell-Skripts, die direkt aufgerufen werden können.

13.1. Tiger Geokoder

Abstract

Ein auf PL/pgSQL basierender Geokodierer, der für das vom United States Census Bureau herausgegebene TIGER (Topologically Integrated Geographic Encoding and Referencing system ) / Line and Master Address database export geschrieben wurde.

Der Geokodierer besteht aus vier Komponenten: Funktionen zum Laden von Daten, der Adressennormierer, der Adressengeokodierer und der inverse Geokodierer.

Obwohl speziell für die US entworfen, können viele Konzepte und Funktionen übernommen und an die Adressen und Straßennetze anderer Länder angepasst werden.

Das Skript erstellt ein Schema mit der Bezeichnung tiger, in dem sich alle auf TIGER bezogenen Funktionen befinden, sowie wiederverwendbare Daten, wie Präfixe für Straßentypen, Suffixe, Länder, verschiedene Kontrolltabellen zum Bewerkstelligen des Ladens von Daten, und Schablonen für die Basistabellen von denen alle geladenen TIGER-Tabellen erben.

Eine weiteres Schema mit der Bezeichnung tiger_data enthält die Volkszählungsdaten aller Länder, die der Loader von der Census Seite in die Datenbank lädt. Im aktuellen Datenmodell erhalten die Tabellen eines Landes den Ländercode als Präfix - z.B. ma_addr, ma_edges etc. - und werden mit Constraints versehen, welche die Daten auf das jeweilige Land beschränken. Diese Tabellen erben alle von den Tabellen addr, faces, edges, etc., die sich in dem Schema tiger befinden.

Da die Funktionen zur Geokodierung nur auf die Basistabellen verweisen, muss das Datenschema nicht notwendigerweise tiger_data heissen. Solange alle Tabellen von den Tabellen im Schema tiger erben, können die Daten auch auf andere Schemata weiter aufgeteilt werden -- z.B. ein anderes Schema für jedes Land.

Anweisungen wie Sie die EXTENSION in Ihrer Datenbank aktivieren und mit ihr Daten laden können, finden Sie unter Section 2.9.1, “Aktivierung des Tiger Geokodierer in Ihrer PostGIS Datenbank: Verwendung von Extension”.

[Note]

Wenn Sie den Tiger Geokodierer (tiger_2010) verwenden, können Sie die Skripts mit den beigefügten Shell-Skripts "upgrade_geocoder.bat" unter "extras/tiger" aktualisieren. Eine wesentliche Änderung zwischen tiger_2010 und tiger_2011+ ist, dass die Tabellen county und state nicht länger nach den Bundesstaaten gegliedert sind. Wenn Sie Daten von tiger_2010 haben und diese mit tiger_2015 ersetzen wollen, siehe Section 2.9.5, “Upgrade Ihrer Tiger Geokodierer Installation”

[Note]

Neu in der PostGIS 2.2.0 Release ist die Unterstützung von Tiger 2015 Daten und die Einbindung des Adressennormierers als Teil von PostGIS.

Falls Sie mit PostgreSQL 9.1+ arbeiten, haben Sie mit der PostGIS 2.1.0 Release die neue Möglichkeit, den Tiger Geokodierer mittels dem PostgreSQL Extension Modell zu installieren. Siehe Section 2.9.1, “Aktivierung des Tiger Geokodierer in Ihrer PostGIS Datenbank: Verwendung von Extension” für Details.

Die Funktion Pagc_Normalize_Address kann direkt gegen die eingebaute Funktion Normalize_Address ausgetauscht werden. Siehe Section 2.8, “Installation und Verwendung des Adressennormierers” für Anweisungen zur Kompilation und Installation.

Entwurf:

Das Ziel des Projektes ist einen voll funktionsfähigen Geokodierer zu erstellen, der eine beliebige Adresszeile der USA verarbeiten kann. Mittels normalisierter TIGER Census Daten wird eine Punktgeomtrie und eine Wertung erstellt, welche die Lage einer gegebenen Adresse mit einer bestimmten Wahrscheinlichkeit darstellen. Umso höher die Wertung ist, umso schlechter ist das Ergebnis.

Mit der Funktion reverse_geocode, die in PostGIS 2.0.0 eingeführt wurde, können mittels Geokoordinaten textuelle Lokationsangaben, wie Adressen und Straßenkreuzungen bestimmt werden.

Der Geokodierer sollte von jedem, der mit PostGIS vertraut ist, leicht zu installieren und zu benutzen sein. Er sollte auch auf allen von PostGIS unterstützten Plattformen installierbar und benutzbar sein.

Abgesehen von Formatierungs- und Rechtschreibfehlern, sollte der Geokodierer stabil genug sein um einwandfrei zu funktionieren.

Er sollte auch ausreichend erweiterbar sein, um zukünftige Datenaktualisierungen durchzuführen und alternativen Datenquellen mit geringen Änderungen des Codes zu nutzen.

[Note]

Damit die Funktionen ordnugsgemäß arbeiten, muss das tiger Schema zum Suchpfad der Datenbank hinzugefügt werden.

Drop_Indexes_Generate_Script — Erzeugt ein Skript, welches alle Indizes aus dem Datenbankschema "Tiger" oder aus einem vom Anwender angegebenen Schema löscht, wenn die Indizes nicht auf den Primärschlüssel gelegt und nicht "unique" sind. Wenn kein Schema angegeben ist wird standardmäßig auf das tiger_data Schema zugegriffen.
Drop_Nation_Tables_Generate_Script — Erzeugt ein Skript, welches alle Tabellen in dem angegebenen Schema löscht, die mit county_all, state_all oder dem Ländercode gefolgt von county oder state beginnen.
Drop_State_Tables_Generate_Script — Erzeugt ein Skript, dass alle Tabellen in dem angegebenen Schema löscht, die als Präfix einen Ländercode haben. Wenn kein Schema angegeben ist wird standardmäßig auf das tiger_data Schema zugegriffen.
Geocode — Nimmt eine Adresse als Zeichenkette (oder eine bereits standardisierte Adresse) entgegen und gibt die möglichen Punktlagen zurück. Die Ausgabe beinhaltet eine Punktgeometrie in NAD 83 Länge/Breite, eine standardisierte Adresse und eine Rangfolge (Rating) für jede Punktlage. Umso niedriger die Rangfolge ist, um so wahrscheinlicher ist die Übereinstimmung. Die Ergebnisse werden mit aufsteigender Rangfolge sortiert - dar niedrigste Rang zuerst. Optional kann die maximale Anzahl der Ergebnisse angegeben werden (Standardeinstellung ist 10) und der Bereich mit restrict_region beschränkt werden (Standardeinstellung ist NULL)
Geocode_Intersection — Nimmt 2 sich kreuzende Straßen, einen Bundesstaat, eine Stadt und einen ZIP-Code entgegen und gibt die möglichen Punktlagen an der ersten Querstraße an der Kreuzung zurück. Die Ausgabe beinhaltet auch die Geometrie "geomout" in NAD 83 Länge/Breite, eine standardisierte Adresse normalized_address (addy) für jede Punktage, sowie die Rangfolge. Umso niedriger die Rangfolge ist, um so wahrscheinlicher ist die Übereinstimmung. Die Ergebnisse werden mit aufsteigender Rangfolge sortiert - dar niedrigste Rang zuerst. Optional kann die maximale Anzahl der Ergebnisse angegeben werden (Standardeinstellung ist 10). Verwendet TIGER Daten (Kanten, Maschen, Adressen) und Fuzzy String Matching (soundex, levenshtein) von PostgreSQL.
Get_Geocode_Setting — Gibt die in der Tabelle "tiger.geocode_settings" gespeicherten Einstellungen zurück.
Get_Tract — Gibt für die Lage einer Geometrie die Census Area oder ein Feld der tract-Tabelle zurück. Standardmäßig wird die Kurzbezeichnung der Census Area ausgegeben.
Install_Missing_Indexes — Findet alle Tabellen mit Schlüsselspalten, die für JOINs und Filterbedingungen vom Geokodierer verwendet werden und keinen Index aufweisen; die fehlenden Indizes werden hinzugefügt.
Loader_Generate_Census_Script — Erzeugt für gegebene Plattform und Bundesstaaten ein Shellskript, das die TIGER Datentabellen "tract", "bg" und "tabblocks" herunterlädt, bereitstellt und in das Schema tiger_data importiert. Jedes Bundesstaat-Skript wird in einem eigenen Datensatz ausgegeben.
Loader_Generate_Script — Erzeugt für gegebene Plattform und Bundesstaaten ein Shellskript, das die TIGER Daten herunterlädt, bereitstellt und in das Schema tiger_data importiert. Jedes Bundesstaat-Skript wird in einem eigenen Datensatz ausgegeben. Die neueste Version unterstützt die geänderte Struktur von Tiger 2010 und lädt ebenfalls die Census Tract, Block Groups und Blocks Tabellen.
Loader_Generate_Nation_Script — Erzeugt für die angegebene Plattform ein Shell-Skript, welches die County und State Lookup Tabellen ladet.
Missing_Indexes_Generate_Script — Findet alle Tabellen mit Schlüsselspalten, die für JOINs vom Geokodierer verwendet werden und keinen Index aufweisen; gibt ein DDL (SQL) aus, dass die Indizes für diese Tabellen festlegt.
Normalize_Address — Für einen gegebenen Adressentext wird der zusammengesetzte Datentyp norm_addy zurückgeben, der ein Suffix und ein Präfix für die Straße, einen normierten Datentyp, die Straße, den Straßennamen etc. enthält und diese einzelnen Attributen zuweist. Diese Funktion benötigt lediglich die "lookup data", die mit dem Tiger Geokodierer paketiert sind (Tiger Census Daten werden nicht benötigt).
Pagc_Normalize_Address — Für einen gegebenen Adressentext wird der zusammengesetzte Datentyp norm_addy zurückgeben, der ein Suffix und ein Präfix für die Straße, einen normierten Datentyp, die Straße, den Straßennamen etc. enthält und diese einzelnen Attributen zuweist. Diese Funktion benötigt lediglich die "lookup data", die mit dem Tiger Geokodierer paketiert sind (Tiger Census Daten werden nicht benötigt). Benötigt die Erweiterung "address_standardizer".
Pprint_Addy — Für einen zusammengesetzten Objekttyp norm_addy wird eine formatierte Darstellung zurückgegeben. Wird üblicherweise in Verbindung mit normalize_address verwendet.
Reverse_Geocode — Nimmt einen geometrischen Punkt in einem bekannten Koordinatenreferenzsystem entgegen und gibt einen Datensatz zurück, das ein Feld mit theoretisch möglichen Adressen und ein Feld mit Straßenkreuzungen beinhaltet. Wenn include_strnum_range = true, dann beinhalten die Straßenkreuzungen den "Street Range" (Kennung des Straßenabschnitts).
Topology_Load_Tiger — Lädt die Tiger-Daten einer bestimmte Region in die PostGIS Topologie, transformiert sie in das Koordinatenreferenzsystem der Topologie und fängt sie entsprechend der Genauigkeitstoleranz der Topologie.
Set_Geocode_Setting — Setzt die Einstellungen, welche das Verhalten der Funktionen des Geokodierers beeinflussen.

Es existieren eine Reihe weiterer Open Source Geokodierer füf PostGIS, welche im Gegensatz zu dem Tiger Geokodierer den Vorteil haben, dass sie mehrere Länder unterstützen

  • Nominatim verwendet Daten von OpenStreetMap, die mittels Gazetteer formatiert werden. Es benötigt osm2pgsql zum Laden der Daten, PostgreSQL 8.4+ und PostGIS 1.5+ um zu funktionieren. Es ist als Webinterface paketiert und wird vermutlich als Webservice aufgerufen. So wie der Tiger Geokodierer besteht es aus einem Geokodierer und einer inversen Komponente des Geokodierers. Aus der Dokumentation ist nicht ersichtlich, ob es wie der Tiger Geokodierer auch eine reine SQL Schnittstelle aufweist, oder ob ein größerer Anteil der Logik in das Webinterface implementiert wurde.

  • GIS Graphy nützt ebenfalls PostGIS und arbeitet so wie Nominatim ebenfalls mit Daten von OpenStreetMap (OSM). Es beinhaltet einen Loader, um OSM-Daten zu importieren. Ähnlich wie Nominatim kann es auch für die Geokodierung außerhalb der USA verwendet werden. So wie Nominatim läuft es als Webservice und benötigt Java 1.5, Servlet Apps und Solr. GisGraphy kann plattformübergreifend genutzt werden und hat ebenfalls einen invertierten Geokodierer zusammen mit anderen geschickten Funktionen.

Name

Drop_Indexes_Generate_Script — Erzeugt ein Skript, welches alle Indizes aus dem Datenbankschema "Tiger" oder aus einem vom Anwender angegebenen Schema löscht, wenn die Indizes nicht auf den Primärschlüssel gelegt und nicht "unique" sind. Wenn kein Schema angegeben ist wird standardmäßig auf das tiger_data Schema zugegriffen.

Synopsis

text Drop_Indexes_Generate_Script(text param_schema=tiger_data);

Beschreibung

Erzeugt ein Skript, welches alle Indizes aus dem Datenbankschema "Tiger" oder aus einem vom Anwender angegebenen Schema löscht, wenn die Indizes nicht auf den Primärschlüssel gelegt und nicht "unique" sind. Wenn kein Schema angegeben ist wird standardmäßig auf das tiger_data Schema zugegriffen.

Dies kann verwendet werden, damit sich die Indizes nicht aufblähen und dadurch den Anfrageoptimierer irritieren oder unnötigen Speicherplatz belegen. Sie können das Skript in Verbindung mit Install_Missing_Indexes verwenden um nur jene Indizes zu erstellen die der Gekodierer benötigt.

Verfügbarkeit: 2.0.0

Beispiele

SELECT drop_indexes_generate_script() As actionsql;
actionsql
---------------------------------------------------------
DROP INDEX tiger.idx_tiger_countysub_lookup_lower_name;
DROP INDEX tiger.idx_tiger_edges_countyfp;
DROP INDEX tiger.idx_tiger_faces_countyfp;
DROP INDEX tiger.tiger_place_the_geom_gist;
DROP INDEX tiger.tiger_edges_the_geom_gist;
DROP INDEX tiger.tiger_state_the_geom_gist;
DROP INDEX tiger.idx_tiger_addr_least_address;
DROP INDEX tiger.idx_tiger_addr_tlid;
DROP INDEX tiger.idx_tiger_addr_zip;
DROP INDEX tiger.idx_tiger_county_countyfp;
DROP INDEX tiger.idx_tiger_county_lookup_lower_name;
DROP INDEX tiger.idx_tiger_county_lookup_snd_name;
DROP INDEX tiger.idx_tiger_county_lower_name;
DROP INDEX tiger.idx_tiger_county_snd_name;
DROP INDEX tiger.idx_tiger_county_the_geom_gist;
DROP INDEX tiger.idx_tiger_countysub_lookup_snd_name;
DROP INDEX tiger.idx_tiger_cousub_countyfp;
DROP INDEX tiger.idx_tiger_cousub_cousubfp;
DROP INDEX tiger.idx_tiger_cousub_lower_name;
DROP INDEX tiger.idx_tiger_cousub_snd_name;
DROP INDEX tiger.idx_tiger_cousub_the_geom_gist;
DROP INDEX tiger_data.idx_tiger_data_ma_addr_least_address;
DROP INDEX tiger_data.idx_tiger_data_ma_addr_tlid;
DROP INDEX tiger_data.idx_tiger_data_ma_addr_zip;
DROP INDEX tiger_data.idx_tiger_data_ma_county_countyfp;
DROP INDEX tiger_data.idx_tiger_data_ma_county_lookup_lower_name;
DROP INDEX tiger_data.idx_tiger_data_ma_county_lookup_snd_name;
DROP INDEX tiger_data.idx_tiger_data_ma_county_lower_name;
DROP INDEX tiger_data.idx_tiger_data_ma_county_snd_name;
:
:

Name

Drop_Nation_Tables_Generate_Script — Erzeugt ein Skript, welches alle Tabellen in dem angegebenen Schema löscht, die mit county_all, state_all oder dem Ländercode gefolgt von county oder state beginnen.

Synopsis

text Drop_Nation_Tables_Generate_Script(text param_schema=tiger_data);

Beschreibung

Erzeugt ein Skript, welches alle Tabellen in dem angegebenen Schema löscht, die mit county_all, state_all oder dem Ländercode gefolgt von county oder state beginnen. Dies ist dann notwendig, wenn Sie von tiger_2010 auf tiger_2011 Daten upgraden.

Verfügbarkeit: 2.1.0

Beispiele

SELECT drop_nation_tables_generate_script();
DROP TABLE tiger_data.county_all;
DROP TABLE tiger_data.county_all_lookup;
DROP TABLE tiger_data.state_all;
DROP TABLE tiger_data.ma_county;
DROP TABLE tiger_data.ma_state;

Name

Drop_State_Tables_Generate_Script — Erzeugt ein Skript, dass alle Tabellen in dem angegebenen Schema löscht, die als Präfix einen Ländercode haben. Wenn kein Schema angegeben ist wird standardmäßig auf das tiger_data Schema zugegriffen.

Synopsis

text Drop_State_Tables_Generate_Script(text param_state, text param_schema=tiger_data);

Beschreibung

Erzeugt ein Skript, dass alle Tabellen in dem angegebenen Schema löscht, die als Präfix einen Ländercode haben. Wenn kein Schema angegeben ist wird standardmäßig auf das tiger_data Schema zugegriffen. Wenn beim Import etwas schiefgegangen ist, können mit dieser Funktion die Tabellen eines Staates unmittelbar vor dem erneuten Import, gelöscht werden.

Verfügbarkeit: 2.0.0

Beispiele

SELECT drop_state_tables_generate_script('PA');
DROP TABLE tiger_data.pa_addr;
DROP TABLE tiger_data.pa_county;
DROP TABLE tiger_data.pa_county_lookup;
DROP TABLE tiger_data.pa_cousub;
DROP TABLE tiger_data.pa_edges;
DROP TABLE tiger_data.pa_faces;
DROP TABLE tiger_data.pa_featnames;
DROP TABLE tiger_data.pa_place;
DROP TABLE tiger_data.pa_state;
DROP TABLE tiger_data.pa_zip_lookup_base;
DROP TABLE tiger_data.pa_zip_state;
DROP TABLE tiger_data.pa_zip_state_loc;
        

Name

Geocode — Nimmt eine Adresse als Zeichenkette (oder eine bereits standardisierte Adresse) entgegen und gibt die möglichen Punktlagen zurück. Die Ausgabe beinhaltet eine Punktgeometrie in NAD 83 Länge/Breite, eine standardisierte Adresse und eine Rangfolge (Rating) für jede Punktlage. Umso niedriger die Rangfolge ist, um so wahrscheinlicher ist die Übereinstimmung. Die Ergebnisse werden mit aufsteigender Rangfolge sortiert - dar niedrigste Rang zuerst. Optional kann die maximale Anzahl der Ergebnisse angegeben werden (Standardeinstellung ist 10) und der Bereich mit restrict_region beschränkt werden (Standardeinstellung ist NULL)

Synopsis

setof record geocode(varchar address, integer max_results=10, geometry restrict_region=NULL, norm_addy OUT addy, geometry OUT geomout, integer OUT rating);

setof record geocode(norm_addy in_addy, integer max_results=10, geometry restrict_region=NULL, norm_addy OUT addy, geometry OUT geomout, integer OUT rating);

Beschreibung

Nimmt eine Adresse als Zeichenkette (oder eine bereits standardisierte Adresse) entgegen und gibt die möglichen Punktlagen zurück. Die Ausgabe beinhaltet eine Punktgeometrie in NAD 83 Länge/Breite, eine standardisierte Adresse normalized_address (addy) und eine Rangfolge (Rating) für jede Punktlage. Umso niedriger die Rangfolge ist, um so wahrscheinlicher ist die Übereinstimmung. Die Ergebnisse werden nach dem Rating aufsteigend sortiert - das niedrigste Rating zuerst. Verwendet Tiger Daten (Kanten, Maschen, Adressen), Fuzzy String Matching (soundex, levenshtein) von PostgreSQL und PostGIS Funktionen zur Interpolation entlang von Linien, um die Adressen entlang der Kanten von TIGER zu interpolieren. Umso höher das Rating, umso unwahrscheinlicher ist es, dass die Geokodierung richtig liegt. Der geokodierte Punkt wird dort, wo sich die Adresse befindet, standardmäßig um 10 Meter von der Mittellinie auf die Seite (L/R) versetzt. Optional kann die maximale Anzahl der Ergebnisse angegeben werden (Standardeinstellung ist 10) und der Bereich mit restrict_region beschränkt werden (Standardeinstellung ist NULL)

Erweiterung: 2.0.0 Unterstützung von strukturierten Daten von TIGER 2010. Weiters wurde die Logik überarbeitet, um die Rechengeschwindigkeit und die Genauigkeit der Geokodierung zu erhöhen, und den Versatz von der Mittellinie auf die Straßenseite zu ermöglichen. Der neue Parameter max_results kann verwendet werden, um die Anzahl der besten Ergebnisse zu beschränken oder um nur das beste Ergebnis zu erhalten.

Beispiele: Grundlagen

Die Zeitangaben für die unteren Beispiele beziehen sich auf einen 3.0 GHZ Prozessor mit Windows 7, 2GB RAM, PostgreSQL 9.1rc1/PostGIS 2.0 und den geladenen TIGER-Daten der Staaten MA, MN, CA und RI.

Genaue Übereinstimmungen haben eine kürzere Rechenzeit (61ms)

SELECT g.rating, ST_X(g.geomout) As lon, ST_Y(g.geomout) As lat,
    (addy).address As stno, (addy).streetname As street,
    (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
    FROM geocode('75 State Street, Boston MA 02109') As g;
 rating |        lon        |       lat        | stno | street | styp |  city  | st |  zip
--------+-------------------+------------------+------+--------+------+--------+----+-------
      0 | -71.0556722990239 | 42.3589914927049 |   75 | State  | St   | Boston | MA | 02109

Sogar wenn der Zip-Code nicht übergeben wird, kann ihn der Geokodierer erraten (dauerte ca. 122-150ms)

SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
    (addy).address As stno, (addy).streetname As street,
    (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
    FROM geocode('226 Hanover Street, Boston, MA',1) As g;
 rating |         wktlonlat         | stno | street  | styp |  city  | st |  zip
--------+---------------------------+------+---------+------+--------+----+-------
      1 | POINT(-71.05528 42.36316) |  226 | Hanover | St   | Boston | MA | 02113

Kann Rechtschreibfehler behandeln und liefert mehre mögliche Lösungen mit Einstufungen, hat allerdings eine längere Laufzeit (500ms).

SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
    (addy).address As stno, (addy).streetname As street,
    (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
    FROM geocode('31 - 37 Stewart Street, Boston, MA 02116') As g;
 rating |         wktlonlat         | stno | street | styp |  city  | st |  zip
--------+---------------------------+------+--------+------+--------+----+-------
     70 | POINT(-71.06459 42.35113) |   31 | Stuart | St   | Boston | MA | 02116
    

Verwendet um die Adresskodierung in enier Stapelverarbeitung auszuführen. Am einfachsten ist es max_results=1 zu setzen. Berechnet nur die Fälle, die noch nicht geokodiert wurden (keine Einstufung haben).

CREATE TABLE addresses_to_geocode(addid serial PRIMARY KEY, address text,
        lon numeric, lat numeric, new_address text, rating integer);

INSERT INTO addresses_to_geocode(address)
VALUES ('529 Main Street, Boston MA, 02129'),
 ('77 Massachusetts Avenue, Cambridge, MA 02139'),
 ('25 Wizard of Oz, Walaford, KS 99912323'),
 ('26 Capen Street, Medford, MA'),
 ('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
 ('950 Main Street, Worcester, MA 01610');

-- aktualisiert nur die ersten 3 Adressen (323-704 ms - Zwischenspeicherung (Caching) und gemeinsamer Arbeitsspeicher (Shared Memory) haben Auswirkungen, sodass die erste Geokodierung immer langsamer abläuft --
-- bei einer großen Anzahl von Adressen sollten nicht alle auf einmal aktualisiert werden,
-- da die gesamte Geokodierung in einem Schritt ausgeführt werden muss
-- Bei diesem Beispiel erfolt ein erneuter JOIN über einen LEFT JOIN
-- und die Einstufung (rating) wird auf -1 gesetzt, wenn es keine Übereinstimmung gibt;
-- damit wird sichergestellt, dass eine falsche Adresse nicht erneut geokodiert wird
UPDATE addresses_to_geocode
  SET  (rating, new_address, lon, lat)
    = ( COALESCE((g.geo).rating,-1), pprint_addy((g.geo).addy),
       ST_X((g.geo).geomout)::numeric(8,5), ST_Y((g.geo).geomout)::numeric(8,5) )
FROM (SELECT addid
    FROM addresses_to_geocode
    WHERE rating IS NULL ORDER BY addid LIMIT 3) As a
    LEFT JOIN (SELECT addid, (geocode(address,1)) As geo
    FROM addresses_to_geocode As ag
    WHERE ag.rating IS NULL ORDER BY addid LIMIT 3) As g ON a.addid = g.addid
WHERE a.addid = addresses_to_geocode.addid;

result
-----
Query returned successfully: 3 rows affected, 480 ms execution time.

SELECT * FROM addresses_to_geocode WHERE rating is not null;

 addid |                   address                    |    lon    |   lat    |                new_address                | rating
-------+----------------------------------------------+-----------+----------+-------------------------------------------+--------
     1 | 529 Main Street, Boston MA, 02129            | -71.07181 | 42.38359 | 529 Main St, Boston, MA 02129             |      0
     2 | 77 Massachusetts Avenue, Cambridge, MA 02139 | -71.09428 | 42.35988 | 77 Massachusetts Ave, Cambridge, MA 02139 |      0
     3 | 25 Wizard of Oz, Walaford, KS 99912323       |           |          |                                           |     -1

Beispiele: Verwendung eines Geometrie-Filters

SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
    (addy).address As stno, (addy).streetname As street,
    (addy).streettypeabbrev As styp,
    (addy).location As city, (addy).stateabbrev As st,(addy).zip
  FROM geocode('100 Federal Street, MA',
        3,
        (SELECT ST_Union(the_geom)
            FROM place WHERE statefp = '25' AND name = 'Lynn')::geometry
        ) As g;

 rating |        wktlonlat         | stno | street  | styp | city | st |  zip
--------+--------------------------+------+---------+------+------+----+-------
      8 | POINT(-70.96796 42.4659) |  100 | Federal | St   | Lynn | MA | 01905
Total query runtime: 245 ms.
          

Name

Geocode_Intersection — Nimmt 2 sich kreuzende Straßen, einen Bundesstaat, eine Stadt und einen ZIP-Code entgegen und gibt die möglichen Punktlagen an der ersten Querstraße an der Kreuzung zurück. Die Ausgabe beinhaltet auch die Geometrie "geomout" in NAD 83 Länge/Breite, eine standardisierte Adresse normalized_address (addy) für jede Punktage, sowie die Rangfolge. Umso niedriger die Rangfolge ist, um so wahrscheinlicher ist die Übereinstimmung. Die Ergebnisse werden mit aufsteigender Rangfolge sortiert - dar niedrigste Rang zuerst. Optional kann die maximale Anzahl der Ergebnisse angegeben werden (Standardeinstellung ist 10). Verwendet TIGER Daten (Kanten, Maschen, Adressen) und Fuzzy String Matching (soundex, levenshtein) von PostgreSQL.

Synopsis

setof record geocode_intersection(text roadway1, text roadway2, text in_state, text in_city, text in_zip, integer max_results=10, norm_addy OUT addy, geometry OUT geomout, integer OUT rating);

Beschreibung

Nimmt 2 sich kreuzende Straßen, einen Bundesstaat, eine Stadt und einen ZIP-Code entgegen und gibt die möglichen Punktlagen an der ersten Querstraße bei der Kreuzung zurück. Die Ausgabe beinhaltet auch eine Punktgeometrie in NAD 83 Länge/Breite, eine standardisierte Adresse für jede Punktage, sowie die Rangfolge. Umso niedriger die Rangfolge ist, um so wahrscheinlicher ist die Übereinstimmung. Die Ergebnisse werden mit aufsteigender Rangfolge sortiert - dar niedrigste Rang zuerst. Optional kann die maximale Anzahl der Ergebnisse angegeben werden (Standardeinstellung ist 10). Gibt für jede Punktlage die standardisierte Adresse normalized_address (addy), die Punktgeometrie "geomout" in NAD 83 Länge/Breite und ein Rating zurück. Verwendet TIGER Daten (Kanten, Maschen, Adressen) und Fuzzy String Matching (soundex, levenshtein) von PostgreSQL.

Verfügbarkeit: 2.0.0

Beispiele: Grundlagen

Die Zeitangaben für die unteren Beispiele beziehen sich auf einen 3.0 GHZ Prozessor mit Windows 7, 2GB RAM, PostgreSQL 9.0/PostGIS 1.5 und den geladenen TIGER-Daten des Staates MA. Zurzeit ein bißchen langsam (3000ms)

Testlauf auf Windows 2003 64-bit 8GB mit PostGIS 2.0, PostgreSQL 64-bit und geladenen TIGER-Daten von 2011 -- (41ms)

SELECT pprint_addy(addy), st_astext(geomout),rating
            FROM geocode_intersection( 'Haverford St','Germania St', 'MA', 'Boston', '02130',1);
           pprint_addy            |         st_astext          | rating
----------------------------------+----------------------------+--------
98 Haverford St, Boston, MA 02130 | POINT(-71.101375 42.31376) |      0

Sogar wenn der Zip-Code nicht angegeben ist, kann der Geokodierer diesen erraten (benötigte 3500ms auf einem Windows 7 Rechner, 741 ms auf Windows 2003 64-bit)

SELECT pprint_addy(addy), st_astext(geomout),rating
                FROM geocode_intersection('Weld', 'School', 'MA', 'Boston');
          pprint_addy          |        st_astext         | rating
-------------------------------+--------------------------+--------
 98 Weld Ave, Boston, MA 02119 | POINT(-71.099 42.314234) |      3
 99 Weld Ave, Boston, MA 02119 | POINT(-71.099 42.314234) |      3

Name

Get_Geocode_Setting — Gibt die in der Tabelle "tiger.geocode_settings" gespeicherten Einstellungen zurück.

Synopsis

text Get_Geocode_Setting(text setting_name);

Beschreibung

Gibt die in der Tabelle "tiger.geocode_settings" gespeicherten Einstellungen zurück. Die Einstellungen erlauben auf "debugging" der Funktionen umzuschalten. Für später ist geplant auch die Ratings über die Einstellungen zu kontrollieren. Die aktuellen Einstellungen sind wie folgt:

name              | setting |  unit   | category  |                                                             short_desc
--------------------------------+---------+---------+-----------+------------------------------------------------------------------------------------------------------------------------------
 debug_geocode_address          | false   | boolean | debug     | outputs debug information in notice log such as queries when geocode_address is called if true
 debug_geocode_intersection     | false   | boolean | debug     | outputs debug information in notice log such as queries when geocode_intersection is called if true
 debug_normalize_address        | false   | boolean | debug     | outputs debug information in notice log such as queries and intermediate expressions when normalize_address is called if true
 debug_reverse_geocode          | false   | boolean | debug     | if true, outputs debug information in notice log such as queries and intermediate expressions when reverse_geocode
 reverse_geocode_numbered_roads | 0       | integer | rating    | For state and county highways, 0 - no preference in name,
                                                                  1 - prefer the numbered highway name, 2 - prefer local state/county name
 use_pagc_address_parser        | false   | boolean | normalize | If set to true, will try to use the address_standardizer extension (via pagc_normalize_address)
                                                                 instead of tiger normalize_address built one    

Änderung: 2.2.0 : die Standardeinstellungen befinnden sich nun in der Tabelle "geocode_settings_default". Die vom Anwender angepassten Einstellungen - und nur diese - befinden sich in der Tabelle "geocode_settings".

Verfügbarkeit: 2.1.0

Das Beispiel gibt die "debugging" Einstellungen aus

SELECT get_geocode_setting('debug_geocode_address) As result;
result
---------
false
        

Name

Get_Tract — Gibt für die Lage einer Geometrie die Census Area oder ein Feld der tract-Tabelle zurück. Standardmäßig wird die Kurzbezeichnung der Census Area ausgegeben.

Synopsis

text get_tract(geometry loc_geom, text output_field=name);

Beschreibung

Für eine gegebene Geometrie wird der Zählsprengel zurückgeben, in dem sich die Geometrie befindet. Wenn das Koordinatenreferenzsystem unbestimmt ist, dann wird NAD 83 in Länge und Breite angenommen.

[Note]

Diese Funktion verwendet den Census tract, welcher standardmäßig nicht geladen wird. Wenn Sie bereits die Tabelle mit den Bundesstaaten geladen haben, können Sie mit dem Skript Loader_Generate_Census_Script sowohl "tract" als auch "bg" und "tabblock" laden.

Wenn Sie die Daten der Bundesstaaten noch nicht geladen haben, können Sie diese zusätzlichen Tabellen wie folgt laden

UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN('tract', 'bg', 'tabblock');

dann werden diese in dem Loader_Generate_Script mit einbezogen.

Verfügbarkeit: 2.0.0

Beispiele: Grundlagen

SELECT get_tract(ST_Point(-71.101375, 42.31376) ) As tract_name;
tract_name
---------
1203.01
        
--gibt die "geoid" von TIGER aus
SELECT get_tract(ST_Point(-71.101375, 42.31376), 'tract_id' ) As tract_id;
tract_id
---------
25025120301

Siehe auch

Geocode >


Name

Install_Missing_Indexes — Findet alle Tabellen mit Schlüsselspalten, die für JOINs und Filterbedingungen vom Geokodierer verwendet werden und keinen Index aufweisen; die fehlenden Indizes werden hinzugefügt.

Synopsis

boolean Install_Missing_Indexes();

Beschreibung

Findet alle Tabellen in den Schemata tiger und tiger_data, bei denen die Schlüsselspalten, die für Joins und Filter vom Geokodierer verwendet werden keine Indizes aufweisen. Weiters wird ein SQL-DDL Skript ausgegeben, das die Indizes für diese Tabellen festlegt und anschließend ausgeführt wird. Dabei handelt es sich um eine Hilfsfunktion, die Abfragen schneller macht, indem die benötigten Indizes, die während des Imports gefehlt haben, neu hinzufügt. Diese Funktion ist verwandt mit Missing_Indexes_Generate_Script, wobei zusätzlich zur Erstellung des "CREATE INDEX"-Skripts dieses auch ausgeführt wird. Es wird als Teil des Upgrade-Skripts update_geocode.sql aufgerufen.

Verfügbarkeit: 2.0.0

Beispiele

SELECT install_missing_indexes();
         install_missing_indexes
-------------------------
 t
        

Name

Loader_Generate_Census_Script — Erzeugt für gegebene Plattform und Bundesstaaten ein Shellskript, das die TIGER Datentabellen "tract", "bg" und "tabblocks" herunterlädt, bereitstellt und in das Schema tiger_data importiert. Jedes Bundesstaat-Skript wird in einem eigenen Datensatz ausgegeben.

Synopsis

setof text loader_generate_census_script(text[] param_states, text os);

Beschreibung

Erzeugt für gegebene Plattform und Bundesstaaten ein Shellskript, das die TIGER Datentabellen Census Area tract, block groups bg und tabblocks herunterlädt, bereitstellt und in das Schema tiger_data importiert. Jedes Bundesstaat-Skript wird in einem eigenen Datensatz ausgegeben.

Zum Herunterladen wird auf Linux unzip (auf Windows standardmäßig 7-zip) und wget verwendet. Es verwendet Section 4.4.2, “shp2pgsql: Verwendung des ESRI-Shapefile Laders” zum Laden der Daten. Die kleinste Einheit, die bearbeitet wird ist ein ganzer Bundesstaat. Es werden nur die Dateien in den Ordnern "staging" und "temp" bearbeitet.

Verwendet die folgenden Kontrolltabellen, um den Verarbeitungsprozess und die verschiedenen Variationen der Betriebssysteme in Bezug auf den Shellsyntax zu überprüfen.

  1. loader_variables behält den Überblick über verschiedenen Variablen, wie Census Site, Jahr, Daten- und "staging"-Schemata

  2. loader_platform Profile von verschiedenen Plattformen und Speicherplätze der ausführbaren Programme. Beinhaltet Windows und Linux. Weitere können hinzugefügt werden.

  3. loader_lookuptables jeder Datensatz definiert einen bestimmten Tabellentyp (state, county), um Datensätze zu bearbeiten und zu importieren. Legt die Schritte fest, die notwendig sind, um Daten zu importieren, bereitzustellen und hinzuzufügen, und um Spalten, Indizes und Constraints zu löschen. Jede Tabelle wird mit einem Präfix des Bundesstaates versehen und erbt von einer Tabelle in dem Schema TIGER. z.B. wird die Tabelle tiger_data.ma_faces erstellt, welche von tiger.faces erbt

Verfügbarkeit: 2.0.0

[Note]

Loader_Generate_Script beinhaltet diese Logik; wenn Sie aber den TIGER Geokodierer vor PostGIS 2.0.0 alpha5 installiert haben, müssen Sie dies für bereits importierte Bundesstaaten ausführen, um die zusätzlichen Tabellen zu erhalten.

Beispiele

Erzeugt ein Skript um Daten für die ausgewählten Länder im Windows Shell Script Format zu laden.

SELECT loader_generate_census_script(ARRAY['MA'], 'windows');
-- result --
set STATEDIR="\gisdata\www2.census.gov\geo\pvs\tiger2010st\25_Massachusetts"
set TMPDIR=\gisdata\temp\
set UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"
set WGETTOOL="C:\wget\wget.exe"
set PGBIN=C:\projects\pg\pg91win\bin\
set PGPORT=5432
set PGHOST=localhost
set PGUSER=postgres
set PGPASSWORD=yourpasswordhere
set PGDATABASE=tiger_postgis20
set PSQL="%PGBIN%psql"
set SHP2PGSQL="%PGBIN%shp2pgsql"
cd \gisdata

%WGETTOOL% http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ --no-parent --relative --accept=*bg10.zip,*tract10.zip,*tabblock10.zip --mirror --reject=html
del %TMPDIR%\*.* /Q
%PSQL% -c "DROP SCHEMA tiger_staging CASCADE;"
%PSQL% -c "CREATE SCHEMA tiger_staging;"
cd %STATEDIR%
for /r %%z in (*.zip) do %UNZIPTOOL% e %%z  -o%TMPDIR%
cd %TMPDIR%
%PSQL% -c "CREATE TABLE tiger_data.MA_tract(CONSTRAINT pk_MA_tract PRIMARY KEY (tract_id) ) INHERITS(tiger.tract); "
%SHP2PGSQL% -c -s 4269 -g the_geom   -W "latin1" tl_2010_25_tract10.dbf tiger_staging.ma_tract10 | %PSQL%
%PSQL% -c "ALTER TABLE tiger_staging.MA_tract10 RENAME geoid10 TO tract_id;  SELECT loader_load_staged_data(lower('MA_tract10'), lower('MA_tract')); "
%PSQL% -c "CREATE INDEX tiger_data_MA_tract_the_geom_gist ON tiger_data.MA_tract USING gist(the_geom);"
%PSQL% -c "VACUUM ANALYZE tiger_data.MA_tract;"
%PSQL% -c "ALTER TABLE tiger_data.MA_tract ADD CONSTRAINT chk_statefp CHECK (statefp = '25');"
: 

Erzeugt ein Shell-Skript

STATEDIR="/gisdata/www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts"
TMPDIR="/gisdata/temp/"
UNZIPTOOL=unzip
WGETTOOL="/usr/bin/wget"
export PGBIN=/usr/pgsql-9.0/bin
export PGPORT=5432
export PGHOST=localhost
export PGUSER=postgres
export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder
PSQL=${PGBIN}/psql
SHP2PGSQL=${PGBIN}/shp2pgsql
cd /gisdata

wget http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ --no-parent --relative --accept=*bg10.zip,*tract10.zip,*tabblock10.zip --mirror --reject=html
rm -f ${TMPDIR}/*.*
${PSQL} -c "DROP SCHEMA tiger_staging CASCADE;"
${PSQL} -c "CREATE SCHEMA tiger_staging;"
cd $STATEDIR
for z in *.zip; do $UNZIPTOOL -o -d $TMPDIR $z; done
:
: 

Name

Loader_Generate_Script — Erzeugt für gegebene Plattform und Bundesstaaten ein Shellskript, das die TIGER Daten herunterlädt, bereitstellt und in das Schema tiger_data importiert. Jedes Bundesstaat-Skript wird in einem eigenen Datensatz ausgegeben. Die neueste Version unterstützt die geänderte Struktur von Tiger 2010 und lädt ebenfalls die Census Tract, Block Groups und Blocks Tabellen.

Synopsis

setof text loader_generate_script(text[] param_states, text os);

Beschreibung

Erzeugt für gegebene Plattform und Bundesstaaten ein Shellskript, das die TIGER Daten herunterlädt, bereitstellt und in das Schema tiger_data importiert. Jedes Bundesstaat-Skript wird in einem eigenen Datensatz ausgegeben.

Zum Herunterladen wird auf Linux unzip (auf Windows standardmäßig 7-zip) und wget verwendet. Es verwendet Section 4.4.2, “shp2pgsql: Verwendung des ESRI-Shapefile Laders” um die Daten zu laden. Die kleinste Einheit, die bearbeitet wird ist ein ganzer Bundesstaat. Es werden nur die Dateien in den Ordnern "staging" und "temp" bearbeitet.

Verwendet die folgenden Kontrolltabellen, um den Verarbeitungsprozess und die verschiedenen Variationen der Betriebssysteme in Bezug auf den Shellsyntax zu überprüfen.

  1. loader_variables behält den Überblick über verschiedenen Variablen, wie Census Site, Jahr, Daten- und "staging"-Schemata

  2. loader_platform Profile von verschiedenen Plattformen und Speicherplätze der ausführbaren Programme. Beinhaltet Windows und Linux. Weitere können hinzugefügt werden.

  3. loader_lookuptables jeder Datensatz definiert einen bestimmten Tabellentyp (state, county), um Datensätze zu bearbeiten und zu importieren. Legt die Schritte fest, die notwendig sind, um Daten zu importieren, bereitzustellen und hinzuzufügen, und um Spalten, Indizes und Constraints zu löschen. Jede Tabelle wird mit einem Präfix des Bundesstaates versehen und erbt von einer Tabelle in dem Schema TIGER. z.B. wird die Tabelle tiger_data.ma_faces erstellt, welche von tiger.faces erbt

Verfügbarkeit: 2.0.0 unterstützt die strukturierten Daten von Tiger 2010 und ladet die Tabellen "tract" (Census Area), "bg" (Census Block Groups) und "tabblocks" (Census Blocks).

[Note]

Wenn Sie pgAdmin3 verwenden, dann seien Sie gewarnt, dass pgAdmin3 langen Text abschneidet. Um dies zu beheben, können Sie File -> Options -> Query Tool -> Query Editor - > Max. characters per column auf mehr als 50000 Zeichen setzen.

Beispiele

Verwendung von psql; die Datenbank ist "gistest" und /gisdata/data_load.sh ist die Datei mit den Shell-Befehlen die ausgeführt werden sollen.

psql -U postgres -h localhost -d gistest -A -t \
 -c "SELECT Loader_Generate_Script(ARRAY['MA'], 'gistest')" 
> /gisdata/data_load.sh;

Erzeugt ein Skript, das Daten von 2 Staaten im Windows Shell Script Format ladet.

SELECT loader_generate_script(ARRAY['MA','RI'], 'windows') AS result;
-- result --
set TMPDIR=\gisdata\temp\
set UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"
set WGETTOOL="C:\wget\wget.exe"
set PGBIN=C:\Program Files\PostgreSQL\9.4\bin\
set PGPORT=5432
set PGHOST=localhost
set PGUSER=postgres
set PGPASSWORD=yourpasswordhere
set PGDATABASE=geocoder
set PSQL="%PGBIN%psql"
set SHP2PGSQL="%PGBIN%shp2pgsql"
cd \gisdata

cd \gisdata
%WGETTOOL% ftp://ftp2.census.gov/geo/tiger/TIGER2015/PLACE/tl_*_25_* --no-parent --relative --recursive --level=2 --accept=zip --mirror --reject=html
cd \gisdata/ftp2.census.gov/geo/tiger/TIGER2015/PLACE
:
:

Erzeugt ein Shell-Skript

SELECT loader_generate_script(ARRAY['MA','RI'], 'sh') AS result;
-- result --
TMPDIR="/gisdata/temp/"
UNZIPTOOL=unzip
WGETTOOL="/usr/bin/wget"
export PGBIN=/usr/lib/postgresql/9.4/bin
export PGPORT=5432
export PGHOST=localhost
export PGUSER=postgres
export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder
PSQL=${PGBIN}/psql
SHP2PGSQL=${PGBIN}/shp2pgsql
cd /gisdata

cd /gisdata
wget ftp://ftp2.census.gov/geo/tiger/TIGER2015/PLACE/tl_*_25_* --no-parent --relative --recursive --level=2 --accept=zip --mirror --reject=html
cd /gisdata/ftp2.census.gov/geo/tiger/TIGER2015/PLACE
rm -f ${TMPDIR}/*.*
:
:

Name

Loader_Generate_Nation_Script — Erzeugt für die angegebene Plattform ein Shell-Skript, welches die County und State Lookup Tabellen ladet.

Synopsis

text loader_generate_nation_script(text os);

Beschreibung

Erstellt für die gegebene Plattform ein Shell Skript, dass die Tabellen county_all, county_all_lookup und state_all in das Schema tiger_data lädt. Diese Tabellen erben jeweils von den Tabellen county, county_lookup und state, die sich im Schema tiger befinden.

Verwendet unzip auf Linux (auf Windows standardmäßig 7--zip) und wget zum Herunterladen. Verwendet Section 4.4.2, “shp2pgsql: Verwendung des ESRI-Shapefile Laders” um die Daten zu laden.

Verwendet die Kontrolltabellen tiger.loader_platform, tiger.loader_variables und tiger.loader_lookuptables um den Verarbeitungsprozess zu überprüfen, sowie unterschiedliche Varianten für die Syntax verschiedener Betriebssysteme.

  1. loader_variables behält den Überblick über verschiedenen Variablen, wie Census Site, Jahr, Daten- und "staging"-Schemata

  2. loader_platform Profile von verschiedenen Plattformen und Speicherplätze der ausführbaren Programme. Beinhaltet Windows und Linux/Unix. Weitere können hinzugefügt werden.

  3. loader_lookuptables jeder Datensatz definiert einen bestimmten Tabellentyp (state, county), um Datensätze zu bearbeiten und zu importieren. Legt die Schritte fest, die notwendig sind, um Daten zu importieren, bereitzustellen und hinzuzufügen, und um Spalten, Indizes und Constraints zu löschen. Jede Tabelle wird mit einem Präfix des Bundesstaates versehen und erbt von einer Tabelle in dem Schema TIGER. z.B. wird die Tabelle tiger_data.ma_faces erstellt, welche von tiger.faces erbt

Enhanced: 2.4.1 zip code 5 tabulation area (zcta5) load step was fixed and when enabled, zcta5 data is loaded as a single table called zcta5_all as part of the nation script load.

Verfügbarkeit: 2.1.0

[Note]

If you want zip code 5 tabulation area (zcta5) to be included in your nation script load, do the following:

UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN('tract', 'bg', 'tabblock');
[Note]

Falls Sie die Version tiger_2010 haben und tiger_2011 laden wollen, dann müssen Sie als allererstes das Skript "loader_generate_nation_script" und die Löschanweisungen Drop_Nation_Tables_Generate_Script ausführen, bevor Sie dieses Skript laufen lassen.

Beispiele

Erzeugt ein Script um die Daten einer Nation in Windows zu laden.

SELECT loader_generate_nation_script('windows'); 

Erzeugt ein Script um die Daten auf Linux/Unix Systemen zu laden.

SELECT loader_generate_nation_script('sh'); 

Name

Missing_Indexes_Generate_Script — Findet alle Tabellen mit Schlüsselspalten, die für JOINs vom Geokodierer verwendet werden und keinen Index aufweisen; gibt ein DDL (SQL) aus, dass die Indizes für diese Tabellen festlegt.

Synopsis

text Missing_Indexes_Generate_Script();

Beschreibung

Findet alle Tabellen in den Schemata tiger und tiger_data, bei denen die Schlüsselspalten, die für Joins vom Geokodierer verwendet werden keine Indizes aufweisen. Weiters wird ein SQL-DDL Skript ausgegeben, das die Indizes für diese Tabellen festlegt. Dabei handelt es sich um eine Hilfsfunktion, die Abfragen schneller macht, indem die benötigten Indizes, die während des Imports gefehlt haben, neu hinzufügt werden. Wenn der Geocodierer verbessert wird, dann wird diese Funktion aktualisiert um sie für die Verwendung neuer Indizes anzupassen. Wenn diese Funktion nichts zurückgibt, so bedeutet dies, dass alle Tabellen entsprechend befüllt und die Schlüsselindizes bereits vorhanden sind.

Verfügbarkeit: 2.0.0

Beispiele

SELECT missing_indexes_generate_script();
-- output: This was run on a database that was created before many corrections were made to the loading script ---
CREATE INDEX idx_tiger_county_countyfp ON tiger.county USING btree(countyfp);
CREATE INDEX idx_tiger_cousub_countyfp ON tiger.cousub USING btree(countyfp);
CREATE INDEX idx_tiger_edges_tfidr ON tiger.edges USING btree(tfidr);
CREATE INDEX idx_tiger_edges_tfidl ON tiger.edges USING btree(tfidl);
CREATE INDEX idx_tiger_zip_lookup_all_zip ON tiger.zip_lookup_all USING btree(zip);
CREATE INDEX idx_tiger_data_ma_county_countyfp ON tiger_data.ma_county USING btree(countyfp);
CREATE INDEX idx_tiger_data_ma_cousub_countyfp ON tiger_data.ma_cousub USING btree(countyfp);
CREATE INDEX idx_tiger_data_ma_edges_countyfp ON tiger_data.ma_edges USING btree(countyfp);
CREATE INDEX idx_tiger_data_ma_faces_countyfp ON tiger_data.ma_faces USING btree(countyfp);
        

Name

Normalize_Address — Für einen gegebenen Adressentext wird der zusammengesetzte Datentyp norm_addy zurückgeben, der ein Suffix und ein Präfix für die Straße, einen normierten Datentyp, die Straße, den Straßennamen etc. enthält und diese einzelnen Attributen zuweist. Diese Funktion benötigt lediglich die "lookup data", die mit dem Tiger Geokodierer paketiert sind (Tiger Census Daten werden nicht benötigt).

Synopsis

norm_addy normalize_address(varchar in_address);

Beschreibung

Für einen gegebenen Adressentext wird der zusammengesetzte Datentyp norm_addy zurückgeben, der ein Suffix und ein Präfix für die Straße, einen normierten Datentyp, die Straße, den Straßennamen etc. enthält und diese einzelnen Attributen zuweist. Dies ist der erste Schritt beim Geokodieren, der alle Adressen in eine standardisierte Postform bringt. Es werden keine anderen Daten, außer jenen die mit dem Geokodierer paketiert sind, benötigt.

Diese Funktion verwendet lediglich die verschiedenen Lookup-Tabellen "direction/state/suffix/", die mit tiger_gecoder vorinstalliert wurden und sich im Schema tiger befinden. Es ist deshalb nicht nötig Tiger Census Daten oder sonstige zusätzliche Daten herunterzuladen um diese Funktion zu verwenden.

Verwendet verschiedene Kontrolltabellen im Schema tiger zum Normalisieren der Eingabeadressen.

Die Attribute des Objekttyps norm_addy, die in dieser Reihenfolge von der Funktion zurückgegeben werden, wobei () für ein verbindliches Attribut und [] für ein optionales Attribut steht:

(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip] [parsed] [zip4] [address_alphanumeric]

Erweiterung: 2.4.0 die zusätzlichen Felder "zip4" und "address_alphanumeric" wurden zum Objekt "norm_addy" hinzugefügt.

  1. address ist eine Ganzzahl: Die Hausnummer

  2. predirAbbrev ist ein Textfeld variabler Länge: Ein Präfix für die Straßenrichtung, wie N, S, E, W etc. Wird durch die direction_lookup Tabelle gesteuert.

  3. streetName varchar

  4.  Das Textfeld streetTypeAbbrev mit variabler Länge beinhaltet eine abgekürzte Version der Straßentypen: z.B. St, Ave, Cir. Diese werden über die Tabelle street_type_lookup kontrolliert.

  5. Das Textfeld postdirAbbrev mit variabler Länge beinhaltet Suffixe für die Abkürzungen der Straßenrichtung; N, S, E, W etc. Diese werden über die Tabelle direction_lookup kontrolliert.

  6. internal ein Textfeld variabler Länge mit einer zusätzlichen Adressangabe, wie Apartment- oder Suitenummer.

  7. location ein Textfeld variabler Länge, üblicherweise eine Stadt oder eine autonome Provinz.

  8. stateAbbrev ein Textfeld variabler Länge mit dem zwei Zeichen langen Bundesstaat der USA. z.B. MA, NY, MI. Diese werden durch die Tabelle state_lookup beschränkt.

  9. Das Textfeld zip mit variabler Länge enthält den 5-Zeichen langen Zip-Code. z.B. 02109

  10. parsed boolesche Variable - zeigt an, ob eine Adresse durch Normalisierung erstellt wurde. Die Funktion "normalize_address" setzt diese Variable auf TRUE, bevor die Adresse zurückgegeben wird.

  11. zip4 die letzten 4 Zeichen des 9 Zeichen langen Zip-Codes. Verfügbarkeit: PostGIS 2.4.0.

  12. address_alphanumeric Vollständige Hausnummer, auch wenn sie Buchstaben wie bei "17R" enthält. Kann mit der Funktion Pagc_Normalize_Address besser geparst werden. Verfügbarkeit: PostGIS 2.4.0.

Beispiele

Gibt die ausgewählten Felder aus. Verwenden Sie bitte Pprint_Addy wenn Sie einen sauber formatierten Ausgabetext benötigen.

SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev
 FROM (SELECT address, normalize_address(address) As na
        FROM addresses_to_geocode) As g;

                        orig                         |  streetname   | streettypeabbrev
-----------------------------------------------------+---------------+------------------
 28 Capen Street, Medford, MA                        | Capen         | St
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | Mount Auburn  | St
 950 Main Street, Worcester, MA 01610                | Main          | St
 529 Main Street, Boston MA, 02129                   | Main          | St
 77 Massachusetts Avenue, Cambridge, MA 02139        | Massachusetts | Ave
 25 Wizard of Oz, Walaford, KS 99912323              | Wizard of Oz  |
        

Siehe auch

Geocode, Pprint_Addy


Name

Pagc_Normalize_Address — Für einen gegebenen Adressentext wird der zusammengesetzte Datentyp norm_addy zurückgeben, der ein Suffix und ein Präfix für die Straße, einen normierten Datentyp, die Straße, den Straßennamen etc. enthält und diese einzelnen Attributen zuweist. Diese Funktion benötigt lediglich die "lookup data", die mit dem Tiger Geokodierer paketiert sind (Tiger Census Daten werden nicht benötigt). Benötigt die Erweiterung "address_standardizer".

Synopsis

norm_addy pagc_normalize_address(varchar in_address);

Beschreibung

Für einen gegebenen Adressentext wird der zusammengesetzte Datentyp norm_addy zurückgeben, der ein Suffix und ein Präfix für die Straße, einen normierten Datentyp, die Straße, den Straßennamen etc. enthält und diese einzelnen Attributen zuweist. Dies ist der erste Schritt beim Geokodieren, der alle Adressen in eine standardisierte Postform bringt. Es werden keine anderen Daten, außer jenen die mit dem Geokodierer paketiert sind, benötigt.

Diese Funktion verwendet lediglich die verschiedenen Lookup-Tabellen "pagc_*", die mit tiger_gecoder vorinstalliert wurden und sich im Schema tiger befinden. Es ist deshalb nicht nötig Tiger Census Daten oder sonstige zusätzliche Daten herunterzuladen um diese Funktion zu verwenden. Möglicherweise stellt sich heraus, dass Sie Lookup-Tabellen im Schema tiger um weitere Abkürzungen und alternative Namensgebungen erweitern müssen.

Verwendet verschiedene Kontrolltabellen im Schema tiger zum Normalisieren der Eingabeadressen.

Die Attribute des Objekttyps norm_addy, die in dieser Reihenfolge von der Funktion zurückgegeben werden, wobei () für ein verbindliches Attribut und [] für ein optionales Attribut steht:

Bei Normalize_Address gibt es geringfügige Abweichungen beim Format und bei der Groß- und Kleinschreibung.

Verfügbarkeit: 2.1.0

This method needs address_standardizer extension.

(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip]

Die native "standardaddr" der Erweiterung "address_standardizer" ist ein bisschen reichhaltiger als "norm_addy", da es für die Unterstützung internationaler Adressen (inklusive Länder) entworfen wurde. Die entsprechenden Attribute von "standardaddr" sind:

house_num,predir, name, suftype, sufdir, unit, city, state, postcode

Erweiterung: 2.4.0 die zusätzlichen Felder "zip4" und "address_alphanumeric" wurden zum Objekt "norm_addy" hinzugefügt.

  1. address ist eine Ganzzahl: Die Hausnummer

  2. predirAbbrev ist ein Textfeld variabler Länge: Ein Präfix für die Straßenrichtung, wie N, S, E, W etc. Wird durch die direction_lookup Tabelle gesteuert.

  3. streetName varchar

  4.  Das Textfeld streetTypeAbbrev mit variabler Länge beinhaltet eine abgekürzte Version der Straßentypen: z.B. St, Ave, Cir. Diese werden über die Tabelle street_type_lookup kontrolliert.

  5. Das Textfeld postdirAbbrev mit variabler Länge beinhaltet Suffixe für die Abkürzungen der Straßenrichtung; N, S, E, W etc. Diese werden über die Tabelle direction_lookup kontrolliert.

  6. internal ein Textfeld variabler Länge mit einer zusätzlichen Adressangabe, wie Apartment- oder Suitenummer.

  7. location ein Textfeld variabler Länge, üblicherweise eine Stadt oder eine autonome Provinz.

  8. stateAbbrev ein Textfeld variabler Länge mit dem zwei Zeichen langen Bundesstaat der USA. z.B. MA, NY, MI. Diese werden durch die Tabelle state_lookup beschränkt.

  9. Das Textfeld zip mit variabler Länge enthält den 5-Zeichen langen Zip-Code. z.B. 02109

  10. parsed boolesche Variable - zeigt an, ob eine Adresse durch Normalisierung erstellt wurde. Die Funktion "normalize_address" setzt diese Variable auf TRUE, bevor die Adresse zurückgegeben wird.

  11. zip4 die letzten 4 Zeichen des 9 Zeichen langen Zip-Codes. Verfügbarkeit: PostGIS 2.4.0.

  12. address_alphanumeric Vollständige Hausnummer, auch wenn sie Buchstaben wie bei "17R" enthält. Kann mit der Funktion Pagc_Normalize_Address besser geparst werden. Verfügbarkeit: PostGIS 2.4.0.

Beispiele

Beispiel für einen Einzelaufruf

SELECT addy.*
FROM pagc_normalize_address('9000 E ROO ST STE 999, Springfield, CO') AS addy;


 address | predirabbrev | streetname | streettypeabbrev | postdirabbrev | internal  |  location   | stateabbrev | zip | parsed
---------+--------------+------------+------------------+---------------+-----------+-------------+-------------+-----+--------
    9000 | E            | ROO        | ST               |               | SUITE 999 | SPRINGFIELD | CO          |     | t

Batch call (Stapelverarbeitung). Zurzeit gibt es Geschwindigkeitsprobleme bezüglich des Wrappers des postgis_tiger_geocoder für den address_standardizer. Dies wird hoffentlich in späteren Versionen behoben. Wenn Sie Geschwindigkeit für den Aufruf einer Stapelverarbeitung zur Erstellung von normaddy benötigen, können Sie diese Probleme umgehen, indem Sie die Funktion "standardize_address" des address_standardizer direkt aufrufen. Dies wird nachfolgend gezeigt und entspricht ungefähr der Aufgabe unter Normalize_Address wo Daten verwendet werden, die unter Geocode erstellt wurden.

WITH g AS (SELECT address, ROW((sa).house_num, (sa).predir, (sa).name
  , (sa).suftype, (sa).sufdir, (sa).unit , (sa).city, (sa).state, (sa).postcode, true)::norm_addy As na
 FROM (SELECT address, standardize_address('tiger.pagc_lex'
       , 'tiger.pagc_gaz'
       , 'tiger.pagc_rules', address) As sa
        FROM addresses_to_geocode) As g)
SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev
 FROM  g;

 orig                                                |  streetname   | streettypeabbrev
-----------------------------------------------------+---------------+------------------
 529 Main Street, Boston MA, 02129                   | MAIN          | ST
 77 Massachusetts Avenue, Cambridge, MA 02139        | MASSACHUSETTS | AVE
 25 Wizard of Oz, Walaford, KS 99912323              | WIZARD OF     |
 26 Capen Street, Medford, MA                        | CAPEN         | ST
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | MOUNT AUBURN  | ST
 950 Main Street, Worcester, MA 01610                | MAIN          | ST

Name

Pprint_Addy — Für einen zusammengesetzten Objekttyp norm_addy wird eine formatierte Darstellung zurückgegeben. Wird üblicherweise in Verbindung mit normalize_address verwendet.

Synopsis

varchar pprint_addy(norm_addy in_addy);

Beschreibung

Für einen zusammengesetzten Objekttyp norm_addy wird eine formatierte Darstellung zurückgegeben. Außer den Daten die mit dem Geokodierer paketiert sind, werden keine weiteren Daten benötigt.

Wird üblicherweise in Verbindung mit Normalize_Address verwendet.

Beispiele

Formatiert eine einzelne Adresse

SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) As pretty_address;
            pretty_address
---------------------------------------
 202 E Fremont St, Las Vegas, NV 89101
        

Adressen einer Tabelle formatieren

SELECT address As orig, pprint_addy(normalize_address(address)) As pretty_address
        FROM addresses_to_geocode;

                        orig                         |              pretty_address
-----------------------------------------------------+-------------------------------------------
 529 Main Street, Boston MA, 02129                   | 529 Main St, Boston MA, 02129
 77 Massachusetts Avenue, Cambridge, MA 02139        | 77 Massachusetts Ave, Cambridge, MA 02139
 28 Capen Street, Medford, MA                        | 28 Capen St, Medford, MA
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | 124 Mount Auburn St, Cambridge, MA 02138
 950 Main Street, Worcester, MA 01610                | 950 Main St, Worcester, MA 01610

Name

Reverse_Geocode — Nimmt einen geometrischen Punkt in einem bekannten Koordinatenreferenzsystem entgegen und gibt einen Datensatz zurück, das ein Feld mit theoretisch möglichen Adressen und ein Feld mit Straßenkreuzungen beinhaltet. Wenn include_strnum_range = true, dann beinhalten die Straßenkreuzungen den "Street Range" (Kennung des Straßenabschnitts).

Synopsis

record Reverse_Geocode(geometry pt, boolean include_strnum_range=false, geometry[] OUT intpt, norm_addy[] OUT addy, varchar[] OUT street);

Beschreibung

Nimmt einen geometrischen Punkt in einem bekannten Koordinatenreferenzsystem entgegen und gibt einen Datensatz zurück, das ein Feld mit theoretisch möglichen Adressen und ein Feld mit Straßenkreuzungen beinhaltet. Wenn include_strnum_range = true, dann beinhalten die Straßenkreuzungen den "Street Range" (Kennung des Straßenabschnitts). Die Standardeinstellung für include_strnum_range ist FALSE. Die Adressen werden nach dem Abstand des Punktes zu den jeweiligen Straßen gereiht, so dass die erste Adresse höchstwahrscheinlich die Richtige ist.

Warum sprechen wir von theoretischen anstatt von tatsächlichen Adressen. Die Daten von TIGER haben keine echten Adressen, sondern nur Straßenabschnitte (Street Ranges). Daher ist die theoretische Adresse eine anhand der Straßenabschnitte interpolierte Adresse. So gibt zum Beispiel die Interpolation einer Adresse "26 Court St." und "26 Court Sq." zurück, obwohl keine Adresse mit der Bezeichnung "26 Court Sq." existiert. Dies beruht darauf, dass ein Punkt an einem Eckpunkt von 2 Straßen liegen kann und die Logik entlang beider Straßen interpoliert. Die Logik nimmt auch an, dass sich die Adressen in einem regelmäßigen Abstand entlang der Straße befinden, was natürlich falsch ist, da ein öffentliches Gebäude einen großen Bereich eines Straßenabschnitts (street range) einnehmen kann und der Rest der Gebäude sich lediglich am Ende befinden.

Anmerkung: diese Funktion benötigt TIGER-Daten. Wenn Sie für diesen Bereich keine Daten geladen haben, dann bekommen Sie einen Datensatz mit lauter NULLs zurück.

Die zurückgelieferten Elemente des Datensatzes lauten wie folgt:

  1. intpt ist ein Feld mit Punkten: Dies sind Punkte auf der Mittellinie der Straße, die dem gegebenen Punkt am nächsten liegt. Es beinhaltet soviele Punkte wie es Adressen gibt.

  2. addy ist ein Feld mit normalisierten Adressen (norm_addy): Diese sind ein Feld mit möglichen Adressen die zu dem gegebenen Punkt passen. Die erste in dem Feld ist die wahrscheinlichste Adresse. Üblicherweise sollte dies nur eine Adresse sein, ausgenommen dem Fall wo ein Punkt an der Ecke von 2 oder 3 Straßen liegt, oder wenn der Punkt irgendwo auf der Straße und nicht auf der Seite liegt.

  3. street ein Feld mit varchar (Textfeld variabler Länge): Dies sind Querstraßen (oder die Straße) (sich kreuzende Straßen oder die Straße auf der der Punkt liegt).

Enhanced: 2.4.1 if optional zcta5 dataset is loaded, the reverse_geocode function can resolve to state and zip even if the specific state data is not loaded. Refer to Loader_Generate_Nation_Script for details on loading zcta5 data.

Verfügbarkeit: 2.0.0

Beispiele

Beispiel für eine Position an der Ecke von zwei Straßen, aber näher bei einer. Näherungsweise die Lage des MIT: 77 Massachusetts Ave, Cambridge, MA 02139. Beachten Sie, dass obwohl wir keine 3 Straßen haben, PostgreSQL nur NULL für die Einträge oberhalb unserer oberen Begrenzung zurückgibt; kann also gefahrlos verwendet werden. Dieses Beispiel verwendet Adressenbereiche

SELECT pprint_addy(r.addy[1]) As st1, pprint_addy(r.addy[2]) As st2, pprint_addy(r.addy[3]) As st3,
            array_to_string(r.street, ',') As cross_streets
        FROM reverse_geocode(ST_GeomFromText('POINT(-71.093902 42.359446)',4269),true) As r;

 result
 ------
      st1                                  | st2 | st3 |               cross_streets
-------------------------------------------+-----+-----+----------------------------------------------
 67 Massachusetts Ave, Cambridge, MA 02139 |     |     | 67 - 127 Massachusetts Ave,32 - 88 Vassar St

Hier haben wir die Adressenbereiche für die Querstraßen nicht inkludiert und eine Position ausgewählt, die sehr sehr nahe an einer Ecke von 2 Straßen liegt, damit diese (Position) von zwei unterschiedlichen Adressen erkannt werden könnte.

SELECT pprint_addy(r.addy[1]) As st1, pprint_addy(r.addy[2]) As st2,
pprint_addy(r.addy[3]) As st3, array_to_string(r.street, ',') As cross_str
FROM reverse_geocode(ST_GeomFromText('POINT(-71.06941 42.34225)',4269)) As r;

result
--------
               st1               |               st2               | st3 | cross_str
---------------------------------+---------------------------------+-----+------------------------
 5 Bradford St, Boston, MA 02118 | 49 Waltham St, Boston, MA 02118 |     | Waltham St

Bei diesem Beispiel wird das Beispiel von Geocode wiederverwendet und wir wollen nur die primäre Adresse und höchstens 2 Straßenkreuzungen.

SELECT actual_addr, lon, lat, pprint_addy((rg).addy[1]) As int_addr1,
    (rg).street[1] As cross1, (rg).street[2] As cross2
FROM (SELECT address As actual_addr, lon, lat,
    reverse_geocode( ST_SetSRID(ST_Point(lon,lat),4326) ) As rg
    FROM addresses_to_geocode WHERE rating 
> -1) As foo;

                     actual_addr                     |    lon    |   lat    |                 int_addr1                 |     cross1      |   cross2
-----------------------------------------------------+-----------+----------+-------------------------------------------+-----------------+------------
 529 Main Street, Boston MA, 02129                   | -71.07181 | 42.38359 | 527 Main St, Boston, MA 02129             | Medford St      |
 77 Massachusetts Avenue, Cambridge, MA 02139        | -71.09428 | 42.35988 | 77 Massachusetts Ave, Cambridge, MA 02139 | Vassar St       |
 26 Capen Street, Medford, MA                        | -71.12377 | 42.41101 | 9 Edison Ave, Medford, MA 02155           | Capen St        | Tesla Ave
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | -71.12304 | 42.37328 | 3 University Rd, Cambridge, MA 02138      | Mount Auburn St |
 950 Main Street, Worcester, MA 01610                | -71.82368 | 42.24956 | 3 Maywood St, Worcester, MA 01603         | Main St         | Maywood Pl

Name

Topology_Load_Tiger — Lädt die Tiger-Daten einer bestimmte Region in die PostGIS Topologie, transformiert sie in das Koordinatenreferenzsystem der Topologie und fängt sie entsprechend der Genauigkeitstoleranz der Topologie.

Synopsis

text Topology_Load_Tiger(varchar topo_name, varchar region_type, varchar region_id);

Beschreibung

Lädt die Tiger Daten einer bestimmten Region in die PostGIS Topologie. Die Maschen, Knoten und Kanten werden in das Koordinatenreferenzsystem der Zieltopologie transformiert und die Knoten werden entsprechend der Toleranz der Zieltopologie gefangen. Die erzeugten Maschen, Knoten und Kanten behalten die ids der ursprünglichen Maschen, Knoten und Kanten der Tiger Daten, wodurch die Daten zukünftig leichter mit neuen Tiger Daten abgeglichen werden können. Gibt eine Zusammenfassung des Prozessablaufs aus.

Dies ist zum Beispiel nützlich, wenn Daten neu strukturiert werden müssen, bei denen die neu ausgebildeten Polygone an den Mittellinien der Strassen ausgerichtet sein sollen und die erzeugten Polygone sich nicht überlappen dürfen.

[Note]

Diese Funktion benötigt Tiger Daten und das Topologiemodul von PostGIS. Für weiterführende Information siehe Chapter 11, Topologie und Section 2.5.1, “Konfiguration”. Wenn keine Daten für den betreffenden Bereich geladen wurden, dann werden auch keine topologischen Datensätze erstellt. Diese Funktion versagt auch dann, wenn keine Topologie mit den topologischen Funktionen aufgebaut wurde.

[Note]

Die meisten topologischen Überprüfungsfehler entstehen durch Toleranzprobleme, wenn nach der Transformation die Kanten nicht genau abgeglichen sind oder sich überlappen. Um dies zu beheben, können Sie bei topologischen Überprüfungsfehlern die Präzision erhöhen oder erniedrigen.

Benötigte Parameter:

  1. topo_name Die Bezeichnung einer bestehenden PostGIS Topologie, in die Daten geladen werden.

  2. region_type Der Typ des begrenzten Bereichs. Zurzeit wird nur place und county unterstützt. Geplant sind noch einige weitere Typen. In dieser Tabelle werden die Begrenzungen definiert. z.B. tiger.place, tiger.county

  3. region_id Entspricht der "geoid" von TIGER und ist ein eindeutige Identifikator für die Region in der Tabelle. Für Plätze ist es die Spalte plcidfp in tiger.place. Für "county" ist es die Spalte cntyidfp in tiger.county

Verfügbarkeit: 2.0.0

Beispiel: Boston, Massachusetts Topologie

Erstellt eine Topologie für Boston, Massachusetts in "Mass State Plane Feet" (2249) mit einer Toleranz von 0.25 Meter und lädt anschließend die Maschen, Kanten und Knoten von Tiger für Boston City.

SELECT topology.CreateTopology('topo_boston', 2249, 0.25);
createtopology
--------------
   15
-- 60,902 ms ~ 1 Minute auf einem PC mit Windows 7 und PostgreSQL 9.1 (TIGER-Daten von 5 Staaten geladen)
SELECT tiger.topology_load_tiger('topo_boston', 'place', '2507000');
-- topology_loader_tiger --
29722 edges holding in temporary. 11108 faces added. 1875 edges of faces added.  20576 nodes added.
19962 nodes contained in a face.  0 edge start end corrected.  31597 edges added.

-- 41 ms --
SELECT topology.TopologySummary('topo_boston');
 -- topologysummary--
Topology topo_boston (15), SRID 2249, precision 0.25
20576 nodes, 31597 edges, 11109 faces, 0 topogeoms in 0 layers

-- 28,797 ms für die Überprüfung; juchu, keine Fehler --
SELECT * FROM
    topology.ValidateTopology('topo_boston');

       error       |   id1    |    id2
-------------------+----------+-----------
      

Beispiel: Suffolk, Massachusetts Topologie

Erstellt eine Topologie für Suffolk, Massachusetts in "Mass State Plane Meters" (26986) mit einer Toleranz von 0.25 Meter und lädt anschließend die Maschen, Kanten und Knoten von Tiger für Suffolk County.

SELECT topology.CreateTopology('topo_suffolk', 26986, 0.25);
-- dies benötigte 56,275 ms ~ 1 Minute auf Windows 7 32-Bit mit 5 Bundesstaaten von Tiger geladen
SELECT tiger.topology_load_tiger('topo_suffolk', 'county', '25025');
-- topology_loader_tiger --
 36003 edges holding in temporary. 13518 faces added. 2172 edges of faces added.
 24761 nodes added.  24075 nodes contained in a face.  0 edge start end corrected.  38175 edges added.
-- 31 ms --
SELECT topology.TopologySummary('topo_suffolk');
 -- topologysummary--
 Topology topo_suffolk (14), SRID 26986, precision 0.25
24761 nodes, 38175 edges, 13519 faces, 0 topogeoms in 0 layers

-- 33,606 ms to validate --
SELECT * FROM
    topology.ValidateTopology('topo_suffolk');

       error       |   id1    |    id2
-------------------+----------+-----------
 coincident nodes  | 81045651 |  81064553
 edge crosses node | 81045651 |  85737793
 edge crosses node | 81045651 |  85742215
 edge crosses node | 81045651 | 620628939
 edge crosses node | 81064553 |  85697815
 edge crosses node | 81064553 |  85728168
 edge crosses node | 81064553 |  85733413
      

Name

Set_Geocode_Setting — Setzt die Einstellungen, welche das Verhalten der Funktionen des Geokodierers beeinflussen.

Synopsis

text Set_Geocode_Setting(text setting_name, text setting_value);

Beschreibung

Setzt bestimmte Einstellwerte, die in der Tabelle "tiger.geocode_settings" gespeichert werden. Die Einstellungen erlauben auf "debugging" der Funktionen umzuschalten. Für später ist geplant auch die Rangordnung über die Einstellungen zu kontrollieren. Eine aktuelle Liste der Einstellungen ist unter Get_Geocode_Setting aufgeführt.

Verfügbarkeit: 2.1.0

Das Beispiel gibt die "debugging" Einstellungen aus

Wenn Sie Geocode ausführen und diese Funktion TRUE ist, dann werden die Abfragen und die Zeitmessung von dem Log "NOTICE" ausgegeben.

SELECT set_geocode_setting('debug_geocode_address', 'true') As result;
result
---------
true

Chapter 14. PostGIS Special Functions Index

14.1. PostGIS Aggregate Functions

The functions given below are spatial aggregate functions provided with PostGIS that can be used just like any other sql aggregate function such as sum, average.

  • ST_AsGeobuf - Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.
  • ST_AsMVT - Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.
  • ST_MakeLine - Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.
  • ST_MemUnion - Das gleiche wie ST_Union, nur freundlicher zum Arbeitsspeicher (verwendet weniger Arbeitsspeicher und mehr Rechnerzeit).
  • ST_Polygonize - Aggregatfunktion. Erzeugt eine Sammelgeometrie/GeometryCollection, welche Polygone enthält, die aus den einzelnen Linien einer Menge von Geometrien gebildet werden können.
  • ST_SameAlignment - Gibt TRUE zurück, wenn die Raster die selbe Rotation, Skalierung, Koordinatenreferenzsystem und Versatz (Pixel können auf dasselbe Gitter gelegt werden, ohne dass die Gitterlinien durch die Pixel schneiden) aufweisen. Wenn nicht, wird FALSE und eine Bechreibung des Problems ausgegeben.
  • ST_Union - Gibt eine Geometrie zurück, welche der mengentheoretischen Vereinigung der Geometrien entspricht.
  • TopoElementArray_Agg - Gibt für eine Menge an element_id, type Feldern (topoelements) ein topoelementarray zurück

14.2. PostGIS Window Functions

The functions given below are spatial window functions provided with PostGIS that can be used just like any other sql window function such as row_numer(), lead(), lag(). All these require an SQL OVER() clause.

14.3. PostGIS SQL-MM Compliant Functions

The functions given below are PostGIS functions that conform to the SQL/MM 3 standard

[Note]

SQL-MM defines the default SRID of all geometry constructors as 0. PostGIS uses a default SRID of -1.

  • ST_3DDistance - Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurückgegeben. This method implements the SQL/MM specification. SQL-MM ?
  • ST_AddEdgeModFace - Fügt eine Kante hinzu. Falls dabei eine Masche aufgetrennt wird, so wird die ursprüngliche Masche angepasst und eine weitere Masche hinzugefügt. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.13
  • ST_AddEdgeNewFaces - Fügt eine Kante hinzu. Falls dabei eine Masche aufgetrennt wird, so wird die ursprüngliche Masche gelöscht und durch zwei neue Maschen ersetzt. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.12
  • ST_AddIsoEdge - Fügt eine isolierte Kante, die durch die Geometrie alinestring festgelegt wird zu einer Topologie hinzu, indem zwei bestehende isolierte Knoten anode und anothernode verbunden werden. Gibt die "edgeid" der neuen Kante aus. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.4
  • ST_AddIsoNode - Fügt einen isolierten Knoten zu einer Masche in einer Topologie hinzu und gibt die "nodeid" des neuen Knotens aus. Falls die Masche NULL ist, wird der Knoten dennoch erstellt. This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X+1.3.1
  • ST_Area - Gibt den geometrischen Schwerpunkt einer Geometrie zurück. This method implements the SQL/MM specification. SQL-MM 3: 8.1.2, 9.5.3
  • ST_AsBinary - Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück. This method implements the SQL/MM specification. SQL-MM 3: 5.1.37
  • ST_AsText - Gibt die Well-known-Text(WKT) Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück. This method implements the SQL/MM specification. SQL-MM 3: 5.1.25
  • ST_Boundary - Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück. This method implements the SQL/MM specification. SQL-MM 3: 5.1.14
  • ST_Buffer - (T) Gibt eine Geometrie zurück, welche alle Punkte innerhalb einer gegebenen Entfernung von der Eingabegeometrie beinhaltet. This method implements the SQL/MM specification. SQL-MM 3: 5.1.17
  • ST_Centroid - Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht. This method implements the SQL/MM specification. SQL-MM 3: 7.1.7
  • ST_ChangeEdgeGeom - Ändert die geometrische Form einer Kante, ohne sich auf die topologische Struktur auszuwirken. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details X.3.6
  • ST_ConvexHull - Computes the convex hull of a geometry. This method implements the SQL/MM specification. SQL-MM 3: 5.1.16
  • ST_CoordDim - Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück. This method implements the SQL/MM specification. SQL-MM 3: 5.1.3
  • ST_CreateTopoGeo - Fügt eine Sammlung von Geometrien an eine leere Topologie an und gibt eine Bestätigungsmeldung aus. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details -- X.3.18
  • ST_CurveToLine - Wandelt einen CIRCULARSTRING/CURVEPOLYGON in ein LINESTRING/POLYGON um This method implements the SQL/MM specification. SQL-MM 3: 7.1.7
  • ST_Difference - Gibt eine Geometrie zurück, die jenen Teil der Geometrie A abbildet, der sich nicht mit der Geometrie B überschneidet. This method implements the SQL/MM specification. SQL-MM 3: 5.1.20
  • ST_Dimension - Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück. This method implements the SQL/MM specification. SQL-MM 3: 5.1.2
  • ST_Distance - Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück This method implements the SQL/MM specification. SQL-MM 3: 5.1.23
  • ST_EndPoint - Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück. This method implements the SQL/MM specification. SQL-MM 3: 7.1.4
  • ST_Envelope - Gibt eine Geometrie in doppelter Genauigkeit (float8) zurück, welche das Umgebungsrechteck der beigestellten Geometrie darstellt. This method implements the SQL/MM specification. SQL-MM 3: 5.1.15
  • ST_ExteriorRing - Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus. This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3
  • ST_GeometryN - Gibt den Geometrietyp des ST_Geometry Wertes zurück. This method implements the SQL/MM specification. SQL-MM 3: 9.1.5
  • ST_GeometryType - Gibt den Geometrietyp des ST_Geometry Wertes zurück. This method implements the SQL/MM specification. SQL-MM 3: 5.1.4
  • ST_GetFaceEdges - Gibt die Kanten, die aface begrenzen, sortiert aus. This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.5
  • ST_GetFaceGeometry - Gibt für eine Topologie und eine bestimmte Maschen-ID das Polygon zurück. This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.16
  • ST_InitTopoGeo - Erstellt ein neues topologisches Schema und registriert das neue Schema in der Tabelle topology.topology. Git eine Zusammenfassung des Prozessablaufs aus. This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.17
  • ST_InteriorRingN - Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus. This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5
  • ST_Intersection - (T) Gibt eine Geometrie zurück, welche den gemeinsamen Anteil von geomA und geomB repräsentiert. This method implements the SQL/MM specification. SQL-MM 3: 5.1.18
  • ST_IsClosed - Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind. This method implements the SQL/MM specification. SQL-MM 3: 7.1.5, 9.3.3
  • ST_IsEmpty - Tests if a geometry is empty. This method implements the SQL/MM specification. SQL-MM 3: 5.1.7
  • ST_IsRing - Tests if a LineString is closed and simple. This method implements the SQL/MM specification. SQL-MM 3: 7.1.6
  • ST_IsSimple - Gibt den Wert (TRUE) zurück, wenn die Geometrie keine irregulären Stellen, wie Selbstüberschneidungen oder Selbstberührungen, aufweist. This method implements the SQL/MM specification. SQL-MM 3: 5.1.8
  • ST_Length - Gibt den geometrischen Schwerpunkt einer Geometrie zurück. This method implements the SQL/MM specification. SQL-MM 3: 7.1.2, 9.3.4
  • ST_M - Returns the M coordinate of a Point. This method implements the SQL/MM specification.
  • ST_ModEdgeHeal - "Heilt" zwei Kanten, indem der verbindende Knoten gelöscht wird, die erste Kante modifiziert und die zweite Kante gelöscht wird. Gibt die ID des gelöschten Knoten zurück. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9
  • ST_ModEdgeSplit - Trennt eine Kante auf, indem ein neuer Knoten entlang einer bestehenden Kante erstellt wird. Ändert die ursprüngliche Kante und fügt eine neue Kante hinzu. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9
  • ST_MoveIsoNode - Verschiebt einen isolierten Knoten in einer Topologie von einer Stelle an eine andere. Falls die neue Geometrie apoint bereits als Knoten existiert, wird eine Fehlermeldung ausgegeben. Gibt eine Beschreibung der Verschiebung aus. This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.2
  • ST_NewEdgeHeal - "Heilt" zwei Kanten, indem der verbindende Knoten und beide Kanten gelöscht werden. Die beiden Kanten werden durch eine Kante ersetzt, welche dieselbe Ausichtung wie die erste Kante hat. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9
  • ST_NewEdgesSplit - Trennt eine Kante auf, indem ein neuer Knoten entlang einer bestehenden Kante erstellt, die ursprüngliche Kante gelöscht und durch zwei neue Kanten ersetzt wird. Gibt die ID des neu erstellten Knotens aus, der die neuen Kanten verbindet. This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.8
  • ST_NumGeometries - Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien. This method implements the SQL/MM specification. SQL-MM 3: 9.1.4
  • ST_NumInteriorRings - Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus. This method implements the SQL/MM specification. SQL-MM 3: 8.2.5
  • ST_NumPatches - Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich nicht um polyedrische Geometrien handelt. This method implements the SQL/MM specification. SQL-MM 3: ?
  • ST_NumPoints - Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück. This method implements the SQL/MM specification. SQL-MM 3: 7.2.4
  • ST_PatchN - Gibt den Geometrietyp des ST_Geometry Wertes zurück. This method implements the SQL/MM specification. SQL-MM 3: ?
  • ST_Perimeter - Returns the length of the boundary of a polygonal geometry or geography. This method implements the SQL/MM specification. SQL-MM 3: 8.1.3, 9.5.4
  • ST_Point - Gibt einen ST_Point mit den gegebenen Koordinatenwerten aus. Ein OGC-Alias für ST_MakePoint. This method implements the SQL/MM specification. SQL-MM 3: 6.1.2
  • ST_PointN - Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück. This method implements the SQL/MM specification. SQL-MM 3: 7.2.5, 7.3.5
  • ST_PointOnSurface - Returns a POINT guaranteed to lie on the surface. This method implements the SQL/MM specification. SQL-MM 3: 8.1.5, 9.5.6. According to the specs, ST_PointOnSurface works for surface geometries (POLYGONs, MULTIPOLYGONS, CURVED POLYGONS). So PostGIS seems to be extending what the spec allows here. Most databases Oracle,DB II, ESRI SDE seem to only support this function for surfaces. SQL Server 2008 like PostGIS supports for all common geometries.
  • ST_Polygon - Creates a Polygon from a LineString with a specified SRID. This method implements the SQL/MM specification. SQL-MM 3: 8.3.2
  • ST_RemEdgeModFace - Entfernt eine Kante. Falls die gelöschte Kante zwei Maschen voneinander getrennt hat, wird eine der Maschen gelöscht und die andere so geändert, dass sie den Platz der beiden ursprünglichen Maschen einnimmt. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.15
  • ST_RemEdgeNewFace - Entfernt eine Kante. Falls die gelöschte Kante zwei Maschen voneinander getrennt hat, werden die ursprünglichen Maschen gelöscht und durch einer neuen Masche ersetzt. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.14
  • ST_RemoveIsoEdge - Löscht einen isolierten Knoten und gibt eine Beschreibung der getroffenen Maßnahmen aus. Falls der Knoten nicht isoliert ist, wird eine Fehlermeldung ausgegeben. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3
  • ST_RemoveIsoNode - Löscht einen isolierten Knoten und gibt eine Beschreibung der getroffenen Maßnahmen aus. Falls der Knoten nicht isoliert ist (ist der Anfangs- oder der Endpunkt einer Kante), wird eine Fehlermeldung ausgegeben. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3
  • ST_StartPoint - Returns the first point of a LineString. This method implements the SQL/MM specification. SQL-MM 3: 7.1.3
  • ST_SymDifference - Gibt eine Geometrie zurück, die jene Teile von A und B repräsentiert, die sich nicht überlagern. Wird symmetrische Differenz genannt, da ST_SymDifference(A,B) = ST_SymDifference(B,A). This method implements the SQL/MM specification. SQL-MM 3: 5.1.21
  • ST_Union - Gibt eine Geometrie zurück, welche der mengentheoretischen Vereinigung der Geometrien entspricht. This method implements the SQL/MM specification. SQL-MM 3: 5.1.19 der Z-Index (Höhe) wenn Polygone beteiligt sind.
  • ST_X - Returns the X coordinate of a Point. This method implements the SQL/MM specification. SQL-MM 3: 6.1.3
  • ST_Y - Returns the Y coordinate of a Point. This method implements the SQL/MM specification. SQL-MM 3: 6.1.4
  • ST_Z - Returns the Z coordinate of a Point. This method implements the SQL/MM specification.

14.4. PostGIS Geography Support Functions

The functions and operators given below are PostGIS functions/operators that take as input or return as output a geography data type object.

[Note]

Functions with a (T) are not native geodetic functions, and use a ST_Transform call to and from geometry to do the operation. As a result, they may not behave as expected when going over dateline, poles, and for large geometries or geometry pairs that cover more than one UTM zone. Basic transform - (favoring UTM, Lambert Azimuthal (North/South), and falling back on mercator in worst case scenario)

  • ST_Area - Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
  • ST_AsBinary - Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.
  • ST_AsEWKT - Gibt die Well-known-Text(WKT) Darstellung der Geometrie mit den SRID-Metadaten zurück.
  • ST_AsGML - Gibt die Geometrie als GML-Element - Version 2 oder 3 - zurück.
  • ST_AsGeoJSON - Gibt die Geometrie eines GeoJSON Elements zurück.
  • ST_AsKML - Gibt die Geometrie als ein KML Element aus. Mehrere Varianten. Standardmäßig ist version=2 und precision=15
  • ST_AsSVG - Gibt ein Geoobjekt als SVG-Pfadgeometrie zurück. Unterstützt den geometrischen und den geographischen Datentyp.
  • ST_AsText - Gibt die Well-known-Text(WKT) Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.
  • ST_Azimuth - Gibt den auf die Nordrichtung bezogenen Azimut in Radiant zurück. Der Winkel wird von einer Senkrechten auf "pointA" nach pointB im Uhrzeigersinn gemessen.
  • ST_Buffer - (T) Gibt eine Geometrie zurück, welche alle Punkte innerhalb einer gegebenen Entfernung von der Eingabegeometrie beinhaltet.
  • ST_Centroid - Gibt eine Sammelgeometrie zurück, die beim Auftrennen einer Geometrie entsteht.
  • ST_GeneratePoints - Wandelt ein Polygon oder ein MultiPolygon in einen MultiPoint um, welcher aus wahllos angeordeten, innerhalb der ursprünglichen Flächen liegenden Punkten besteht.
  • = - Gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind.
  • ST_Intersection - (T) Gibt eine Geometrie zurück, welche den gemeinsamen Anteil von geomA und geomB repräsentiert.
  • ST_Length - Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
  • ST_Perimeter - Returns the length of the boundary of a polygonal geometry or geography.
  • ST_Project - Gibt einen POINT zurück, der von einem Anfangspunkt weg, entsprechend einer Distanz in Meter und einer Peilung (Azimut) in Radiant, projiziert wird.
  • ST_Segmentize - Gibt eine veränderte Geometrie/Geographie zurück, bei der kein Sement länger als der gegebene Abstand ist.
  • ST_Summary - Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.
  • <-> - Gibt die 2D Entfernung zwischen A und B zurück.
  • && - Gibt TRUE zurück, wenn die 2D Bounding Box von A die 2D Bounding Box von B schneidet.

14.5. PostGIS Raster Support Functions

The functions and operators given below are PostGIS functions/operators that take as input or return as output a raster data type object. Listed in alphabetical order.

  • Box3D - Stellt das umschreibende Rechteck eines Raster als Box3D dar.
  • @ - Gibt TRUE zurück, wenn das umschreibende Rechteck von A in jenem von B enthalten ist. Das umschreibende Rechteck ist in Double Precision.
  • ~ - Gibt TRUE zurück, wenn das umschreibende Rechteck von A jenes von B enthält. Das umschreibende Rechteck ist in Double Precision.
  • = - Gibt TRUE zurück, wenn die umschreibenden Rechtecke von A und B ident sind. Das umschreibende Rechteck ist in Double Precision.
  • && - Gibt TRUE zurück, wenn das umschreibende Rechteck von A das umschreibende Rechteck von B schneidet.
  • &< - Gibt TRUE zurück, wenn das umschreibende Rechteck von A links von dem von B liegt.
  • &> - Gibt TRUE zurück, wenn das umschreibende Rechteck von A rechts von dem von B liegt.
  • ~= - Gibt TRUE zurück wenn die Umgebungsrechtecke von "A" und "B" ident sind.
  • ST_Retile - Gibt konfigurierte Kacheln eines beliebig gekachelten Rastercoverage aus.
  • ST_AddBand - Gibt einen Raster mit den neu hinzugefügten Band(Bändern) aus. Der Typ , der Ausgangswert und der Index für den Speicherort des Bandes kann angegeben werden. Wenn kein Index angegeben ist, wird das Band am Ende hinzugefügt.
  • ST_AsBinary/ST_AsWKB - Gibt die Well-known-Binary (WKB) Darstellung eines Rasters zurück.
  • ST_AsGDALRaster - Gibt die Rasterkachel in dem ausgewiesenen Rasterformat von GDAL aus. Sie können jedes Rasterformat angeben, das von Ihrer Bibliothek unterstützt wird. Um eine Liste mit den unterstützten Formaten auszugeben, verwenden Sie bitte ST_GDALDrivers().
  • ST_AsHexWKB - Gibt die Well-known-Binary (WKB) Hex-Darstellung eines Rasters zurück.
  • ST_AsJPEG - Gibt die ausgewählten Bänder der Rasterkachel als einzelnes Bild (Byte-Array) im Format "Joint Photographic Exports Group" (JPEG) aus. Wenn kein Band angegeben ist und 1 oder mehr als 3 Bänder ausgewählt wurden, dann wird nur das erste Band verwendet. Wenn 3 Bänder ausgewählt wurden, werden alle 3 Bänder verwendet und auf RGB abgebildet.
  • ST_AsPNG - Gibt die ausgewählten Bänder der Rasterkachel als einzelnes, übertragbares Netzwerkgraphik (PNG) Bild (Byte-Feld) aus. Wenn der Raster 1,3 oder 4 Bänder hat und keine Bänder angegeben sind, dann werden alle Bänder verwendet. Wenn der Raster 2 oder mehr als 4 Bänder hat und keine Bänder angegeben sind, dann wird nur Band 1 verwendet. Die Bänder werden in den RGB- oder den RGBA-Raum abgebildet.
  • ST_AsRaster - Konvertiert den geometrischen Datentyp von PostGIS in einen PostGIS Raster.
  • ST_AsTIFF - Gibt die ausgewählten Bänder des Raster als einzelnes TIFF Bild (Byte-Feld) zurück. Wenn kein Band angegeben ist oder keines der angegebenen Bänder im Raster existiert, werden alle Bänder verwendet.
  • ST_Aspect - Gibt die Exposition (standardmäßig in Grad) eines Rasterbandes mit Höhen aus. Nütlich für Terrain-Analysen.
  • ST_Band - Gibt einen oder mehrere Bänder eines bestehenden Rasters als neuen Raster aus. Nützlich um neue Raster aus bestehenden Rastern abzuleiten.
  • ST_BandFileSize - Gibt die Dateigröße eines im Dateisystem gespeicherten Bandes aus. Wenn "bandnum" nicht angegeben ist, wird 1 angenommen.
  • ST_BandFileTimestamp - Gibt den Zeitstempel eines im Dateisystem gespeicherten Bandes aus. Wenn "bandnum" nicht angegeben ist, wird 1 angenommen.
  • ST_BandIsNoData - Gibt TRUE aus, wenn das Band ausschließlich aus NODATA Werten besteht.
  • ST_BandMetaData - Gibt die grundlegenden Metadaten eines bestimmten Rasterbandes aus. Wenn der Parameter "bandnum" nicht angegeben ist, wird das 1ste Band angenommen.
  • ST_BandNoDataValue - Gibt den NODATA Wert des gegebenen Bandes aus. Wenn der Parameter "bandnum" nicht angegeben ist, wird das 1ste Band angenommen.
  • ST_BandPath - Gibt den Dateipfad aus, unter dem das Band im Dateisystem gespeichert ist. Wenn "bandnum" nicht angegeben ist, wird 1 angenommen.
  • ST_BandPixelType - Gibt den Pixeltyp des angegebenen Bandes aus. Wenn der Parameter "bandnum" nicht angegeben ist, wird das 1ste Band angenommen.
  • ST_Clip - Schneidet den Raster nach der Eingabegeometrie. Wenn die Bandnummer nicht angegeben ist, werden alle Bänder bearbeitet. Wenn crop nicht angegeben oder TRUE ist, wird der Ausgaberaster abgeschnitten.
  • ST_ColorMap - Erzeugt aus einem bestimmten Band des Ausgangsrasters einen neuen Raster mit bis zu vier 8BUI-Bändern (Grauwert, RGB, RGBA). Wenn kein Band angegeben ist, wird Band 1 angenommen.
  • ST_Contains - Gibt TRUE zurück, wenn kein Punkt des Rasters "rastB" im Äußeren des Rasters "rastA" liegt und zumindest ein Punkt im Inneren von "rastB" auch im Inneren von "rastA" liegt.
  • ST_ContainsProperly - Gibt TRUE zurück, wenn "rastB" das Innere von "rastA" schneidet, aber nicht die Begrenzung oder das Äußere von "rastA".
  • ST_ConvexHull - Gibt die Geometrie der konvexen Hülle des Raster, inklusive der Pixel deren Werte gleich BandNoDataValue sind. Bei regelmäßig geformten und nicht rotierten Raster ist das Ergebnis ident mit ST_Envelope. Diese Funktion ist deshalb nur bei unregelmäßig geformten oder rotierten Raster nützlich.
  • ST_Count - Gibt die Anzahl der Pixel für ein Band eines Rasters oder eines Raster-Coverage zurück. Wenn kein Band angegeben ist, wird standardmäßig Band 1 gewählt. Wenn der Parameter "exclude_nodata_value" auf TRUE gesetzt ist, werden nur Pixel mit Werten ungleich NODATA gezählt.
  • ST_CountAgg - Aggregatfunktion. Gibt die Anzahl der Pixel in einem bestimmten Band der Raster aus. Wenn kein Band angegeben ist, wird Band 1 angenommen. Wenn "exclude_nodata_value" TRUE ist, werden nur die Pixel ohne NODATA Werte gezählt.
  • ST_CoveredBy - Gibt TRUE zurück, wenn kein Punkt des Rasters "rastA" außerhalb des Rasters "rastB" liegt.
  • ST_Covers - Gibt TRUE zurück, wenn kein Punkt des Rasters "rastB" außerhalb des Rasters "rastA" liegt.
  • ST_DFullyWithin - Gibt TRUE zurück, wenn die Raster "rastA" und "rastB" zur Gänze innerhalb der angegebenen Distanz zueinander liegen.
  • ST_DWithin - Gibt TRUE zurück, wenn die Raster "rastA" und "rastB" innerhalb der angegebenen Entfernung voneinander liegen.
  • ST_Disjoint - Gibt TRUE zurück, wenn sich die Raster "rastA" und "rastB" räumlich nicht überschneiden.
  • ST_DumpAsPolygons - Gibt geomval (geom,val) Zeilen eines Rasterbandes zurück. Wenn kein Band angegeben ist, wird die Bandnummer standardmäßig auf 1 gesetzt.
  • ST_DumpValues - Gibt die Werte eines bestimmten Bandes als 2-dimensionales Feld aus.
  • ST_Envelope - Stellt die Ausdehnung des Raster als Polygon dar.
  • ST_FromGDALRaster - Erzeugt einen Raster aus einer von GDAL unterstützten Rasterdatei.
  • ST_GeoReference - Gibt die Metadaten der Georeferenzierung, die sich üblicherweise in einem sogenannten "World File befinden, im GDAL oder ESRI Format aus. Die Standardeinstellung ist GDAL.
  • ST_Grayscale - Erzeugt einen neuen Raster mit einem 8BUI-Band aus dem Ausgangsrasters und den angegebenen Bändern für Rot, Grün und Blau
  • ST_HasNoBand - Gibt TRUE aus, wenn kein Band mit der angegebenen Bandnummer existiert.Gibt den Pixeltyp des angegebenen Bandes aus. Wenn keine Bandnummer angegeben ist, wird das 1ste Band angenommen.
  • ST_Height - Gibt die Höhe des Rasters in Pixel aus.
  • ST_HillShade - Gibt für gegebenen Horizontalwinkel, Höhenwinkel, Helligkeit und Maßstabsverhältnis die hypothetische Beleuchtung eines Höhenrasterbandes zurück.
  • ST_Histogram - Gibt Datensätze aus, welche die Verteilung der Daten eines Rasters oder eines Rastercoverage darstellen. Dabei wird die Wertemenge in Klassen aufgeteilt und für jede Klasse zusammengefasst. Wenn die Anzahl der Klassen nicht angegeben ist, wird sie automatisch berechnet.
  • ST_Intersection - Gibt Geometry-PixelValue Paare, oder einen Raster aus, der durch die Schnittmenge der beiden Raster bestimmt wird, oder durch die geometrische Verschneidung einer Vektorisierung des Rasters mit einem geometrischen Datentyp.
  • ST_Intersects - Gibt TRUE zurück, wenn sich die Raster "rastA" und "rastB" nicht räumlich überschneiden.
  • ST_IsEmpty - Gibt TRUE zurück, wenn der Raster leer ist (width = 0 and height = 0). Andernfalls wird FALSE zurückgegeben.
  • ST_MakeEmptyCoverage - Bedeckt die georeferenzierte Fläche mit einem Gitter aus leeren Rasterkacheln.
  • ST_MakeEmptyRaster - Gibt einen leeren Raster (ohne Bänder), mit den gegebenen Dimensionen (width & height), upperleft X und Y, Pixelgröße, Rotation (scalex, scaley, skewx & skewy) und Koordinatenreferenzsystem (SRID), zurück. Wenn ein Raster übergeben wird, dann wird ein neuer Raster mit der selben Größe, Ausrichtung und SRID zurückgegeben. Wenn SRID nicht angegeben ist, wird das Koordinatenreferenzsystem auf "unknown" (0) gesetzt.
  • ST_MapAlgebra (Rückruffunktion) - Die Version mit der Rückruffunktion - Gibt für einen oder mehrere Eingaberaster einen Raster mit einem Band, den Bandindizes und einer vom Anwender vorgegebenen Rückruffunktion zurück.
  • ST_MapAlgebraExpr - Version mit 1 Rasterband: Erzeugt ein neues Rasterband, dass über eine gültige, algebraische PostgreSQL Operation für ein Rasterband mit gegebenen Pixeltyp erstellt wird. Wenn kein Band bestimmt ist, wird Band 1 angenommen.
  • ST_MapAlgebraExpr - Version mit 2 Rasterbändern: Erstellt einen neuen Einzelbandraster, indem eine gültige algebraische PostgreSQL Funktion auf die zwei Ausgangsrasterbänder und den entsprechenden Pixeltyp angewendet wird. Wenn keine Bandnummern angegeben sind, wird von jedem Raste Band 1 angenommen. Der Ergebnisraster wird nach dem Gitter des ersten Raster ausgerichtet (Skalierung, Versatz und Eckpunkte der Pixel) und hat die Ausdehnung, welche durch den Parameter "extenttype" definiert ist. Der Parameter "extenttype" kann die Werte INTERSECTION, UNION, FIRST, SECOND annehmen.
  • ST_MapAlgebraFct - Version mit 1 Rasterband: Erzeugt ein neues Rasterband, dass über eine gültige PostgreSQL Funktion für ein gegebenes Rasterband und Pixeltyp erstellt wird. Wenn kein Band bestimmt ist, wird Band 1 angenommen.
  • ST_MapAlgebraFct - Version mit 2 Rasterbändern: Erstellt einen neuen Einzelbandraster, indem eine gültige PostgreSQL Funktion auf die 2 gegebenen Rasterbänder und den entsprechenden Pixeltyp angewendet wird. Wenn kein Band bestimmt ist, wird Band 1 angenommen. Wenn der "Extent"-Typ nicht angegeben ist, wird standardmäßig INTERSECTION angenommen.
  • ST_MapAlgebraFctNgb - Version mit 1em Band: Map Algebra Nearest Neighbor mit einer benutzerdefinierten PostgreSQL Funktion. Gibt einen Raster zurück, dessen Werte sich aus einer benutzerdefinierte PL/pgsql Funktion ergeben, welche die Nachbarschaftswerte des Ausgangsrasterbandes einbezieht.
  • ST_MapAlgebra (Ausdrucksanweisung) - Version mit Ausdrücken - Gibt für einen oder zwei Ausgangsraster, Bandindizes und einer oder mehreren vom Anwender vorgegebenen SQL-Ausdrücken, einen Raster mit einem Band zurück.
  • ST_MemSize - Gibt den Platzbedarf des Rasters (in Byte) aus.
  • ST_MetaData - Gibt die wesentlichen Metadaten eines Rasterobjektes, wie Zellgröße, Rotation (Versatz) etc. aus
  • ST_MinConvexHull - Gibt die Geometrie der konvexen Hülle des Raster aus, wobei Pixel mit NODATA ausgenommen werden.
  • ST_NearestValue - Gibt den nächstgelegenen nicht NODATA Wert eines bestimmten Pixels aus, das über "columnx" und "rowy" oder durch eine Punktgeometrie - im gleichen Koordinatenreferenzsystem wie der Raster - ausgewählt wird.
  • ST_Neighborhood - Gibt ein 2-D Feld in "Double Precision" aus, das sich aus nicht NODATA Werten um ein bestimmtes Pixel herum zusammensetzt. Das Pixel Kann über "columnx" und "rowy" oder über eine Punktgeometrie - im gleichen Koordinatenreferenzsystem wie der Raster - ausgewählt werden.
  • ST_NotSameAlignmentReason - Gibt eine Meldung aus, die angibt ob die Raster untereinander ausgerichtet sind oder nicht und warum wenn nicht.
  • ST_NumBands - Gibt die Anzahl der Bänder des Rasters aus.
  • ST_Overlaps - Gibt TRUE zurück, wenn sich die Raster "rastA" und "rastB" schneiden, aber ein Raster den anderen nicht zur Gänze enthält.
  • ST_PixelAsCentroid - Gibt den geometrischen Schwerpunkt (Punktgeometrie) der Fläche aus, die durch das Pixel repräsentiert wird.
  • ST_PixelAsCentroids - Gibt den geometrischen Schwerpunkt (Punktgeometrie) für jedes Pixel des Rasterbandes zurück, zusammen mit dem Zellwert und den X- und Y-Rasterkoordinaten eines jeden Pixels. Die Koordinaten der Punkte entsprechen dem geometrischen Schwerpunkt der Pixel.
  • ST_PixelAsPoint - Gibt eine Punktgeometrie der oberen linken Ecke des Rasters zurück.
  • ST_PixelAsPoints - Gibt eine Punktgeometrie für jedes Pixel des Rasterbandes zurück, zusammen mit dem Zellwert und den X- und Y-Rasterkoordinaten eines jeden Pixels. Die Koordinaten der Punkte entsprechen dem oberen linken Eck der Pixel.
  • ST_PixelAsPolygon - Gibt die Polygongeometrie aus, die das Pixel einer bestimmten Zeile und Spalte begrenzt.
  • ST_PixelAsPolygons - Gibt die umhüllende Polygongeometrie, den Zellwert, sowie die X- und Y-Rasterkoordinate für jedes Pixel aus.
  • ST_PixelHeight - Gibt die Pixelhöhe in den Einheiten des Koordinatenreferenzsystem aus.
  • ST_PixelOfValue - Gibt die columnx- und rowy-Koordinaten jener Pixel aus, deren Zellwert gleich dem gesuchten Wert ist.
  • ST_PixelWidth - Gibt die Pixelbreite in den Einheiten des Koordinatenreferenzsystems aus.
  • ST_Polygon - Gibt eine Geometrie mit Mehrfachpolygonen zurück, die aus der Vereinigung von Pixel mit demselben Zellwert gebildet werden. Pixel mit NODATA Werten werden nicht berücksichtigt. Wenn keine Band angegeben ist, wird die Bandnummer standardmäßig auf 1 gesetzt. 
  • ST_Quantile - Berechnet die Quantile eines Rasters oder einer Rastercoverage Tabelle im Kontext von Stichproben oder Bevölkerung. Dadurch kann untersucht werden, ob ein Wert bei 25%, 50% oder 75% Perzentil des Rasters liegt.
  • ST_RastFromHexWKB - Gibt einen Rasterwert von einer Well-known-Binary (WKB) Hex-Darstellung eines Rasters zurück.
  • ST_RastFromWKB - Gibt einen Rasterwert von einer Well-known-Binary (WKB) Darstellung eines Rasters zurück.
  • ST_RasterToWorldCoord - Gibt die obere linke Ecke des Rasters in geodätischem X und Y (Länge und Breite) für eine gegebene Spalte und Zeile aus. Spalte und Zeile wird von 1 aufwärts gezählt.
  • ST_RasterToWorldCoordX - Gibt die geodätische X Koordinate links oberhalb des Rasters, der Spalte und der Zeile aus. Die Nummerierung der Spalten und Zeilen beginnt mit 1.
  • ST_RasterToWorldCoordY - Gibt die geodätische Y Koordinate links oberhalb des Rasters, der Spalte und der Zeile aus. Die Nummerierung der Spalten und Zeilen beginnt mit 1.
  • ST_Reclass - Erstellt einen neuen Raster, der aus neu klassifizierten Bändern des Originalraster besteht. Das Band "nband" ist jenes das verändert werden soll. Wenn "nband" nicht angegeben ist, wird "Band 1" angenommen. Alle anderen Bänder bleiben unverändert. Anwendungsfall: zwecks einfacherer Visualisierung ein 16BUI-Band in ein 8BUI-Band konvertieren und so weiter.
  • ST_Resample - Skaliert einen Raster mit einem bestimmten Algorithmus, neuen Dimensionen, einer beliebigen Gitterecke und über Parameter zur Georeferenzierung des Rasters, die angegeben oder von einem anderen Raster übernommen werden können.
  • ST_Rescale - Skaliert einen Raster indem lediglich der Maßstab (oder die Pixelgröße) angepasst wird. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung ist NearestNeighbor.
  • ST_Resize - Ändert die Zellgröße - width/height - eines Rasters
  • ST_Reskew - Skaliert einen Raster, indem lediglich der Versatz (oder Rotationsparameter) angepasst wird. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung ist NearestNeighbor.
  • ST_Rotation - Gibt die Rotation des Rasters im Bogenmaß aus.
  • ST_Roughness - Gibt einen Raster mit der berechneten "Rauhigkeit" des DHM zurück.
  • ST_SRID - Gibt den Identifikator des Koordinatenreferenzsystems des Rasters aus, das in der Tabelle "spatial_ref_sys" definiert ist.
  • ST_SameAlignment - Gibt TRUE zurück, wenn die Raster die selbe Rotation, Skalierung, Koordinatenreferenzsystem und Versatz (Pixel können auf dasselbe Gitter gelegt werden, ohne dass die Gitterlinien durch die Pixel schneiden) aufweisen. Wenn nicht, wird FALSE und eine Bechreibung des Problems ausgegeben.
  • ST_ScaleX - Gibt die X-Komponente der Pixelbreite in den Einheiten des Koordinatenreferenzsystems aus.
  • ST_ScaleY - Gibt die Y-Komponente der Pixelhöhe in den Einheiten des Koordinatenreferenzsystems aus.
  • ST_SetBandIndex - Aktualisiert die externe Bandnummer eines out-db Bandes.
  • ST_SetBandIsNoData - Setzt die Flag "isnodata" für das Band auf TRUE.
  • ST_SetBandNoDataValue - Setzt den NODATA Wert eines Bandes. Wenn kein Band angegeben ist, wird Band 1 angenommen. Falls ein Band keinen NODATA Wert aufweisen soll, übergeben Sie bitte für den Parameter "nodatavalue" NULL.
  • ST_SetBandPath - Aktualisiert den externen Dateipfad und die Bandnummer eines out-db Bandes.
  • ST_SetGeoReference - Georeferenziert einen Raster über 6 Parameter in einem einzigen Aufruf. Die Zahlen müssen durch Leerzeichen getrennt sein. Die Funktion akzeptiert die Eingabe im Format von 'GDAL' und von 'ESRI'. Der Standardwert ist GDAL.
  • ST_SetRotation - Bestimmt die Rotation des Rasters in Radiant.
  • ST_SetSRID - Setzt die SRID eines Rasters auf einen bestimmten Ganzzahlwert. Die SRID wird in der Tabelle "spatial_ref_sys" definiert.
  • ST_SetScale - Setzt die X- und Y-Größe der Pixel in den Einheiten des Koordinatenreferenzsystems. Entweder eine Zahl pro Pixel oder Breite und Höhe.
  • ST_SetSkew - Setzt den georeferenzierten X- und Y-Versatz (oder den Rotationsparameter). Wenn nur ein Wert übergeben wird, werden X und Y auf den selben Wert gesetzt.
  • ST_SetUpperLeft - Setzt den Wert der oberen linke Ecke des Rasters auf die projizierten X- und Y-Koordinaten.
  • ST_SetValue - Setzt den Wert für ein Pixel eines Bandes, das über columnx und rowy festgelegt wird, oder für die Pixel die eine bestimmte Geometrie schneiden, und gibt den veränderten Raster zurück. Die Bandnummerierung beginnt mit 1; wenn die Bandnummer nicht angegeben ist, wird 1 angenommen.
  • ST_SetValues - Gibt einen Raster zurück, der durch das Setzen der Werte eines bestimmten Bandes verändert wurde.
  • ST_SkewX - Gibt den georeferenzierten Versatz in X-Richtung (oder den Rotationsparameter) aus.
  • ST_SkewY - Gibt den georeferenzierten Versatz in Y-Richtung (oder den Rotationsparameter) aus.
  • ST_Slope - Gibt die Neigung (standardmäßig in Grad) eines Höhenrasterbandes zurück. Nützlich für Terrain-Analysen.
  • ST_SnapToGrid - Skaliert einen Raster durch Fangen an einem Führungsgitter. Neue Pixelwerte werden über NearestNeighbor, bilinear, kubisch, CubicSpline oder mit dem Lanczos-Filter errechnet. Die Standardeinstellung ist NearestNeighbor. 
  • ST_Summary - Gibt eine textliche Zusammenfassung des Rasterinhalts zurück.
  • ST_SummaryStats - Gibt eine zusammenfassende Statistik aus, bestehend aus der Anzahl, der Summe, dem arithmetischen Mittel, der Standardabweichung, dem Minimum und dem Maximum der Werte eines Rasterbandes oder eines Rastercoverage. Wenn kein Band angegeben ist, wird Band 1 angenommen.
  • ST_SummaryStatsAgg - Aggregatfunktion. Gibt eine zusammenfassende Statistik aus, die aus der Anzahl, der Summe, dem arithmetischen Mittel, dem Minimum und dem Maximum der Werte eines bestimmten Bandes eines Rastersatzes besteht. Wenn kein Band angegeben ist, wird Band 1 angenommen.
  • ST_TPI - Berechnet den "Topographic Position Index" eines Raster.
  • ST_TRI - Gibt einen Raster mit errechneten Geländerauheitsindex aus.
  • ST_Tile - Gibt Raster, die aus einer Teilungsoperation des Eingaberasters resultieren, mit den gewünschten Dimensionen aus.
  • ST_Touches - Gibt TRUE zurück, wenn rastA und rastB zumindest einen Punkt gemeinsam haben sich aber nicht überschneiden.
  • ST_Transform - Projiziert einen Raster von einem bekannten Koordinatenreferenzsystem in ein anderes bekanntes Koordinatenreferenzsystem um. Die Optionen für die Skalierung sind NearestNeighbor, Bilinear, Cubisch, CubicSpline und der Lanczos-Filter, die Standardeinstellung ist NearestNeighbor.
  • ST_Union - Gibt die Vereinigung mehrerer Rasterkacheln in einem einzelnen Raster mit mehreren Bändern zurück.
  • ST_UpperLeftX - Gibt die obere linke X-Koordinate des Rasters im Koordinatenprojektionssystem aus.
  • ST_UpperLeftY - Gibt die obere linke Y-Koordinate des Rasters im Koordinatenprojektionssystem aus.
  • ST_Value - Gibt den Zellwert eines Pixels aus, das über columnx und rowy oder durch einen bestimmten geometrischen Punkt angegeben wird. Die Bandnummern beginnen mit 1 und wenn keine Bandnummer angegeben ist, dann wird Band 1 angenommen. Wenn exclude_nodata_value auf FALSE gesetzt ist, werden auch die Pixel mit einem nodata Wert mit einbezogen. Wenn exclude_nodata_value nicht übergeben wird, dann wird er über die Metadaten des Rasters ausgelesen.
  • ST_ValueCount - Gibt Datensätze aus, die den Zellwert und die Anzahl der Pixel eines Rasterbandes (oder Rastercoveragebandes) für gegebene Werte enthalten. Wenn kein Band angegeben ist, wird Band 1 angenommen. Pixel mit dem Wert NODATA werden standardmäßig nicht gezählt; alle anderen Pixelwerte des Bandes werden ausgegeben und auf die nächste Ganzzahl gerundet.
  • ST_Width - Gibt die Breite des Rasters in Pixel aus.
  • ST_Within - Gibt TRUE zurück, wenn kein Punkt des Rasters "rastA" außerhalb des Rasters "rastB" liegt und zumindest ein Punkt im Inneren von "rastA" auch im Inneren von "rastB" liegt.
  • ST_WorldToRasterCoord - Gibt für ein geometrisches X und Y (geographische Länge und Breite) oder für eine Punktgeometrie im Koordinatenreferenzsystem des Rasters, die obere linke Ecke als Spalte und Zeile aus.
  • ST_WorldToRasterCoordX - Gibt für eine Punktgeometrie (pt) oder eine globale X- und Y-Koordinate (xw, yw) die Rasterspalte im globalen Koordinatenreferenzsystem des Rasters aus.
  • ST_WorldToRasterCoordY - Gibt für eine Punktgeometrie (pt) oder eine globale X- und Y-Koordinate (xw, yw) die Rasterzeile im globalen Koordinatenreferenzsystem des Rasters aus.
  • UpdateRasterSRID - Änderung der SRID aller Raster in der vom Anwender angegebenen Spalte und Tabelle.

14.6. PostGIS Geometry / Geography / Raster Dump Functions

The functions given below are PostGIS functions that take as input or return as output a set of or single geometry_dump or geomval data type object.

  • ST_DumpAsPolygons - Gibt geomval (geom,val) Zeilen eines Rasterbandes zurück. Wenn kein Band angegeben ist, wird die Bandnummer standardmäßig auf 1 gesetzt.
  • ST_Intersection - Gibt Geometry-PixelValue Paare, oder einen Raster aus, der durch die Schnittmenge der beiden Raster bestimmt wird, oder durch die geometrische Verschneidung einer Vektorisierung des Rasters mit einem geometrischen Datentyp.

14.7. PostGIS Box Functions

The functions given below are PostGIS functions that take as input or return as output the box* family of PostGIS spatial types. The box family of types consists of box2d, and box3d

  • Box3D - Stellt das umschreibende Rechteck eines Raster als Box3D dar.
  • ST_AsMVTGeom - Transformiert eine Geometrie in das Koordinatensystem eines Mapbox Vector Tiles.
  • ST_AsTWKB - Gibt die Geometrie als TWKB, aka "Tiny Well-known Binary" zurück
  • ST_ClipByBox2D - Gibt jenen Teil der Geometrie zurück, der innerhalb eines Rechteckes liegt.
  • ~(box2df,box2df) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine andere 2D float precision bounding box (BOX2DF) enthält.
  • ~(box2df,geometry) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) die 2D Bounding Box einer Geometrie enthält.
  • ~(geometry,box2df) - Gibt TRUE zurück, wenn die 2D bounding box einer Geometrie eine 2D float precision bounding box (GIDX) enthält.
  • @(box2df,box2df) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) innerhalb einer anderen 2D float precision bounding box enthalten ist.
  • @(box2df,geometry) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) in der 2D Bounding Box einer Geometrie enthalten ist..
  • @(geometry,box2df) - Gibt TRUE zurück, wenn die 2D Bounding Box einer Geometrie in einer 2D float precision Bbounding Box (BOX2DF) enthalten ist.
  • &&(box2df,box2df) - Gibt TRUE zurück, wenn sich zwei 2D float precision Bounding Boxes (BOX2DF) überschneiden.
  • &&(box2df,geometry) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine Geometrie (cached) 2D bounding box schneidet.
  • &&(geometry,box2df) - Gibt TRUE zurück, wenn sich die 2D Bounding Box (cached) einer Geometrie mit einer 2D Bounding Box mit Gleitpunktgenauigkeit (BOX2DF) überschneidet.

14.8. PostGIS Functions that support 3D

The functions given below are PostGIS functions that do not throw away the Z-Index.

  • AddGeometryColumn - Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
  • DropGeometryColumn - Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
  • GeometryType - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_3DArea - Berechnet die Fläche von 3D-Oberflächengeometrien. Gibt 0 für Solids zurück.
  • ST_3DClosestPoint - Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.
  • ST_3DDifference - Errechnet die Differenzmenge in 3D
  • ST_3DDistance - Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurückgegeben.
  • ST_3DIntersection - Führt eine Verschneidung in 3D aus
  • ST_3DLength - Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
  • ST_3DLongestLine - Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
  • ST_3DMaxDistance - Für den geometrischen Datentyp. Gibt die maximale 3-dimensionale kartesische Distanz (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.
  • ST_3DPerimeter - Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
  • ST_3DShortestLine - Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück
  • ST_3DUnion - Führt eine Vereinigung/Union in 3D aus
  • ST_AddMeasure - Gibt eine abgeleitete Geometrie mit einer zwischen Anfangs- und Endpunkt linear interpolierten Kilometrierung zurück.
  • ST_AddPoint - Fügt einem Linienzug einen Punkt hinzu.
  • ST_ApproximateMedialAxis - Errechnet die genäherte Mediale Achse einer Flächengeometrie.
  • ST_AsBinary - Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.
  • ST_AsEWKB - Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie mit den SRID Metadaten zurück.
  • ST_AsEWKT - Gibt die Well-known-Text(WKT) Darstellung der Geometrie mit den SRID-Metadaten zurück.
  • ST_AsGML - Gibt die Geometrie als GML-Element - Version 2 oder 3 - zurück.
  • ST_AsGeoJSON - Gibt die Geometrie eines GeoJSON Elements zurück.
  • ST_AsHEXEWKB - Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung.
  • ST_AsKML - Gibt die Geometrie als ein KML Element aus. Mehrere Varianten. Standardmäßig ist version=2 und precision=15
  • ST_AsX3D - Gibt eine Geometrie im X3D XML Knotenelement-Format zurück: ISO-IEC-19776-1.2-X3DEncodings-XML
  • ST_Boundary - Gibt die abgeschlossene Hülle aus der kombinierten Begrenzung der Geometrie zurück.
  • ST_BoundingDiagonal - Gibt die Diagonale des Umgebungsdreiecks der angegebenen Geometrie zurück.
  • ST_Collect - Creates a GeometryCollection or Multi* geometry from a set of geometries.
  • ST_ConstrainedDelaunayTriangles - Return a constrained Delaunay triangulation around the given input geometry.
  • ST_ConvexHull - Computes the convex hull of a geometry.
  • ST_CoordDim - Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
  • ST_CurveToLine - Wandelt einen CIRCULARSTRING/CURVEPOLYGON in ein LINESTRING/POLYGON um
  • ST_DelaunayTriangles - Gibt die Delaunay-Triangulierung für gegebene Punkte zurück.
  • ST_Difference - Gibt eine Geometrie zurück, die jenen Teil der Geometrie A abbildet, der sich nicht mit der Geometrie B überschneidet.
  • ST_Dump - Returns a set of geometry_dump rows for the components of a geometry.
  • ST_DumpPoints - Returns a set of geometry_dump rows for the points in a geometry.
  • ST_DumpRings - Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.
  • ST_EndPoint - Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
  • ST_ExteriorRing - Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
  • ST_Extrude - Weitet eine Oberfläche auf ein entsprechendes Volumen aus
  • ST_FlipCoordinates - Gibt eine Version der gegebenen Geometrie zurück, wobei die X und Y Achse vertauscht sind. Nützlich wenn man Geoobjekte in Breite/Länge vorliegen hat und dies beheben möchte.
  • ST_Force2D - Die Geometrien in einen "2-dimensionalen Modus" zwingen.
  • ST_ForceCurve - Wandelt einen geometrischen in einen Kurven Datentyp um, soweit anwendbar.
  • ST_ForceLHR - Erzwingt LHR Orientierung
  • ST_ForcePolygonCCW - Richtet alle äußeren Ringe gegen den Uhrzeigersinn und alle inneren Ringe mit dem Uhrzeigersinn aus.
  • ST_ForcePolygonCW - Richtet alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn aus.
  • ST_ForceRHR - Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen.
  • ST_ForceSFS - Erzwingt, dass Geometrien nur vom Typ SFS 1.1 sind.
  • ST_Force_3D - Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ.
  • ST_Force_3DZ - Zwingt die Geometrien in einen XYZ Modus.
  • ST_Force_4D - Zwingt die Geometrien in einen XYZM Modus.
  • ST_Force_Collection - Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um.
  • ST_GeometricMedian - Returns the geometric median of a MultiPoint.
  • ST_GeometryN - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_GeometryType - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_HasArc - Tests if a geometry contains a circular arc
  • ST_InteriorRingN - Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
  • ST_InterpolatePoint - Für einen gegebenen Punkt wird die Kilometrierung auf dem nächstliegenden Punkt einer Geometrie zurück.
  • ST_IsClosed - Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind.
  • ST_IsCollection - Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.
  • ST_IsPlanar - Überprüft ob es sich um eine ebene Oberfläche handelt oder nicht
  • ST_IsPolygonCCW - Gibt TRUE zurück, wenn alle äußeren Ringe gegen den Uhrzeigersinn orientiert sind und alle inneren Ringe im Uhrzeigersinn ausgerichtet sind.
  • ST_IsPolygonCW - Gibt den Wert TRUE zurück, wenn alle äußeren Ringe im Uhrzeigersinn und alle inneren Ringe gegen den Uhrzeigersinn ausgerichtet sind.
  • ST_IsSimple - Gibt den Wert (TRUE) zurück, wenn die Geometrie keine irregulären Stellen, wie Selbstüberschneidungen oder Selbstberührungen, aufweist.
  • ST_IsSolid - Überprüft ob die Geometrie ein Solid ist. Es wird keine Plausibilitätsprüfung durchgeführt.
  • ST_Length_Spheroid - Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
  • ST_LineFromMultiPoint - Erzeugt einen LineString aus einer MultiPoint Geometrie.
  • ST_LineInterpolatePoint - Fügt einen Punkt entlang einer Linie ein. Der zweite Parameter, in Float8-Darstellung mit den Werten von 0 bis 1, gibt jenen Bruchteil der Gesamtlänge des Linienzuges an, wo der Punkt liegen soll.
  • ST_LineInterpolatePoints - Gibt einen oder mehrere, entlang einer Linie interpolierte Punkte zurück.
  • ST_LineSubstring - Gibt ein Linienstück zurück, dass ein Teil des gegebenen Linienzuges ist und den Anfang und das Ende an gegebenen Anteilen der 2D-Gesamtlänge hat. Der zweite und der dritte Übergabewert sind Werte in float8 zwischen 0 und 1.
  • ST_LineToCurve - Wandelt einen LINESTRING/POLYGON in einen CIRCULARSTRING, CURVEPOLYGON um
  • ST_LocateBetweenElevations - Gibt eine abgeleitete Sammelgeometrie zurück, welche jene Elemente enthält die mit dem gegebenen Kilometrierungsmaß zusammenpassen. Polygonale Elemente werden nicht untersützt.
  • ST_M - Returns the M coordinate of a Point.
  • ST_MakeLine - Erzeugt einen Linienzug aus einer Punkt-, Mehrfachpunkt- oder Liniengeometrie.
  • ST_MakePoint - Erzeugt eine 2D-, 3DZ- oder 4D-Punktgeometrie.
  • ST_MakePolygon - Creates a Polygon from a shell and optional list of holes.
  • ST_MakeSolid - Wandelt die Geometrie in ein Solid um. Es wird keine Überprüfung durchgeführt. Um ein gültiges Solid zu erhalten muss die eingegebene Geometrie entweder eine geschlossene polyedrische Oberfläche oder ein geschlossenes TIN sein.
  • ST_MakeValid - Versucht eine ungültige Geometrie, ohne den Verlust an Knoten zu bereinigen.
  • ST_MemSize - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_MemUnion - Das gleiche wie ST_Union, nur freundlicher zum Arbeitsspeicher (verwendet weniger Arbeitsspeicher und mehr Rechnerzeit).
  • ST_NDims - Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
  • ST_NPoints - Gibt die Anzahl der Punkte (Knoten) einer Geometrie zurück.
  • ST_NRings - Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
  • ST_Node - Knotenberechnung für eine Menge von Linienzügen.
  • ST_NumGeometries - Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.
  • ST_NumPatches - Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich nicht um polyedrische Geometrien handelt.
  • ST_Orientation - Bestimmt die Ausrichtung der Fläche
  • ST_PatchN - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_PointN - Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
  • ST_PointOnSurface - Returns a POINT guaranteed to lie on the surface.
  • ST_Points - Gibt einen MultiPoint zurück, welcher alle Koordinaten einer Geometrie enthält.
  • ST_Polygon - Creates a Polygon from a LineString with a specified SRID.
  • ST_RemovePoint - Entfernt einen Punkt aus einem Linienzug.
  • ST_RemoveRepeatedPoints - Gibt eine Version der Eingabegeometrie zurück, wobei duplizierte Punkte entfernt werden.
  • ST_Reverse - Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
  • ST_SetPoint - Einen Punkt eines Linienzuges durch einen gegebenen Punkt ersetzen.
  • ST_Shift_Longitude - Schaltet geometrische Koordinaten zwischen den Bereichen -180..180 und 0..360 um.
  • ST_SnapToGrid - Fängt alle Punkte der Eingabegeometrie auf einem regelmäßigen Gitter.
  • ST_StartPoint - Returns the first point of a LineString.
  • ST_StraightSkeleton - Berechnet aus einer Geometrie ein "Gerippe" aus Geraden.
  • ST_SwapOrdinates - Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
  • ST_SymDifference - Gibt eine Geometrie zurück, die jene Teile von A und B repräsentiert, die sich nicht überlagern. Wird symmetrische Differenz genannt, da ST_SymDifference(A,B) = ST_SymDifference(B,A).
  • ST_Tesselate - Erzeugt ein Oberflächen-Mosaik aus einem Polygon oder einer polyedrischen Oberfläche und gibt dieses als TIN oder als TIN-Kollektion zurück
  • ST_UnaryUnion - Wie ST_Union, arbeitet aber auf der Ebene der Geometriebestandteile.
  • ST_Volume - Berechnet das Volumen eines 3D-Solids. Auf Oberflächengeometrien (auch auf geschlossene) angewandt wird 0 zurückgegeben.
  • ST_WrapX - Versammelt eine Geometrie um einen X-Wert
  • ST_X - Returns the X coordinate of a Point.
  • ST_Y - Returns the Y coordinate of a Point.
  • ST_Z - Returns the Z coordinate of a Point.
  • ST_Zmflag - Gibt die Dimension der Koordinaten von ST_Geometry zurück.
  • TG_Equals - Gibt TRUE zurück, wenn zwei TopoGeometry Objekte aus denselben topologischen Elementarstrukturen bestehen.
  • TG_Intersects - Gibt TRUE zurück, wenn sich kein beliebiges Paar von Elemtarstrukturen zweier TopoGeometry Objekte überschneidet.
  • UpdateGeometrySRID - Updates the SRID of all features in a geometry column, and the table metadata.
  • geometry_overlaps_nd - Gibt TRUE zurück, wenn A's n-D bounding box B's n-D bounding box schneidet.
  • overlaps_nd_geometry_gidx - Gibt TRUE zurück, wenn die (cached) n-D bounding box einer Geometrie eine n-D float precision bounding box (GIDX) schneidet.
  • overlaps_nd_gidx_geometry - Gibt TRUE zurück, wenn eine n-D float precision bounding box (GIDX) eine (cached) n-D bounding box einer Geometrie schneidet.
  • overlaps_nd_gidx_gidx - Gibt TRUE zurück, wenn sich zwei n-D float precision bounding boxes (GIDX) gegenseitig überschneiden.
  • postgis_sfcgal_version - Gibt die verwendete Version von SFCGAL aus

14.9. PostGIS Curved Geometry Support Functions

The functions given below are PostGIS functions that can use CIRCULARSTRING, CURVEPOLYGON, and other curved geometry types

  • AddGeometryColumn - Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
  • DropGeometryColumn - Entfernt eine Geometriespalte aus einer räumlichen Tabelle.
  • GeometryType - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_AsBinary - Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.
  • ST_AsEWKB - Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie mit den SRID Metadaten zurück.
  • ST_AsEWKT - Gibt die Well-known-Text(WKT) Darstellung der Geometrie mit den SRID-Metadaten zurück.
  • ST_AsHEXEWKB - Gibt eine Geometrie im HEXEWKB Format (als Text) aus; verwendet entweder die Little-Endian (NDR) oder die Big-Endian (XDR) Zeichenkodierung.
  • ST_AsText - Gibt die Well-known-Text(WKT) Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.
  • ST_GeomCollFromText - Creates a GeometryCollection or Multi* geometry from a set of geometries.
  • ST_CoordDim - Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
  • ST_CurveToLine - Wandelt einen CIRCULARSTRING/CURVEPOLYGON in ein LINESTRING/POLYGON um
  • ST_Distance - Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
  • ST_Dump - Returns a set of geometry_dump rows for the components of a geometry.
  • ST_NumPoints - Returns a set of geometry_dump rows for the points in a geometry.
  • ST_EndPoint - Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
  • ST_FlipCoordinates - Gibt eine Version der gegebenen Geometrie zurück, wobei die X und Y Achse vertauscht sind. Nützlich wenn man Geoobjekte in Breite/Länge vorliegen hat und dies beheben möchte.
  • ST_Force2D - Die Geometrien in einen "2-dimensionalen Modus" zwingen.
  • ST_ForceCurve - Wandelt einen geometrischen in einen Kurven Datentyp um, soweit anwendbar.
  • ST_ForceSFS - Erzwingt, dass Geometrien nur vom Typ SFS 1.1 sind.
  • ST_Force3D - Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ.
  • ST_Force3DM - Zwingt die Geometrien in einen XYM Modus.
  • ST_Force3DZ - Zwingt die Geometrien in einen XYZ Modus.
  • ST_Force4D - Zwingt die Geometrien in einen XYZM Modus.
  • ST_ForceCollection - Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um.
  • ST_GeoHash - Gibt die Geometrie in der GeoHash Darstellung aus.
  • ST_GeometryN - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • = - Gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind.
  • &<| - Gibt TRUE zurück, wenn die bounding box von A jene von B überlagert oder unterhalb liegt.
  • ST_HasArc - Tests if a geometry contains a circular arc
  • ST_IsClosed - Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind.
  • ST_IsCollection - Gibt den Wert TRUE zurück, falls es sich bei der Geometrie um eine leere GeometryCollection, Polygon, Point etc. handelt.
  • ST_IsEmpty - Tests if a geometry is empty.
  • ST_LineToCurve - Wandelt einen LINESTRING/POLYGON in einen CIRCULARSTRING, CURVEPOLYGON um
  • ST_MemSize - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_NPoints - Gibt die Anzahl der Punkte (Knoten) einer Geometrie zurück.
  • ST_NRings - Gibt die Anzahl der inneren Ringe einer Polygongeometrie aus.
  • ST_PointN - Gibt die Anzahl der Stützpunkte eines ST_LineString oder eines ST_CircularString zurück.
  • ST_Points - Gibt einen MultiPoint zurück, welcher alle Koordinaten einer Geometrie enthält.
  • ST_StartPoint - Returns the first point of a LineString.
  • ST_Summary - Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.
  • ST_QuantizeCoordinates - Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
  • ST_Zmflag - Gibt die Dimension der Koordinaten von ST_Geometry zurück.
  • UpdateGeometrySRID - Updates the SRID of all features in a geometry column, and the table metadata.
  • ~(box2df,box2df) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine andere 2D float precision bounding box (BOX2DF) enthält.
  • ~(box2df,geometry) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) die 2D Bounding Box einer Geometrie enthält.
  • ~(geometry,box2df) - Gibt TRUE zurück, wenn die 2D bounding box einer Geometrie eine 2D float precision bounding box (GIDX) enthält.
  • && - Gibt TRUE zurück, wenn die 2D Bounding Box von A die 2D Bounding Box von B schneidet.
  • &&& - Gibt TRUE zurück, wenn A's n-D bounding box B's n-D bounding box schneidet.
  • @(box2df,box2df) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) innerhalb einer anderen 2D float precision bounding box enthalten ist.
  • @(box2df,geometry) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) in der 2D Bounding Box einer Geometrie enthalten ist..
  • @(geometry,box2df) - Gibt TRUE zurück, wenn die 2D Bounding Box einer Geometrie in einer 2D float precision Bbounding Box (BOX2DF) enthalten ist.
  • &&(box2df,box2df) - Gibt TRUE zurück, wenn sich zwei 2D float precision Bounding Boxes (BOX2DF) überschneiden.
  • &&(box2df,geometry) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine Geometrie (cached) 2D bounding box schneidet.
  • &&(geometry,box2df) - Gibt TRUE zurück, wenn sich die 2D Bounding Box (cached) einer Geometrie mit einer 2D Bounding Box mit Gleitpunktgenauigkeit (BOX2DF) überschneidet.
  • &&&(geometry,gidx) - Gibt TRUE zurück, wenn die (cached) n-D bounding box einer Geometrie eine n-D float precision bounding box (GIDX) schneidet.
  • &&&(gidx,geometry) - Gibt TRUE zurück, wenn eine n-D float precision bounding box (GIDX) eine (cached) n-D bounding box einer Geometrie schneidet.
  • &&&(gidx,gidx) - Gibt TRUE zurück, wenn sich zwei n-D float precision bounding boxes (GIDX) gegenseitig überschneiden.

14.10. PostGIS Polyhedral Surface Support Functions

The functions given below are PostGIS functions that can use POLYHEDRALSURFACE, POLYHEDRALSURFACEM geometries

  • GeometryType - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_3DArea - Berechnet die Fläche von 3D-Oberflächengeometrien. Gibt 0 für Solids zurück.
  • ST_3DClosestPoint - Gibt den 3-dimensionalen Punkt auf g1 zurück, der den kürzesten Abstand zu g2 hat. Dies ist der Anfangspunkt des kürzesten Abstands in 3D.
  • ST_3DDifference - Errechnet die Differenzmenge in 3D
  • ST_3DDistance - Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurückgegeben.
  • ST_3DIntersection - Führt eine Verschneidung in 3D aus
  • ST_3DLongestLine - Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
  • ST_3DMaxDistance - Für den geometrischen Datentyp. Gibt die maximale 3-dimensionale kartesische Distanz (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurück.
  • ST_3DShortestLine - Gibt den kürzesten 3-dimensionalen Abstand zwischen zwei geometrischen Objekten als Linie zurück
  • ST_3DUnion - Führt eine Vereinigung/Union in 3D aus
  • ST_ApproximateMedialAxis - Errechnet die genäherte Mediale Achse einer Flächengeometrie.
  • ST_Area - Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
  • ST_AsBinary - Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie/Geographie ohne die SRID Metadaten zurück.
  • ST_AsEWKB - Gibt die Well-known-Binary(WKB)-Darstellung der Geometrie mit den SRID Metadaten zurück.
  • ST_AsEWKT - Gibt die Well-known-Text(WKT) Darstellung der Geometrie mit den SRID-Metadaten zurück.
  • ST_AsGML - Gibt die Geometrie als GML-Element - Version 2 oder 3 - zurück.
  • ST_AsX3D - Gibt eine Geometrie im X3D XML Knotenelement-Format zurück: ISO-IEC-19776-1.2-X3DEncodings-XML
  • ST_CoordDim - Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
  • ST_Dimension - Gibt die Dimension der Koordinaten für den Wert von ST_Geometry zurück.
  • ST_Dump - Returns a set of geometry_dump rows for the components of a geometry.
  • ST_NumPoints - Returns a set of geometry_dump rows for the points in a geometry.
  • ST_Extrude - Weitet eine Oberfläche auf ein entsprechendes Volumen aus
  • ST_FlipCoordinates - Gibt eine Version der gegebenen Geometrie zurück, wobei die X und Y Achse vertauscht sind. Nützlich wenn man Geoobjekte in Breite/Länge vorliegen hat und dies beheben möchte.
  • ST_Force2D - Die Geometrien in einen "2-dimensionalen Modus" zwingen.
  • ST_ForceLHR - Erzwingt LHR Orientierung
  • ST_ForceRHR - Orientiert die Knoten in einem Polygon so, dass sie der Drei-Finger-Regel folgen.
  • ST_ForceSFS - Erzwingt, dass Geometrien nur vom Typ SFS 1.1 sind.
  • ST_Force3D - Zwingt die Geometrien in einen XYZ Modus. Dies ist ein Alias für ST_Force3DZ.
  • ST_Force3DZ - Zwingt die Geometrien in einen XYZ Modus.
  • ST_ForceCollection - Wandelt eine Geometrie in eine GEOMETRYCOLLECTION um.
  • ST_GeometryN - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_GeometryType - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • = - Gibt TRUE zurück, wenn die Koordinaten und die Reihenfolge der Koordinaten der Geometrie/Geographie A und der Geometrie/Geographie B ident sind.
  • &<| - Gibt TRUE zurück, wenn die bounding box von A jene von B überlagert oder unterhalb liegt.
  • ~= - Gibt TRUE zurück, wenn die bounding box von A ident mit jener von B ist.
  • ST_IsClosed - Gibt den Wert TRUE zurück, wenn die Anfangs- und Endpunkte des LINESTRING's zusammenfallen. Bei polyedrischen Oberflächen, wenn sie geschlossen (volumetrisch) sind.
  • ST_IsPlanar - Überprüft ob es sich um eine ebene Oberfläche handelt oder nicht
  • ST_IsSolid - Überprüft ob die Geometrie ein Solid ist. Es wird keine Plausibilitätsprüfung durchgeführt.
  • ST_MakeSolid - Wandelt die Geometrie in ein Solid um. Es wird keine Überprüfung durchgeführt. Um ein gültiges Solid zu erhalten muss die eingegebene Geometrie entweder eine geschlossene polyedrische Oberfläche oder ein geschlossenes TIN sein.
  • ST_MemSize - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_NPoints - Gibt die Anzahl der Punkte (Knoten) einer Geometrie zurück.
  • ST_NumGeometries - Gibt die Anzahl der Punkte einer Geometrie zurück. Funktioniert für alle Geometrien.
  • ST_NumPatches - Gibt die Anzahl der Maschen einer polyedrischen Oberfläche aus. Gibt NULL zurück, wenn es sich nicht um polyedrische Geometrien handelt.
  • ST_PatchN - Gibt den Geometrietyp des ST_Geometry Wertes zurück.
  • ST_RemoveRepeatedPoints - Gibt eine Version der Eingabegeometrie zurück, wobei duplizierte Punkte entfernt werden.
  • ST_Reverse - Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
  • ST_ShiftLongitude - Schaltet geometrische Koordinaten zwischen den Bereichen -180..180 und 0..360 um.
  • ST_StraightSkeleton - Berechnet aus einer Geometrie ein "Gerippe" aus Geraden.
  • ST_Summary - Gibt eine Zusammenfassung des Inhalts einer Geometrie wieder.
  • ST_QuantizeCoordinates - Gibt die Geometrie in umgekehrter Knotenreihenfolge zurück.
  • ST_Tesselate - Erzeugt ein Oberflächen-Mosaik aus einem Polygon oder einer polyedrischen Oberfläche und gibt dieses als TIN oder als TIN-Kollektion zurück
  • ST_Volume - Berechnet das Volumen eines 3D-Solids. Auf Oberflächengeometrien (auch auf geschlossene) angewandt wird 0 zurückgegeben.
  • ~(box2df,box2df) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine andere 2D float precision bounding box (BOX2DF) enthält.
  • ~(box2df,geometry) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) die 2D Bounding Box einer Geometrie enthält.
  • ~(geometry,box2df) - Gibt TRUE zurück, wenn die 2D bounding box einer Geometrie eine 2D float precision bounding box (GIDX) enthält.
  • && - Gibt TRUE zurück, wenn die 2D Bounding Box von A die 2D Bounding Box von B schneidet.
  • &&& - Gibt TRUE zurück, wenn A's n-D bounding box B's n-D bounding box schneidet.
  • @(box2df,box2df) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) innerhalb einer anderen 2D float precision bounding box enthalten ist.
  • @(box2df,geometry) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) in der 2D Bounding Box einer Geometrie enthalten ist..
  • @(geometry,box2df) - Gibt TRUE zurück, wenn die 2D Bounding Box einer Geometrie in einer 2D float precision Bbounding Box (BOX2DF) enthalten ist.
  • &&(box2df,box2df) - Gibt TRUE zurück, wenn sich zwei 2D float precision Bounding Boxes (BOX2DF) überschneiden.
  • &&(box2df,geometry) - Gibt TRUE zurück, wenn eine 2D float precision bounding box (BOX2DF) eine Geometrie (cached) 2D bounding box schneidet.
  • &&(geometry,box2df) - Gibt TRUE zurück, wenn sich die 2D Bounding Box (cached) einer Geometrie mit einer 2D Bounding Box mit Gleitpunktgenauigkeit (BOX2DF) überschneidet.
  • &&&(geometry,gidx) - Gibt TRUE zurück, wenn die (cached) n-D bounding box einer Geometrie eine n-D float precision bounding box (GIDX) schneidet.
  • &&&(gidx,geometry) - Gibt TRUE zurück, wenn eine n-D float precision bounding box (GIDX) eine (cached) n-D bounding box einer Geometrie schneidet.
  • &&&(gidx,gidx) - Gibt TRUE zurück, wenn sich zwei n-D float precision bounding boxes (GIDX) gegenseitig überschneiden.
  • postgis_sfcgal_version - Gibt die verwendete Version von SFCGAL aus

14.11. PostGIS Function Support Matrix

Below is an alphabetical listing of spatial specific functions in PostGIS and the kinds of spatial types they work with or OGC/SQL compliance they try to conform to.

  • A means the function works with the type or subtype natively.
  • A means it works but with a transform cast built-in using cast to geometry, transform to a "best srid" spatial ref and then cast back. Results may not be as expected for large areas or areas at poles and may accumulate floating point junk.
  • A means the function works with the type because of a auto-cast to another such as to box3d rather than direct type support.
  • A means the function only available if PostGIS compiled with SFCGAL support.
  • A means the function support is provided by SFCGAL if PostGIS compiled with SFCGAL support, otherwise GEOS/built-in support.
  • geom - Basic 2D geometry support (x,y).
  • geog - Basic 2D geography support (x,y).
  • 2.5D - basic 2D geometries in 3 D/4D space (has Z or M coord).
  • PS - Polyhedral surfaces
  • T - Triangles and Triangulated Irregular Network surfaces (TIN)

Functiongeomgeog2.5DCurvesSQL MMPST
GeometryType   
ST_3DArea    
ST_3DClosestPoint     
ST_3DDifference    
ST_3DDistance    
ST_3DIntersection    
ST_3DLength      
ST_LineInterpolatePoint       
ST_3DLongestLine     
ST_3DMaxDistance     
ST_3DPerimeter      
ST_3DShortestLine     
ST_3DUnion    
ST_AddMeasure      
ST_AddPoint      
ST_Angle       
ST_ApproximateMedialAxis    
ST_Area    
ST_Azimuth      
ST_Boundary     
ST_BoundingDiagonal      
ST_Buffer     
ST_BuildArea       
ST_Centroid     
ST_ChaikinSmoothing       
ST_ClipByBox2D       
ST_ClosestPoint       
ST_GeomCollFromText     
ST_CollectionExtract       
ST_CollectionHomogenize       
ST_ConcaveHull       
ST_ConstrainedDelaunayTriangles     
ST_ConvexHull     
ST_CoordDim  
ST_CurveToLine    
ST_DelaunayTriangles     
ST_Difference     
ST_Dimension    
ST_Distance     
ST_DistanceSphere       
ST_DistanceSpheroid       
ST_Dump   
ST_NumPoints   
ST_NRings      
ST_EndPoint    
ST_Envelope      
ST_ExteriorRing     
ST_Extrude    
ST_FilterByM       
ST_FlipCoordinates   
ST_Force2D    
ST_ForceCurve     
ST_ForceLHR    
ST_ForcePolygonCCW      
ST_ForcePolygonCW      
ST_ForceRHR     
ST_ForceSFS   
ST_Force3D    
ST_Force3DM      
ST_Force3DZ    
ST_Force4D     
ST_ForceCollection    
ST_FrechetDistance       
ST_GeneratePoints      
ST_GeometricMedian     
ST_GeometryN  
ST_GeometryType    
ST_HasArc     
ST_HausdorffDistance       
ST_InteriorRingN     
ST_InterpolatePoint      
ST_Intersection     
ST_IsClosed   
ST_IsCollection     
ST_IsEmpty     
ST_IsPlanar    
ST_IsPolygonCCW      
ST_IsPolygonCW      
ST_IsRing      
ST_IsSimple     
ST_IsSolid    
ST_Length     
ST_Length2D       
ST_LengthSpheroid      
ST_LineFromMultiPoint      
ST_LineInterpolatePoint      
ST_LineInterpolatePoints      
ST_LineLocatePoint       
ST_LineMerge       
ST_LineSubstring      
ST_LineToCurve     
ST_LocateAlong       
ST_LocateBetween       
ST_LocateBetweenElevations      
ST_LongestLine       
ST_M     
ST_MakeEnvelope       
ST_MakeLine      
ST_MakePoint      
ST_MakePointM       
ST_MakePolygon      
ST_MakeSolid    
ST_MakeValid      
ST_MaxDistance       
ST_MemSize   
ST_MemUnion      
ST_MinimumBoundingCircle       
ST_MinimumBoundingRadius       
ST_MinimumClearance       
ST_MinimumClearanceLine       
ST_MinkowskiSum       
ST_Multi       
ST_NDims      
ST_NPoints    
ST_NRings     
ST_Node      
ST_Normalize       
ST_NumGeometries   
ST_NumInteriorRing       
ST_NumInteriorRings      
ST_NumPatches    
ST_NumPoints      
ST_OffsetCurve       
ST_Orientation      
ST_OrientedEnvelope       
ST_PatchN    
ST_Perimeter     
ST_Perimeter2D       
ST_Point      
ST_PointN    
ST_PointOnSurface     
ST_Points     
ST_Polygon     
ST_Polygonize       
ST_Project       
ST_QuantizeCoordinates       
ST_RemovePoint      
ST_RemoveRepeatedPoints     
ST_Reverse     
ST_Segmentize      
ST_SetEffectiveArea       
ST_SetPoint      
ST_SharedPaths       
ST_ShiftLongitude    
ST_ShortestLine       
ST_Simplify       
ST_SimplifyPreserveTopology       
ST_SimplifyVW       
ST_Snap       
ST_SnapToGrid      
ST_Split       
ST_StartPoint    
ST_StraightSkeleton    
ST_Subdivide       
ST_Summary   
ST_QuantizeCoordinates   
ST_SymDifference     
ST_Tesselate    
ST_MakeEnvelope       
ST_UnaryUnion      
ST_Union      
ST_Volume    
ST_VoronoiLines       
ST_VoronoiPolygons       
ST_WrapX      
ST_X     
ST_Y     
ST_Z     
ST_Zmflag     
postgis.backend        
postgis.enable_outdb_rasters        
postgis.gdal_datapath        
postgis.gdal_enabled_drivers        
postgis_sfcgal_version     

14.12. New, Enhanced or changed PostGIS Functions

14.12.1. PostGIS Functions new or enhanced in 3.0

The functions given below are PostGIS functions that were added or enhanced.

Functions enhanced in PostGIS 3.0

  • ST_AsMVT - Enhanced: 3.0 - added support for Feature ID. Gibt eine Menge an Zeilen in der Geobuf Darstellung aus.
  • ST_CurveToLine - Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse. Wandelt einen CIRCULARSTRING/CURVEPOLYGON in ein LINESTRING/POLYGON um
  • ST_GeneratePoints - Enhanced: 3.0.0, added seed parameter Wandelt ein Polygon oder ein MultiPolygon in einen MultiPoint um, welcher aus wahllos angeordeten, innerhalb der ursprünglichen Flächen liegenden Punkten besteht.
  • ST_LocateBetween - Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE. Gibt eine abgeleitete Sammelgeometrie mit jenen Elementen zurück, die in dem gegebenen Kilometrierungsintervall liegen; das Intervall ist unbeschränkt. Polygonale Elemente werden nicht untersützt.
  • ST_LocateBetweenElevations - Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE. Gibt eine abgeleitete Sammelgeometrie zurück, welche jene Elemente enthält die mit dem gegebenen Kilometrierungsmaß zusammenpassen. Polygonale Elemente werden nicht untersützt.

Functions changed in PostGIS 3.0

  • ST_3DDistance - Changed: 3.0.0 - SFCGAL version removed Für den geometrischen Datentyp. Es wird der geringste 3-dimensionale kartesische Abstand (basierend auf dem Koordinatenreferenzsystem) zwischen zwei geometrischen Objekten in projizierten Einheiten zurückgegeben.
  • ST_Area - Changed: 3.0.0 - does not depend on SFCGAL anymore. Gibt den geometrischen Schwerpunkt einer Geometrie zurück.
  • ST_AsGeoJSON - Changed: 3.0.0 output SRID if not EPSG:4326. Gibt die Geometrie eines GeoJSON Elements zurück.
  • ST_Distance - Changed: 3.0.0 - does not depend on SFCGAL anymore. Gibt die größte 3-dimensionale Distanz zwischen zwei geometrischen Objekten als Linie zurück
  • ST_Intersection - Changed: 3.0.0 does not depend on SFCGAL. (T) Gibt eine Geometrie zurück, welche den gemeinsamen Anteil von geomA und geomB repräsentiert.
  • ST_Union - Changed: 3.0.0 does not depend on SFCGAL. Gibt eine Geometrie zurück, welche der mengentheoretischen Vereinigung der Geometrien entspricht.

14.12.2. PostGIS Functions new or enhanced in 2.5

The functions given below are PostGIS functions that were added or enhanced.

Functions enhanced in PostGIS 2.5

  • ST_Buffer - Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right. (T) Gibt eine Geometrie zurück, welche alle Punkte innerhalb einer gegebenen Entfernung von der Eingabegeometrie beinhaltet.
  • ST_GeometricMedian - Enhanced: 2.5.0 Added support for M as weight of points. Returns the geometric median of a MultiPoint.
  • ST_Subdivide - Enhanced: 2.5.0 reuses existing points on polygon split, vertex count is lowered from 8 to 5. Gibt eine Geometriemenge zurück, wobei keine Geometrie der Menge mehr als die festgelegte Anzahl an Knoten aufweist.

Functions changed in PostGIS 2.5

14.12.3. PostGIS Functions new or enhanced in 2.4

The functions given below are PostGIS functions that were added or enhanced.

Functions enhanced in PostGIS 2.4

All aggregates now marked as parallel safe which should allow them to be used in plans that can employ parallelism.

PostGIS 2.4.1 postgis_tiger_geocoder set to load Tiger 2017 data. Can optionally load zip code 5-digit tabulation (zcta) as part of the Loader_Generate_Nation_Script.

  • Loader_Generate_Nation_Script - Enhanced: 2.4.1 zip code 5 tabulation area (zcta5) load step was fixed and when enabled, zcta5 data is loaded as a single table called zcta5_all as part of the nation script load. Erzeugt für die angegebene Plattform ein Shell-Skript, welches die County und State Lookup Tabellen ladet.
  • Reverse_Geocode - Enhanced: 2.4.1 if optional zcta5 dataset is loaded, the reverse_geocode function can resolve to state and zip even if the specific state data is not loaded. Refer to for details on loading zcta5 data. Nimmt einen geometrischen Punkt in einem bekannten Koordinatenreferenzsystem entgegen und gibt einen Datensatz zurück, das ein Feld mit theoretisch möglichen Adressen und ein Feld mit Straßenkreuzungen beinhaltet. Wenn include_strnum_range = true, dann beinhalten die Straßenkreuzungen den "Street Range" (Kennung des Straßenabschnitts).
  • ST_AsTWKB - Enhanced: 2.4.0 memory and speed improvements. Gibt die Geometrie als TWKB, aka "Tiny Well-known Binary" zurück

Functions changed in PostGIS 2.4

All PostGIS aggregates now marked as parallel safe. This will force a drop and recreate of aggregates during upgrade which may fail if any user views or sql functions rely on PostGIS aggregates.

14.12.4. PostGIS Functions new or enhanced in 2.3

The functions given below are PostGIS functions that were added or enhanced.

[Note]

PostGIS 2.3.0: PostgreSQL 9.6+ support for parallel queries.

[Note]

PostGIS 2.3.0: PostGIS extension, all functions schema qualified to reduce issues in database restore.

[Note]

PostGIS 2.3.0: PostgreSQL 9.4+ support for BRIN indexes. Refer to Section 4.6.2, “BRIN Indizes”.

[Note]

PostGIS 2.3.0: Tiger Geocoder upgraded to work with TIGER 2016 data.

14.12.5. PostGIS Functions new or enhanced in 2.2

The functions given below are PostGIS functions that were added or enhanced.

[Note]

postgis_sfcgal now can be installed as an extension using CREATE EXTENSION postgis_sfcgal;

[Note]

PostGIS 2.2.0: Tiger Geocoder upgraded to work with TIGER 2015 data.

[Note]

address_standardizer, address_standardizer_data_us extensions for standardizing address data refer to Chapter 12, Adressennormierer for details.

[Note]

Many functions in topology rewritten as C functions for increased performance.

14.12.6. PostGIS functions breaking changes in 2.2

The functions given below are PostGIS functions that have possibly breaking changes in PostGIS 2.2. If you use any of these, you may need to check your existing code.

  • ST_MemSize - Changed: 2.2.0 name changed to ST_MemSize to follow naming convention. In prior versions this function was called ST_Mem_Size, old name deprecated though still available.

14.12.7. PostGIS Functions new or enhanced in 2.1

The functions given below are PostGIS functions that were added or enhanced.

[Note]

More Topology performance Improvements. Please refer to Chapter 11, Topologie for more details.

[Note]

Bug fixes (particularly with handling of out-of-band rasters), many new functions (often shortening code you have to write to accomplish a common task) and massive speed improvements to raster functionality. Refer to Chapter 9, Referenz Raster for more details.

[Note]

PostGIS 2.1.0: Tiger Geocoder upgraded to work with TIGER 2012 census data. geocode_settings added for debugging and tweaking rating preferences, loader made less greedy, now only downloads tables to be loaded. PostGIS 2.1.1: Tiger Geocoder upgraded to work with TIGER 2013 data. Please refer to Section 13.1, “Tiger Geokoder” for more details.

The functions given below are PostGIS functions that are enhanced in PostGIS 2.1.

  • ST_Distance - Enhanced: 2.1.0 Geschwindigkeitsverbesserung beim geographischen Datentyp. Siehe Making Geography faster für Details.
  • ST_NumPoints - Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.

14.12.8. PostGIS Functions new, behavior changed, or enhanced in 2.0

The functions given below are PostGIS functions that were added, enhanced, or have Section 14.12.9, “PostGIS Functions changed behavior in 2.0” breaking changes in 2.0 releases.

New geometry types: TIN and Polyhedral surfaces was introduced in 2.0

[Note]

Greatly improved support for Topology. Please refer to Chapter 11, Topologie for more details.

[Note]

In PostGIS 2.0, raster type and raster functionality has been integrated. There are way too many new raster functions to list here and all are new so please refer to Chapter 9, Referenz Raster for more details of the raster functions available. Earlier pre-2.0 versions had raster_columns/raster_overviews as real tables. These were changed to views before release. Functions such as ST_AddRasterColumn were removed and replaced with AddRasterConstraints, DropRasterConstraints as a result some apps that created raster tables may need changing.

[Note]

Tiger Geocoder upgraded to work with TIGER 2010 census data and now included in the core PostGIS documentation. A reverse geocoder function was also added. Please refer to Section 13.1, “Tiger Geokoder” for more details.

The functions given below are PostGIS functions that are enhanced in PostGIS 2.0.

  • ST_Intersection - Enhanced: 2.0.0 - Verschneidungsoperation im Rasterraum eingeführt. In Vorgängerversionen von 2.0.0 wurde lediglich die Verschneidung im Vektorraum unterstützt.

14.12.9. PostGIS Functions changed behavior in 2.0

The functions given below are PostGIS functions that have changed behavior in PostGIS 2.0 and may require application changes.

[Note]

Most deprecated functions have been removed. These are functions that haven't been documented since 1.2 or some internal functions that were never documented. If you are using a function that you don't see documented, it's probably deprecated, about to be deprecated, or internal and should be avoided. If you have applications or tools that rely on deprecated functions, please refer to Q: 3.2 for more details.

[Note]

Bounding boxes of geometries have been changed from float4 to double precision (float8). This has an impact on answers you get using bounding box operators and casting of bounding boxes to geometries. E.g ST_SetSRID(abbox) will often return a different more accurate answer in PostGIS 2.0+ than it did in prior versions which may very well slightly change answers to view port queries.

[Note]

The arguments hasnodata was replaced with exclude_nodata_value which has the same meaning as the older hasnodata but clearer in purpose.

14.12.10. PostGIS Functions new, behavior changed, or enhanced in 1.5

14.12.11. PostGIS Functions new, behavior changed, or enhanced in 1.4

The functions given below are PostGIS functions that were introduced or enhanced in the 1.4 release.

14.12.12. PostGIS Functions new in 1.3

The functions given below are PostGIS functions that were introduced in the 1.3 release.

Chapter 15. Meldung von Problemen

15.1. Software Bugs melden

Effektive Fehlerberichte sind ein wesentlicher Beitrag zur Weiterentwicklung von PostGIS. Am wirksamsten ist ein Fehlerbericht dann, wenn er von den PostGIS-Entwicklern reproduziert werden kann. Idealerweise enthält er ein Skript das den Fehler auslöst und eine vollständige Beschreibung der Umgebung in der er aufgetreten ist. Ausreichend gute Information liefert SELECT postgis_full_version() [für PostGIS] und SELECT version() [für PostgreSQL].

Falls Sie nicht die aktuelle Version verwenden, sollten Sie zuerst unter release changelog nachsehen, ob Ihr Bug nicht bereits bereinigt wurde.

Die Verwendung des PostGIS bug tracker stellt sicher dass Ihre Berichte nicht verworfen werden, und dass Sie über die Prozessabwicklung am Laufenden gehalten werden. Bevor Sie einen neuen Fehler melden fragen Sie bitte die Datenbank ab ob der Fehler schon bekannt ist. Wenn es ein bekannter Fehler ist, so fügen Sie bitte jegliche neue Information die Sie herausgefunden haben hinzu.

Vielleicht möchten Sie zuvor Simon Tatham's Artikel über How to Report Bugs Effectively lesen, bevor Sie einen Fehlerbericht senden.

15.2. Probleme mit der Dokumentation melden

Die Dokumentation sollte die Eigenschaften und das Verhalten der Software exakt wiederspiegeln. Wenn das nicht der Fall ist, so kann entweder ein Softwarebug oder eine fehlerhafte bzw. unzulängliche Dokumentation daran Schuld sein.

Probleme in der Dokumentation können unter PostGIS bug tracker gemeldet werden.

Wenn die Überarbeitung trivial ist, können Sie diese in einem neuen Bug Tracker Issue beschreiben. Geben Sie bitte die exakte Stelle in der Dokumentation an.

Wenn es sich um umfangreichere Änderungen handelt, ist ein Subversion Patch zweifellos die bessere Wahl. Dabei handelt es sich um einen vierstufigen Vorgang unter Unix (angenommen, Sie haben Subversion bereits installiert):

  1. Eine Kopie des PostGIS Subversion Trunks auschecken. Eingabe unter Unix:

    svn checkout http://svn.osgeo.org/postgis/trunk/

    Dies wird im Verzeichnis ./trunk gespeichert

  2. Erledigen Sie die Änderungen an der Dokumentation mit Ihrem Lieblingstexteditor. Auf Unix, tippen Sie (zum Beispiel):

    vim trunk/doc/postgis.xml

    Bedenken Sie bitte, dass die Dokumentation in DocBook XML und nicht in HTML geschrieben ist. Falls Sie damit nicht vertraut sind, so folgen Sie bitte dem Beispiel in der restlichen Dokumentation.

  3. Erzeugung einer Patchdatei, welche die Unterschiede zur Master-Kopie der Dokumentation enthält. Unter Unix tippen Sie bitte:

    svn diff trunk/doc/postgis.xml > doc.patch

  4. Fügen Sie den Patch einem neuen Thema/Issue im Bug Tracker bei.

Appendix A. Anhang

Anmerkungen zur Release

A.1. Release 3.0.0

Freigabedatum: 2019/10/20

This version requires PostgreSQL 9.5+-12 and GEOS >= 3.6+ Additional features and enhancements enabled if you are running Proj6+, PostgreSQL 12, and GEOS 3.8.0

Neue Funktionalität

ST_Snap (Sandro Santilli)

4128, ST_AsMVT support for Feature ID (Stepan Kuzmin)

#1847, spgist 2d und 3d Unterstützung mit PG 11+ (Esteban Zimányi and Arthur Lesuisse from Université Libre de Bruxelles (ULB), Darafei Praliaskouski)

#3564, ST_LineInterpolatePoints (Dan Baston)

4311, Introduce WAGYU to validate MVT polygons. This option requires a C++11 compiler and will use CXXFLAGS (not CFLAGS). Add `--without-wagyu` to disable this option and keep the behaviour from 2.5 (Raúl Marín)

1833, ST_AsGeoJSON(row) generates full GeoJSON Features (Joe Conway)

3687, Casts json(geometry) and jsonb(geometry) for implicit GeoJSON generation (Paul Ramsey)

#4071, Absturz von ST_ClusterKMeans bei NULL/EMPTY fixiert (Darafei Praliaskouski)

Wichtige Änderungen

4267, Bump minimum GEOS version to 3.6 (Regina Obe, Darafei Praliaskouski)

3888, Raster support now available as a separate extension (Sandro Santilli)

3807, Extension library files no longer include the minor version. Use New configure switch --with-library-minor-version if you need the old behavior (Regina Obe)

4230, ND box operators (overlaps, contains, within, equals) now don't look on dimensions that aren't present in both operands. Please REINDEX your ND indexes after upgrade. (Darafei Praliaskouski)

Unterstützung für PostgreSQL 9.2. eingestellt.

4260, liblwgeom headers are not installed anymore. If your project depends on them available, please use librttopo instead. (Darafei Praliaskouski)

4258, Remove SFCGAL support for ST_Area, ST_Distance, ST_Intersection, ST_Difference, ST_Union, ST_Intersects, ST_3DIntersects, ST_3DDistance and postgis.backend switch (Darafei Praliaskouski)

4267, Enable Proj 6 deprecated APIs (Darafei Praliaskouski, Raúl Marín)

4268, Bump minimum SFCGAL version to 1.3.1 (Darafei Praliaskouski)

4331, ST_3DMakeBox now returns error instead of a miniscule box (Regina Obe)

4342, Removed "versioned" variants of ST_AsGeoJSON and ST_AsKML (Paul Ramsey)

#3971, bessere Anfangswerte für ST_ClusterKMeans (Darafei Praliaskouski)

#3885, Versionsnummer aus dem Bibliotheksnamen von address_standardize entfernt (Regina Obe)

4334, Fix upgrade issues related to renamed function parameters (Raúl Marín)

4442, raster2pgsql now skips NODATA tiles. Use -k option if you still want them in database for some reason. (Darafei Praliaskouski)

4433, 32-bit hash fix (requires reindexing hash(geometry) indexes) (Raúl Marín)

3383, Sorting now uses Hilbert curve and Postgres Abbreviated Compare. You need to REINDEX your btree indexes if you had them. (Darafei Praliaskouski)

Verbesserungen

4341, Using "support function" API in PgSQL 12+ to replace SQL inlining as the mechanism for providing index support under ST_Intersects, et al

4330, postgis_restore OOM when output piped to an intermediate process (Hugh Ranalli)

4322, Support for Proj 6+ API, bringing more accurate datum transforms and support for WKT projections

#3971, bessere Anfangswerte für ST_ClusterKMeans (Darafei Praliaskouski)

4162, ST_DWithin documentation examples for storing geometry and radius in table (Darafei Praliaskouski, github user Boscop).

4161 and #4294, ST_AsMVTGeom: Shortcut geometries smaller than the resolution (Raúl Marín)

#3982, ST_AsEncodedPolyline unterstützt LINESTRING EMPTY und MULTIPOINT EMPTY (Darafei Praliaskouski)

#4120, ST_AsMVTGeom: Clip mit Kachelkoordinaten (Raúl Marín).

#4120, ST_AsMVTGeom: Clip mit Kachelkoordinaten (Raúl Marín).

4196, Have postgis_extensions_upgrade() package unpackaged extensions (Sandro Santilli)

#3864, Verbesserung der Rechenleistung beim Sortieren von Punktgeometrien (Darafei Praliaskouski)

4155, Support for GEOMETRYCOLLECTION, POLYGON, TIN, TRIANGLE in ST_LocateBetween and ST_LocateBetweenElevations (Darafei Praliaskouski)

2767, Documentation for AddRasterConstraint optional parameters (Sunveer Singh)

4244, Avoid unaligned memory access in BOX2D_out (Raúl Marín)

4139, Make mixed-dimension ND index build tree correctly (Darafei Praliaskouski, Arthur Lesuisse, Andrew Gierth, Raúl Marín)

4262, Document MULTISURFACE compatibility of ST_LineToCurve (Steven Ottens)

#2508, ST_OffsetCurve funktioniert jetzt auch mit Sammelgeometrien (Darafei Praliaskouski)

4292, ST_AsMVT: parse JSON numeric values with decimals as doubles (Raúl Marín)

#4120, ST_AsMVTGeom: Clip mit Kachelkoordinaten (Raúl Marín).

#4038, ST_Subdivide now selects pivot for geometry split that reuses input vertices. ST_ClipByBox2D is stubbed with ST_Intersection because of robustness issues. (Darafei Praliaskouski)

#4120, ST_AsMVTGeom: Clip mit Kachelkoordinaten (Raúl Marín).

4272, Improve notice message when unable to compute stats (Raúl Marín)

4313, #4307, PostgreSQL 12 compatibility (Laurenz Albe, Raúl Marín)

4299, #4304, ST_GeneratePoints is now VOLATILE. IMMUTABLE version with seed parameter added. (Mike Taves)

4278, ST_3DDistance and ST_3DIntersects now support Solid TIN and Solid POLYHEDRALSURFACE (Darafei Praliaskouski)

#4120, ST_AsMVTGeom: Clip mit Kachelkoordinaten (Raúl Marín).

4295, Allow GEOMETRYCOLLECTION in ST_Overlaps, ST_Contains, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Crosses, ST_Touches, ST_Disjoint, ST_Relate, ST_Equals (Esteban Zimányi)

#3744, ST_Subdivide verliert Komponenten der invertierten Geometrie (Darafei Praliaskouski Komzpa)

#3709, Mit einem Vorzeichen versehene Distanz für ST_Project zugelassen (Darafei Praliaskouski)

4368, Reorder LWGEOM struct members to minimize extra padding (Raúl Marín)

4141, Use uint64 to handle row counts in the topology extension (Raúl Marín)

4412, Support ingesting rasters with NODATA=NaN (Darafei Praliaskouski)

4413, Raster tile size follows GeoTIFF block size on raster2pgsql -t auto (Darafei Praliaskouski)

4422, Modernize Python 2 code to get ready for Python 3 (Christian Clauss)

4352, Use CREATE OR REPLACE AGGREGATE for PG12+ (Raúl Marín)

4394, Allow FULL OUTER JOIN on geometry equality operator (Darafei Praliaskouski)

4441, Make GiST penalty friendly to multi-column indexes and build single-column ones faster. (Darafei Praliaskouski)

4403, Support for shp2pgsql ability to reproject with copy mode (-D) (Regina Obe)

4410, More descriptive error messages about SRID mismatch (Darafei Praliaskouski)

#3954, ST_GeometricMedian unterstützt nun die Gewichtung nach Punkten (Darafei Praliaskouski)

3719, Impose minimum number of segments per arc during linearization (Dan Baston / City of Helsinki, Raúl Marín)

4277, ST_GeomFromGeoJSON now marks SRID=4326 by default as per RFC7946, ST_AsGeoJSON sets SRID in JSON output if it differs from 4326. (Darafei Praliaskouski)

3979, postgis_sfcgal_noop() round trip function (Lucas C. Villa Real)

#3977, ST_ClusterKMeans ist nun schneller und einfacher (Darafei Praliaskouski)

#4044, Unterstützung des Upgrades auf PgSQL 11 (Regina Obe)

A.2. Release 3.0.0rc2

Freigabedatum: 2019/10/13

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12. Performance enhancements if running GEOS 3.8+

Major highlights

#4146, Beheben des Kompilierungsfehlers gegen Postgres 12 (Raúl Marín).

#4146, Beheben des Kompilierungsfehlers gegen Postgres 12 (Raúl Marín).

#4146, Beheben des Kompilierungsfehlers gegen Postgres 12 (Raúl Marín).

#4146, Beheben des Kompilierungsfehlers gegen Postgres 12 (Raúl Marín).

A.3. Release 3.0.0rc1

Freigabedatum: 2019/10/08

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12. Performance enhancements if running GEOS 3.8+

Major highlights

4519, Fix getSRIDbySRS crash (Raúl Marín)

4520, Use a clean environment when detecting C++ libraries (Raúl Marín)

Restore ST_Union() aggregate signature so drop agg not required and re-work performance/size enhancement to continue to avoid using Array type during ST_Union(), hopefully avoiding Array size limitations. (Paul Ramsey)

A.4. Release 3.0.0beta1

Freigabedatum: 2019/09/28

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12. Performance enhancements if running GEOS 3.8+

Major highlights

4492, Fix ST_Simplify ignoring the value of the 3rd parameter (Raúl Marín)

4494, Fix ST_Simplify output having an outdated bbox (Raúl Marín)

4493, Fix ST_RemoveRepeatedPoints output having an outdated bbox (Raúl Marín)

4495, Fix ST_SnapToGrid output having an outdated bbox (Raúl Marín)

4496, Make ST_Simplify(TRIANGLE) collapse if requested (Raúl Marín)

4501, Allow postgis_tiger_geocoder to be installable by non-super users (Regina Obe)

#4145, MVT-Spalteninterpretation beschleunigen (Raúl Marín)

4504, shp2pgsql -D not working with schema qualified tables (Regina Obe)

4505, Speed up conversion of geometries to/from GEOS (Dan Baston)

4507, Use GEOSMakeValid and GEOSBuildArea for GEOS 3.8+ (Dan Baston)

#4145, MVT-Spalteninterpretation beschleunigen (Raúl Marín)

#4044, Unterstützung des Upgrades auf PgSQL 11 (Regina Obe)

4338, Census block level data (tabblock table) not loading (Regina Obe)

A.5. Release 3.0.0alpha4

Freigabedatum: 2019/08/11

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12

Major highlights

4433, 32-bit hash fix (requires reindexing hash(geometry) indexes) (Raúl Marín)

#4146, Beheben des Kompilierungsfehlers gegen Postgres 12 (Raúl Marín).

4451, Fix the calculation of gserialized_max_header_size (Raúl Marín)

#4145, MVT-Spalteninterpretation beschleunigen (Raúl Marín)

#3176, Add ST_OrientedEnvelope (Dan Baston)

4403, Support for shp2pgsql ability to reproject with copy mode (-D) (Regina Obe)

#3427, Aktualisierung der Tabelle "spatial_ref_sys" auf EPSG Version 8.8

#4145, MVT-Spalteninterpretation beschleunigen (Raúl Marín)

#4145, MVT-Spalteninterpretation beschleunigen (Raúl Marín)

#4145, MVT-Spalteninterpretation beschleunigen (Raúl Marín)

4271, postgis_extensions_upgrade() also updates after pg_upgrade (Raúl Marín)

4466, Fix undefined behaviour in _postgis_gserialized_stats (Raúl Marín)

4209, Handle NULL geometry values in pgsql2shp (Paul Ramsey)

4419, Use protobuf version to enable/disable mvt/geobuf (Paul Ramsey)

4437, Handle POINT EMPTY in shape loader/dumper (Paul Ramsey)

4456, add Rasbery Pi 32-bit jenkins bot for testing (Bruce Rindahl,Regina Obe)

4420, update path does not exists for address_standardizer extension (Regina Obe)

A.6. Release 3.0.0alpha3

Freigabedatum: 2019/07/01

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6

Major highlights

#3885, Versionsnummer aus dem Bibliotheksnamen von address_standardize entfernt (Regina Obe)

4352, Use CREATE OR REPLACE AGGREGATE for PG12+ (Raúl Marín)

4334, Fix upgrade issues related to renamed parameters (Raúl Marín)

4388, AddRasterConstraints: Ignore NULLs when generating constraints (Raúl Marín)

4327, Avoid pfree'ing the result of getenv (Raúl Marín)

4406, Throw on invalid characters when decoding geohash (Raúl Marín)

4429, Avoid resource leaks with PROJ6 (Raúl Marín)

4372, PROJ6: Speed improvements (Raúl Marín)

#4145, MVT-Spalteninterpretation beschleunigen (Raúl Marín)

4438, Update serialization to support extended flags area (Paul Ramsey)

4443, Fix wagyu configure dropping CPPFLAGS (Raúl Marín)

4440, Type lookups in FDW fail (Paul Ramsey)

4442, raster2pgsql now skips NODATA tiles. Use -k option if you still want them in database for some reason. (Darafei Praliaskouski)

4441, Make GiST penalty friendly to multi-column indexes and build single-column ones faster. (Darafei Praliaskouski)

A.7. Release 3.0.0alpha2

Freigabedatum: 2019/06/02

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6

Major highlights

#4404, Fix selectivity issue with support functions (Paul Ramsey)

#4311, Make wagyu the default option to validate polygons. This option requires a C++11 compiler and will use CXXFLAGS (not CFLAGS). It is only enabled if built with MVT support (protobuf) Add `--without-wagyu` to disable this option and keep the behaviour from 2.5 (Raúl Marín)

#4071, Absturz von ST_ClusterKMeans bei NULL/EMPTY fixiert (Darafei Praliaskouski)

A.8. Release 3.0.0alpha1

Freigabedatum: 2019/05/26

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6

Neue Funktionalität

additional features enabled if you are running Proj6+

Read the NEWS file in the included tarball for more details

A.9. Release 2.4.0

Freigabedatum: 2018/09/23

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.4 - PostgreSQL 12 (in development) GEOS >= 3.5

Neue Funktionalität

#1847, spgist 2d und 3d Unterstützung mit PG 11+ (Esteban Zimányi and Arthur Lesuisse from Université Libre de Bruxelles (ULB), Darafei Praliaskouski)

#4056, ST_FilterByM (Nicklas Avén)

#4050, ST_ChaikinSmoothing (Nicklas Avén)

#3989, ST_Buffer single sided Option (Stephen Knox)

#3876, ST_Angle Funktion (Rémi Cura)

#3564, ST_LineInterpolatePoints (Dan Baston)

#3896, PostGIS_Extensions_Upgrade() (Regina Obe)

#3913, Upgrade when creating extension from unpackaged (Sandro Santilli)

#2256, _postgis_index_extent() for extent from index (Paul Ramsey)

#3176, Add ST_OrientedEnvelope (Dan Baston)

#4029, Add ST_QuantizeCoordinates (Dan Baston)

#4063, Optional false origin point for ST_Scale (Paul Ramsey)

#4082, ST_BandFileSize und ST_BandFileTimestamp hinzugefügt, ST_BandMetadata erweitert (Even Rouault)

#2597, ST_Grayscale hinzugefügt (Bborie Park)

#4007, ST_SetBandPath hinzugefügt (Bborie Park)

#4008, ST_SetBandIndex hinzugefügt (Bborie Park)

Wichtige Änderungen

Upgrade scripts from multiple old versions are now all symlinks to a single upgrade script (Sandro Santilli)

#3944, Update auf EPSG Register v9.2 (Even Rouault)

#3927, Parallele Implementation von ST_AsMVT

#3925, Geometrievereinfachung anhand der "map grid cell size" bevor die MVT-Datei erstellt wird

#3899, BTree sort order is now defined on collections of EMPTY and same-prefix geometries (Darafei Praliaskouski)

#3864, Verbesserung der Rechenleistung beim Sortieren von Punktgeometrien (Darafei Praliaskouski)

Verbesserung der Robustheit von TopoGeo_addLinestring (Sandro Santilli) #1855, #1946, #3718, #3838

#3234, Leere Punkte/EMPTY Points nicht als topologische Knoten akzeptieren (Sandro Santilli)

#1014, Hashable geometry, allowing direct use in CTE signatures (Paul Ramsey)

#3097, Really allow MULTILINESTRING blades in ST_Split() (Paul Ramsey)

#3942, geojson: Do not include private header for json-c >= 0.13 (Björn Esser)

#3954, ST_GeometricMedian unterstützt nun die Gewichtung nach Punkten (Darafei Praliaskouski)

#3971, bessere Anfangswerte für ST_ClusterKMeans (Darafei Praliaskouski)

#3982, ST_AsEncodedPolyline unterstützt LINESTRING EMPTY und MULTIPOINT EMPTY (Darafei Praliaskouski)

#3986, ein zweites Argument für ST_AsText zur Beschränkung vopn Dezimalstellen (Marc Ducobu, Darafei Praliaskouski)

#4020, die Typumwandlung von Box3d nach Geometry gibt nun ein korrekt zusammengesetztes PolyhedralSurface zurück (Matthias Bay)

#2508, ST_OffsetCurve funktioniert jetzt auch mit Sammelgeometrien (Darafei Praliaskouski)

#4006, ST_GeomFromGeoJSON unterstützt json and jsonb als Input (Paul Ramsey, Regina Obe)

#4038, ST_Subdivide now selects pivot for geometry split that reuses input vertices. ST_ClipByBox2D is stubbed with ST_Intersection because of robustness issues. (Darafei Praliaskouski)

#4025, #4032 Präzisionsproblem in ST_ClosestPointOfApproach, ST_DistanceCPA und ST_CPAWithin fixiert (Paul Ramsey, Darafei Praliaskouski)

#4076, Verwendung von GEOS für Topologie reduziert (Björn Harrtell)

Einen Abschnitt mit Tipps über das Verhalten von Rastern zur Dokumentation hinzugefügt (z.B. zur Performanz von Out-DB und über die maximale Anzahl geöffneter Dateien)

#4084: Vertauschte Kommentare "front" und "back" für die Seiten von BOX3D korrigiert (Matthias Bay)

#4060, #4094, Unterstützung von PostgreSQL JIT (Raúl Marín, Laurenz Albe)

#3971, bessere Anfangswerte für ST_ClusterKMeans (Darafei Praliaskouski)

#4027, Remove duplicated code in lwgeom_geos (Darafei Praliaskouski, Daniel Baston)

#4115, Fix a bug that created MVTs with incorrect property values under parallel plans (Raúl Marín).

#4120, ST_AsMVTGeom: Clip mit Kachelkoordinaten (Raúl Marín).

#4132, ST_Intersection on Raster now works without throwing TopologyException (Vinícius A.B. Schmidt, Darafei Praliaskouski)

#4177, #4180 Support for PostgreSQL 12 dev branch (Laurenz Albe, Raúl Marín)

#4156, ST_ChaikinSmoothing: also smooth start/end point of polygon by default (Darafei Praliaskouski)

A.10. Release 2.4.4

Freigabedatum: 2018/08/19

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Bugfixes

#2464, ST_CurveToLine mit Toleranz "MaxError" (Sandro Santilli / KKGeo)

#4058, Fix infinite loop in linearization of a big radius small arc (Sandro Santilli)

#4071, Absturz von ST_ClusterKMeans bei NULL/EMPTY fixiert (Darafei Praliaskouski)

#4079, ensure St_AsMVTGeom outputs CW oriented polygons (Paul Ramsey)

#4070, use standard interruption error code on GEOS interruptions (Paul Ramsey)

#3980, delay freeing input until processing complete (lucasvr)

#4090, PG 11 support (Paul Ramsey, Raúl Marín)

#4063, Optional false origin point for ST_Scale (Paul Ramsey)

#4003, lwpoly_construct_circle: Division durch Null vermeiden (Raúl Marín Rodríguez)

#4093, Inconsistent results from qsort callback (yugr)

#4081, Geography DWithin() issues for certain cases (Paul Ramsey)

#4105, Parallel build of tarball (Bas Couwenberg)

#4163, MVT: Fix resource leak when the first geometry is NULL (Raúl Marín)

A.11. Release 2.4.4

Freigabedatum: 2018/04/08

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Bugfixes

#3055, [raster] ST_Clip() auf einen Raster ohne Band führt zu Serverabsturz (Regina Obe)

#3942, geojson: Do not include private header for json-c >= 0.13 (Björn Esser)

#3952, ST_Transform versagt beim Parallelmodus (Paul Ramsey)

#3978, KNN für das Upgrade von 2.1 oder älter fixiert (Sandro Santilli)

#4003, lwpoly_construct_circle: Division durch Null vermeiden (Raúl Marín Rodríguez)

#4004, Vermeidung von Speicherlecks bei der Erstellung eines Btree Index (Edmund Horner)

#4016, Unterstützung von proj 5.0.0 (Raúl Marín Rodríguez)

#4017, lwgeom lexer memory corruption (Peter E)

#4020, die Typumwandlung von Box3d nach Geometry gibt nun ein korrekt zusammengesetztes PolyhedralSurface zurück (Matthias Bay)

#4025, #4032 Inkorrekte Antworten von den Funktionen mit Zeitunterstützung bei "beinahe überlagernden" Bereichen (Paul Ramsey, Darafei Praliaskouski)

#4052, schema qualify several functions in geography (Regina Obe)

#4055, ST_ClusterIntersecting vewirft die SRID (Daniel Baston)

Verbesserungen

#3946, Unterstützung der Kompilation mit PgSQL 11 (Paul Ramsey)

#3992, Das Makro PKG_PROG_PKG_CONFIG aus pkg.m4 zum Lesen von pkg-config verwenden (Bas Couwenberg)

#4044, Unterstützung des Upgrades auf PgSQL 11 (Regina Obe)

A.12. Release 2.4.3

Freigabedatum: 2018/01/17

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Fehlerbehebung und Verbesserungen

#3713, Unterstützung von Kodierungen die das Zeichen '\' ausgeben können

#3827, Set configure default to not do interrupt testing, was causing false negatives for many people. (Regina Obe) revised to be standards compliant in #3988 (Greg Troxel)

#3930, Probleme bei der Berechnung des kleinsten umschreibenden Kreises auf 32-Bit Platformen

#3965, ST_ClusterKMeans verliert manchmal einige Cluster bei der Initialisierung (Darafei Praliaskouski)

#3956, kein korrektes Upgrade des Brin opclass Objekts (Sandro Santilli)

#3982, ST_AsEncodedPolyline unterstützt LINESTRING EMPTY und MULTIPOINT EMPTY (Darafei Praliaskouski)

#3975, ST_Transform runs query on spatial_ref_sys without schema qualification. Was causing restore issues. (Paul Ramsey)

A.13. Release 2.4.2

Freigabedatum: 2017/11/15

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Fehlerbehebung und Verbesserungen

#3917, zcta5 load fixiert

#3667, Bug in geography ST_Segmentize fixiert

#3926, Fehlende Upgrade Pfade für 2.2.6 und 2.3.4 hinzugefügt (Muhammad Usama)

A.14. Release 2.4.1

Freigabedatum: 2017/10/18

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Fehlerbehebung und Verbesserungen

#3864, Speicherlecks in den BTREE Operatoren fixiert

#3869, Kompilieren mit "gold" Linker fixiert

#3845, Großzügige Behandlung des Problems mit kurzen Messdistanzen

#3871, Performanzoptimierung bei der geometrischen Funktion "cmp"

#3879, Division durch Null bei konzentrischen Kreisbögen

#3878, Single defn of signum in header

#3880, Unbestimmtes Verhalten in TYPMOD_GET_SRID

#3875, Unbestimmtes Verhalten in Verschiebeoperator fixiert

#3864, Performanzverbesserung bei der Sortierung einer Geometrie für den Btree-Index

#3874, lw_dist2d_pt_arc Division durch Null

#3882, Unbestimmtes Verhalten in zigzag bei negativen Eingabewerten

#3891, unbestimmtes Verhalten in pointarray_to_encoded_polyline

#3895, Fehlermeldung bei fehlerhaft aufgebauter WKB Eingabe

#3886, in seltenen Fällen verliert eine Unterteilungsfläche die Box - fixiert

#3907, Reservierung von ausreichend Speicher für alle möglichen Zeichenketten der GBOX Ausgabe (Raúl Marín Rodríguez)

A.15. Release 2.4.0

Freigabedatum: 2017/09/30

Neue Funktionalität

#3822, postgis_full_version() geändert, so dass jetzt auch die Version von PostgreSQL angezeigt und überprüft wird, an der die Skripte ausgeführt wurden (Sandro Santilli)

#2411, Unterstützung für Kurven in ST_Reverse (Sandro Santilli)

#2951, ST_Centroid für den geographischen Datentyp (Danny Götte)

#3788, Ermöglcht, dass postgis_restore.pl mit "directory-style (-Fd) dumps" arbeiten kann (Roger Crew)

#3772, Die Ausgabe von ST_CurveToLine berücksichtigt jetzt die Richtung (Sandro Santilli / KKGeo)

#2464, ST_CurveToLine mit Toleranz "MaxError" (Sandro Santilli / KKGeo)

#3599, Geobuf Ausgabe via ST_AsGeobuf (Björn Harrtell)

#3661, Ausgabe von Mapbox Vektorkacheln via ST_AsMVT (Björn Harrtell / CartoDB)

#3689, Funktionen hinzugefügt, welche die Orientierung überprüfen und erzwingen (Dan Baston)

#3753, Geschwindigkeitsverbesserung für 2D- und ND-Punkte bezüglich GIST Handikap (Darafei Praliaskouski, Andrey Borodin)

#3677, ST_FrechetDistance (Shinichi Sugiyama)

Die meisten Aggregatfunktionen (Raster und geometrischer Datentyp) und alle als "stable / immutable" gekennzeichneten Funktionen (Raster und geometrischer Datentyp) wurden als "parallel safe" markiert

#2249, ST_MakeEmptyCoverage für Raster (David Zwarg, ainomieli)

#3709, Mit einem Vorzeichen versehene Distanz für ST_Project zugelassen (Darafei Praliaskouski)

#524, Umfasst die Unterstützung von "Polygon auf Polygon", "Linie auf Linie" und "Punkt auf Linie" für den geographischen Datentyp (Danny Götte)

Verbesserungen und Fehlerbehebung

Viele Korrekturen an der Dokumentation und einige Übersetzungen beinahe fertig. Andreas Schild, für viele Korrekturen an der englischen Originaldokumentation. Das japanische Übersetzungsteam ist das erste, das eine vollständige Übersetzung erreicht hat.

Unterstützung von PostgreSQL 10

Vorbereitende Unterstützung von PostgreSQL 11

#3645, das Laden von Datensätzen aus Shapefiles verhindern, die als "logically deleted" markiert sind

#3747, der Datentyp "norm_addy tiger_geocoder" wurde um die Attribute "zip4" und "address_alphanumeric" erweitert.

#3748, address_standardizer Lookup-Tabellen aktualisiert, damit "pagc_normalize_address" die Abkürzungen besser normiert

#3647, verbesserte Knotenberechnung in ST_Node durch die Verwendung von GEOSNode (Wouter Geraedts)

#3684, Aktualisierung auf das EPSG Register v9 (Even Rouault)

#3830, Initialisierung des inkompatiblen Datentyps ( >=9.6) "address_standardizer" fixiert

#3662, shp2pgsql ergänzt, so dass im Modus "debug" Fehlermeldungen an stderr ausgegeben werden

#3405, Speicherleck in "lwgeom_to_points" fixiert

#3832, "shp2pgsql" unterstützt jetzt breite Ganzzahlfelder mit dem Datentyp "int8"

#3841, Deterministische Sortierung des geographischen Datentyps im B-Baum bei leeren Geometrien

#3844, Der Operator "=" führt jetzt eine strenge Gleichheitsprüfung durch und < > eine grobe "räumliche Sortierung"

#3855, ST_AsTWKB Verbesserungen bezüglich Arbeitsspeicher und Geschwindigkeit

Wichtige Änderungen

Unterstützung für PostgreSQL 9.2. eingestellt.

#3810, GEOS 3.4.0 oder höher zum kompilieren erforderlich

Die meisten Aggregatfunktionen sind nun als "parallel safe" gekennzeichnet, wodurch die meisten von ihnen gelöscht bzw. neu erstellt werden müssen. Wenn Sie Views haben, die PostGIS Aggregatfunktionen nutzen, müssen Sie diese vor dem Upgrade löschen und nach dem Upgrade erneut anlegen

#3578, ST_NumInteriorRings(POLYGON EMPTY) gibt nun 0 anstatt NULL zurück

_ST_DumpPoints entfernt, da es ab PostGIS 2.1.0 - wo ST_DumpPoints in C neu implementiert wurde - nicht länger benötigt wird

Die Operatoren < = > des B-Tree Index wurden geändert, um besser nach der Lage sortieren zu können und um die erwartete Verhaltensweise bei GROUP BY zu erhalten. Falls Sie für den geometrischen oder den geographischen Datentyp B-Tree Indizes verwenden, dann müssen Sie diese mit REINDEX erneut aufbauen; oder Sie bemerken, dass diese unabsichtlich erzeugt wurden und ersetzten diese mit einem GIST Index. Wenn Ihr Code auf die alte links-nach-rechts Sortierung für den Vergleich der umschreibenden Rechtecke aufbaut, sollten Sie diesen aktualisieren, damit er die Operatoren << >> verwendet.

A.16. Release 2.3.3

Freigabedatum: 2017/07/01

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Fehlerbehebung und Verbesserungen

#3777, Unregelmäßigkeiten mit einer leeren Geometrie bei GROUP BY

#3711, Azimut Fehler beim Hinzufügen von 2.5D-Kanten zu einer Topologie fixiert

#3726, PDF manual from dblatex renders fancy quotes for programlisting (Mike Toews)

#3738, Raster: die Verwendung von -s ohne -Y in "raster2pgsql" transformiert den Raster anstatt die SRID zu setzen

#3744, ST_Subdivide verliert Komponenten der invertierten Geometrie (Darafei Praliaskouski Komzpa)

#3750, Die Operatoren "@" und "~" sind in den Geometrie- und Rasterfunktionen nicht immer auf das Schema beschränkt. Bedingt Probleme bei der Wiederherstellung von Sicherungskopien. (Shane StClair von Axiom Data Science)

#3682, Eigenartige Feldlänge der booleschen Variablen im Ergebnis von pgsql2shp

#3701, Behebung der Probleme mit doppelten Anführungszeichen in pgsql2shp

#3704, ST_AsX3D stürzt mit einer leeren Geometrie ab

#3730, Änderung von "Error" auf "Notice", wenn ST_Clip ein Band nicht berechnen kann

A.17. Release 2.3.2

Freigabedatum: 2017/01/31

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Fehlerbehebung und Verbesserungen

#3418, Erneute Überprüfung von KNN in 9.5+ scheitert mit einem falsch sortierten Index für die zurückgegebenen Tuple

#3675, Funktionen für Lagevergleiche nützen in einigen Fällen den Index nicht

#3680, Bei den PostGIS Upgrade-Skripts fehlt GRANT für die Views

#3683, PostGIS kann nach einem PostgreSQL "pg_upgrade" von < 9.5 to pg > 9.4 nicht mehr aktualisiert werden

#3688, ST_AsLatLonText: rundet Minuten

A.18. Release 2.3.1

Freigabedatum: 2006/11/28

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Fehlerbehebung und Verbesserungen

#1973, st_concavehull() gibt manchmal eine leere Geometrie zurück. Fix von gde

#3501, Beim Hinzufügen des Constraint "max extent" für Raster wird bei großen Tabellen manchmal die zulässige Feldgröße überschritten

#3643, PostGIS kompiliert auf neuesten OSX XCode nicht

#3644, Deadlock bei "interrupt_relate"

#3650, ST_Extent, ST_3DExtent and ST_Mem* Aggregatfunktionen als "parallel safe" gekennzeichnet und dadurch parallele Verarbeitung ermöglicht

#3652, Collection(MultiCurve()) stürzt ab

#3656, Upgrade von Aggregaten in 2.2 oder niedrigeren Versionen fixiert

#3659, Absturz durch die Definition einer Raster GUC nach CREATE EXTENSION, durch die Verwendung eines falschen Speicherkontexts. (manaeem)

#3665, beschädigter Index and Speicherleck bei BRIN Indizes; Patch von Julien Rouhaud (Dalibo)

#3667, Programmfehler in ST_Segmentize mit geographischem Datentyp; Patch von Hugo Mercier (Oslandia)

A.19. Release 2.3.0

Freigabedatum: 2016/09/26

Dies ist eine neue Feature-Release, mit neuen Funktionen, verbesserter Rechenleistung, allen behobenen Bugs von PostGIS 2.2.3 und anderen nützlichen Dingen.

Wichtige Änderungen

#3466, Typumwandlung von Box3D in den geometrischen Datentyp gibt nun eine 3D-Geometrie zurück (Julien Rouhaud of Dalibo)

#3396, ST_EstimatedExtent, gab eine WARNUNG anstatt einer FEHLERMELDUNG aus (Regina Obe)

Neue Funktionalität

Unterstützung durch ein benutzerdefiniertes Inhaltsverzeichnis (TOC) für postgis_restore.pl hinzugefügt (Christoph Moench-Tegeder)

Unterstützung von negativen Indizes in ST_PointN und ST_SetPoint (Rémi Cura)

Parameter zu ST_Buffer mit dem geographischen Datentyp hinzugefügt (Thomas Bonfort)

TopoGeom_addElement, TopoGeom_remElement (Sandro Santilli)

populate_topology_layer (Sandro Santilli)

#454, ST_WrapX und lwgeom_wrapx (Sandro Santilli)

#1758, ST_Normalize (Sandro Santilli)

#2236, shp2pgsql -d sendet nun "DROP TABLE IF EXISTS"

#2259, ST_VoronoiPolygons und ST_VoronoiLines (Dan Baston)

#2841 und #2996, ST_MinimumBoundingRadius und die neue Implementierung von ST_MinimumBoundingCircle verwendet den Algorithmus von Welzl (Dan Baston)

#2991, ST_Transform kann jetzt einen PROJ.4 Text verwenden (Mike Toews)

#3059, in ST_Expand wurde die Eingabe eines Parameters für jede Dimension ermöglicht (Dan Baston)

#3339, ST_GeneratePoints (Paul Ramsey)

#3362, ST_ClusterDBSCAN (Dan Baston)

#3364, ST_GeometricMedian (Dan Baston)

#3391, ST_EstimatedExtent unterstüzt Tabellenvererbung (Alessandro Pasotti)

#3424, ST_MinimumClearance (Dan Baston)

#3428, ST_Points (Dan Baston)

#3465, ST_ClusterKMeans (Paul Ramsey)

#3469, ST_MakeLine mit MULTIPOINTs (Paul Norman)

#3549, Unterstützung für parallele Abfragen in PgSQL 9.6, so weit wie möglich (Paul Ramsey, Regina Obe)

#3557, die Kosten für eine geometrische Funktion beruhen jetzt auf der Abfragestatistik (Paul Norman)

#3591, Unterstützung für BRIN Indizes hinzugefügt. PostgreSQL 9.4+ notwendig. (Giuseppe Broccolo von 2nd Quadrant, Julien Rouhaud und Ronan Dunklau von Dalibo)

#3496, Make postgis non-relocateable for extension install, schema qualify calls in functions (Regina Obe) Should resolve once and for all for extensions #3494, #3486, #3076

#3547, Aktualisierung des Tiger-Geokodierer um TIGER 2016 und sowohl http als auch ftp zu unterstützen.

#3613, die Linienteilung beim geographischen Datentyp verwendet jetzt gleich lange Abschnitte (Hugo Mercier of Oslandia)

Bugfixes

Alle relevanten Bugfixes von PostGIS 2.2.3

#2841, ST_MinimumBoundingCircle deckt das Original nicht ab

#3604, pgcommon/Makefile.in sortiert die CFLAGS nicht korrekt, was zu einer falschen Version von liblwgeom.h führt (Greg Troxel)

Verbesserung der Rechenleistung

#75, Verbesserung von PIP Kurzschlussauswertung (Dan Baston)

#3383, Deserialisierung von kleinen geometrischen Objekten während Index-Operationen vermeiden (Dan Baston)

#3400, Geringfügige Optimierung des Punkt-in-Polygon-Tests (Dan Baston)

Das Hinzufügen einer Linie zu einer Topologie unterbrechbar machen (Sandro Santilli)

Aktualisierung der Dokumentation durch Mike Toews

A.20. Release 2.2.2

Freigabedatum: 2016/03/22

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Neue Funktionalität

#3463, Absturz durch Kollabieren einer Masche beim Ändern einer Kante fixiert

#3422, Verbesserung der Robustheit von ST_Split auf Standardsystemen mit doppelter Genauigkeit (arm64, ppc64el, s390c, powerpc, ...)

#3427, Aktualisierung der Tabelle "spatial_ref_sys" auf EPSG Version 8.8

#3433, ST_ClusterIntersecting fehlerhaft bei MultiPoints

#3435, ST_AsX3D Wiedergabe konkaver geometrischer Objekte fixiert

#3436, Fehler bei der Speicherbehandlung in ptarray_clone_deep

#3437, ST_Intersects fehlerhaft bei MultiPoints

#3461, ST_GeomFromKML schiesst Postgres ab, wenn es innerBoundaryIs aber keine outerBoundaryIs gibt

#3429, Upgrade von 2.1 auf 2.3 kann auf einigen Plattformen zu einer Endlosschleife führen

#3460, ST_ClusterWithin gibt nach Upgrade den Fehler 'Tolerance not defined' aus

#3490, Problem bei der Wiederherstellung von Rasterdaten, materialized views. Skripte postgis_proc_set_search_path.sql, rtpostgis_proc_set_search_path.sql. Siehe http://postgis.net/docs/manual-2.2/RT_FAQ.html#faq_raster_data_not_restore

#3426, failing POINT EMPTY tests on fun architectures

A.21. Release 2.2.1

Freigabedatum: 2016/01/06

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Neue Funktionalität

#2232, vermeiden der Anhäufung von Fehlern beim Runden in in SVG

#3321, Fixieren von Einbußen an Rechenleistung beim Laden von Topologie

#3329, Fixieren von Einbußen bei der Stabilität von "TopoGeo_addPoint".

#3349, Fixierung des Installationspfads der postgis_topology-Skripts

#3351, Isolation der Endknoten in ST_RemoveIsoEdge (und lwt_RemIsoEdge)

#3355, "Geography": geometrische BBox für ST_Segmentize.

#3359, Verlust von Geometrien in der TopoGeometry Definition durch toTopoGeom bereinigt

#3360, _raster_constraint_info_scale ungültiger Eingabesyntax.

#3375, Absturz bei wiederholtem Entferen von Punkten aus collection(point).

#3378, Fixierung der Handhabung von hierarchischen "TopoGeometries" mit mehreren Topologien.

#3380, #3402, Anzahl der Linien beim Laden in die Topologie verringert

#3388, #3410, fehlende Endpunkte in ST_Removepoints bereinigt

#3389, Pufferüberlauf in lwgeom_to_geojson

#3390, Kompilation unter Alpine Linux 3.2 meldet einen Fehler, wenn PostGIS und die postgis_topology Extension kompiliert wird.

#3393, Bei einigen Polygonen ergibt ST_Area NaN

#3401, Verbesserung der Stabilität von "ST_Split" auf 32bit Systemen

#3404, ST_ClusterWithin bringt das Back-end zum Absturz

#3407, Absturz beim Teilen einer Masche oder einer Kante, die an mehreren TopoGeometry Objekten beteiligt sind, beseitigt

#3411, Cluster-Funktionen verwenden den räumlichen Index nicht

#3412, Verbesserung der Stabilität beim "Snapping"-Schritt in TopoGeo_addLinestring

#3415, OSX 10.9 Kompilation unter "pkgsrc" bereinigt

Speicherleck in lwt_ChangeEdgeGeom [liblwgeom] behoben

A.22. Release 2.2.0

Freigabedatum: 2015/10/07

Dies ist eine neue Feature-Release, mit neuen Funktionen, verbesserter Rechenleistung und anderen nützlichen Dingen.

Neue Funktionalität

Topologie API in "liblwgeom" (Sandro Santilli / Regione Toscana - SITA)

Neue lwgeom_unaryunion Methode in liblwgeom

Neue lwgeom_linemerge Methode in liblwgeom

Neue lwgeom_is_simple Methode in liblwgeom

#3169, SFCGAL 1.1 Unterstützung: hinzufügen von ST_3DDifference, ST_3DUnion, ST_Volume, ST_MakeSolid, ST_IsSolid (Vincent Mora / Oslandia)

#3169, ST_ApproximateMedialAxis (Sandro Santilli)

ST_CPAWithin (Sandro Santilli / Boundless)

Ab PostgreSQL 9.5, der |=| Operator mit CPA Semantik und KNN Unterstützung (Sandro Santilli / Boundless)

#3131, KNN Unterstützung für den geographischen Datentyp (Paul Ramsey / CartoDB)

#3023, ST_ClusterIntersecting / ST_ClusterWithin (Dan Baston)

#2703, Exakte KNN Ergebnisse für alle geometrischen Datentypen, aka "KNN re-check" (Paul Ramsey / CartoDB)

#1137, Einen Toleranzwert in ST_RemoveRepeatedPoints ermöglichen (Paul Ramsey / CartoDB)

#3062, Die Übergabe eines M Faktors für ST_Scale ermöglichen (Sandro Santilli / Boundless)

#3139, ST_BoundingDiagonal (Sandro Santilli / Boundless)

#3129, ST_IsValidTrajectory (Sandro Santilli / Boundless)

#3128, ST_ClosestPointOfApproach (Sandro Santilli / Boundless)

#3152, ST_DistanceCPA (Sandro Santilli / Boundless)

Normalisierte Ausgabe der Schlüsselindizestypen

ST_SwapOrdinates (Sandro Santilli / Boundless)

#2918, GeographicLib - geodätische Funktionen (Mike Toews)

#3074, ST_Subdivide zum zerlegen großer Geometrien (Paul Ramsey / CartoDB)

#3040, geometrischer Schwerpunkt KNN-GiST-Index basiert (<<->>) n-D Distanzoperatoren (Sandro Santilli / Boundless)

API zur Unterbrechungsbehandlung für liblwgeom (Sandro Santilli / CartoDB)

#2939, ST_ClipByBox2D (Sandro Santilli / CartoDB)

#2247, ST_Retile und ST_CreateOverview: bei Erzeugung von Rasterübersichten in der Datenbank (Sandro Santilli / Vizzuality)

#899, Zuordnung der Attributnamen über die "-m" Option für shp2pgsql (Regina Obe / Sandro Santilli)

#1678, GUC Variable "postgis.gdal_datapath" für die GDAL Konfigurationsvariable "GDAL_DATA" eingeführt

#2843, Koordinatentransformation beim Raster Import (Sandro Santilli / Vizzuality)

#2349, Ein- und Ausgabe für encoded_polyline (Kashif Rasul)

#2159, postgis_full_version() meldet libjson Version

#2770, ST_MemSize(raster)

postgis_noop(raster) hinzugefügt

Fehlende Varianten von ST_TPI(), ST_TRI() und ST_Roughness() ergänzt

GUC Variable "postgis.gdal_enabled_drivers" für die GDAL Konfigurationsvariable "GDAL_SKIP" eingeführt

GUC Variable "postgis.enable_outdb_rasters" für den Zugriff auf Raster mit out-db Bändern eingeführt

#2387, die Extension "address_standardizer" ist jetzt Teil von PostGIS (Stephen Woodbridge / imaptools.com, Walter Sinclair, Regina Obe)

#2816, die "address_standardizer_data_us" Extenson liefert die Verweise für "lex", "gaz"; "rules" für den "address_standardizer" (Stephen Woodbridge / imaptools.com, Walter Sinclair, Regina Obe)

#2341, Neuer Parameter für Masken in ST_MapAlgebra

#2397, der Shapefile-Lader liest die Zeichencodierung des Shapefiles automatisch aus

#2430, ST_ForceCurve

#2565, ST_SummaryStatsAgg()

#2567, ST_CountAgg()

#2632, ST_AsGML() Unterstützung für gekrümmte Features

#2652, --upgrade-path Option zu run_test.pl hinzugefügt

#2754, sfcgal als Extension

#2227, Generalisierung mit dem Visvalingam-Whyatt Algorithmus ST_SimplifyVW, ST_SetEffectiveArea (Nicklas Avén)

Funktionen zum codieren und decodieren von TWKB, ST_AsTWKB, ST_GeomFromTWKB (Paul Ramsey / Nicklas Avén / CartoDB)

Verbesserungen

#3223, Kurzschlussauswertung via memcmp zu ST_Equals hinzugefügt (Daniel Baston)

#3227, Upgrade für den Tiger Geokodierer zur Unterstützung von Tiger 2015 census

#2278, liblwgeom zwischen "Minor Releases" kompatibel machen

#897, ST_AsX3D Unterstützung für GeoCoordinaten und die Systeme "GD" und "WE"; kann X- und Y-Achsen vertauschen (Option = 2, 3)

ST_Split: das Auftrennen von Linien durch MultiLines, MultiPoints und (Multi)Polygongrenzen ermöglichen

#3070, Vereinfachung des Constraint für den geometrischen Datentyp

#2839, Implement selectivity estimator for functional indexes, speeding up spatial queries on raster tables. (Sandro Santilli / Vizzuality)

#2361, die Spalte "spatial_index" zum View "raster_columns" hinzugefügt

#2390, Testsuite für pgsql2shp

#2527, die Flag "-k" für raster2pgsql hinzugefügt, um die Überprüfung des Bandes auf NODATA zu überspringen

#2616, Verringerung der Typumwandlungen in Text, wärend des Aufbaus und des Exports von Topologie

#2717, ST_numPoints, ST_PointN, ST_startPoint und ST_endPoint für CompundCurve

#2747, Unterstützung von GDAL 2.0

#2754, SFCGAL kann nun mit CREATE EXTENSION (Vincent Mora @ Oslandia) installiert werden

#2828, ST_Envelope(raster) von SQL nach C portieren

#2829, abgekürztes Verhalten von ST_Clip(raster), wenn die Geometrie den Raster zur Gänze enthält und NODATA nicht definiert ist

#2906, Upgrade des Tiger Geokodierers für die Tiger 2014 Daten

#3048, Generalisierung von Geometrien beschleunigt (J.Santana @ CartoDB)

#3092, Langsamer View "geometry_columns" bei vielen Geometrietabellen

A.23. Release 2.1.8

Freigabedatum: 2015-07-07

Dies ist eine wichtige Bugfix-Release.

Bugfixes

#3159, Zwischenspeicherung einer BBox durch ST_Affine nicht erzwingen - falls vorher nicht vorhanden

#3018, "GROUP BY Geography" gibt manchmal duplizierte Datensätze zurück

#3084, shp2pgsql - ungültiges Zahlenformat bei bestimmten Locale

#3094, Fehlerhafte Eingabe von GeoJSON bringt Back-end zum Absturz

#3104, st_asgml schleust ein zufälliges Zeichen im ID-Attribut ein

#3155, Mit "make uninstall" liblwgeom.h entfernen

#3177, gserialized_is_empty kann verschachtelte, leere Geometrien nicht behandeln

Absturz von ST_LineLocatePoint bereinigt

A.24. Release 2.1.7

Freigabedatum: 2015-03-30

Dies ist eine wichtige Bugfix-Release.

Bugfixes

#3086, ST_DumpValues() führt beim Bereinigen von ungültigen Bandindizes zum Absturz des Back-ends

#3088, "strcasestr" in "liblwgeom.h" nicht (erneut) definieren

#3094, Fehlerhafte Eingabe von GeoJSON bringt Back-end zum Absturz

A.25. Release 2.1.6

Freigabedatum: 2015-03-20

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Verbesserungen

#3000, Sicherstellen, dass Algorithmen welche Kanten auftrennen oder bereinigen die Indizes verwenden

#3048, Geschwindigkeitsverbesserung bei der Generalisierung von Geometrien (J.Santana @ CartoDB)

#3050, Lesen des geometrischen Datentyps beschleunigt (J.Santana @ CartoDB)

Bugfixes

#2941, der geographische Datentyp darf eine andere SRID als 4326 aufweisen

#3069, small objects getting inappropriately fluffed up w/ boxes

#3068, "postgis_typmod_dims" gibt bei Dimensionen, die nicht durch ein Constraint festgelegt sind, NULL zurück

#3061, Duplizierte Punkte in JSON, GML, GML ST_GeomFrom* Funktionen erlauben

#3058, ND-GiST picksplit Methode fixiert, indem Teilungsoperation auf der bestgeeigneten Ebene durchführt wird

#3052, Die Operatoren <-> and <#> für PostgreSQL < 9.1 zur Verfügung stellen

#3045, Verwirrung mit der Dimensionalität im &&& Operator behoben

#3016, Deregistrierung von Layer mit beschädigten Topologien zulassen

#3015, Fehler bei der Ausführung von "TopologySummary" vermeiden

#3020, ST_AddBand out-db Bug; als Wert für die Höhe wird die Breite benutzt

#3031, Das Wiederherstellen von Geometry(Point) Tabellen die mit Leerfeldern "gedumped" wurden erlauben

A.26. Release 2.1.5

Freigabedatum: 2014-12-18

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Verbesserungen

#2933, Geschwindigkeitssteigerung beim Erstellen von großen Sammelgeometrien

Bugfixes

#2947, Speicherleck in "lwgeom_make_valid" bereinigt

#2949, Speicherleck in lwgeom_mindistance2d beseitigt

#2931, die Bezeichnung für BOX ist case-sensitive

#2942, PostgreSQL 9.5 support

#2953, 2D Statistik wird nicht erstellt, wenn die Werte Z/M extrem sind

#3009, die Typumwandlung in Geography kann den Basiswert eines Tupels ändern

A.27. Release 2.1.4

Freigabedatum: 2014-09-10

Es handelt sich um eine Release für Bugfixes und zur Verbesserung der Rechenleistung.

Verbesserungen

#2745, Geschwindigkeitsverbesserung beim Aufruf von ST_Simplify mit Punkten

#2747, Unterstützung von GDAL 2.0

#2749, rtpostgis_upgrade_20_21.sql ACID gemacht

#2811, Namen der Indizes beim Laden von Shapefiles/Rastern nicht festlegen

#2829, abgekürztes Verhalten von ST_Clip(raster), wenn die Geometrie den Raster zur Gänze enthält und NODATA nicht definiert ist

#2895, Verbesserung des Auswertungsplan durch Senkung der Kosten von ST_ConvexHull(raster) auf 300

Bugfixes

#2605, Armel: _ST_Covers() gibt für einem Punkt in einer Aussparung TRUE zurück

#2911, Ausgabemassstab von Rastern in ST_Rescale/ST_Resample/ST_Resize bei Massstab 1/-1 und einem Versatz von 0/0 bereinigt.

Absturz von ST_Union(raster) bereinigt

#2704, ST_GeomFromGML() funktioniert nicht einwandfrei mit einem Feld aus "gml:pos" (Even Roualt)

#2708, updategeometrysrid aktualisiert den Check-Constraint auf die SRID nicht, wenn kein Schema angegeben wird. Patch von Marc Jansen

#2720, lwpoly_add_ring should update maxrings after realloc

#2759, Fix postgis_restore.pl handling of multiline object comments embedding sql comments

#2774, unbestimmtes Verhalten von ptarray_calculate_gbox_geodetic fixiert

Speicherzugriffsverletzung in ST_MakeValid behoben

#2784, Falscher Übergabewert --with-sfcgal bereinigt

#2772, Frühzeitige Speicherfreigabe in RASTER_getBandPath (ST_BandPath)

#2755, Regressionstests für alle Versionen von SFCGAL fixiert

#2775, Speicherleck in "lwline_from_lwmpoint"

#2802, ST_MapAlgebra überprüft die von der Rückruffunktion zurückgegebenen Werte auf Validität

#2803, ST_MapAlgebra handles no userarg and STRICT callback function

#2834, ST_Estimated_Extent und Tabellennamen mit gemischten Groß- und Kleinbuchstaben (Regressionsbug)

#2845, ST_AddPoint erzeugt mangelhafte Geometrie

#2870, Das Einfügen von binären Daten in eine Spalte vom geographischen Datentyp führt zum Einfügen eines geometrischen Datentyps

#2872, "make install" kompiliert die Dokumentation (Greg Troxell)

#2819, isfinite oder Ersatz für Centos5 / Solaris finden

#2899, "geocode limit 1" gibt nicht die beste Antwort zurück (tiger geocoder)

#2903, Kann auf FreeBSD nicht kompiliert werden

#2927 reverse_geocode not filling in direction prefix (tiger geocoder) get rid of deprecated ST_Line_Locate_Point called

A.28. Release 2.1.3

Freigabedatum: 2014/05/13

Dies ist eine Bugfix- und Sicherheits-Release.

Wichtige Änderungen

Beginnend mit dieser Version sind der Zugriff auf Offline-Raster und die GDAL-Treiber standardmäßig deaktiviert.

Einführung der Umgebungsvariable "POSTGIS_GDAL_ENABLED_DRIVERS" zum Aktivieren bestimmter GDAL-Treiber. Standardmäßig sind alle GDAL-Treiber deaktiviert

Einführung der Umgebungsvariable "POSTGIS_GDAL_ENABLED_RASTERS" um out-db Rasterbänder zu ermöglichen. Standardmäßig sind out-db Raster deaktiviert

Die Umgebungsvariablen müssen für den PostgreSQL prozess gesetzt sein und bestimmen die Verhaltensweise des ganzen Cluster.

Bugfixes

#2697, Eingabe eines ungültigen GeoJSON Polygons führt zu Absturz des Server-Prozesses

#2700, Fix dumping of higher-dimension datasets with null rows

#2706, ST_DumpPoints von LEEREN Geometrien führt zu Serverabsturz

A.29. Release 2.1.2

Freigabedatum: 2014/03/31

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit Release 2.1.1 gemeldet wurden.

Bugfixes

#2666, Error out at configure time if no SQL preprocessor can be found

#2534, ST_Distance gibt falsche Ergebnisse für große Geographien zurück

#2539, Die Anwesenheit/Brauchbarkeit von json-c/json.h vor der Kompilation überprüfen

#2543, invalid join selectivity error from simple query

#2546, Parser für GeoJSON bei Koordinaten im Textformat nicht korrekt

#2547, ST_Simplify(TopoGeometry) für hierarchische TopoGeometrien bereinigt

#2552, Handhabung von NULL-Rastern in ST_AsPNG, ST_AsTIFF und ST_AsJPEG fixiert

#2555, Fix parsing issue of range arguments of ST_Reclass

#2556, Das Ergebnis von ST_Intersects hängt beim geographischen Datentyp von der Reihenfolge der Eingabe ab

#2580, Doppelinstallationen von PostGIS in der selben Datenbank verbieten

#2589, Remove use of unnecessary void pointers

#2607, Innerhalb einer Datenbankverbindung können maximal 1024 out-db Dateien geöffnet werden

#2610, Ensure face splitting algorithm uses the edge index

#2615, EstimatedExtent (and hence, underlying stats) gathering wrong bbox

#2619, Empty rings array in GeoJSON polygon causes crash

#2634, regression in sphere distance code

#2638, die geographische Entfernungsberechnung ist bei M-Geometrien manchmal falsch

#2648, #2653, Lösung für topologische Funktionen, wenn das Schema "topology" nicht im Suchpfad/"search_path" ist

#2654, Überholte Aufrufe von "topology" eingestellt

#2655, Zulassen, dass Anwender die keine Berechtigung auf das Schema "topology" haben, postgis_full_version() aufrufen können

#2674, Fix missing operator = and hash_raster_ops opclass on raster

#2675, #2534, #2636, #2634, #2638, Probleme bei der geographischen Entfernungsberechnung

Verbesserungen

#2494, Arbeitsspeicherkopien im GiST Index vermeiden (hayamiz)

#2560, Soft-Upgrade: Das Löschen/Neuerstellen von unveränderten Aggregaten vermeiden

A.30. Release 2.1.1

Freigabedatum: 2013/11/06

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit Release 2.1.0 gemeldet wurden.

Wichtige Änderungen

#2514, Änderung der Lizenz für Raster von GPL v3+ auf v2+; ermöglicht die Verbreitung der PostGIS-Extension als GPLv2.

Bugfixes

#2396, Make regression tests more endian-agnostic

#2434, Fix ST_Intersection(geog,geog) regression in rare cases

#2454, Verhaltensweise der Funktionen "ST_PixelAsXXX" in Bezug auf den Parameter "exclude_nodata_value" fixiert

#2489, Fix upgrades from 2.0 leaving stale function signatures

#2525, Handhabung von SRID bei verschachtelten Kollektionen gelöst

#2449, Beseitigung einer potentiell unendlichen Schleife beim Aufbau eines Index

#2493, Fixierung der Verhaltensweise von "ST_DumpValues" wenn ein leerer Raster angegeben wird

#2502, Installationsschema für postgis_topology_scripts_installed() fixiert

#2504, Schutzverletzung bei falschem Aufruf von pgsql2shp beseitigt

#2512, Unterstützung von Fremdtabellen und materialisierten Views in "raster_columns" und "raster_overviews"

Verbesserungen

#2478, Unterstützung für tiger 2013

#2463, genaue Längenberechnung für Bogengeometrien

A.31. Release 2.1.0

Freigabedatum: 2013/08/17

Dies ist eine minor Release, die Bugfixes, Rechenleistung und Funktionalitätsverbesserungen adressiert und sich mit Problemen befasst die seit der Release 2.0.3 gemeldet wurden. Wenn Sie von PostGIS 2.0+ her upgraden, ist nur ein "Soft Upgrade" nötig. Für ein Upgrade von PostGIS 1.5 oder älter wird ein "Hard Upgrade" benötigt.

Wichtige Änderungen

#1653, Removed srid parameter from ST_Resample(raster) and variants with reference raster no longer apply reference raster's SRID.

#1962 ST_Segmentize - As a result of the introduction of geography support, The construct: SELECT ST_Segmentize('LINESTRING(1 2, 3 4)',0.5); will result in ambiguous function error

#2026, ST_Union(raster) vereinigt nun alle Bänder von allen Rastern

#2089, liblwgeom: lwgeom_set_handlers ersetzt lwgeom_init_allocators.

#2150, regular_blocking is no longer a constraint. column of same name in raster_columns now checks for existance of spatially_unique and coverage_tile constraints

ST_Intersects(raster, geometry) verhält sich genau so wie ST_Intersects(geometry, raster).

Bei der Punktvariante von ST_SetValue(raster) wurde die SRID der eingegebenen Geometrien und Raster bisher nicht überprüft.

Die Parameter Azimut und Höhe von ST_Hillshade werden nun in Grad anstatt in Bogenmaß angegeben.

ST_Slope und ST_Aspect geben die Zellwerte nun in Grad statt in Bogenmaß aus.

#2104, ST_World2RasterCoord, ST_World2RasterCoordX und ST_World2RasterCoordY umbenannt in ST_WorldToRasterCoord, ST_WorldToRasterCoordX und ST_WorldToRasterCoordY. ST_Raster2WorldCoord, ST_Raster2WorldCoordX und ST_Raster2WorldCoordY umbenannt in ST_RasterToWorldCoord, ST_RasterToWorldCoordX und ST_RasterToWorldCoordY

ST_Estimated_Extent in ST_EstimatedExtent umbenannt

ST_Line_Interpolate_Point in ST_LineInterpolatePoint umbenannt

ST_Line_Substring in ST_LineSubstring umbenannt

ST_Line_Locate_Point in ST_LineLocatePoint umbenannt

ST_Force_XXX in ST_ForceXXX umbenannt

ST_MapAlgebraFctNgb und die Rastervarianten 1 und 2 von ST_MapAlgebraFct. Verwende ST_MapAlgebra stattdessen

Rastervarianten 1 und 2 von ST_MapAlgebraExpr. Verwende ST_MapAlgebra stattdessen

Neue Funktionalität

- Siehe http://postgis.net/docs/manual-2.1/PostGIS_Special_Functions_Index.html#NewFunctions_2_1 für eine vollständige Liste der neuen Funktionen

#310, ST_DumpPoints nun als C-Funktion (Nathan Wagner) und viel schneller

#739, UpdateRasterSRID()

#945, improved join selectivity, N-D selectivity calculations, user accessible selectivity and stats reader functions for testing (Paul Ramsey / OpenGeo)

toTopoGeom mit TopoGeometry Senke (Sandro Santilli / Vizzuality)

clearTopoGeom (Sandro Santilli / Vizzuality)

ST_Segmentize(geography) (Paul Ramsey / OpenGeo)

ST_DelaunayTriangles (Sandro Santilli / Vizzuality)

ST_NearestValue, ST_Neighborhood (Bborie Park / UC Davis)

ST_PixelAsPoint, ST_PixelAsPoints (Bborie Park / UC Davis)

ST_PixelAsCentroid, ST_PixelAsCentroids (Bborie Park / UC Davis)

ST_Raster2WorldCoord, ST_World2RasterCoord (Bborie Park / UC Davis)

Zusätzliche Funktionen für räumliche Beziehungen von Raster/Raster (ST_Contains, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Disjoint, ST_Overlaps, ST_Touches, ST_Within, ST_DWithin, ST_DFullyWithin) (Bborie Park / UC Davis)

Varianten mit Feldern zu ST_SetValues() hinzugefügt, um mehrere Pixelwerte eines Bandes mit einem einzigen Aufruf zu setzen (Bborie Park / UC Davis)

#1293, ST_Resize(raster) um die Rastergröße über width/height ändern zu können

#1627, "tiger_geocoder" Paket als PostgreSQL EXTENSION

#1643, #2076, Upgrade des Tiger Geokodierers für die Tiger Daten von 2011 und 2012 (Regina Obe / Paragon Corporation) Finanziert von der Hunter Systems Group

GEOMETRYCOLLECTION Unterstüzung für ST_MakeValid (Sandro Santilli / Vizzuality)

#1709, ST_NotSameAlignmentReason(raster, raster)

#1818, ST_GeomFromGeoHash und Freunde (Jason Smith (darkpanda))

#1856, reverse geocoder rating setting for prefer numbered highway name

ST_PixelOfValue (Bborie Park / UC Davis)

Typumwandlung für PostgreSQL geotypes (POINT/PATH/POLYGON).

Variante mit dem Feld "geomval" zu ST_SetValues() hinzugefügt, um mehrere Pixelwerte eines Bandes über geometrische Objekte mit den dazugehörigen Werten in einem einzigen Aufruf zu setzen (Bborie Park / UC Davis)

ST_Tile(raster), um einen Raster in Kacheln zu zerlegen (Bborie Park / UC Davis)

#1895, neuer Alorithmus zum Auftrennen von Knoten im R-Baum (Alex Korotkov)

#2011, ST_DumpValues um Raster als ein Feld auszugeben (Bborie Park / UC Davis)

#2018, ST_Distance für CircularString, CurvePolygon, MultiCurve, MultiSurface, CompoundCurve

#2030, n-raster (und n-band) ST_MapAlgebra (Bborie Park / UC Davis)

#2193, Utilize PAGC parser as drop in replacement for tiger normalizer (Steve Woodbridge, Regina Obe)

#2210, ST_MinConvexHull(raster)

lwgeom_from_geojson in liblwgeom (Sandro Santilli / Vizzuality)

#1687, ST_Simplify für TopoGeometry (Sandro Santilli / Vizzuality)

#2228, TopoJSON Ausgabe für TopoGeometry (Sandro Santilli / Vizzuality)

#2123, ST_FromGDALRaster

#613, der Parametertyp für ST_SetGeoReference ist nun numerisch anstatt Text

#2276, ST_AddBand(raster) Variante für out-db Rasterbänder

#2280, ST_Summary(raster)

#2163, ST_TPI für Raster (Nathaniel Clay)

#2164, ST_TRI für Raster (Nathaniel Clay)

#2302, ST_Roughness für Raster (Nathaniel Clay)

#2290, ST_ColorMap(raster) zum Erzeugen von RGBA Rasterbändern

#2254, Add SFCGAL backend support. (Backend selection throught postgis.backend var) Functions available both throught GEOS or SFCGAL: ST_Intersects, ST_3DIntersects, ST_Intersection, ST_Area, ST_Distance, ST_3DDistance New functions available only with SFCGAL backend: ST_3DIntersection, ST_Tesselate, ST_3DArea, ST_Extrude, ST_ForceLHR ST_Orientation, ST_Minkowski, ST_StraightSkeleton postgis_sfcgal_version New function available in PostGIS: ST_ForceSFS (Olivier Courtin and Hugo Mercier / Oslandia)

Verbesserungen

Für Einzelheiten zu den neuen Funktionen, siehe Section 14.12.7, “PostGIS Functions new or enhanced in 2.1”.

Viel schnelleres ST_Union und ST_Clip, sowie viele neue Funktionen für Raster

Bessere Selektivität des Anfrageoptimierer für den geometrischen und den geographischen Datentyp und viel mehr Funktionen.

#823, tiger geocoder: Make loader_generate_script download portion less greedy

#826, raster2pgsql no longer defaults to padding tiles. Flag -P can be used to pad tiles

#1363, ST_AddBand(raster, ...) array Version nach C portiert

#1364, ST_Union(raster, ...) Aggregierungsfunktion nach C portiert

#1655, Additional default values for parameters of ST_Slope

#1661, Add aggregate variant of ST_SameAlignment

#1719, Unterstützung von Punkt- und Sammelgeometrie durch ST_MakeValid hinzugefügt

#1780, Unterstützung von ST_GeoHash für den geographischen Datentyp

#1796, Big performance boost for distance calculations in geography

#1802, improved function interruptibility.

#1823, add parameter in ST_AsGML to use id column for GML 3 output (become mandatory since GML 3.2.1)

#1856, tiger geocoder: reverse geocoder rating setting for prefer numbered highway name

#1938, Refactor basic ST_AddBand to add multiple new bands in one call

#1978, falsches Ergebnis bei der Längenberechnung eines geschlossenen Kreisbogens (Kreis)

#1989, Preprocess input geometry to just intersection with raster to be clipped

#2021, Multi-Band Unterstützung für die Aggregatfunktion ST_Union(raster, ...)

#2006, bessere Unterstützung von ST_Area(geography) bei Polen und Datumsgrenzen

#2065, ST_Clip(raster, ...) ist nun eine C-Funktion

#2069, Added parameters to ST_Tile(raster) to control padding of tiles

#2078, New variants of ST_Slope, ST_Aspect and ST_HillShade to provide solution to handling tiles in a coverage

#2097, Option RANGE zum Parameter "uniontype" von ST_Union(raster) hinzugefügt

#2105, eine Variante für das Ausrichten an einem Referenzraster zu ST_Transform(raster) hinzugefügt,

#2119, Rasters passed to ST_Resample(), ST_Rescale(), ST_Reskew(), and ST_SnapToGrid() no longer require an SRID

#2141, More verbose output when constraints fail to be added to a raster column

#2143, Changed blocksize constraint of raster to allow multiple values

#2148, Constraint "coverage_tile" für Raster hinzugefügt

#2149, Constraint "spatially_unique" für Raster hinzugefügt

Die Ausgabe von TopologySummary bezieht nun unregistrierte Layer und die fehlenden TopoGeometry Objekte des ursprünglichen Layers mit ein.

Neuer, optionaler Parameter für ST_HillShade(), ST_Aspect() und ST_Slope() zur Interpolation von NODATA Pixel vor der Operation.

Die Punktvariante von ST_SetValue(raster) ist nun ein Wrapper um die Variante geomval von ST_SetValues(rast).

Korrekte Unterstützung für die Flag "isnodata" der Rasterbänder in der Kern-API und im Loader.

Zusätzliche Standardwerte für die Parameter von ST_Aspect und ST_HillShade

#2178, ST_Summary now advertises presence of known srid with an [S] flag

#2202, libjson-c ist jetzt optional (--without-json configure switch)

#2213, Unterstützung für libjson-c 0.10+

#2231, raster2pgsql supports user naming of filename column with -n

#2200, ST_Union(raster, uniontype) vereinigt alle Bänder aller Raster

#2264, postgis_restore.pl support for restoring into databases with postgis in a custom schema

#2244, emit warning when changing raster's georeference if raster has out-db bands

#2222, add parameter OutAsIn to flag whether ST_AsBinary should return out-db bands as in-db bands

Bugfixes

#1839, handling of subdatasets in GeoTIFF in raster2pgsql.

#1840, fix logic of when to compute # of tiles in raster2pgsql.

#1870, align the docs and actual behavior of raster's ST_Intersects

#1872, ST_ApproxSummarystats fixiert, indem die Division durch Null verhindert wird

#1875, ST_SummaryStats returns NULL for all parameters except count when count is zero

#1932, fix raster2pgsql of syntax for index tablespaces

#1936, ST_GeomFromGML on CurvePolygon causes server crash

#1939, remove custom data types: summarystats, histogram, quantile, valuecount

#1951, remove crash on zero-length linestrings

#1957, ST_Distance to a one-point LineString returns NULL

#1976, Geography point-in-ring code overhauled for more reliability

#1981, cleanup of unused variables causing warnings with gcc 4.6+

#1996, support POINT EMPTY in GeoJSON output

#2062, improve performance of distance calculations

#2057, Fixed linking issue for raster2psql to libpq

#2077, Fixed incorrect values returning from ST_Hillshade()

#2019, ST_FlipCoordinates does not update bbox

#2100, ST_AsRaster may not return raster with specified pixel type

#2126, Better handling of empty rasters from ST_ConvexHull()

#2165, ST_NumPoints regression failure with CircularString

#2168, ST_Distance ist nicht immer kommutativ

#2182, Fix issue with outdb rasters with no SRID and ST_Resize

#2188, Fix function parameter value overflow that caused problems when copying data from a GDAL dataset

#2198, Fix incorrect dimensions used when generating bands of out-db rasters in ST_Tile()

#2201, ST_GeoHash wrong on boundaries

#2203, Changed how rasters with unknown SRID and default geotransform are handled when passing to GDAL Warp API

#2215, Fixed raster exclusion constraint for conflicting name of implicit index

#2251, Fix bad dimensions when rescaling rasters with default geotransform matrix

#2133, Fix performance regression in expression variant of ST_MapAlgebra

#2257, GBOX variables not initialized when testing with empty geometries

#2271, Prevent parallel make of raster

#2282, Fix call to undefined function nd_stats_to_grid() in debug mode

#2307, ST_MakeValid gibt ungültige Geometrien aus

#2309, Remove confusing INFO message when trying to get SRS info

#2336, FIPS 20 (KS) causes wildcard expansion to wget all files

#2348, Provide raster upgrade path for 2.0 to 2.1

#2351, st_distance between geographies wrong

#2359, Fix handling of schema name when adding overview constraints

#2371, Support GEOS versions with more than 1 digit in micro

#2383, Remove unsafe use of \' from raster warning message

#2384, Incorrect variable datatypes for ST_Neighborhood

Bekannte Probleme

#2111, Raster bands can only reference the first 256 bands of out-db rasters

A.32. Release 2.0.5

Freigabedatum: 2014/03/31

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit der Release 2.0.4 gemeldet wurden. Falls Sie PostGIS 2.0+ verwenden ist ein "Soft Upgrade" ausreichend. Für Anwender von PostGIS 1.5 oder älter wird ein "Hard Upgrade" benötigt.

Bugfixes

#2494, memcpy in GIST Index vermeiden

#2502, Installationsschema für postgis_topology_scripts_installed() fixiert

#2504, Schutzverletzung bei falschem Aufruf von pgsql2shp beseitigt

#2528, Fix memory leak in ST_Split / lwline_split_by_line

#2532, Add missing raster/geometry commutator operators

#2533, Remove duplicated signatures

#2552, Handhabung von NULL-Rastern in ST_AsPNG, ST_AsTIFF und ST_AsJPEG fixiert

#2555, Fix parsing issue of range arguments of ST_Reclass

#2589, Remove use of unnecessary void pointers

#2607, Cannot open more than 1024 out-db files in process

#2610, Ensure face splitting algorithm uses the edge index

#2619, Empty ring array in GeoJSON polygon causes crash

#2638, die geographische Entfernungsberechnung ist bei M-Geometrien manchmal falsch

Wichtige Änderungen

##2514, Change raster license from GPL v3+ to v2+, allowing distribution of PostGIS Extension as GPLv2.

A.33. Release 2.0.4

Freigabedatum: 2013/09/06

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit der Release 2.0.3 gemeldet wurden. Falls Sie PostGIS 2.0+ verwenden ist ein "Soft Upgrade" ausreichend. Für Anwender von PostGIS 1.5 oder älter wird ein "Hard Upgrade" benötigt.

Bugfixes

#2110, Equality operator between EMPTY and point on origin

TopoGeo_addPoint ermöglicht jetzt das Hinzufügen von Punkten mit einer bestimmten Genauigkeit

#1968, Fix missing edge from toTopoGeom return

#2165, ST_NumPoints regression failure with CircularString

#2168, ST_Distance ist nicht immer kommutativ

#2186, gui progress bar updates too frequent

#2201, ST_GeoHash wrong on boundaries

#2257, GBOX variables not initialized when testing with empty geometries

#2271, Prevent parallel make of raster

#2267, Server crash from analyze table

#2277, potential segfault removed

#2307, ST_MakeValid gibt ungültige Geometrien aus

#2351, st_distance between geographies wrong

#2359, Incorrect handling of schema for overview constraints

#2371, Support GEOS versions with more than 1 digit in micro

#2372, Cannot parse space-padded KML coordinates

Kompilation bei systemweit installierter liblwgeom fixiert

#2383, Fix unsafe use of \' in warning message

#2410, Fix segmentize of collinear curve

#2412, ST_LineToCurve support for lines with less than 4 vertices

#2415, ST_Multi Unterstützung für COMPOUNDCURVE und CURVEPOLYGON

#2420, ST_LineToCurve: require at least 8 edges to define a full circle

#2423, ST_LineToCurve: require all arc edges to form the same angle

#2424, ST_CurveToLine: add support for COMPOUNDCURVE in MULTICURVE

#2427, Make sure to retain first point of curves on ST_CurveToLine

Verbesserungen

#2269, Avoid uselessly detoasting full geometries on ANALYZE

Bekannte Probleme

#2111, Raster bands can only reference the first 256 bands of out-db rasters

A.34. Release 2.0.3

Freigabedatum: 2013/03/01

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit der Release 2.0.2 gemeldet wurden. Falls Sie PostGIS 2.0+ verwenden ist ein "Soft Upgrade" ausreichend. Für Anwender von PostGIS 1.5 oder älter wird ein "Hard Upgrade" benötigt.

Bugfixes

#2126, Better handling of empty rasters from ST_ConvexHull()

#2134, Make sure to process SRS before passing it off to GDAL functions

Verschiedene Speicherlecks in liblwgeom fixiert

#2173, Fix robustness issue in splitting a line with own vertex also affecting topology building (#2172)

#2174, Fix usage of wrong function lwpoly_free()

#2176, Fix robustness issue with ST_ChangeEdgeGeom

#2184, Properly copy topologies with Z value

postgis_restore.pl unterstützt jetzt gemischte Groß- und Kleinschreibung de Geometriespaltennamens im Dump

#2188, Fix function parameter value overflow that caused problems when copying data from a GDAL dataset

#2216, More memory errors in MultiPolygon GeoJSON parsing (with holes)

Speicherleck im GeoJSON Parser fixiert

Verbesserungen

#2141, More verbose output when constraints fail to be added to a raster column

ST_ChangeEdgeGeom beschleunigt

A.35. Release 2.0.2

Freigabedatum: 2012/12/03

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit Release 2.0.1 gemeldet wurden.

Bugfixes

#1287, Drop of "gist_geometry_ops" broke a few clients package of legacy_gist.sql for these cases

#1391, Errors during upgrade from 1.5

#1828, Poor selectivity estimate on ST_DWithin

#1838, error importing tiger/line data

#1869, ST_AsBinary is not unique added to legacy_minor/legacy.sql scripts

#1885, Missing field from tabblock table in tiger2010 census_loader.sql

#1891, Use LDFLAGS environment when building liblwgeom

#1900, Fix pgsql2shp for big-endian systems

#1932, Fix raster2pgsql for invalid syntax for setting index tablespace

#1936, ST_GeomFromGML on CurvePolygon causes server crash

#1955, ST_ModEdgeHeal and ST_NewEdgeHeal for doubly connected edges

#1957, ST_Distance to a one-point LineString returns NULL

#1976, Geography point-in-ring code overhauled for more reliability

#1978, wrong answer calculating length of closed circular arc (circle)

#1981, Remove unused but set variables as found with gcc 4.6+

#1987, Restore 1.5.x behaviour of ST_Simplify

#1989, Preprocess input geometry to just intersection with raster to be clipped

#1991, geocode really slow on PostgreSQL 9.2

#1996, support POINT EMPTY in GeoJSON output

#1998, Fix ST_{Mod,New}EdgeHeal joining edges sharing both endpoints

#2001, ST_CurveToLine has no effect if the geometry doesn't actually contain an arc

#2015, ST_IsEmpty('POLYGON(EMPTY)') gibt False zurück

#2019, ST_FlipCoordinates does not update bbox

#2025, Fix side location conflict at TopoGeo_AddLineString

#2026, improve performance of distance calculations

#2033, Fix adding a splitting point into a 2.5d topology

#2051, Fix excess of precision in ST_AsGeoJSON output

#2052, Fix buffer overflow in lwgeom_to_geojson

#2056, Fixed lack of SRID check of raster and geometry in ST_SetValue()

#2057, Fixed linking issue for raster2psql to libpq

#2060, Fix "dimension" check violation by GetTopoGeomElementArray

#2072, Removed outdated checks preventing ST_Intersects(raster) from working on out-db bands

#2077, Fixed incorrect answers from ST_Hillshade(raster)

#2092, Namespace issue with ST_GeomFromKML,ST_GeomFromGML for libxml 2.8+

#2099, Fix double free on exception in ST_OffsetCurve

#2100, ST_AsRaster() may not return raster with specified pixel type

#2108, Sicherstellen, dass ST_Line_Interpolate_Point immer einen POINT zurückgibt

#2109, Sicherstellen, dass ST_Centroid immer einen POINT zurückgibt

#2117,Sicherstellen, dass ST_PointOnSurface immer einen POINT zurückgibt

#2129, Fix SRID in ST_Homogenize output with collection input

#2130, Fix memory error in MultiPolygon GeoJson parsing

Update der URL von Maven jar

Verbesserungen

#1581, ST_Clip(raster, ...) no longer imposes NODATA on a band if the corresponding band from the source raster did not have NODATA

#1928, Accept array properties in GML input multi-geom input (Kashif Rasul and Shoaib Burq / SpacialDB)

#2082, Add indices on start_node and end_node of topology edge tables

#2087, Speedup topology.GetRingEdges using a recursive CTE

A.36. Release 2.0.1

Freigabedatum: 2012/06/22

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit Release 2.0.0 gemeldet wurden.

Bugfixes

#1264, fix st_dwithin(geog, geog, 0).

#1468 shp2pgsql-gui table column schema get shifted

#1694, fix building with clang. (vince)

#1708, improve restore of pre-PostGIS 2.0 backups.

#1714, more robust handling of high topology tolerance.

#1755, ST_GeographyFromText Unterstützung für höhere Dimensionen.

#1759, loading transformed shapefiles in raster enabled db.

#1761, handling of subdatasets in NetCDF, HDF4 and HDF5 in raster2pgsql.

#1763, topology.toTopoGeom use with custom search_path.

#1766, don't let ST_RemEdge* destroy peripheral TopoGeometry objects.

#1774, Clearer error on setting an edge geometry to an invalid one.

#1775, ST_ChangeEdgeGeom collision detection with 2-vertex target.

#1776, fix ST_SymDifference(empty, geom) to return geom.

#1779, install SQL comment files.

#1782, fix spatial reference string handling in raster.

#1789, fix false edge-node crossing report in ValidateTopology.

#1790, fix toTopoGeom handling of duplicated primitives.

#1791, fix ST_Azimuth with very close but distinct points.

#1797, fix (ValidateTopology(xxx)).* syntax calls.

#1805, den 900913 SRID Eintrag wieder übernehmen.

#1813, Only show readable relations in metadata tables.

#1819, fix floating point issues with ST_World2RasterCoord and ST_Raster2WorldCoord variants.

#1820 compilation on 9.2beta1.

#1822, topology load on PostgreSQL 9.2beta1.

#1825, fix prepared geometry cache lookup

#1829, fix uninitialized read in GeoJSON parser

#1834, revise postgis extension to only backup user specified spatial_ref_sys

#1839, handling of subdatasets in GeoTIFF in raster2pgsql.

#1840, fix logic of when to compute # of tiles in raster2pgsql.

#1851, fix spatial_ref_system parameters for EPSG:3844

#1857, fix failure to detect endpoint mismatch in ST_AddEdge*Face*

#1865, data loss in postgis_restore.pl when data rows have leading dashes.

#1867, catch invalid topology name passed to topogeo_add*

#1872, ST_ApproxSummarystats fixiert, indem die Division durch Null verhindert wird

#1873, fix ptarray_locate_point to return interpolated Z/M values for on-the-line case

#1875, ST_SummaryStats returns NULL for all parameters except count when count is zero

#1881, shp2pgsql-gui -- editing a field sometimes triggers removing row

#1883, Geocoder install fails trying to run create_census_base_tables() (Brian Panulla)

Verbesserungen

Detailiertere Fehlermeldungen der topologischen Editierfunktionen

#1786, improved build dependencies

#1806, speedup of ST_BuildArea, ST_MakeValid and ST_GetFaceGeometry.

#1812, Add lwgeom_normalize in LIBLWGEOM for more stable testing.

A.37. Release 2.0.0

Freigabedatum: 2012/04/03

Dies ist eine major Release, die ein HARD UPGRADE benötigt. Dies bedeutet einen vollen Dump/Reload und einige spezielle Vorbereitungen, wenn Sie veraltete Funktionen verwenden. Siehe Section 2.11.2, “Hard upgrade” für Details bezüglich Upgrade. Siehe Section 14.12.8, “PostGIS Functions new, behavior changed, or enhanced in 2.0” für mehr Details und geänderte/neue Funktionen.

Tester - Unsere heimlichen Helden

Wir schulden den zahllosen Mitgliedern der PostGIS Gemeinschaft großen Dank, dass sie den Mut aufgebracht haben die neuen Features dieser Release zu testen. Ohne diese Leute könnte keine einzige major Release erfolgreich sein.

Nachfolgend sind jene aufgeführt, die am wackersten waren und sehr detaillierte Fehlerberichte und Analysen geliefert haben.

Andrea Peri - massenweise Topologie-Tests, Überprüfung auf Richtigkeit
Andreas Forø Tollefsen - Raster-Tests
Chris English - Topologie Stresstext der Loader-Funktionen
Salvatore Larosa - Stabilitätstest bezüglich Topologie
Brian Hamlin - Benchmarking (auch experimentelle Teile bevor diese in den Kern übernommen wurden) , allgemeine Überprüfung verschiedenster Module, inklusive Tiger und Topologie. Tests auf verschiedenen Server VMs
Mike Pease - Tests des Tiger Geokodierer - sehr detailierte Problemberichte
Tom van Tilburg - Rastertest

Wichtige Änderungen

#722, #302, Most deprecated functions removed (over 250 functions) (Regina Obe, Paul Ramsey)

"Unknown" SRID von -1 auf 0 geändert. (Paul Ramsey)

-- (am meisten überholte in 1.2) nicht ST-Varianten buffer, length und intersects entfernt (und die internen Funktionen umbenannt) etc.

-- Wenn Sie überholte Funktionen verwenden, sollten Sie Ihre Applikationen ÄNDERN oder Sie müssen die Folgen tragen. Wenn eine Funktion nicht in der Dokumentation aufgeführt ist, dann wird diese entweder nicht unterstützt oder es ist eine interne Funktion. Einige Constraints auf ältere Tabellen wurden mit veralteten Funktionen erstellt. Es kann sein, dass Sie bei der Wiederherstellung der Datenbank die Constraints auf die Tabellen mit "populate_geometry_columns()" erneut anlegen müssen. Für Applikationen oder Tools, die auf überholte Funktionen angewiesen sind, siehe Q: 3.2 für weitere Details.

#944 geometry_columns is now a view instead of a table (Paul Ramsey, Regina Obe) for tables created the old way reads (srid, type, dims) constraints for geometry columns created with type modifiers reads rom column definition

#1081, #1082, #1084, #1088 - Mangement functions support typmod geometry column creation functions now default to typmod creation (Regina Obe)

#1083 probe_geometry_columns(), rename_geometry_table_constraints(), fix_geometry_columns(); removed - now obsolete with geometry_column view (Regina Obe)

#817 Umbenennung alter 3D-Funktionen entsprechend der Vereinbarung "ST_3D" (Nicklas Avén)

#548 (sorta), ST_NumGeometries,ST_GeometryN now returns 1 (or the geometry) instead of null for single geometries (Sandro Santilli, Maxime van Noppen)

Neue Funktionalität

KNN Gist Index basierte Entfernungsoperatoren für Schwerpunkt (<->) und box (<#>) (Paul Ramsey / funded by Vizzuality)

Unterstützung von TIN und PolyHedralSurface und Erweiterung vieler Funktionen bezüglich 3D-Unterstützung (Olivier Courtin / Oslandia)

Raster Unterstützung integriert und dokumentiert (Pierre Racine, Jorge Arévalo, Mateusz Loskot, Sandro Santilli, David Zwarg, Regina Obe, Bborie Park) (Entwicklungen von Konzernen und Finanzierung: University Laval, Deimos Space, CadCorp, Michigan Tech Research Institute, Azavea, Paragon Corporation, UC Davis Center for Vectorborne Diseases)

Räumliche Indizes 3D-Fähig machen - in Arbeit (Paul Ramsey, Mark Cave-Ayland)

Topologieunterstützung verbessert (mehr Funktionen), dokumentiert und getestet (Sandro Santilli / Faunalia for RT-SIGTA), Andrea Peri, Regina Obe, Jose Carlos Martinez Llari

3D-Funktionen für Lagevergleiche und Metrik (Nicklas Avén)

ST_3DDistance, ST_3DClosestPoint, ST_3DIntersects, ST_3DShortestLine und mehr ...

N-dimensionale räumliche Indizes (Paul Ramsey / OpenGeo)

ST_Split (Sandro Santilli / Faunalia für RT-SIGTA)

ST_IsValidDetail (Sandro Santilli / Faunalia für RT-SIGTA)

ST_MakeValid (Sandro Santilli / Faunalia für RT-SIGTA)

ST_RemoveRepeatedPoints (Sandro Santilli / Faunalia for RT-SIGTA)

ST_GeometryN und ST_NumGeometries Unterstützung wenn keine Sammelgeoemtrie (Sandro Santilli)

ST_IsCollection (Sandro Santilli, Maxime van Noppen)

ST_SharedPaths (Sandro Santilli / Faunalia für RT-SIGTA)

ST_Snap (Sandro Santilli)

ST_RelateMatch (Sandro Santilli / Faunalia für RT-SIGTA)

ST_ConcaveHull (Regina Obe und Leo Hsu / Paragon Corporation)

ST_UnaryUnion (Sandro Santilli / Faunalia für RT-SIGTA)

ST_AsX3D (Regina Obe / Arrival 3D Finanzierung)

ST_OffsetCurve (Sandro Santilli, Rafal Magda)

ST_GeomFromGeoJSON (Kashif Rasul, Paul Ramsey / Vizzuality Funding)

Verbesserungen

Shapefile Loader ist nun fehlertolerant gegenüber abgeschnittenen Multibyte Werten, die manchmal bei Shapefiles auftreten (Sandro Santilli)

Viele Bugfixes und Verbesserungen beim Loader "shp2pgsql". Fegressionstest für die Loaders aufgepeppt. Projektionsumrechnung während des Imports wird jetzt beim geometrischen als auch beim geographischen Datentyp unterstützt (Jeff Adams / Azavea, Mark Cave-Ayland)

pgsql2shp Umwaqndlung anhand einer vordefinierten Liste (Loic Dachary / Mark Cave-Ayland)

Shp-pgsql GUI Lader - unterstützt das Laden von mehreren Dateien gleichzeitig. (Mark Leslie)

Extras - Upgrade des tiger_geocoder vom alten auf das neue TIGER Format mit neuem TIGER Shapefile und neuer Dateistruktur (Stephen Frost)

Extras - Überarbeitung des tiger_geocoder für TIGER Census 2010 Daten, Einführung inverser Geokodierfunktionen, verschiedene Bugfixes, Genauigkeitsverbesserungen, Limitierung der maximal zurückgegebenen Ergebnisse, Geschwindigkeitsverbesserungen und Laderoutinen. (Regina Obe, Leo Hsu / Paragon Corporation / funding provided by Hunter Systems Group)

Umfassende Korrekturlesung und Ausbesserung der Dokumentation. (Kasif Rasul)

Aufräumarbeiten bei den PostGIS JDBC Klassen; für Kompilation mit Maven überarbeitet. (Maria Arias de Reyna, Sandro Santilli)

Bugfixes

#1335 ST_AddPoint returns incorrect result on Linux (Even Rouault)

Release-spezifische Danksagung

Wir danken U.S Department of State Human Information Unit (HIU) und Vizzuality für die allgemeine finanzielle Unterstützung für PostGIS 2.0.

A.38. Release 1.5.4

Freigabedatum: 2012/05/07

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit Release 1.5.3 gemeldet wurden.

Bugfixes

#547, Speicherprobleme bei ST_Contains (Sandro Santilli)

#621, Problem finding intersections with geography (Paul Ramsey)

#627, PostGIS/PostgreSQL Prozess stürzt bei ungültigen Geometrien ab (Paul Ramsey)

#810, Genauere Flächenberechnung (Paul Ramsey)

#852, improve spatial predicates robustness (Sandro Santilli, Nicklas Avén)

#877, ST_Estimated_Extent gibt NULL für leere Tabellen zurück (Sandro Santilli)

#1028, Wenn ST_AsSVG fehlschlägt, schiesst es den Postgres Server ab (Paul Ramsey)

#1056, Fix boxes of arcs and circle stroking code (Paul Ramsey)

#1121, populate_geometry_columns using deprecated functions (Regin Obe, Paul Ramsey)

#1135, Verbesserung der Testsuite (Andreas 'ads' Scherbaum)

#1146, images generator crashes (bronaugh)

#1170, North Pole intersection fails (Paul Ramsey)

#1179, ST_AsText crash with bad value (kjurka)

#1184, honour DESTDIR in documentation Makefile (Bryce L Nordgren)

#1227, Serverabsturz bei ungültigem GML

#1252, SRID erscheint in WKT (Paul Ramsey)

#1264, st_dwithin(g, g, 0) funktioniert nicht (Paul Ramsey)

#1344, Export von Tabellen mit ungültigen Geometrien erlauben (Sandro Santilli)

#1389, falscher proj4text für SRID 31300 und 31370 (Paul Ramsey)

#1406, shp2pgsql stürzt beim Laden in den geographischen Datentyp ab (Sandro Santilli)

#1595, fixed SRID redundancy in ST_Line_SubString (Sandro Santilli)

#1596, Überprüfung von SRID in UpdateGeometrySRID (Mike Toews, Sandro Santilli)

#1602, ST_Polygonize fixiert damit Z erhalten bleibt (Sandro Santilli)

#1697, Absturz bei LEEREN Einträgen im GIST-Index fixiert (Paul Ramsey)

#1772, fix ST_Line_Locate_Point with collapsed input (Sandro Santilli)

#1799, Protect ST_Segmentize from max_length=0 (Sandro Santilli)

Änderung der Parameterreihenfolge in 900913 (Paul Ramsey)

Die Kompilation mittels "gmake" wird jetzt unterstützt (Greg Troxel)

A.39. Release 1.5.3

Freigabedatum: 2011/06/25

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit Release 1.5.2 gemeldet wurden. Falls Sie PostGIS 1.3+ am Laufen haben ist ein "Soft Upgrade" ausreichend, ansonsten empfehlen wir ein "Hard Upgrade"

Bugfixes

#1056, erzeugt korrekte Bboxes für Bogengeometrien, bereinigt Indexfehler (Paul Ramsey)

#1007, ST_IsValid crash fix requires GEOS 3.3.0+ or 3.2.3+ (Sandro Santilli, reported by Birgit Laggner)

#940, Unterstützung für PostgreSQL 9.1 beta 1 (Regina Obe, Paul Ramsey, Patch von stl)

#845, ST_Intersects Präzisionsfehler (Sandro Santilli, Nicklas Avén) Gemeldet von cdestigter

#884, Unsichere Ergebnisse mit ST_Within, ST_Intersects (Chris Hodgson)

#779, shp2pgsql -S option seems to fail on points (Jeff Adams)

#666, ST_DumpPoints is not null safe (Regina Obe)

#631, Update NZ projections for grid transformation support (jpalmer)

#630, Peculiar Null treatment in arrays in ST_Collect (Chris Hodgson) Reported by David Bitner

#624, Speicherleck in ST_GeogFromText (ryang, Paul Ramsey)

#609, Bad source code in manual section 5.2 Java Clients (simoc, Regina Obe)

#604, shp2pgsql usage touchups (Mike Toews, Paul Ramsey)

#573 ST_Union versagt bei einer Gruppe von Linienzügen. Kein PostGIS Bug, in GEOS 3.3.0 bereinigt

#457 ST_CollectionExtract returns non-requested type (Nicklas Avén, Paul Ramsey)

#441 ST_AsGeoJson Bbox on GeometryCollection error (Olivier Courtin)

#411 Ability to backup invalid geometries (Sando Santilli) Reported by Regione Toscana

#409 ST_AsSVG - entartet (Olivier Courtin) Berichtet von Sdikiy

#373 Documentation syntax error in hard upgrade (Paul Ramsey) Reported by psvensso

A.40. Release 1.5.2

Freigabedatum: 2010/09/27

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit Release 1.5.1 gemeldet wurden. Falls Sie PostGIS 1.3+ am Laufen haben ist ein "Soft Upgrade" ausreichend, ansonsten empfehlen wir ein "Hard Upgrade"

Bugfixes

Loader: Die Handhabung von leeren (0-Knoten) Geometrien in Shapefiles bereinigt. (Sandro Santilli)

#536, Geography ST_Intersects, ST_Covers, ST_CoveredBy und Geometry ST_Equals verwenden keinen räumlichen Indes (Regina Obe, Nicklas Aven)

#573, Improvement to ST_Contains geography (Paul Ramsey)

Loader: Add support for command-q shutdown in Mac GTK build (Paul Ramsey)

#393, Loader: Add temporary patch for large DBF files (Maxime Guillaud, Paul Ramsey)

#507, Fix wrong OGC URN in GeoJSON and GML output (Olivier Courtin)

spatial_ref_sys.sql Datumsumwandlung für das Koordinatenreferenzsystem SRID 3021 hinzugefügt(Paul Ramsey)

geographischer Datentyp - Absturz für den Fall beseitigt, wo alle GeoObjekte außerhalb des vermuteten Bereichs liegen (Paul Ramsey)

#469, array_aggregation Fehler beseitigt (Greg Stark, Paul Ramsey)

#532, Temporary geography tables showing up in other user sessions (Paul Ramsey)

#562, ST_Dwithin Fehler bei großer "Geography" (Paul Ramsey)

#513, shape loading GUI tries to make spatial index when loading DBF only mode (Paul Ramsey)

#527, shape loading GUI should always append log messages (Mark Cave-Ayland)

#504, shp2pgsql sollte xmin/xmax Attribute umbenennen (Sandro Santilli)

#458, postgis_comments being installed in contrib instead of version folder (Mark Cave-Ayland)

#474, Analyze auf eine Tabelle mit geographischen Spalten führt zu Serverabsturz (Paul Ramsey)

#581, LWGEOM-expand produces inconsistent results (Mark Cave-Ayland)

#513, Einen Filter für dbf zur shp2pgsql-gui hinzugefügt und das Hochladen nur von dbf ermöglicht (Paul Ramsey)

Weitere Probleme bei der Kompilation mit PostgreSQL 9.0 fixiert (Mark Cave-Ayland)

#572, Password whitespace for Shape File (Mark Cave-Ayland)

#603, shp2pgsql: "-w" erzeugt ungültiges WKT für MULTI*-Objekte. (Mark Cave-Ayland)

A.41. Release 1.5.1

Freigabedatum: 2010/03/11

Dies ist eine Bugfix-Release, die sich mit Problemen befasst die seit Release 1.4.1 gemeldet wurden. Falls Sie PostGIS 1.3+ am Laufen haben ist ein "Soft Upgrade" ausreichend, ansonsten empfehlen wir ein "Hard Upgrade"

Bugfixes

#410, update embedded bbox when applying ST_SetPoint, ST_AddPoint ST_RemovePoint to a linestring (Paul Ramsey)

#411, allow dumping tables with invalid geometries (Sandro Santilli, for Regione Toscana-SIGTA)

#414, include geography_columns view when running upgrade scripts (Paul Ramsey)

#419, allow support for multilinestring in ST_Line_Substring (Paul Ramsey, for Lidwala Consulting Engineers)

#421, fix computed string length in ST_AsGML() (Olivier Courtin)

#441, fix GML generation with heterogeneous collections (Olivier Courtin)

#443, incorrect coordinate reversal in GML 3 generation (Olivier Courtin)

#450, #451, wrong area calculation for geography features that cross the date line (Paul Ramsey)

Unterstützung für die bevorstehenden 9.0 PgSQL Release sichergestellt (Paul Ramsey)

A.42. Release 1.5.0

Freigabedatum: 2010/02/04

Diese Release bietet Unterstützung für geographische Koordinaten (Breite/Länge) durch den neuen geographischen Datentyp "GEOGRAPHY". Weiters Verbesserungen der Rechenleistung, neue Eingabeformate (GML, KML) und allgemeine Wartungsarbeiten.

API Stabilität

Die öffentliche API von PostGIS ändert sich nicht mit minor (0.0.X) Releases.

Der =~ Operator überprüft nun auf Gleichheit des Umgebungsrechtecks anstelle von Gleichheit der tatsächlichen Geometrien.

Kompatibilität

GEOS, Proj4, und LibXML2 sind nun verbindliche Abhängigkeiten

Untere Bibliotheksversionen stellen die *Mindestanforderung* für PostGIS 1.5

PostgreSQL 8.3 und höher auf allen Platformen

Nur GEOS 3.1 und höher (GEOS 3.2+ um alle Funktionen zu nutzen)

LibXML2 2.5+ in Bezug auf die neue ST_GeomFromGML/KML Funktionalität

Proj4 - nur 4.5 und höher

Neue Funktionalität

Section 14.12.10, “PostGIS Functions new, behavior changed, or enhanced in 1.5”

Berechnungen mittels Hausdorff-Metrik hinzugefügt (#209) (Vincent Picavet)

Einen Parameter zu der Operation ST_Buffer hinzugefügt, um einseitiges Puffern und andere Pufferstile zu unterstützen (Sandro Santilli)

Weitere distanzbezogene Visualisierungs- und Analysefunktionen hinzugefügt (Nicklas Aven)

  • ST_ClosestPoint

  • ST_DFullyWithin

  • ST_LongestLine

  • ST_MaxDistance

  • ST_ShortestLine

ST_DumpPoints (Maxime van Noppen)

KML, GML Eingabe über ST_GeomFromGML und ST_GeomFromKML (Olivier Courtin)

Extraktion einer homogenen (Sammel) Geometrie mit ST_CollectionExtract (Paul Ramsey)

Kilometrierung zu einem bestehenden Linienzug mittels ST_AddMeasure hinzufügen (Paul Ramsey)

Implementation einer History-Tabelle unter "utils" (George Silva)

Geographischer Datentyp und unterstützende Funktionen

  • Sphärische Algorithmen (Dave Skea)

  • Objekt/Index Implementierung (Paul Ramsey)

  • Selektivität implementiert (Mark Cave-Ayland)

  • Serialisierung von KML, GML und JSON (Olivier Courtin)

  • ST_Area, ST_Distance, ST_DWithin, ST_GeogFromText, ST_GeogFromWKB, ST_Intersects, ST_Covers, ST_Buffer (Paul Ramsey)

Verbesserungen

Verbesserung der Rechenleistung von ST_Distance (Nicklas Aven)

Update der Dokumentation und Verbesserungen (Regina Obe, Kevin Neufeld)

Tests und Qualitätskontrolle (Regina Obe)

PostGIS 1.5 Unterstützung für PostgreSQL 8.5 (Guillaume Lelarge)

Unterstützung von Win32 und Verbesserung der shp2pgsql-gui (Mark Cave-Ayland)

In situ 'make check' Unterstützung (Paul Ramsey)

A.43. Release 1.4.0

Freigabedatum: 2009/07/24

Diese Release bietet Verbesserungen bei der Rechenleistung, bei den internen Strukturen und beim Testen, sowie neue Features und eine aktualisierte Dokumentation. Falls Sie PostGIS 1.1+ am Laufen haben ist ein "Soft Upgrade" ausreichend, ansonsten empfehlen wir ein "Hard Upgrade".

API Stabilität

Ab der 1.4 Release Serie keine Änderung der öffentlichen API bei Unterversionen/"Minor Releases".

Kompatibilität

Untere Versionen sind die *Mindestanforderungen* für PostGIS 1.4

PostgreSQL 8.2 und höher; auf allen Plattformen

Nur GEOS 3.0 und höher

Nur PROJ4 4.5 und höher

Neue Funktionalität

ST_Union() verwendet hochgeschwindigkeits-kaskadiertes UNION, wenn gegen GEOS 3.1+ kompiliert (Paul Ramsey)

ST_ContainsProperly() benötigt GEOS 3.1+

ST_Intersects(), ST_Contains(), ST_Within() verwenden "high-speed cached prepared geometry" bei GEOS 3.1+ (Paul Ramsey / finanziert von Zonar Systems)

Erhebliche Verbesserung der Dokumentation und des Referenzhandbuchs (Regina Obe & Kevin Neufeld)

Abbildungen und Diagramme für die Beispiele im Handbuch (Kevin Neufeld)

ST_IsValidReason() gibt eine lesbare Erklärung für Validitätsfehler aus (Paul Ramsey)

ST_GeoHash() gibt eine geohash.org Signatur für den geometrischen Datentyp zurück (Paul Ramsey)

GTK+ Multiplattform GUI für das Laden von Shapefiles (Paul Ramsey)

ST_LineCrossingDirection() gibt die Kreuzungsrichtung zurück (Paul Ramsey)

ST_LocateBetweenElevations() gibt eine Teilzeichenfolge, basierend auf der Z-Ordinate zurück. (Paul Ramsey)

Geometrieparser gibt eine explizite Fehlermeldung mit der Position der Syntaxfehler aus (Mark Cave-Ayland)

ST_AsGeoJSON() gibt eine als JSON formatierte Geometrie zurück (Olivier Courtin)

Populate_Geometry_Columns() -- fügt Datensätze für Tabellen und Views automatisch zu geometry_columns hinzu (Kevin Neufeld)

ST_MinimumBoundingCircle() -- gibt das kleinste Kreispolygon zurück, welches die Geometrie umfasst (Bruce Rindahl)

Verbesserungen

Kern des geometrischen Systems in die unabhängige Bibliothek "liblwgeom" verschoben. (Mark Cave-Ayland)

Neues Build-System nutzt den PostgreSQL "pgxs" Bootstrap. (Mark Cave-Ayland)

Debugging Umgebung formalisiert und vereinfacht. (Mark Cave-Ayland)

Alle #defines für die Kompilation werden nun schon bei der Konfiguration erstellt und um eine plattformübergreifende Unterstützung zu erleichtern, in die Header plaziert (Mark Cave-Ayland)

Logging Umgebung formalisiert und vereinfacht. (Mark Cave-Ayland)

Erweiterte und stabilere Unterstützung von CIRCULARSTRING, COMPOUNDCURVE und CURVEPOLYGON; verbesserter Parser und umfangreichere Funktionsunterstützung (Mark Leslie & Mark Cave-Ayland)

Verbesserte Unterstützung von OpenSolaris (Paul Ramsey)

Verbesserte Unterstützung von MSVC (Mateusz Loskot)

Update der KML Unterstützung (Olivier Courtin)

Framework für den Komponententest von liblwgeom (Paul Ramsey)

Neues Framework für umfassende Tests an allen PostGIS Funktionen (Regine Obe)

Verbesserung der Rechenleistung bei allen geometrischen Aggregatfunktionen (Paul Ramsey)

Unterstützung für das kommende PostgreSQL 8.4 (Mark Cave-Ayland, Talha Bin Rizwan)

Überarbeitung von shp2pgsql und pgsql2shp, damit sich diese auf dem allgemeinen Code zum Parsen/Unparsen in liblwgeom beruhen (Mark Cave-Ayland)

Verwendung von PDF DbLatex zur Erstellung der PDF-Dokumente und vorläufige Anleitungen zur Kompilation (Jean David Techer)

Automatisierte Erstellung der Anwenderdokumentation (PDF und HTML) und der Doxygen Entwicklerdokumentation (Kevin Neufeld)

Automatische Erstellung der Dokumentationsabbildungen aus den geometrischen WKT-Textdateien mit ImageMagick (Kevin Neufeld)

CSS für eine attraktivere HTML-Dokumentation (Dane Springmeyer)

A.44. Release 1.3.6

Freigabedatum: 2009/05/04

Wenn Sie PostGIS 1.1+ verwenden, dann ist ein "Soft Upgrade" ausreichend, sonst empfehlen wir ein "Hard Upgrade". Diese Release fügt die Unterstützung von PostgreSQL 8.4 hinzu, sowie den Export von Shape- und prj-Dateien aus der Datenbank, einige Fehlerbehebungen für shp2pgsql, mehrere kleine Bugfixes bei der Handhabung von geometrischen Kurven, logische Fehlermeldung wenn nur die dbf-Dateien importiert werden und eine verbesserte Fehlerbehandlung für AddGeometryColumns.

A.45. Release 1.3.5

Freigabedatum: 2008/12/15

Wenn Sie PostGIS 1.1+ verwenden, dann ist ein "Soft Upgrade" ausreichend, sonst empfehlen wir ein "Hard Upgrade". Diese Release ist eine Bugfix-Release zu einem Fehler in ST_Force_Collection und den zugehörigen Funktionen, welcher die Verwendung von MapServer mit Linienlayers entscheidend beeinflusste.

A.46. Release 1.3.4

Freigabedatum: 2008/11/24

Diese Release fügt die Unterstützung für die Ausgabe von GeoJSON hinzu, unterstützt PostgreSQL 8.4, weist eine verbesserte Qualität der Dokumentation und der Ästhetik bei der Ausgabe auf, eine SQL-Dokumentation wurde auf Funktionsebene hinzugefügt und es konnte die Rechenleistung von einigen räumlichen Prädikaten (Punkt in Polygon Tests) gesteigert werden.

Bugfixes beinhalten: die Beseitigung von Abstürzen bei Kreisbögen in vielen Funktionen, die Behebung einiger Speicherlecks, einen Kilometrierungsfehler bei der Metrik von Knoten und mehr. Siehe die Datei NEWS für Details.

A.47. Release 1.3.3

Freigabedatum: 2008/04/12

Diese Release behebt Bugs in shp2pgsql, verbessert die Unterstützung von SVG und KML, fügt die Funktion ST_SimplifyPreserveTopology hinzu, macht die Kompilierung sensitiver für Versionen von GEOS und fixiert eine Hand voll schwerer aber selten vorkommender Fehler.

A.48. Release 1.3.2

Freigabedatum: 2007/12/01

Diese Release behebt Fehler in ST_EndPoint() und ST_Envelope, verbessert die Unterstützung der JDBC-Kompilierung und von OS/X. Die Ausgabe von GML wird durch ST_AsGML() besser unterstützt und um die Ausgabe von GML3 erweitert.

A.49. Release 1.3.1

Freigabedatum: 2007/08/13

Diese Release behebt einige Flüchtigkeitsfehler der vorigen Release rund um Versionsnummerierung, Dokumentation und Identifizierung.

A.50. Release 1.3.0

Freigabedatum: 2007/08/09

Diese Release bietet Verbesserungen bei der Performanz von Funktionen für Lagevergleiche, fügt neue Funktionen für Lagevergleiche hinzu und beginnt mit der Migration der Funktionsnamen entsprechend der SQL-MM Konvention mit dem Präfix für den spatialen Typ (SP).

Zusätzliche Funktionalität

JDBC: Hibernate Dialekt hinzugefügt (herzlichen Dank an Norman Barker)

Funktionen für die Lagevergleiche ST_Covers und ST_CoveredBy hinzugefügt. Eine Beschreibung und eine Begründung zu diesen Funktionen finden Sie unter http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

Die relationale Funktion "ST_DWithin" hinzugefügt.

Verbesserung der Rechenleistung

Zwischengespeicherte und indizierte Kurzschlussanweisungen für "Punkt in Polygon" hinzugefügt; für die Funktionen ST_Contains, ST_Intersects, ST_Within und ST_Disjoint

Inline Indexunterstützung bei Funktionen für Lagevergleiche (ausgenommen ST_Disjoint) hinzugefügt

Sonstige Änderungen

Erweiterte Unterstützung von Kurven in der geometrischen Zugriffsfunktion und in einigen Bearbeitungsfunktionen

Migration der Funktionen entsprechend der SQL-MM Benennungsregel; Verwendng des Präfix (ST) für den räumlichen Datentyp.

Initiale Unterstützung von PostgreSQL 8.3 hinzugefügt

A.51. Release 1.2.1

Freigabedatum: 2007/01/11

Diese Release liefert Bugfixes in der PostgreSQL 8.2 Unterstützung und einige kleine Verbesserungen bei der Rechenleistung.

Änderungen

Fehler in Within() bei der Kurzschlussanweisung für "Punkt in Polygon" behoben.

PostgreSQL 8.2 Handhabung von NULL fixiert.

RPM-SpecFiles aktualisiert.

Kurzschlussauswertung bei Transform() für den Fall einer Nulloperation hinzugefügt.

JDBC: Fixiert die Behandlung von mehrdimensionalen geometrischen Objekten durch JTS (Dank an Thomas Marti für den Hinweis und den partiellen Patch). Zusätzlich wird nun JavaDoc kompiliert und paketiert. Probleme mit Klassenpfaden bei GCJ behoben. Die Kompatibilität mit pgjdbc 8.2 wurde hergestellt; JDK 1.3 und älter wird nicht mehr unterstützt.

A.52. Release 1.2.0

Freigabedatum: 2006/12/08

Diese Release liefert Definitionen für Datentypen gemeinsam mit Möglichkeiten zur Serialisierung/Deserialisierung SQL-MM definierter gekrümmter Geometrien sowie Verbesserungen bei der Rechenleistung.

Änderungen

Serialisierung/Deserialisierung für gekrümmte geometrische Datentypen

Kurzschlussauswertung beim Punkt-in-Polygon-Test zu den Funktionen Contains und Within hinzugefügt, um die Rechenleistung in diesen Fällen zu erhöhen.

A.53. Release 1.1.6

Freigabedatum: 2006/11/02

Dies ist eine Bugfix Release; insbesondere wurde ein kritischer Fehler der GEOS Schnittstelle bei 64bit Systemen behoben. Beinhaltet eine Aktualisierung der SRS-Parameter und eine Verbesserung in der Koordinatentransformation (nimmt Rücksicht auf die Z-Koordinate). Ein Upgrade wird empfohlen.

Upgraden

Wenn Sie von Version 1.0.3 oder höher aus upgraden, folgen Sie bitte dem soft upgrade Prozedere.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Bugfixes

CAPI Wechsel für 64-bit Architekturen fixiert

Loader/Dumper: Regressionstests und Ausgabe der Benutzungshinweise fixiert

Bugfix von setSRID() in JDBC, thanks to Thomas Marti

Sonstige Änderungen

Verwendung der Z Ordinate bei Koordinatentransformationen

spatial_ref_sys.sql auf EPSG 6.11.1 erneuert

Vereinfachte Ausstattung von Version.config, damit ein einziges Paket mit Versionsvariablen für alles verwendet werden kann.

Version.config in den Benutzungshinweisen aufgenommen

Handgeschnitzter, fragiler JDBC-Versionsparser durch Properties ersetzt

A.54. Release 1.1.5

Freigabedatum: 2006/10/13

Dies ist eine Bugfix Release, welche eine kritische Schutzverletzung auf Win32 behebt. Ein Upgrade wird empfohlen.

Upgraden

Wenn Sie von Version 1.0.3 oder höher aus upgraden, folgen Sie bitte dem soft upgrade Prozedere.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Bugfixes

Link-Fehler auf MinGW fixiert, der bei der Kompilierung mit PostgreSQL 8.2 eine Schutzverletzung durch pgsql2shp auf Win32 hervorrief

Unzulässiger NullPointer in der Methode Geometry.equals() in Java fixiert

EJB3Spatial.odt hinzugefügt, um den Anforderungen der GPL für die Dirstribution der "preferred form of modification" zu entsprechen

Überholte Synchronisation aus dem JDBC JTS Code entfernt.

Aktualisierung der stark veralteten README Dateien von shp2pgsql/pgsql2shp durch die Zusammenlegung mit den Man-Pages.

Versionsbezeichnung im JDBC Code fixiert - die Release "1.1.4" gab noch "1.1.3" aus.

Neue Funktionalität

Option -S für nicht-multi Geometrie zu shp2pgsql hinzugefügt

A.55. Release 1.1.4

Freigabedatum: 2006/09/27

Dies ist eine Bugfix Release mit einigen Verbesserungen in der Java Schnittstelle. Ein Upgrade wird empfohlen.

Upgraden

Wenn Sie von Version 1.0.3 oder höher aus upgraden, folgen Sie bitte dem soft upgrade Prozedere.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Bugfixes

Unterstützung für PostgreSQL 8.2

BUGFIX in collect() - verwarf SRID der Eingabe

SRID Prüfkriterien in MakeBox2d und MakeBox3d hinzugefügt

Regressionstests fixiert, damit GEOS-3.0.0 diesen auch bestehen kann

Verbesserung der Nebenläufigkeit von pgsql2shp.

Java Änderungen

Die JTS Unterstützung wurde überarbeitet, um der neuen Haltung der Kernentwickler von JTS bezüglich der Behandlung von SRID zu entsprechen. Vereinfacht den Code und entfernt die Abhängigkeit von GNU Trove bei der Kompilierung.

EJB2 Unterstützung wurde von "Geodetix s.r.l. Company" großzügig unterstützt

EJB3 Anleitung / Beispiele von Norman Barker <nbarker@ittvis.com>

Kleine Reorganisation des Java Verzeichnisses.

A.56. Release 1.1.3

Freigabedatum: 2006/06/30

Dies ist eine Bugfix Release mit einigen neuen Funktionen (insbesondere die Unterstützung von Long Transactions) und Verbesserungen bezüglich Portabilität. Ein Upgrade wird empfohlen.

Upgraden

Wenn Sie von Version 1.0.3 oder höher aus upgraden, folgen Sie bitte dem soft upgrade Prozedere.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Bugfixes / Fehlerfreiheit

Bugfix: distance(poly,poly) gab falsche Ergebnisse.

BUGFIX in pgsql2shp - Rückgabecode für "success".

Bugfix in shp2pgsql bei der Handhabung von MultiLine-WKT.

BUGFIX in affine() - versagte bei der Aktualisierung des umschreibenden Rechtecks.

WKT Parser: Konstruktion einer Mehrfachgeometrie mit LEEREN Elementen verboten (für GEOMETRYCOLLECTION weiterhin unterstützt).

Neue Funktionalität

NEU Unterstützung für Long Transactions.

NEU Funktion DumpRings().

NEU Funktion AsHEXEWKB(geom, XDR|NDR).

JDBC Änderungen

Verbesserte Regressionstests: MultiPoint und wissenschaftliche Ordinaten

Einige kleine Bugs im JDBC Code bereinigt

Geeignete Zugriffsfunktion auf alle Attribute, um diese später als "privat" kennzeichnen zu können

Sonstige Änderungen

NEU Regressionstest für Loader/Dumper

Optionen --with-proj-libdir und --with-geos-libdir hinzugefügt.

Kompilation für Tru64.

Jade zur Erzeugung der Dokumentation

pgsql2shp nur mit den notwendigen Bibliotheken binden

Initiale Unterstützung von PostgreSQL 8.2.

A.57. Release 1.1.2

Freigabedatum: 2006/03/30

Dies ist eine Bugfix Release mit einigen neuen Funktionen und Verbesserungen bezüglich Portabilität. Ein Upgrade wird empfohlen.

Upgraden

Wenn Sie von Version 1.0.3 oder höher aus upgraden, folgen Sie bitte dem soft upgrade Prozedere.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Bugfixes

Bugfix in der SnapToGrid() Berechnung des Umgebungsrechtecks

BUGFIX in EnforceRHR()

Fixierung der Handhabung von SRID durch jdbc2 im Code von JTX

Unterstützung für 64bit Architekturen

Neue Funktionalität

Regressionstest können nun *vor* der PostGIS Installation ausgeführt werden

Neue affine() Matrix Transformationsfunktionen

Neue rotate{,X,Y,Z}() Funktion

Alte Übersetzungs- und Skalierungsfunktionen benutzen nun intern affine()

Integrierte Zugriffskontrolle in estimated_extent() für Kompilationen mit pgsql >= 8.0.0

Sonstige Änderungen

Portableres "./configure" Skript

Änderung: das Skript "./run_test" hat nun ein vernünftigeres Standardverhalten

A.58. Release 1.1.1

Freigabedatum: 2006/01/23

Dies ist eine wichtige Bugfix Releas; ein Upgrade wird stark empfohlen. Vorgängerversionen hatten einen Bug in postgis_restore.pl, der die Fertigstellung der Hard Upgrade Prozedur verhinderte, sowie einen Bug im GEOS-2.2+ Konnektor der die Verwendung von Sammelgeometrieobjekten in topologischen Operationen verhinderte.

Upgraden

Wenn Sie von Version 1.0.3 oder höher aus upgraden, folgen Sie bitte dem soft upgrade Prozedere.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Bugfixes

Verfrühter Ausstieg in postgis_restore.pl fixiert

Bugfix in der Handhabung der GeometryCollection durch den GEOS-CAPI Konnektor

Verbesserungen bei der Unterstützung von Solaris 2.7 und MingW

BUGFIX in line_locate_point()

Handhabung der PostgreSQL Dateipfade fixiert

BUGFIX in line_substring()

Unterstützung für örtlich begrenzte Cluster zum Regressionstest hinzugefügt

Neue Funktionalität

Neue Z und M Interpolation in line_substring()

neue Z und M Interpolation in line_interpolate_point()

Alias NumInteriorRing() hinzugefügt, auf Grund von Mehrdeutigkeit mit OpenGIS

A.59. Release 1.1.0

Freigabedatum: 2005/12/21

Dies ist eine Minor Release, die viele Verbesserungen und neue Dinge enthält. Am meisten hervorzuheben: Kompilation stark vereinfacht; Performanz von transform() drastisch erhöht; stabilere Verbindung zu GEOS (CAPI Unterstützung); viele neue Funktionen; Prototyp Topologie.

Es wird stark empfohlen, dass Sie auf GEOS-2.2.x upgraden, bevor Sie PostGIS installieren. Dies stellt sicher, dass zukünftige Upgrades von GEOS keine Neukompilation der PostGIS Bibliothek benötigen.

Danksagungen

Diese Release enthält Code von Mark Cave Ayland zur Zwischenspeicherung von Proj4-Objekten. Markus Schaber hat viele Verbesserungen zu seinem JDBC2-Code hinzugefügt. Alex Bodnaru half bei den Abhängigkeiten des PostgreSQL Quellcodes und stellte Debian specfiles zur Verfügung. Michael Fuhr überprüfte die Neuerungen auf einer Solaris Architektur. David Techer und Gerald Fenoy halfen beim Testen des GEOS C-API Konnektors. Hartmut Tschauner stellte den Code für die Funktion azimuth() zur Verfügung. Devrim GUNDUZ lieferte RPM Spezifikationsdateien. Carl Anderson half bei einer neuen Funktion zum Aufbau von Flächen. Siehe Abschnitt credits für weitere Namen.

Upgraden

Wenn Sie von der Release 1.0.3 oder höher her upgraden, dann benötigen Sie KEINEN Dump/Reload. Es reicht aus, wenn Sie nur das neue Skript "lwpostgis_upgrade.sql" in allen Ihren bestehenden Datenbanken ausführen. Siehe Kapitel soft upgrade für weitere Information.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Neue Funktionen

scale() und transscale() als verwandte Methoden zu translate()

line_substring()

line_locate_point()

M(point)

LineMerge(geometry)

shift_longitude(geometry)

azimuth(geometry)

locate_along_measure(geometry, float8)

locate_between_measures(geometry, float8, float8)

SnapToGrid mittels Punktversatz (Unterstützung bis zu 4D)

BuildArea(any_geometry)

OGC BdPolyFromText(linestring_wkt, srid)

OGC BdMPolyFromText(linestring_wkt, srid)

RemovePoint(linestring, offset)

ReplacePoint(linestring, offset, point)

Bugfixes

Speicherleck in polygonize() fixiert

Bugfix der Funktionen zur Typumwandlung in lwgeom_as_anytype

Die Elemente USE_GEOS, USE_PROJ und USE_STATS bei der Ausgabe durch postgis_version() fixiert, damit diese den Stand der Bibliotheken widerspiegelen.

Semantische Funktionsänderungen

Höhere Dimensionen werden von SnapToGrid nicht mehr verworfen

Funktion Z() geändert, so dass NULL zurückgegeben wird, wenn die Dimension nicht verfügbar ist

Verbesserung der Rechenleistung

Wesentlich schnellere Funktion "transform()", Proj4 Objekte werden zwischengespeichert

Der automatische Aufruf von fix_geometry_columns(), durch AddGeometryColumns() und update_geometry_stats(), wurde entfernt

JDBC2 funktioniert

Optimierungen im Makefile

Unterstützung für JTS verbessert

Verbessertes System für Regressionstests

Grundlegende Methode zur Konsistenzüberprüfung einer Sammelgeometrie

Unterstützung von (Hex)(E)wkb

Automatische Überprüfung des DriverWrapper für den Wechsel HexWKB / EWKT

Kompilierungsprobleme im ValueSetter bei sehr alten JDK-Versionen behoben.

EWKT Konstruktoren fixiert, damit diese SRID=4711; akzeptieren

vorläufige read-only Unterstützung für Java2D Geometrie hinzugefügt

Sonstige Neuigkeiten

Konfiguration vollständig autoconf basiert, inklusive der Abhängigkeiten des PostgreSQL Quellcodes

GEOS C-API Unterstützung (2.2.0 und höher)

Erstunterstützung für Topologie

Debian und RPM specfiles

Neues lwpostgis_upgrade.sql Skript

Sonstige Änderungen

Unterstützung für JTS verbessert

Strengere Abbildung für Integer und Zeichenketten zwischen den DBF- und SQL-Attributen

Umfangreichere und weniger fehlerbehaftete Regressionstests

Alter JDBC Code aus der Release entfernt

Direkte Verwendung von postgis_proc_upgrade.pl veraltet

Die Version der Skripts mit der Releaseversion vereinheitlicht

A.60. Release 1.0.6

Freigabedatum: 2005/12/06

Enthält einige Bugfixes und Verbesserungen.

Upgraden

Wenn Sie die Version 1.0.3 oder höher upgraden, dann benötigen Sie KEINEN Dump/Reload.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Bugfixes

Den Aufruf palloc(0) im Deserialisierer für Kollektionen fixiert (Probleme nur mit --enable-cassert)

Bugs bei der Handhabung des BBox Cache behoben

Schutzverletzung in geom_accum(NULL, NULL) fixiert

Schutzverletzung in addPoint() fixiert

Kurzzuweisung in lwcollection_clone() fixiert

Bugfix in segmentize()

BBox Berechnung bei der SnapToGrid Ausgabe fixiert

Verbesserungen

Initiale Unterstützung von PostgreSQL 8.2

Fehlende Überprüfungen auf Unstimmigkeiten der SRID zu den GEOS Operatoren hinzugefügt

A.61. Release 1.0.5

Freigabedatum: 2005/11/25

Behebt Fehler in der Speicherausrichtung der Bibliothek, fixiert eine Schutzverletzung im Loader bei der Behandlung von UTF8-Attributen und enthält einige wenige Verbesserungen und "Cleanups".

[Note]

Der Rückgabecode von shp2pgsql wurde gegenüber Vorgängerversionen geändert, um mit den Unix-Standards übereinzustimmen (bei Erfolg wird 0 zurückgegeben).

Upgraden

Wenn Sie die Version 1.0.3 oder höher upgraden, dann benötigen Sie KEINEN Dump/Reload.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Bibliotheksänderungen

Probleme bei der Speicherausrichtung behoben

Die Zerlegung von NULL Werten im Analyzer behoben

Kleiner Bug in der systemnahen Funktion "getPoint4d_p()"

Beschleunigung der Funktionen des Serialisierers.

Bugfix in force_3dm(), force_3dz() und force_4d()

Änderungen beim Loader

Return-Code von shp2pgsql fixiert

Probleme des Loaders mit Abwärtskompatibilität behoben (laden von NULL-Shapefiles)

Die Handhabung von numerischen dbf-Attributen mit angehängten Punkten fixiert

Bugfix Schutzverletzung in shp2pgsql (UTF8 Zeichenkodierung)

Sonstige Änderungen

Schemata erkennendes postgis_proc_upgrade.pl; Unterstützung für pgsql 7.2+

Neues Kapitel "Reporting Bugs" im Handbuch

A.62. Release 1.0.4

Freigabedatum: 2005/09/09

Enthält wichtige Bugfixes und einige Verbesserungen. Insbesondere wurde ein Speicherleck behoben, welches den erfolgreichen Aufbau eines GIST-Index bei großen räumlichen Tabellen verhinderte.

Upgraden

Falls Sie die Version 1.0.3 upgraden benötigen Sie KEIN Dump/Reload.

Wenn Sie eine Release zwischen 1.0.0RC6 und 1.0.2 (inlusive) und ernsthaft ein Live-Upgrade ausführen wollen, dann lesen Sie bitte den Abschnitt Upgrade der Releasenotes von 1.0.3.

Ein Upgrade einer Vorgängerversion von 1.0.0RC6 benötigt ein hard upgrade.

Bugfixes

Speicherleck bei der GIST Indexierung eingetreten

Schutzverletzung bei der Handhabung von Proj4-Fehlern durch transform() behoben

Fehler in einigen Proj4-Texten in spatial_ref_sys (fehlendes +proj) behoben

Loader: Verwendung von Funktionen für Zeichenketten fixiert, Überprüfung von Objekten auf NULL überarbeitet, Schutzverletzung bei der Eingabe von MULTILINESTRING fixiert.

Fehler bei der Behandlung von Dimensionen in MakeLine behoben

Bugfix in translate(), beschädigte das Umgebungsrechteck

Verbesserungen

Verbesserung der Dokumentation

Robustere Selektivitätsabschätzung

Kleinere Geschwindigkeitsverbesserung in distance()

Kleinere Bereinigungen

Bereinigung der GiST Indizierung

Der Parser für Box3D akzeptiert jetzt eine freiere Syntax

A.63. Release 1.0.3

Freigabedatum: 2005/08/08

Beinhaltet einige Bugfixes -inklusive einem schweren Bug, der sich auf die Korrektheit von gespeicherten Geoobjekten auswirkte - und ein paar Verbesserungen.

Upgraden

Aufgrund eines Fehlers in der Berechnungsroutine für umschreibende Rechtecke benötigt die Upgrade-Prozedur besondere Aufmerksamkeit, da in der Datenbank abgelegte umschreibende Rechtecke falsch sein können.

Durch ein Hard Upgrade (dump/reload) kann die neuerliche Berechnung aller umschreibenden Rechtecke (die nicht im Dump enthalten sind) erzwungen werden. Dies ist notwendig wenn von einer Release her, die älter als 1.0.0RC6 ist, upgegradet wird.

Wenn Sie die Version 1.0.0RC6 oder höher upgraden, dann enthält diese Version ein Perlskript (utils/rebuild_bbox_caches.pl), das die Neuberechnung der umschreibenden Rechtecke erzwingt und alle Operationen aufruft, die benötigt werden um eventuelle Änderungen auf diese zu übertragen (Aktualisierung der Statistik von geometrischen Tabellen, Neuindizierung). Rufen Sie das Skript nach "make install" auf (führen Sie es ohne Übergabewerte aus, um Hilfe für die Syntax zu erhalten). Optional können Sie utils/postgis_proc_upgrade.pl laufen lassen, um die Signaturen der Prozeduren und Funktionen von PostGIS zu erneuern (siehe Soft Upgrade).

Bugfixes

Heftiger Bugfix in lwgeom's Berechnung des 2D Umgebungsrechteck

Bugfix in der WKT (-w) POINT Handhabung im Loader

Bugfix im Dumper für 64bit-Architektur

Bugfix im Dumper bei der Handhabung benutzerdefinierter Abfragen

Bugfix im create_undef.pl Skript

Verbesserungen

Small performance improvement in canonical input function

Kleinere Bereinigungen im Loader

Support for multibyte field names in loader

Verbesserungen in dem Skript "postgis_restore.pl"

Neues Skript "rebuild_bbox_caches.pl"

A.64. Release 1.0.2

Freigabedatum: 2005/07/04

Enthält einige Bugfixes und Verbesserungen.

Upgraden

Wenn Sie die Version 1.0.0RC6 oder höher upgraden, dann benötigen Sie KEIN Dump/Reload.

Ein Upgrade von älteren Versionen benötigt ein Dump/Reload. Für weiterführende Information siehe Upgrading

Bugfixes

Fehlertolerante B-Baum Operatoren

Speicherleck in pg_error eingetreten

Fixierung des R-Baum Index

Bereinigung der Kompilationsskripts (vermeiden der Mischung aus CFLAGS und CXXFLAGS)

Verbesserungen

Neue Möglichkeiten zur Erzeugung von Indizes im Loader (-l Option)

Erstunterstützung von PostgreSQL 8.1dev

A.65. Release 1.0.1

Freigabedatum: 2005/05/24

Enthält ein paar Bugfixes und einige Verbesserungen.

Upgraden

Wenn Sie die Version 1.0.0RC6 oder höher upgraden, dann benötigen Sie KEIN Dump/Reload.

Ein Upgrade von älteren Versionen benötigt ein Dump/Reload. Für weiterführende Information siehe Upgrading

Bibliotheksänderungen

Bugfix in der 3D-Berechnung von length_spheroid()

BUGFIX in der Abschätzung der Selektivität bei JOIN Operationen

Sonstige Änderungen/Ergänzungen

BUGFIX in den Escape-Funktionen von shp2pgsql

Bessere Unterstützung für nebenläufiges PostGIS bei mehreren Schemata

Verbesserung der Dokumentation

jdbc2: kompiliert standardmäßig mit "-target 1.2 -source 1.2"

NEW -k Switch für pgsql2shp

NEUE Unterstützung für benutzerdefinierte Optionen für "createdb" in "postgis_restore.pl"

BUGFIX in pgsql2shp bei der Erzwingung von eindeutigen Attributbezeichnungen

Bugfix in der Projektionsdefinition für Paris

postgis_restore.pl Codebereinigung

A.66. Release 1.0.0

Freigabedatum: 2005/04/19

Endgültige 1.0.0 Release. Enthält einige Bugfixes, einige Verbesserungen beim Loader (insbesondere die Unterstützung älterer PostGIS Versionen) und eine umfangreichere Dokumentation.

Upgraden

Falls Sie die Version 1.0.0RC6 upgraden benötigen Sie KEIN Dump/Reload.

Ein Upgrade von älteren Versionen benötigt ein Dump/Reload. Für weiterführende Information siehe Upgrading.

Bibliotheksänderungen

Bugfix in transform() - willkürliche Freigabe von Speicheradressen

BUGFIX in force_3dm() - es wurde zu wenig Speicher zugewiesen

BUGFIX im Selektivitätsplaner bei JOIN Operationen (defaults, leaks. tuplecount, sd)

Sonstige Änderungen/Ergänzungen

BUGFIX in shp2pgsql - Werte, die mit einem Tabulator oder einem einfachen Anführungszeichen beginnen, wurden ausgelassen

NEU Kapitel für Loader/Dumper

NEU shp2pgsql Unterstützung für alte (HWGEOM) PostGIS Versionen

NEU -p (prepare) Flag für shp2pgsql

NEU Kapitel über OGC Konformität

NEU autoconf Unterstützung für die JTS Bibliothek

BUGFIX in der Prüfumgebung des Planers/Estimator (Unterstützung von LWGEOM und für das Parsen von Schemata)

A.67. Release 1.0.0RC6

Freigabedatum: 2005/03/30

Sechster Release Kanditat für 1.0.0. Enthält ein paar Bugfixes und Codebereinigungen.

Upgraden

Ein Upgrade von älteren Versionen benötigt ein Dump/Reload. Für weiterführende Informationen siehe Upgrading.

Bibliotheksänderungen

BUGFIX in multi()

vorzeitige Rückgabe [im Falle einer Nulloperation] von multi()

Skriptänderungen

{x,y}{min,max}(box2d) Funktionen gelöscht

Sonstige Änderungen

BUGFIX in postgis_restore.pl Skript

BUGFIX im Dumper bei der 64bit Unterstützung

A.68. Release 1.0.0RC5

Freigabedatum: 2005/03/25

Fünfter Release Kanditat für 1.0.0. Enthält ein paar Bugfixes und eine Verbesserung.

Upgraden

Falls Sie die Version 1.0.0RC4 upgraden benötigen Sie KEIN Dump/Reload.

Ein Upgrade von älteren Versionen benötigt ein Dump/Reload. Für weiterführende Information siehe Upgrading.

Bibliotheksänderungen

BUGFIX (Schutzverletzung) in der Box3D Berechnung ("yes, another!").

BUGFIX (segfaulting) in estimated_extent().

Sonstige Änderungen

Kleine Verbesserungen der Skripts und Dienstprogramme zur Kompilation

Zusätzliche Performanztipps in der Dokumentation.

A.69. Release 1.0.0RC4

Freigabedatum: 2005/03/18

Vierter Release Kanditat für 1.0.0. Enthält Bugfixes und einige Verbesserungen.

Upgraden

Ein Upgrade von älteren Versionen benötigt ein Dump/Reload. Für weiterführende Informationen siehe Upgrading.

Bibliotheksänderungen

BUGFIX (segfaulting) in geom_accum().

BUGFIX für 64bit-Architekturen.

Bugfix in der Funktion zur Berechnung von box3d einer Sammelgeometrie.

NEU - Unterstützung von Unterabfragen im Selektivitätsplaner.

Vorzeitige Rückgabe von force_collection.

Konsistenzüberprüfung von SnapToGrid() fixiert.

Die Ausgabe von Box2d wurde wieder auf 15 signifikante Stellen beschränkt.

Skriptänderungen

NEUE distance_sphere() Funktion.

"get_proj4_from_srid" geändert, sodass jetzt PL/PGSQL anstatt SQL verwendet wird.

Sonstige Änderungen

BUGFIX in der Handhabung des Loaders und Dumpers von MultiLines

BUGFIX im Loader; überspringt alle Aussparungen von Polygonen außer der ersten Aussparung.

jdbc2: Codebereinigung, Verbesserung des Makefile

Die FLEX- und YACC-Variablen werden *nach* der Einbindung des pqsql Makefile.global gesetzt und nur dann, wenn die *gekürzte* Version von pgsql ein leeres Wort zurückgibt

Der bereis erstellte Parser zur Release hinzugefügt

Verfeinerung des Kompilationsskripts

verbesserte Handhabung von Versionen, zentrale Version.config

Optimierungen in postgis_restore.pl

A.70. Release 1.0.0RC3

Freigabedatum: 2005/02/24

Dritter Release Kanditat für 1.0.0. Enthält viele Bugfixes und Verbesserungen.

Upgraden

Ein Upgrade von älteren Versionen benötigt ein Dump/Reload. Für weiterführende Informationen siehe Upgrading.

Bibliotheksänderungen

BUGFIX in transform(): fehlende SRID, bessere Fehlerbehandlung.

BUGFIX im Umgang mit der Speicherausrichtung

BUGFIX in force_collection() - verursachte Fehler des MapServer Konnektors bei einer Einzelgeometrie (simple / single geometry type).

BUGFIX in GeometryFromText() - BBox Cache nicht hinzugefügt.

veringerte Genauigkeit bei der Box2D Ausgabe.

DEBUG Makros mit dem Präfix PGIS_ versehen, um einen Konflikt mit denen von pgsql zu verhindern

Speicherleck im Konverter "GEOS2POSTGIS" eingetreten

Reduzierte Nutzung des Hauptspeichers bei frühzeitiger Freigabe des Abfragekontext (palloced one, SPI_Palloc).

Skriptänderungen

BUGFIX in 72 index bindings.

BUGFIX in probe_geometry_columns() für PG72 und um mehrere Geometriespalten in einer einzigen Tabelle zu unterstützen

NEU bool::text Typumwandlung

Zur Steigerung der Rechenleistung wurden einige Funktionen von STABLE auf IMMUTABLE geändert.

JDBC Änderungen

jdbc2: Kleine Patches, box2d/3d Tests, überarbeitete Dokumentation und Lizenz.

jdbc2: Bugfix und Testumgebung für die automatische Registrierung von pgjdbc 8.0 Datentypen

jdbc2: JDK1.4 "Only Features" entfernt, um die Kompilierung mit älteren JDK Versionen zu ermöglichen.

jdbc2: Unterstützung für die Kompilierung mit pg72jdbc2.jar hinzugefügt

jdbc2: Aktualisierung und Bereinigung des Makefile

jdbc2: BETA-Unterstützung für die geometrischen Klassen von JTS

jdbc2: Überspringen von Tests bei denen ein Versagen mit älteren PostGIS Servern bekannt ist.

jdbc2: Behandlung von geometrischen Objekten mit Kilometrierung in EWKT fixiert.

Sonstige Änderungen

Neues Kapitel "performance tips" im Handbuch

Aktualisierung der Dokumentation: Anforderungen von pgsql72, lwpostgis.sql

Einige Änderungen in autoconf

BUILDDATE Extrahierung portabler

spatial_ref_sys.sql fixiert, damit das Vacuum nicht auf die gesamte Datenbank ausgeführt wird.

spatial_ref_sys: Einträge für Paris geändert, damit sie mit jenen der Distribution "0.x" übereinstimmen.

A.71. Release 1.0.0RC2

Freigabedatum: 2005/01/26

Zweiter Release Kanditat für 1.0.0. Enthält Bugfixes und einige Verbesserungen.

Upgraden

Ein Upgrade von älteren Versionen benötigt ein Dump/Reload. Für weiterführende Informationen siehe Upgrading.

Bibliotheksänderungen

BUGFIX in der Berechnung von Box3D für PointArray

Bugfix in der Definition von distance_spheroid

Bugfix in transform() : fehlendes Update des BBox Zwischenspeichers

NEUER jdbc driver (jdbc2)

GEOMETRYCOLLECTION(EMPTY) Syntax für Rückwärtskompatibilität

Schnellere Binärausgabe

Striktere OGC WKB/WKT Konstruktoren

Skriptänderungen

Genauere Verwendung von STABLE, IMMUTABLE, STRICT in lwpostgis.sql

Striktere OGC WKB/WKT Konstruktoren

Sonstige Änderungen

Schnellerer und stabilerer LaderFaster (i18n und nicht)

Erstes autoconf Skript

A.72. Release 1.0.0RC1

Freigabedatum: 2005/01/13

Dies ist der erste Kanditat für eine major Release von PostGIS. Die interne Speicherung der Datentypen von PostGIS wurde neu entworfen; sie ist jetzt schlanker und Abfragen, die Indizes nutzen können, sind jetzt schneller.

Upgraden

Ein Upgrade von älteren Versionen benötigt ein Dump/Reload. Für weiterführende Informationen siehe Upgrading.

Änderungen

Schnelleres Parsen der Normalform bei der Eingabe.

Verlustfreie Ausgabe der Normalform.

EWKB Canonical binary IO with PG>73.

Unterstützung von 4D-Koordinaten, verlustfreie shapefile->postgis->shapefile Konvertierung.

Neue Funktionen: UpdateGeometrySRID(), AsGML(), SnapToGrid(), ForceRHR(), estimated_extent(), accum().

Vertical positioning indexed operators.

JOIN Selectivity Funktion

Mehr geometrische Konstruktoren / Editoren.

PostGIS Extension API.

UTF8 Unterstützung im Loader.