PostGIS  2.3.8dev-r@@SVN_REVISION@@

◆ sphere_project()

int sphere_project ( const GEOGRAPHIC_POINT r,
double  distance,
double  azimuth,
GEOGRAPHIC_POINT n 
)

Given a starting location r, a distance and an azimuth to the new point, compute the location of the projected point on the unit sphere.

Definition at line 1279 of file lwgeodetic.c.

References distance(), FP_EQUALS, GEOGRAPHIC_POINT::lat, GEOGRAPHIC_POINT::lon, LW_FAILURE, and LW_SUCCESS.

Referenced by circ_center_spherical(), and test_sphere_project().

1280 {
1281  double d = distance;
1282  double lat1 = r->lat;
1283  double lon1 = r->lon;
1284  double lat2, lon2;
1285 
1286  lat2 = asin(sin(lat1)*cos(d) + cos(lat1)*sin(d)*cos(azimuth));
1287 
1288  /* If we're going straight up or straight down, we don't need to calculate the longitude */
1289  /* TODO: this isn't quite true, what if we're going over the pole? */
1290  if ( FP_EQUALS(azimuth, M_PI) || FP_EQUALS(azimuth, 0.0) )
1291  {
1292  lon2 = r->lon;
1293  }
1294  else
1295  {
1296  lon2 = lon1 + atan2(sin(azimuth)*sin(d)*cos(lat1), cos(d)-sin(lat1)*sin(lat2));
1297  }
1298 
1299  if ( isnan(lat2) || isnan(lon2) )
1300  return LW_FAILURE;
1301 
1302  n->lat = lat2;
1303  n->lon = lon2;
1304 
1305  return LW_SUCCESS;
1306 }
#define LW_SUCCESS
Definition: liblwgeom.h:79
#define LW_FAILURE
Definition: liblwgeom.h:78
Datum distance(PG_FUNCTION_ARGS)
#define FP_EQUALS(A, B)
Here is the call graph for this function:
Here is the caller graph for this function: