PostGIS  3.0.6dev-r@@SVN_REVISION@@

◆ compute_gserialized_stats_mode()

static void compute_gserialized_stats_mode ( VacAttrStats *  stats,
AnalyzeAttrFetchFunc  fetchfunc,
int  sample_rows,
double  total_rows,
int  mode 
)
static

The gserialized_analyze_nd sets this function as a callback on the stats object when called by the ANALYZE command.

ANALYZE then gathers the requisite number of sample rows and then calls this function.

We could also pass stats->extra_data in from gserialized_analyze_nd (things like the column type or other stuff from the system catalogs) but so far we don't use that capability.

Our job is to build some statistics on the sample data for use by operator estimators.

We will populate an n-d histogram using the provided sample rows. The selectivity estimators (sel and j_oinsel) can then use the histogram

Definition at line 1366 of file gserialized_estimate.c.

1368 {
1369  MemoryContext old_context;
1370  int d, i; /* Counters */
1371  int notnull_cnt = 0; /* # not null rows in the sample */
1372  int null_cnt = 0; /* # null rows in the sample */
1373  int histogram_features = 0; /* # rows that actually got counted in the histogram */
1374 
1375  ND_STATS *nd_stats; /* Our histogram */
1376  size_t nd_stats_size; /* Size to allocate */
1377 
1378  double total_width = 0; /* # of bytes used by sample */
1379  double total_sample_volume = 0; /* Area/volume coverage of the sample */
1380  double total_cell_count = 0; /* # of cells in histogram affected by sample */
1381 
1382  ND_BOX sum; /* Sum of extents of sample boxes */
1383  ND_BOX avg; /* Avg of extents of sample boxes */
1384  ND_BOX stddev; /* StdDev of extents of sample boxes */
1385 
1386  const ND_BOX **sample_boxes; /* ND_BOXes for each of the sample features */
1387  ND_BOX sample_extent; /* Extent of the raw sample */
1388  int histo_size[ND_DIMS]; /* histogram nrows, ncols, etc */
1389  ND_BOX histo_extent; /* Spatial extent of the histogram */
1390  ND_BOX histo_extent_new; /* Temporary variable */
1391  int histo_cells_target; /* Number of cells we will shoot for, given the stats target */
1392  int histo_cells; /* Number of cells in the histogram */
1393  int histo_cells_new = 1; /* Temporary variable */
1394 
1395  int ndims = 2; /* Dimensionality of the sample */
1396  int histo_ndims = 0; /* Dimensionality of the histogram */
1397  double sample_distribution[ND_DIMS]; /* How homogeneous is distribution of sample in each axis? */
1398  double total_distribution; /* Total of sample_distribution */
1399 
1400  int stats_slot; /* What slot is this data going into? (2D vs ND) */
1401  int stats_kind; /* And this is what? (2D vs ND) */
1402 
1403  /* Initialize sum and stddev */
1404  nd_box_init(&sum);
1405  nd_box_init(&stddev);
1406  nd_box_init(&avg);
1407  nd_box_init(&histo_extent);
1408  nd_box_init(&histo_extent_new);
1409 
1410  /*
1411  * This is where gserialized_analyze_nd
1412  * should put its' custom parameters.
1413  */
1414  /* void *mystats = stats->extra_data; */
1415 
1416  POSTGIS_DEBUG(2, "compute_gserialized_stats called");
1417  POSTGIS_DEBUGF(3, " # sample_rows: %d", sample_rows);
1418  POSTGIS_DEBUGF(3, " estimate of total_rows: %.6g", total_rows);
1419 
1420  /*
1421  * We might need less space, but don't think
1422  * its worth saving...
1423  */
1424  sample_boxes = palloc(sizeof(ND_BOX*) * sample_rows);
1425 
1426  /*
1427  * First scan:
1428  * o read boxes
1429  * o find dimensionality of the sample
1430  * o find extent of the sample
1431  * o count null-infinite/not-null values
1432  * o compute total_width
1433  * o compute total features's box area (for avgFeatureArea)
1434  * o sum features box coordinates (for standard deviation)
1435  */
1436  for ( i = 0; i < sample_rows; i++ )
1437  {
1438  Datum datum;
1439  GSERIALIZED *geom;
1440  GBOX gbox;
1441  ND_BOX *nd_box;
1442  bool is_null;
1443  bool is_copy;
1444 
1445  datum = fetchfunc(stats, i, &is_null);
1446 
1447  /* Skip all NULLs. */
1448  if ( is_null )
1449  {
1450  POSTGIS_DEBUGF(4, " skipped null geometry %d", i);
1451  null_cnt++;
1452  continue;
1453  }
1454 
1455  /* Read the bounds from the gserialized. */
1456  geom = (GSERIALIZED *)PG_DETOAST_DATUM(datum);
1457  is_copy = VARATT_IS_EXTENDED(datum);
1458  if ( LW_FAILURE == gserialized_get_gbox_p(geom, &gbox) )
1459  {
1460  /* Skip empties too. */
1461  POSTGIS_DEBUGF(3, " skipped empty geometry %d", i);
1462  continue;
1463  }
1464 
1465  /* If we're in 2D mode, zero out the higher dimensions for "safety" */
1466  if ( mode == 2 )
1467  gbox.zmin = gbox.zmax = gbox.mmin = gbox.mmax = 0.0;
1468 
1469  /* Check bounds for validity (finite and not NaN) */
1470  if ( ! gbox_is_valid(&gbox) )
1471  {
1472  POSTGIS_DEBUGF(3, " skipped infinite/nan geometry %d", i);
1473  continue;
1474  }
1475 
1476  /*
1477  * In N-D mode, set the ndims to the maximum dimensionality found
1478  * in the sample. Otherwise, leave at ndims == 2.
1479  */
1480  if ( mode != 2 )
1481  ndims = Max(gbox_ndims(&gbox), ndims);
1482 
1483  /* Convert gbox to n-d box */
1484  nd_box = palloc(sizeof(ND_BOX));
1485  nd_box_from_gbox(&gbox, nd_box);
1486 
1487  /* Cache n-d bounding box */
1488  sample_boxes[notnull_cnt] = nd_box;
1489 
1490  /* Initialize sample extent before merging first entry */
1491  if ( ! notnull_cnt )
1492  nd_box_init_bounds(&sample_extent);
1493 
1494  /* Add current sample to overall sample extent */
1495  nd_box_merge(nd_box, &sample_extent);
1496 
1497  /* How many bytes does this sample use? */
1498  total_width += VARSIZE(geom);
1499 
1500  /* Add bounds coordinates to sums for stddev calculation */
1501  for ( d = 0; d < ndims; d++ )
1502  {
1503  sum.min[d] += nd_box->min[d];
1504  sum.max[d] += nd_box->max[d];
1505  }
1506 
1507  /* Increment our "good feature" count */
1508  notnull_cnt++;
1509 
1510  /* Free up memory if our sample geometry was copied */
1511  if ( is_copy )
1512  pfree(geom);
1513 
1514  /* Give backend a chance of interrupting us */
1515  vacuum_delay_point();
1516  }
1517 
1518  /*
1519  * We'll build a histogram having stats->attr->attstattarget cells
1520  * on each side, within reason... we'll use ndims*10000 as the
1521  * maximum number of cells.
1522  * Also, if we're sampling a relatively small table, we'll try to ensure that
1523  * we have an average of 5 features for each cell so the histogram isn't
1524  * so sparse.
1525  */
1526  histo_cells_target = (int)pow((double)(stats->attr->attstattarget), (double)ndims);
1527  histo_cells_target = Min(histo_cells_target, ndims * 10000);
1528  histo_cells_target = Min(histo_cells_target, (int)(total_rows/5));
1529  POSTGIS_DEBUGF(3, " stats->attr->attstattarget: %d", stats->attr->attstattarget);
1530  POSTGIS_DEBUGF(3, " target # of histogram cells: %d", histo_cells_target);
1531 
1532  /* If there's no useful features, we can't work out stats */
1533  if ( ! notnull_cnt )
1534  {
1535  Oid relation_oid = stats->attr->attrelid;
1536  char *relation_name = get_rel_name(relation_oid);
1537  elog(NOTICE,
1538  "PostGIS: Unable to compute statistics for \"%s.%s\": No non-null/empty features",
1539  relation_name ? relation_name : "(NULL)",
1540  stats->attr->attname.data);
1541  stats->stats_valid = false;
1542  return;
1543  }
1544 
1545  POSTGIS_DEBUGF(3, " sample_extent: %s", nd_box_to_json(&sample_extent, ndims));
1546 
1547  /*
1548  * Second scan:
1549  * o compute standard deviation
1550  */
1551  for ( d = 0; d < ndims; d++ )
1552  {
1553  /* Calculate average bounds values */
1554  avg.min[d] = sum.min[d] / notnull_cnt;
1555  avg.max[d] = sum.max[d] / notnull_cnt;
1556 
1557  /* Calculate standard deviation for this dimension bounds */
1558  for ( i = 0; i < notnull_cnt; i++ )
1559  {
1560  const ND_BOX *ndb = sample_boxes[i];
1561  stddev.min[d] += (ndb->min[d] - avg.min[d]) * (ndb->min[d] - avg.min[d]);
1562  stddev.max[d] += (ndb->max[d] - avg.max[d]) * (ndb->max[d] - avg.max[d]);
1563  }
1564  stddev.min[d] = sqrt(stddev.min[d] / notnull_cnt);
1565  stddev.max[d] = sqrt(stddev.max[d] / notnull_cnt);
1566 
1567  /* Histogram bounds for this dimension bounds is avg +/- SDFACTOR * stdev */
1568  histo_extent.min[d] = Max(avg.min[d] - SDFACTOR * stddev.min[d], sample_extent.min[d]);
1569  histo_extent.max[d] = Min(avg.max[d] + SDFACTOR * stddev.max[d], sample_extent.max[d]);
1570  }
1571 
1572  /*
1573  * Third scan:
1574  * o skip hard deviants
1575  * o compute new histogram box
1576  */
1577  nd_box_init_bounds(&histo_extent_new);
1578  for ( i = 0; i < notnull_cnt; i++ )
1579  {
1580  const ND_BOX *ndb = sample_boxes[i];
1581  /* Skip any hard deviants (boxes entirely outside our histo_extent */
1582  if ( ! nd_box_intersects(&histo_extent, ndb, ndims) )
1583  {
1584  POSTGIS_DEBUGF(4, " feature %d is a hard deviant, skipped", i);
1585  sample_boxes[i] = NULL;
1586  continue;
1587  }
1588  /* Expand our new box to fit all the other features. */
1589  nd_box_merge(ndb, &histo_extent_new);
1590  }
1591  /*
1592  * Expand the box slightly (1%) to avoid edge effects
1593  * with objects that are on the boundary
1594  */
1595  nd_box_expand(&histo_extent_new, 0.01);
1596  histo_extent = histo_extent_new;
1597 
1598  /*
1599  * How should we allocate our histogram cells to the
1600  * different dimensions? We can't do it by raw dimensional width,
1601  * because in x/y/z space, the z can have different units
1602  * from the x/y. Similarly for x/y/t space.
1603  * So, we instead calculate how much features overlap
1604  * each other in their dimension to figure out which
1605  * dimensions have useful selectivity characteristics (more
1606  * variability in density) and therefor would find
1607  * more cells useful (to distinguish between dense places and
1608  * homogeneous places).
1609  */
1610  nd_box_array_distribution(sample_boxes, notnull_cnt, &histo_extent, ndims,
1611  sample_distribution);
1612 
1613  /*
1614  * The sample_distribution array now tells us how spread out the
1615  * data is in each dimension, so we use that data to allocate
1616  * the histogram cells we have available.
1617  * At this point, histo_cells_target is the approximate target number
1618  * of cells.
1619  */
1620 
1621  /*
1622  * Some dimensions have basically a uniform distribution, we want
1623  * to allocate no cells to those dimensions, only to dimensions
1624  * that have some interesting differences in data distribution.
1625  * Here we count up the number of interesting dimensions
1626  */
1627  for ( d = 0; d < ndims; d++ )
1628  {
1629  if ( sample_distribution[d] > 0 )
1630  histo_ndims++;
1631  }
1632 
1633  if ( histo_ndims == 0 )
1634  {
1635  /* Special case: all our dimensions had low variability! */
1636  /* We just divide the cells up evenly */
1637  POSTGIS_DEBUG(3, " special case: no axes have variability");
1638  histo_cells_new = 1;
1639  for ( d = 0; d < ndims; d++ )
1640  {
1641  histo_size[d] = (int)pow((double)histo_cells_target, 1/(double)ndims);
1642  if ( ! histo_size[d] )
1643  histo_size[d] = 1;
1644  POSTGIS_DEBUGF(3, " histo_size[d]: %d", histo_size[d]);
1645  histo_cells_new *= histo_size[d];
1646  }
1647  POSTGIS_DEBUGF(3, " histo_cells_new: %d", histo_cells_new);
1648  }
1649  else
1650  {
1651  /*
1652  * We're going to express the amount of variability in each dimension
1653  * as a proportion of the total variability and allocate cells in that
1654  * dimension relative to that proportion.
1655  */
1656  POSTGIS_DEBUG(3, " allocating histogram axes based on axis variability");
1657  total_distribution = total_double(sample_distribution, ndims); /* First get the total */
1658  POSTGIS_DEBUGF(3, " total_distribution: %.8g", total_distribution);
1659  histo_cells_new = 1; /* For the number of cells in the final histogram */
1660  for ( d = 0; d < ndims; d++ )
1661  {
1662  if ( sample_distribution[d] == 0 ) /* Uninteresting dimensions don't get any room */
1663  {
1664  histo_size[d] = 1;
1665  }
1666  else /* Interesting dimension */
1667  {
1668  /* How does this dims variability compare to the total? */
1669  float edge_ratio = (float)sample_distribution[d] / (float)total_distribution;
1670  /*
1671  * Scale the target cells number by the # of dims and ratio,
1672  * then take the appropriate root to get the estimated number of cells
1673  * on this axis (eg, pow(0.5) for 2d, pow(0.333) for 3d, pow(0.25) for 4d)
1674  */
1675  histo_size[d] = (int)pow(histo_cells_target * histo_ndims * edge_ratio, 1/(double)histo_ndims);
1676  /* If something goes awry, just give this dim one slot */
1677  if ( ! histo_size[d] )
1678  histo_size[d] = 1;
1679  }
1680  histo_cells_new *= histo_size[d];
1681  }
1682  POSTGIS_DEBUGF(3, " histo_cells_new: %d", histo_cells_new);
1683  }
1684 
1685  /* Update histo_cells to the actual number of cells we need to allocate */
1686  histo_cells = histo_cells_new;
1687  POSTGIS_DEBUGF(3, " histo_cells: %d", histo_cells);
1688 
1689  /*
1690  * Create the histogram (ND_STATS) in the stats memory context
1691  */
1692  old_context = MemoryContextSwitchTo(stats->anl_context);
1693  nd_stats_size = sizeof(ND_STATS) + ((histo_cells - 1) * sizeof(float4));
1694  nd_stats = palloc(nd_stats_size);
1695  memset(nd_stats, 0, nd_stats_size); /* Initialize all values to 0 */
1696  MemoryContextSwitchTo(old_context);
1697 
1698  /* Initialize the #ND_STATS objects */
1699  nd_stats->ndims = ndims;
1700  nd_stats->extent = histo_extent;
1701  nd_stats->sample_features = sample_rows;
1702  nd_stats->table_features = total_rows;
1703  nd_stats->not_null_features = notnull_cnt;
1704  /* Copy in the histogram dimensions */
1705  for ( d = 0; d < ndims; d++ )
1706  nd_stats->size[d] = histo_size[d];
1707 
1708  /*
1709  * Fourth scan:
1710  * o fill histogram values with the proportion of
1711  * features' bbox overlaps: a feature's bvol
1712  * can fully overlap (1) or partially overlap
1713  * (fraction of 1) an histogram cell.
1714  *
1715  * Note that we are filling each cell with the "portion of
1716  * the feature's box that overlaps the cell". So, if we sum
1717  * up the values in the histogram, we could get the
1718  * histogram feature count.
1719  *
1720  */
1721  for ( i = 0; i < notnull_cnt; i++ )
1722  {
1723  const ND_BOX *nd_box;
1724  ND_IBOX nd_ibox;
1725  int at[ND_DIMS];
1726  int d;
1727  double num_cells = 0;
1728  double tmp_volume = 1.0;
1729  double min[ND_DIMS] = {0.0, 0.0, 0.0, 0.0};
1730  double max[ND_DIMS] = {0.0, 0.0, 0.0, 0.0};
1731  double cellsize[ND_DIMS] = {0.0, 0.0, 0.0, 0.0};
1732 
1733  nd_box = sample_boxes[i];
1734  if ( ! nd_box ) continue; /* Skip Null'ed out hard deviants */
1735 
1736  /* Give backend a chance of interrupting us */
1737  vacuum_delay_point();
1738 
1739  /* Find the cells that overlap with this box and put them into the ND_IBOX */
1740  nd_box_overlap(nd_stats, nd_box, &nd_ibox);
1741  memset(at, 0, sizeof(int)*ND_DIMS);
1742 
1743  POSTGIS_DEBUGF(3, " feature %d: ibox (%d, %d, %d, %d) (%d, %d, %d, %d)", i,
1744  nd_ibox.min[0], nd_ibox.min[1], nd_ibox.min[2], nd_ibox.min[3],
1745  nd_ibox.max[0], nd_ibox.max[1], nd_ibox.max[2], nd_ibox.max[3]);
1746 
1747  for ( d = 0; d < nd_stats->ndims; d++ )
1748  {
1749  /* Initialize the starting values */
1750  at[d] = nd_ibox.min[d];
1751  min[d] = nd_stats->extent.min[d];
1752  max[d] = nd_stats->extent.max[d];
1753  cellsize[d] = (max[d] - min[d])/(nd_stats->size[d]);
1754 
1755  /* What's the volume (area) of this feature's box? */
1756  tmp_volume *= (nd_box->max[d] - nd_box->min[d]);
1757  }
1758 
1759  /* Add feature volume (area) to our total */
1760  total_sample_volume += tmp_volume;
1761 
1762  /*
1763  * Move through all the overlaped histogram cells values and
1764  * add the box overlap proportion to them.
1765  */
1766  do
1767  {
1768  ND_BOX nd_cell = { {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0} };
1769  double ratio;
1770  /* Create a box for this histogram cell */
1771  for ( d = 0; d < nd_stats->ndims; d++ )
1772  {
1773  nd_cell.min[d] = min[d] + (at[d]+0) * cellsize[d];
1774  nd_cell.max[d] = min[d] + (at[d]+1) * cellsize[d];
1775  }
1776 
1777  /*
1778  * If a feature box is completely inside one cell the ratio will be
1779  * 1.0. If a feature box is 50% in two cells, each cell will get
1780  * 0.5 added on.
1781  */
1782  ratio = nd_box_ratio(&nd_cell, nd_box, nd_stats->ndims);
1783  nd_stats->value[nd_stats_value_index(nd_stats, at)] += ratio;
1784  num_cells += ratio;
1785  POSTGIS_DEBUGF(3, " ratio (%.8g) num_cells (%.8g)", ratio, num_cells);
1786  POSTGIS_DEBUGF(3, " at (%d, %d, %d, %d)", at[0], at[1], at[2], at[3]);
1787  }
1788  while ( nd_increment(&nd_ibox, nd_stats->ndims, at) );
1789 
1790  /* Keep track of overall number of overlaps counted */
1791  total_cell_count += num_cells;
1792  /* How many features have we added to this histogram? */
1793  histogram_features++;
1794  }
1795 
1796  POSTGIS_DEBUGF(3, " histogram_features: %d", histogram_features);
1797  POSTGIS_DEBUGF(3, " sample_rows: %d", sample_rows);
1798  POSTGIS_DEBUGF(3, " table_rows: %.6g", total_rows);
1799 
1800  /* Error out if we got no sample information */
1801  if ( ! histogram_features )
1802  {
1803  POSTGIS_DEBUG(3, " no stats have been gathered");
1804  elog(NOTICE, " no features lie in the stats histogram, invalid stats");
1805  stats->stats_valid = false;
1806  return;
1807  }
1808 
1809  nd_stats->histogram_features = histogram_features;
1810  nd_stats->histogram_cells = histo_cells;
1811  nd_stats->cells_covered = total_cell_count;
1812 
1813  /* Put this histogram data into the right slot/kind */
1814  if ( mode == 2 )
1815  {
1816  stats_slot = STATISTIC_SLOT_2D;
1817  stats_kind = STATISTIC_KIND_2D;
1818  }
1819  else
1820  {
1821  stats_slot = STATISTIC_SLOT_ND;
1822  stats_kind = STATISTIC_KIND_ND;
1823  }
1824 
1825  /* Write the statistics data */
1826  stats->stakind[stats_slot] = stats_kind;
1827  stats->staop[stats_slot] = InvalidOid;
1828  stats->stanumbers[stats_slot] = (float4*)nd_stats;
1829  stats->numnumbers[stats_slot] = nd_stats_size/sizeof(float4);
1830  stats->stanullfrac = (float4)null_cnt/sample_rows;
1831  stats->stawidth = total_width/notnull_cnt;
1832  stats->stadistinct = -1.0;
1833  stats->stats_valid = true;
1834 
1835  POSTGIS_DEBUGF(3, " out: slot 0: kind %d (STATISTIC_KIND_ND)", stats->stakind[0]);
1836  POSTGIS_DEBUGF(3, " out: slot 0: op %d (InvalidOid)", stats->staop[0]);
1837  POSTGIS_DEBUGF(3, " out: slot 0: numnumbers %d", stats->numnumbers[0]);
1838  POSTGIS_DEBUGF(3, " out: null fraction: %f=%d/%d", stats->stanullfrac, null_cnt, sample_rows);
1839  POSTGIS_DEBUGF(3, " out: average width: %d bytes", stats->stawidth);
1840  POSTGIS_DEBUG (3, " out: distinct values: all (no check done)");
1841  POSTGIS_DEBUGF(3, " out: %s", nd_stats_to_json(nd_stats));
1842  /*
1843  POSTGIS_DEBUGF(3, " out histogram:\n%s", nd_stats_to_grid(nd_stats));
1844  */
1845 
1846  return;
1847 }
int gbox_is_valid(const GBOX *gbox)
Return false if any of the dimensions is NaN or infinite.
Definition: gbox.c:197
int gserialized_get_gbox_p(const GSERIALIZED *g, GBOX *gbox)
Read the box from the GSERIALIZED or calculate it if necessary.
Definition: gserialized.c:65
struct ND_STATS_T ND_STATS
N-dimensional statistics structure.
static char * nd_stats_to_json(const ND_STATS *nd_stats)
Convert an ND_STATS to a JSON representation for external use.
static int nd_box_intersects(const ND_BOX *a, const ND_BOX *b, int ndims)
Return true if ND_BOX a overlaps b, false otherwise.
static int nd_box_init_bounds(ND_BOX *a)
Prepare an ND_BOX for bounds calculation: set the maxes to the smallest thing possible and the mins t...
static int nd_increment(ND_IBOX *ibox, int ndims, int *counter)
Given an n-d index array (counter), and a domain to increment it in (ibox) increment it by one,...
#define STATISTIC_SLOT_ND
static int gbox_ndims(const GBOX *gbox)
Given that geodetic boxes are X/Y/Z regardless of the underlying geometry dimensionality and other bo...
#define ND_DIMS
The maximum number of dimensions our code can handle.
#define STATISTIC_KIND_2D
static int nd_box_merge(const ND_BOX *source, ND_BOX *target)
Create a printable view of the ND_STATS histogram.
#define STATISTIC_KIND_ND
static double total_double(const double *vals, int nvals)
Given double array, return sum of values.
#define SDFACTOR
static void nd_box_from_gbox(const GBOX *gbox, ND_BOX *nd_box)
Set the values of an ND_BOX from a GBOX.
static int nd_box_init(ND_BOX *a)
Zero out an ND_BOX.
static int nd_box_expand(ND_BOX *nd_box, double expansion_factor)
Expand an ND_BOX ever so slightly.
static int nd_box_overlap(const ND_STATS *nd_stats, const ND_BOX *nd_box, ND_IBOX *nd_ibox)
What stats cells overlap with this ND_BOX? Put the lowest cell addresses in ND_IBOX->min and the high...
static double nd_box_ratio(const ND_BOX *b1, const ND_BOX *b2, int ndims)
Returns the proportion of b2 that is covered by b1.
static int nd_stats_value_index(const ND_STATS *stats, int *indexes)
Given a position in the n-d histogram (i,j,k) return the position in the 1-d values array.
static char * nd_box_to_json(const ND_BOX *nd_box, int ndims)
Convert an ND_BOX to a JSON string for printing.
#define STATISTIC_SLOT_2D
static int nd_box_array_distribution(const ND_BOX **nd_boxes, int num_boxes, const ND_BOX *extent, int ndims, double *distribution)
Calculate how much a set of boxes is homogenously distributed or contentrated within one dimension,...
#define LW_FAILURE
Definition: liblwgeom.h:110
double zmax
Definition: liblwgeom.h:345
double zmin
Definition: liblwgeom.h:344
double mmax
Definition: liblwgeom.h:347
double mmin
Definition: liblwgeom.h:346
float4 max[ND_DIMS]
float4 min[ND_DIMS]
N-dimensional box type for calculations, to avoid doing explicit axis conversions from GBOX in all ca...
int max[ND_DIMS]
int min[ND_DIMS]
N-dimensional box index type.
float4 size[ND_DIMS]
N-dimensional statistics structure.

References ND_STATS_T::cells_covered, ND_STATS_T::extent, gbox_is_valid(), gbox_ndims(), gserialized_get_gbox_p(), ND_STATS_T::histogram_cells, ND_STATS_T::histogram_features, LW_FAILURE, ND_BOX_T::max, ND_IBOX_T::max, ND_BOX_T::min, ND_IBOX_T::min, GBOX::mmax, GBOX::mmin, nd_box_array_distribution(), nd_box_expand(), nd_box_from_gbox(), nd_box_init(), nd_box_init_bounds(), nd_box_intersects(), nd_box_merge(), nd_box_overlap(), nd_box_ratio(), nd_box_to_json(), ND_DIMS, nd_increment(), nd_stats_to_json(), nd_stats_value_index(), ND_STATS_T::ndims, ND_STATS_T::not_null_features, ND_STATS_T::sample_features, SDFACTOR, ND_STATS_T::size, STATISTIC_KIND_2D, STATISTIC_KIND_ND, STATISTIC_SLOT_2D, STATISTIC_SLOT_ND, ND_STATS_T::table_features, total_double(), ND_STATS_T::value, GBOX::zmax, and GBOX::zmin.

Referenced by compute_gserialized_stats().

Here is the call graph for this function:
Here is the caller graph for this function: