ST_SummaryStats — Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.
summarystats ST_SummaryStats(
raster rast, boolean exclude_nodata_value)
;
summarystats ST_SummaryStats(
raster rast, integer nband, boolean exclude_nodata_value)
;
summarystats ST_SummaryStats(
text rastertable, text rastercolumn, boolean exclude_nodata_value)
;
summarystats ST_SummaryStats(
text rastertable, text rastercolumn, integer nband=1, boolean exclude_nodata_value=true)
;
Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. If no band is specified nband
defaults to 1.
By default only considers pixel values not equal to the |
By default will sample all pixels. To get faster response, set |
Availability: 2.0.0
The ST_SummaryStats(rastertable, rastercolumn, ...) variants are deprecated as of 2.2.0. Use ST_SummaryStatsAgg instead. |
SELECT rid, band, (stats).* FROM (SELECT rid, band, ST_SummaryStats(rast, band) As stats FROM dummy_rast CROSS JOIN generate_series(1,3) As band WHERE rid=2) As foo; rid | band | count | sum | mean | stddev | min | max -----+------+-------+------+------------+-----------+-----+----- 2 | 1 | 23 | 5821 | 253.086957 | 1.248061 | 250 | 254 2 | 2 | 25 | 3682 | 147.28 | 59.862188 | 78 | 254 2 | 3 | 25 | 3290 | 131.6 | 61.647384 | 62 | 254
This example took 574ms on PostGIS windows 64-bit with all of Boston Buildings and aerial Tiles (tiles each 150x150 pixels ~ 134,000 tiles), ~102,000 building records
WITH -- our features of interest feat AS (SELECT gid As building_id, geom_26986 As geom FROM buildings AS b WHERE gid IN(100, 103,150) ), -- clip band 2 of raster tiles to boundaries of builds -- then get stats for these clipped regions b_stats AS (SELECT building_id, (stats).* FROM (SELECT building_id, ST_SummaryStats(ST_Clip(rast,2,geom)) As stats FROM aerials.boston INNER JOIN feat ON ST_Intersects(feat.geom,rast) ) As foo ) -- finally summarize stats SELECT building_id, SUM(count) As num_pixels , MIN(min) As min_pval , MAX(max) As max_pval , SUM(mean*count)/SUM(count) As avg_pval FROM b_stats WHERE count > 0 GROUP BY building_id ORDER BY building_id; building_id | num_pixels | min_pval | max_pval | avg_pval -------------+------------+----------+----------+------------------ 100 | 1090 | 1 | 255 | 61.0697247706422 103 | 655 | 7 | 182 | 70.5038167938931 150 | 895 | 2 | 252 | 185.642458100559
-- stats for each band -- SELECT band, (stats).* FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band) As stats FROM generate_series(1,3) As band) As foo; band | count | sum | mean | stddev | min | max ------+---------+--------+------------------+------------------+-----+----- 1 | 8450000 | 725799 | 82.7064349112426 | 45.6800222638537 | 0 | 255 2 | 8450000 | 700487 | 81.4197705325444 | 44.2161184161765 | 0 | 255 3 | 8450000 | 575943 | 74.682739408284 | 44.2143885481407 | 0 | 255 -- For a table -- will get better speed if set sampling to less than 100% -- Here we set to 25% and get a much faster answer SELECT band, (stats).* FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band,true,0.25) As stats FROM generate_series(1,3) As band) As foo; band | count | sum | mean | stddev | min | max ------+---------+--------+------------------+------------------+-----+----- 1 | 2112500 | 180686 | 82.6890480473373 | 45.6961043857248 | 0 | 255 2 | 2112500 | 174571 | 81.448503668639 | 44.2252623171821 | 0 | 255 3 | 2112500 | 144364 | 74.6765884023669 | 44.2014869384578 | 0 | 255